pricing for revenue maximization in general scenarios and ... · patrick briest piotr krysta dept....

105
Introduction Overview Single-Minded Unlimited-Supply Pricing Unit-Demand Pricing Pricing for Revenue Maximization in General Scenarios and in Networks Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Ne

Upload: others

Post on 20-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Pricing for Revenue Maximizationin General Scenarios and in Networks

Patrick Briest Piotr Krysta

Dept. of Computer ScienceUniversity of Dortmund

Germany

03-10-2006

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 2: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Websites gather data about consumer preferences / budgets.

Computation of profit maximizing prices.

Different approaches taken to model markets. Here:

Single-Minded Unlimited-Supply Pricing:single-minded customers, each interested in a single set ofproducts,unlimited supply, i.e., no production constraints.Customer buys if the sum of prices is below her budget.

Unit-Demand Pricing:unit-demand customers, each buy a single product in a set ofproducts,unlimited or limited supply,Customer buys only products with prices below their budgets.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 3: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

1 Introduction

2 Single-Minded Unlimited-Supply PricingHardness ResultsApproximation Algorithms

3 Unit-Demand PricingHardness ResultsApproximation Algorithms

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 4: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Single-Minded Unlimited-Supply Pricing

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 5: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Single-Minded Unlimited-Supply Pricing (SUSP)

Given products U and sets S with values v(S) find prices p, suchthat ∑

S :∑

e∈S p(e)≤v(S)

e∈S

p(e) −→ max.

models pricing of direct connections in computer ortransportation networks.

Pricing in Graphs(G-SUSP)

Given graph G = (V , E ) and paths P, assign profit-maximizingprices p to edges.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 6: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

First investigated by Guruswami et al. (2005). Recentinapproximability result due to Demaine et al. (2006).

In general:

O(log |U| + log |S|)-approximation

inapproximable within O(logδ |U|) for some 0 < δ < 1

With G being a line (Highway Problem):

poly-time algo for integral valuations of constant size

pseudopolynomial time algo for paths of constant length

Q: Is there a poly-time algorithm for the Highway Problem?

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 7: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

First investigated by Guruswami et al. (2005). Recentinapproximability result due to Demaine et al. (2006).

In general:

O(log |U| + log |S|)-approximation

inapproximable within O(logδ |U|) for some 0 < δ < 1

With G being a line (Highway Problem):

poly-time algo for integral valuations of constant size

pseudopolynomial time algo for paths of constant length

Q: Is there a poly-time algorithm for the Highway Problem? No!

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 8: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Hardness Results

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 9: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

The Highway Problem

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 10: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Theorem

The Highway Problem is NP-hard.

Sketch of Proof: Partition problem:

Given positive weights w1, . . . ,wn, does there exist S ⊂ {1, . . . , n},such that ∑

j∈S

wj =∑

j /∈S

wj ?

Design gadgets that capture the discrete nature of this problem.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 11: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

wj

je1 e j2

���

���

���

���

���

���

������������������������

vv vj j j1 2 3

wj wj

wj

wj

wj wj

wj

je1 e j2

���

���

���

���

���

���

������������������������

vv vj j j1 2 3

wj wj

2

2

p(Wj)

Weight Gadgets

Maximum profit out of Wj is 2wj .

It is obtained iff p(Wj) = p(e j1) + p(e j

2) is set to wj or 2wj .

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 12: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

wj

je1 e j2

���

���

���

���

���

���

������������������������

vv vj j j1 2 3

wj wj

�������� ��������������

�������� ��������������

�������� ��������������

�������� ��������������

�������� ��������������

Σj=1

n

wj_23

. . .

Maximum profit 72

∑nj=1 wj is obtained iff there exists S ⊂

{1, . . . , n} with∑

j∈S wj =∑

j /∈S wj . �

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 13: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

The sets in this instance are nested, i.e.,

S ⊆ T , T ⊆ S , or

S ∩ T = ∅.

Every instance of SUSP with nested sets can be viewed as aninstance of the Highway Problem.

Dynamic programming / scaling:

Theorem

SUSP with nested sets allows an FPTAS.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 14: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

G -SUSPInapproximability of Sparse

Problem Instances

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 15: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

APX-hardness of G -SUSP due to Guruswami et al. (2005).

Applications in realistic network settings often lead to sparseproblem instances. Hardness of approximation still holds if:

G has constant degree d

paths have constant lengths ≤ ℓ

at most a constant number B of paths per edge

only constant height valuations

Theorem

G -SUSP on sparse instances is APX-hard.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 16: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Approximation Algorithms

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 17: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Best ratio in the general case: log |U| + log |S|Guruswami, Hartline, Karlin, Kempe, Kenyon, McSherry (2005)

Not approximable within logδ |U| for some 0 < δ < 1.Demaine, Feige, Hajiaghayi, Salavatipour (2006)

Can we do better on sparse problem instances, i.e., can we obtainapproximation ratios depending on

ℓ, the maximum cardinality of any set S ∈ S

B, the maximum number of sets containing some producte ∈ U

rather than |U| and |S|?

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 18: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

An O(log ℓ + log B)-Approximation

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 19: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Let δ(S) = v(S)/|S | be price per product of set S .

1 Round all δ(S) to powers of 2. Let S = S0 ∪ . . . ∪ St wheret = ⌈log ℓ2B⌉ − 1. In Si : δ(S) > δ(T ) ⇒ δ(S)/δ(T ) ≥ ℓ2B.

���������������������������������������

������������������������������������������������������������������������������

������������������������������������������������������������������������������

������������������������������������������������������������������������������

���������������������������������������

20 21 22 23 2i

��

��

��

��

�� �� �� ��

�� �� ��

�� �� ��

�� �� ��S

S

S

S0

2

3

1

t+1

2 In each Si select non-intersecting sets with maximum δ-valueand compute optimal prices.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 20: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Analysis:

Opt(S) ≤∑t

i=1 Opt(Si )

Let S ∈ Si , I(S) intersecting sets with smaller δ-values:

v(S) ≥∑

T∈I(S)

v(T )

Let S∗i be non-intersecting sets with max. δ as in the algo.

ThenOpt(Si ) ≤ 2 · Opt(S∗

i ),

and, since we compute maxi Opt(S∗i ):

Theorem

The above algorithm has approximation ratio O(log ℓ + log B).

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 21: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Upper bounding technique

We relate Opt(S∗i ) to Opt(Si ) by using as an upper bound

Opt(Si ) ≤∑

S∈Si

v(S),

i.e., the sum of all valuations.

Using this upper bounding technique, no approximation ratioo(log B) can be achieved.

In many applications: B >> ℓ.

Can we obtain ratios independent of B?

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 22: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

An O(ℓ2)-Approximation

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 23: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Define (smoothed) s-SUSP by changing the objective to

S∈Λ(p)

e∈S

p(e),

where Λ(p) = {S ∈ S | p(e) ≤ δ(S)∀ e ∈ S}.

We derive an O(ℓ)-approximation for s-SUSP.

1 For every e ∈ U compute the optimal price p∗(e) assuming allother prices were 0.

2 Resolve existing conflicts.

Set S is conflicting, if

∃ e, f ∈ S : p∗(e) ≤ δ(S) < p∗(f ).

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 24: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Upper bounding technique

1 For every e ∈ U compute the optimal price p∗(e) assuming allother prices were 0.

2 Our upper bound: Opt ≤∑

e∈U p∗(e)

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 25: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Summary (SUSP):

Hardness results

NP-hardness of the Highway ProblemAPX-hardness of G -SUSP for sparse instances

Approximation Algorithms

O(log ℓ + log B)-approximation ( partitioning)O(ℓ2)-approximation ( conflict graph)

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 26: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Unit-Demand Pricing

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 27: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Unit-Demand Pricing (UDP)

Given products U and consumer samples C consisting of budgetsb(c , e) ∈ R

+0 ∀c ∈ C, e ∈ U , and rankings rc : U → {1, . . . , |U|}.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 28: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Unit-Demand Pricing (UDP)

Given products U and consumer samples C consisting of budgetsb(c , e) ∈ R

+0 ∀c ∈ C, e ∈ U , and rankings rc : U → {1, . . . , |U|}.

For prices p : U → R+0 :

A(p) = {c ∈ C | ∃e ∈ U : p(e) ≤ b(c , e)} = consumers affordingto buy any product.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 29: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Unit-Demand Pricing (UDP)

Given products U and consumer samples C consisting of budgetsb(c , e) ∈ R

+0 ∀c ∈ C, e ∈ U , and rankings rc : U → {1, . . . , |U|}.

For prices p : U → R+0 :

A(p) = {c ∈ C | ∃e ∈ U : p(e) ≤ b(c , e)} = consumers affordingto buy any product.

In no price ladder scenario (NPL) we find prices p that maximize:

∑c∈A(p) min{p(e) | p(e) ≤ b(c , e)} (Udp-Min-Npl)

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 30: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Unit-Demand Pricing (UDP)

Given products U and consumer samples C consisting of budgetsb(c , e) ∈ R

+0 ∀c ∈ C, e ∈ U , and rankings rc : U → {1, . . . , |U|}.

For prices p : U → R+0 :

A(p) = {c ∈ C | ∃e ∈ U : p(e) ≤ b(c , e)} = consumers affordingto buy any product.

In no price ladder scenario (NPL) we find prices p that maximize:

∑c∈A(p) min{p(e) | p(e) ≤ b(c , e)} (Udp-Min-Npl)

∑c∈A(p) max{p(e) | p(e) ≤ b(c , e)} (Udp-Max-Npl)

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 31: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Unit-Demand Pricing (UDP)

Given products U and consumer samples C consisting of budgetsb(c , e) ∈ R

+0 ∀c ∈ C, e ∈ U , and rankings rc : U → {1, . . . , |U|}.

For prices p : U → R+0 :

A(p) = {c ∈ C | ∃e ∈ U : p(e) ≤ b(c , e)} = consumers affordingto buy any product.

In no price ladder scenario (NPL) we find prices p that maximize:

∑c∈A(p) min{p(e) | p(e) ≤ b(c , e)} (Udp-Min-Npl)

∑c∈A(p) max{p(e) | p(e) ≤ b(c , e)} (Udp-Max-Npl)

∑c∈A(p) p

(argmin{rc(e) | e : p(e) ≤ b(c , e)}

)

(Udp-Rank-Npl)

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 32: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Unit-Demand Pricing (UDP)

Given products U and consumer samples C consisting of budgetsb(c , e) ∈ R

+0 ∀c ∈ C, e ∈ U , and rankings rc : U → {1, . . . , |U|}.

For prices p : U → R+0 :

A(p) = {c ∈ C | ∃e ∈ U : p(e) ≤ b(c , e)} = consumers affordingto buy any product.

In no price ladder scenario (NPL) we find prices p that maximize:

∑c∈A(p) min{p(e) | p(e) ≤ b(c , e)} (Udp-Min-Npl)

∑c∈A(p) max{p(e) | p(e) ≤ b(c , e)} (Udp-Max-Npl)

∑c∈A(p) p

(argmin{rc(e) | e : p(e) ≤ b(c , e)}

)

(Udp-Rank-Npl)

Given a price ladder constraint (PL), p(e1) ≤ · · · ≤ p(e|U|),Udp-{Min,Max,Rank}-Pl asks for prices p satisfying PL.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 33: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

UDP introduced as non-parametric multi-product pricing in [1].[1] Glynn, Rusmevichientong and Van Roy (2003)

[2] Aggarwal, Feder, Motwani and Zhu (2004)

Udp-Min-{Pl,Npl}:

Udp-Min-Pl poly-time for uniform budgets consumers [1].

Udp-Min-Npl APX-hard, has O(log |C|)-approx [2].

Udp-Max-{Pl,Npl}:

Udp-Max-Pl has a PTAS [2].

Udp-Max-Pl, limited supply: 4-approx [2].

Udp-Max-Npl 16/15-hard, has 1.59-approx [2].

Q: Udp-Min-Npl: Is there a const approx ?

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 34: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

UDP introduced as non-parametric multi-product pricing in [1].[1] Glynn, Rusmevichientong and Van Roy (2003)

[2] Aggarwal, Feder, Motwani and Zhu (2004)

Udp-Min-{Pl,Npl}:

Udp-Min-Pl poly-time for uniform budgets consumers [1].

Udp-Min-Npl APX-hard, has O(log |C|)-approx [2].

Udp-Max-{Pl,Npl}:

Udp-Max-Pl has a PTAS [2].

Udp-Max-Pl, limited supply: 4-approx [2].

Udp-Max-Npl 16/15-hard, has 1.59-approx [2].

Q: Udp-Min-Npl: Is there a const approx ? No!

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 35: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

UDP introduced as non-parametric multi-product pricing in [1].[1] Glynn, Rusmevichientong and Van Roy (2003)

[2] Aggarwal, Feder, Motwani and Zhu (2004)

Udp-Min-{Pl,Npl}:

Udp-Min-Pl poly-time for uniform budgets consumers [1].

Udp-Min-Npl APX-hard, has O(log |C|)-approx [2].

Udp-Max-{Pl,Npl}:

Udp-Max-Pl has a PTAS [2].

Udp-Max-Pl, limited supply: 4-approx [2].

Udp-Max-Npl 16/15-hard, has 1.59-approx [2].

Q: Udp-Min-Npl: Is there a const approx ? No!Udp-Max-Pl: Is PTAS best possible approx ?

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 36: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

UDP introduced as non-parametric multi-product pricing in [1].[1] Glynn, Rusmevichientong and Van Roy (2003)

[2] Aggarwal, Feder, Motwani and Zhu (2004)

Udp-Min-{Pl,Npl}:

Udp-Min-Pl poly-time for uniform budgets consumers [1].

Udp-Min-Npl APX-hard, has O(log |C|)-approx [2].

Udp-Max-{Pl,Npl}:

Udp-Max-Pl has a PTAS [2].

Udp-Max-Pl, limited supply: 4-approx [2].

Udp-Max-Npl 16/15-hard, has 1.59-approx [2].

Q: Udp-Min-Npl: Is there a const approx ? No!Udp-Max-Pl: Is PTAS best possible approx ? Yes!

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 37: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

UDP introduced as non-parametric multi-product pricing in [1].[1] Glynn, Rusmevichientong and Van Roy (2003)

[2] Aggarwal, Feder, Motwani and Zhu (2004)

Udp-Min-{Pl,Npl}:

Udp-Min-Pl poly-time for uniform budgets consumers [1].

Udp-Min-Npl APX-hard, has O(log |C|)-approx [2].

Udp-Max-{Pl,Npl}:

Udp-Max-Pl has a PTAS [2].

Udp-Max-Pl, limited supply: 4-approx [2].

Udp-Max-Npl 16/15-hard, has 1.59-approx [2].

Q: Udp-Min-Npl: Is there a const approx ? No!Udp-Max-Pl: Is PTAS best possible approx ? Yes!Udp-Max-Npl, limit’d supply: const-approx, APX-hard ?

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 38: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

UDP introduced as non-parametric multi-product pricing in [1].[1] Glynn, Rusmevichientong and Van Roy (2003)

[2] Aggarwal, Feder, Motwani and Zhu (2004)

Udp-Min-{Pl,Npl}:

Udp-Min-Pl poly-time for uniform budgets consumers [1].

Udp-Min-Npl APX-hard, has O(log |C|)-approx [2].

Udp-Max-{Pl,Npl}:

Udp-Max-Pl has a PTAS [2].

Udp-Max-Pl, limited supply: 4-approx [2].

Udp-Max-Npl 16/15-hard, has 1.59-approx [2].

Q: Udp-Min-Npl: Is there a const approx ? No!Udp-Max-Pl: Is PTAS best possible approx ? Yes!Udp-Max-Npl, limit’d supply: const-approx, APX-hard ? Yes!

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 39: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Hardness Results

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 40: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Udp-Min-Npl: Is there a const approx ? No!

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 41: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Recall: Udp-Min-Npl has O(log |C|)-approx [2]. We prove:

Theorem

Udp-Min-{Pl,Npl} is not approximable within O(logε |C|) forsome ε > 0, unless NP ⊆ DTIME(nO(log log n)).

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 42: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Recall: Udp-Min-Npl has O(log |C|)-approx [2]. We prove:

Theorem

Udp-Min-{Pl,Npl} is not approximable within O(logε |C|) forsome ε > 0, unless NP ⊆ DTIME(nO(log log n)).

Sketch of Proof:Let α(G ) = size of the maximum independent set in graph G .

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 43: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Recall: Udp-Min-Npl has O(log |C|)-approx [2]. We prove:

Theorem

Udp-Min-{Pl,Npl} is not approximable within O(logε |C|) forsome ε > 0, unless NP ⊆ DTIME(nO(log log n)).

Sketch of Proof:Let α(G ) = size of the maximum independent set in graph G .

Proposition [Alon, Feige, Wigderson, Zuckerman’95]

n ∈ N, G = {G : G = (V , E ) with max degree O(log n), |V | = n}.There is ε > 0, s.t. O(logε n)-approx to α(G ) is NP-hard for G ∈ G.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 44: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Recall: Udp-Min-Npl has O(log |C|)-approx [2]. We prove:

Theorem

Udp-Min-{Pl,Npl} is not approximable within O(logε |C|) forsome ε > 0, unless NP ⊆ DTIME(nO(log log n)).

Sketch of Proof:Let α(G ) = size of the maximum independent set in graph G .

Proposition [Alon, Feige, Wigderson, Zuckerman’95]

n ∈ N, G = {G : G = (V , E ) with max degree O(log n), |V | = n}.There is ε > 0, s.t. O(logε n)-approx to α(G ) is NP-hard for G ∈ G.

Given G ∈ G, we reduce finding α(G) to Udp-Min-Pl.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 45: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Recall: Udp-Min-Npl has O(log |C|)-approx [2]. We prove:

Theorem

Udp-Min-{Pl,Npl} is not approximable within O(logε |C|) forsome ε > 0, unless NP ⊆ DTIME(nO(log log n)).

Sketch of Proof:Let α(G ) = size of the maximum independent set in graph G .

Proposition [Alon, Feige, Wigderson, Zuckerman’95]

n ∈ N, G = {G : G = (V , E ) with max degree O(log n), |V | = n}.There is ε > 0, s.t. O(logε n)-approx to α(G ) is NP-hard for G ∈ G.

Given G ∈ G, we reduce finding α(G) to Udp-Min-Pl.

Assume a.c.: Udp-Min-Pl has O(logε−δ |C|)-approx for some δ > 0.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 46: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Recall: Udp-Min-Npl has O(log |C|)-approx [2]. We prove:

Theorem

Udp-Min-{Pl,Npl} is not approximable within O(logε |C|) forsome ε > 0, unless NP ⊆ DTIME(nO(log log n)).

Sketch of Proof:Let α(G ) = size of the maximum independent set in graph G .

Proposition [Alon, Feige, Wigderson, Zuckerman’95]

n ∈ N, G = {G : G = (V , E ) with max degree O(log n), |V | = n}.There is ε > 0, s.t. O(logε n)-approx to α(G ) is NP-hard for G ∈ G.

Given G ∈ G, we reduce finding α(G) to Udp-Min-Pl.

Assume a.c.: Udp-Min-Pl has O(logε−δ |C|)-approx for some δ > 0.

We will show that this gives O(logε n)-approx for α(G) in time nO(log log n).

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 47: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Sketch of Proof:G = (V , E ) ∈ G of max degree ∆, def instance of Udp-Min-Pl:

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 48: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Sketch of Proof:G = (V , E ) ∈ G of max degree ∆, def instance of Udp-Min-Pl:

V = V0 ∪ . . . ∪ V∆: (∆ + 1)-vertex-coloring of G .

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 49: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Sketch of Proof:G = (V , E ) ∈ G of max degree ∆, def instance of Udp-Min-Pl:

V = V0 ∪ . . . ∪ V∆: (∆ + 1)-vertex-coloring of G .

Let Vi = {vij | j = 0, . . . , |Vi | − 1}.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 50: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Sketch of Proof:G = (V , E ) ∈ G of max degree ∆, def instance of Udp-Min-Pl:

V = V0 ∪ . . . ∪ V∆: (∆ + 1)-vertex-coloring of G .

Let Vi = {vij | j = 0, . . . , |Vi | − 1}.

V(vij) = {vkℓ | {vij , vkℓ} ∈ E and k < i} = vertices adjacent to vij

in color class with index < i

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 51: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Sketch of Proof:G = (V , E ) ∈ G of max degree ∆, def instance of Udp-Min-Pl:

V = V0 ∪ . . . ∪ V∆: (∆ + 1)-vertex-coloring of G .

Let Vi = {vij | j = 0, . . . , |Vi | − 1}.

V(vij) = {vkℓ | {vij , vkℓ} ∈ E and k < i} = vertices adjacent to vij

in color class with index < i

Products / PL: For every vij ∈ V we have a product eij .

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 52: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Sketch of Proof:G = (V , E ) ∈ G of max degree ∆, def instance of Udp-Min-Pl:

V = V0 ∪ . . . ∪ V∆: (∆ + 1)-vertex-coloring of G .

Let Vi = {vij | j = 0, . . . , |Vi | − 1}.

V(vij) = {vkℓ | {vij , vkℓ} ∈ E and k < i} = vertices adjacent to vij

in color class with index < i

Products / PL: For every vij ∈ V we have a product eij .

Define PL: p(e00) ≤ p(e01) ≤ · · · ≤ p(e0,|V0|−1) ≤ p(e10) ≤ · · · .

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 53: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Sketch of Proof:G = (V , E ) ∈ G of max degree ∆, def instance of Udp-Min-Pl:

V = V0 ∪ . . . ∪ V∆: (∆ + 1)-vertex-coloring of G .

Let Vi = {vij | j = 0, . . . , |Vi | − 1}.

V(vij) = {vkℓ | {vij , vkℓ} ∈ E and k < i} = vertices adjacent to vij

in color class with index < i

Products / PL: For every vij ∈ V we have a product eij .

Define PL: p(e00) ≤ p(e01) ≤ · · · ≤ p(e0,|V0|−1) ≤ p(e10) ≤ · · · .

Let µ = 4(∆ + 1) and γ = µ−∆−1/n.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 54: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Sketch of Proof:G = (V , E ) ∈ G of max degree ∆, def instance of Udp-Min-Pl:

V = V0 ∪ . . . ∪ V∆: (∆ + 1)-vertex-coloring of G .

Let Vi = {vij | j = 0, . . . , |Vi | − 1}.

V(vij) = {vkℓ | {vij , vkℓ} ∈ E and k < i} = vertices adjacent to vij

in color class with index < i

Products / PL: For every vij ∈ V we have a product eij .

Define PL: p(e00) ≤ p(e01) ≤ · · · ≤ p(e0,|V0|−1) ≤ p(e10) ≤ · · · .

Let µ = 4(∆ + 1) and γ = µ−∆−1/n.

For every product eij define pij = µi−∆ + jγ.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 55: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Sketch of Proof:Illustration of the construction:

��������������������

��������������������

��������������������

�������������������� ����

����������������

��������������������

��������������������

��������������������

��������������������������������

��������������������������������

��������������������

��������������������

����������������������������������������������������������������

����������������������������������������������������������������

��������

���

���

��������

������

������

������

������

1C2

C

µ−∆+1

+2µ−∆

µ−∆

e i,j

e i,j

eu

��

��

��

��

ewev

∆C

Cu

������

γ

u

w

v0

1

2 (1)

(2)

0C

µ

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 56: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Sketch of Proof:Consumers: For vij ∈ V define a set

Cij = {ctij | t = 0, . . . , µ∆−i − 1} of identical consumers

with budgets

b(ctij , eij) = pij and

b(ctij , ekℓ) = pkℓ for all k ,ℓ with vkℓ ∈ V(vij).

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 57: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Sketch of Proof:Consumers: For vij ∈ V define a set

Cij = {ctij | t = 0, . . . , µ∆−i − 1} of identical consumers

with budgets

b(ctij , eij) = pij and

b(ctij , ekℓ) = pkℓ for all k ,ℓ with vkℓ ∈ V(vij).

In analogy to coloring V = V0 ∪ . . . ∪ V∆ denote consumers

C = C0 ∪ . . . ∪ C∆,

where Ci =⋃

j Cij .

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 58: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Sketch of Proof:Illustration of the construction:

��������������������

��������������������

��������������������

�������������������� ����

����������������

��������������������

��������������������

��������������������

��������������������������������

��������������������������������

��������������������

��������������������

����������������������������������������������������������������

����������������������������������������������������������������

��������

���

���

��������

������

������

������

������

1C2

C

µ−∆+1

+2µ−∆

µ−∆

e i,j

e i,j

eu

��

��

��

��

ewev

∆C

Cu

������

γ

u

w

v0

1

2 (1)

(2)

0C

µ

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 59: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Sketch of Proof: Soundness: optUDP ≥ α(G ), that is:

(large IS in G ) ⇒ (high revenue in Udp)

For an IS V ′ of G , define prices p:for vij ∈ V ′ set p(eij) = pij , else set p(eij) = pij + γ.(pij ’s differ by ≥ γ) ⇒ prices p(·) fulfill PL

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 60: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Sketch of Proof: Soundness: optUDP ≥ α(G ), that is:

(large IS in G ) ⇒ (high revenue in Udp)

For an IS V ′ of G , define prices p:for vij ∈ V ′ set p(eij) = pij , else set p(eij) = pij + γ.(pij ’s differ by ≥ γ) ⇒ prices p(·) fulfill PL

Consider vij ∈ V ′ and corresponding consumers Cij .(∀vkℓ ∈ V(vij) : vkℓ /∈ V ′)

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 61: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Sketch of Proof: Soundness: optUDP ≥ α(G ), that is:

(large IS in G ) ⇒ (high revenue in Udp)

For an IS V ′ of G , define prices p:for vij ∈ V ′ set p(eij) = pij , else set p(eij) = pij + γ.(pij ’s differ by ≥ γ) ⇒ prices p(·) fulfill PL

Consider vij ∈ V ′ and corresponding consumers Cij .(∀vkℓ ∈ V(vij) : vkℓ /∈ V ′)

⇒ each consumer ctij ∈ Cij can afford product eij at price pij

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 62: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Sketch of Proof: Soundness: optUDP ≥ α(G ), that is:

(large IS in G ) ⇒ (high revenue in Udp)

For an IS V ′ of G , define prices p:for vij ∈ V ′ set p(eij) = pij , else set p(eij) = pij + γ.(pij ’s differ by ≥ γ) ⇒ prices p(·) fulfill PL

Consider vij ∈ V ′ and corresponding consumers Cij .(∀vkℓ ∈ V(vij) : vkℓ /∈ V ′)

⇒ each consumer ctij ∈ Cij can afford product eij at price pij

⇒ prices of products ekℓ exceed thresholds pkℓ of each ctij

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 63: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Sketch of Proof: Soundness: optUDP ≥ α(G ), that is:

(large IS in G ) ⇒ (high revenue in Udp)

For an IS V ′ of G , define prices p:for vij ∈ V ′ set p(eij) = pij , else set p(eij) = pij + γ.(pij ’s differ by ≥ γ) ⇒ prices p(·) fulfill PL

Consider vij ∈ V ′ and corresponding consumers Cij .(∀vkℓ ∈ V(vij) : vkℓ /∈ V ′)

⇒ each consumer ctij ∈ Cij can afford product eij at price pij

⇒ prices of products ekℓ exceed thresholds pkℓ of each ctij

⇒ eij is the product with smallest price that any c tij can afford

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 64: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Sketch of Proof: Soundness: optUDP ≥ α(G ), that is:

(large IS in G ) ⇒ (high revenue in Udp)

For an IS V ′ of G , define prices p:for vij ∈ V ′ set p(eij) = pij , else set p(eij) = pij + γ.(pij ’s differ by ≥ γ) ⇒ prices p(·) fulfill PL

Consider vij ∈ V ′ and corresponding consumers Cij .(∀vkℓ ∈ V(vij) : vkℓ /∈ V ′)

⇒ each consumer ctij ∈ Cij can afford product eij at price pij

⇒ prices of products ekℓ exceed thresholds pkℓ of each ctij

⇒ eij is the product with smallest price that any c tij can afford

⇒ revenue of consumers Cij ≥ |Cij | · pij = µ∆−i(µi−∆ + jγ

)≥ 1

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 65: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Sketch of Proof: Soundness: optUDP ≥ α(G ), that is:

(large IS in G ) ⇒ (high revenue in Udp)

For an IS V ′ of G , define prices p:for vij ∈ V ′ set p(eij) = pij , else set p(eij) = pij + γ.(pij ’s differ by ≥ γ) ⇒ prices p(·) fulfill PL

Consider vij ∈ V ′ and corresponding consumers Cij .(∀vkℓ ∈ V(vij) : vkℓ /∈ V ′)

⇒ each consumer ctij ∈ Cij can afford product eij at price pij

⇒ prices of products ekℓ exceed thresholds pkℓ of each ctij

⇒ eij is the product with smallest price that any c tij can afford

⇒ revenue of consumers Cij ≥ |Cij | · pij = µ∆−i(µi−∆ + jγ

)≥ 1

⇒ prices p result in revenue ≥ |V ′|, so optUDP ≥ α(G )

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 66: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Sketch of Proof: Completeness: |V ′| ≥ 14 revenue(C), V ′-IS:

(high revenue in Udp) ⇒ (large IS in G )

Let p()–prices found by approx algo, r(C), r(Cij), r(ctij)-revenues.

W.l.o.g.: price of each product eij ∈ {pij , pij + γ}

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 67: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Sketch of Proof: Completeness: |V ′| ≥ 14 revenue(C), V ′-IS:

(high revenue in Udp) ⇒ (large IS in G )

Let p()–prices found by approx algo, r(C), r(Cij), r(ctij)-revenues.

W.l.o.g.: price of each product eij ∈ {pij , pij + γ}

C+ df= {ct

ij | r(ctij) = pij}, C

− = C\C+.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 68: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Sketch of Proof: Completeness: |V ′| ≥ 14 revenue(C), V ′-IS:

(high revenue in Udp) ⇒ (large IS in G )

Let p()–prices found by approx algo, r(C), r(Cij), r(ctij)-revenues.

W.l.o.g.: price of each product eij ∈ {pij , pij + γ}

C+ df= {ct

ij | r(ctij) = pij}, C

− = C\C+. Obs: ∀i , j : Cij ⊆ C+ or Cij ⊆ C−.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 69: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Sketch of Proof: Completeness: |V ′| ≥ 14 revenue(C), V ′-IS:

(high revenue in Udp) ⇒ (large IS in G )

Let p()–prices found by approx algo, r(C), r(Cij), r(ctij)-revenues.

W.l.o.g.: price of each product eij ∈ {pij , pij + γ}

C+ df= {ct

ij | r(ctij) = pij}, C

− = C\C+. Obs: ∀i , j : Cij ⊆ C+ or Cij ⊆ C−.

Goal: define V ′ = {vij | Cij ⊆ C+}, show V ′–large IS.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 70: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Sketch of Proof: Completeness: |V ′| ≥ 14 revenue(C), V ′-IS:

(high revenue in Udp) ⇒ (large IS in G )

Let p()–prices found by approx algo, r(C), r(Cij), r(ctij)-revenues.

W.l.o.g.: price of each product eij ∈ {pij , pij + γ}

C+ df= {ct

ij | r(ctij) = pij}, C

− = C\C+. Obs: ∀i , j : Cij ⊆ C+ or Cij ⊆ C−.

Goal: define V ′ = {vij | Cij ⊆ C+}, show V ′–large IS.

Obs: r(C−) =∑

Cij⊆C−r(Cij) ≤

n2(∆+1)

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 71: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Sketch of Proof: Completeness: |V ′| ≥ 14 revenue(C), V ′-IS:

(high revenue in Udp) ⇒ (large IS in G )

Let p()–prices found by approx algo, r(C), r(Cij), r(ctij)-revenues.

W.l.o.g.: price of each product eij ∈ {pij , pij + γ}

C+ df= {ct

ij | r(ctij) = pij}, C

− = C\C+. Obs: ∀i , j : Cij ⊆ C+ or Cij ⊆ C−.

Goal: define V ′ = {vij | Cij ⊆ C+}, show V ′–large IS.

Obs: r(C−) =∑

Cij⊆C−r(Cij) ≤

n2(∆+1)

Obs: α(G) ≥ n/(∆ + 1); easy to find prices resulting in revenue n/(∆ + 1)

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 72: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Sketch of Proof: Completeness: |V ′| ≥ 14 revenue(C), V ′-IS:

(high revenue in Udp) ⇒ (large IS in G )

Let p()–prices found by approx algo, r(C), r(Cij), r(ctij)-revenues.

W.l.o.g.: price of each product eij ∈ {pij , pij + γ}

C+ df= {ct

ij | r(ctij) = pij}, C

− = C\C+. Obs: ∀i , j : Cij ⊆ C+ or Cij ⊆ C−.

Goal: define V ′ = {vij | Cij ⊆ C+}, show V ′–large IS.

Obs: r(C−) =∑

Cij⊆C−r(Cij) ≤

n2(∆+1)

Obs: α(G) ≥ n/(∆ + 1); easy to find prices resulting in revenue n/(∆ + 1)

⇒ wlog: r(C) ≥ n∆+1

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 73: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Sketch of Proof: Completeness: |V ′| ≥ 14 revenue(C), V ′-IS:

(high revenue in Udp) ⇒ (large IS in G )

Let p()–prices found by approx algo, r(C), r(Cij), r(ctij)-revenues.

W.l.o.g.: price of each product eij ∈ {pij , pij + γ}

C+ df= {ct

ij | r(ctij) = pij}, C

− = C\C+. Obs: ∀i , j : Cij ⊆ C+ or Cij ⊆ C−.

Goal: define V ′ = {vij | Cij ⊆ C+}, show V ′–large IS.

Obs: r(C−) =∑

Cij⊆C−r(Cij) ≤

n2(∆+1)

Obs: α(G) ≥ n/(∆ + 1); easy to find prices resulting in revenue n/(∆ + 1)

⇒ wlog: r(C) ≥ n∆+1 ⇒ r(C+) = r(C) − r(C−) ≥ (1/2)r(C)

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 74: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Sketch of Proof: Completeness: |V ′| ≥ 14 revenue(C), V ′-IS:

(high revenue in Udp) ⇒ (large IS in G )

Let p()–prices found by approx algo, r(C), r(Cij), r(ctij)-revenues.

W.l.o.g.: price of each product eij ∈ {pij , pij + γ}

C+ df= {ct

ij | r(ctij) = pij}, C

− = C\C+. Obs: ∀i , j : Cij ⊆ C+ or Cij ⊆ C−.

Goal: define V ′ = {vij | Cij ⊆ C+}, show V ′–large IS.

Obs: r(C−) =∑

Cij⊆C−r(Cij) ≤

n2(∆+1)

Obs: α(G) ≥ n/(∆ + 1); easy to find prices resulting in revenue n/(∆ + 1)

⇒ wlog: r(C) ≥ n∆+1 ⇒ r(C+) = r(C) − r(C−) ≥ (1/2)r(C)

∀vij ∈ V ′: Cij ⊆ C+, r(Cij) = |Cij | · pij = µ∆−i(µi−∆ + jγ

)≤ 2

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 75: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Sketch of Proof: Completeness: |V ′| ≥ 14 revenue(C), V ′-IS:

(high revenue in Udp) ⇒ (large IS in G )

Let p()–prices found by approx algo, r(C), r(Cij), r(ctij)-revenues.

W.l.o.g.: price of each product eij ∈ {pij , pij + γ}

C+ df= {ct

ij | r(ctij) = pij}, C

− = C\C+. Obs: ∀i , j : Cij ⊆ C+ or Cij ⊆ C−.

Goal: define V ′ = {vij | Cij ⊆ C+}, show V ′–large IS.

Obs: r(C−) =∑

Cij⊆C−r(Cij) ≤

n2(∆+1)

Obs: α(G) ≥ n/(∆ + 1); easy to find prices resulting in revenue n/(∆ + 1)

⇒ wlog: r(C) ≥ n∆+1 ⇒ r(C+) = r(C) − r(C−) ≥ (1/2)r(C)

∀vij ∈ V ′: Cij ⊆ C+, r(Cij) = |Cij | · pij = µ∆−i(µi−∆ + jγ

)≤ 2

⇒ |V ′| = |{vij | Cij ⊆ C+}| ≥ (1/2)r(C+) ≥ (1/4)r(C)

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 76: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Sketch of Proof: Finish:

Recall: |C| = ♯ consumers, and log |C| ≤ log nµ∆ = O(log1+ε′ n)for any ε′ > 0.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 77: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Sketch of Proof: Finish:

Recall: |C| = ♯ consumers, and log |C| ≤ log nµ∆ = O(log1+ε′ n)for any ε′ > 0.

r(C) is O(logε−δ |C|)-approx to optUDP

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 78: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Sketch of Proof: Finish:

Recall: |C| = ♯ consumers, and log |C| ≤ log nµ∆ = O(log1+ε′ n)for any ε′ > 0.

r(C) is O(logε−δ |C|)-approx to optUDP

⇒ |V ′| ≥ 14 r(C) ≥ 1

O(logε−δ |C|)optUDP ≥ 1

O(logε n)α(G )

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 79: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Sketch of Proof: Finish:

Recall: |C| = ♯ consumers, and log |C| ≤ log nµ∆ = O(log1+ε′ n)for any ε′ > 0.

r(C) is O(logε−δ |C|)-approx to optUDP

⇒ |V ′| ≥ 14 r(C) ≥ 1

O(logε−δ |C|)optUDP ≥ 1

O(logε n)α(G )

By Proposition finding such an IS set is NP-hard.

The size of our Udp-Min-Pl instance is roughly

n · (log n)log n = nO(log log n)

and the running time of our approx algo is polynomial in thisexpression.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 80: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Udp-Max-Pl: Is PTAS best possible approx ?Yes!

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 81: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Theorem

Udp-Max-Pl with unlimited supply is strongly NP-hard, even ifeach consumer has at most 2 non-zero budgets.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 82: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Approximation Algorithms

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 83: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Udp-Max-Npl, limit’d supply: const-approx,APX-hard ? Yes!

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 84: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Theorem

Udp-Max-{Pl,Npl} with unit-supply can be solved in polynomialtime.

Theorem

Udp-Max-Npl with limited supply 2 or larger is APX-hard.

Theorem

There is a 2-approximation algorithm for Udp-Max-Npl with lim-ited supply.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 85: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Theorem

There is a 2-approximation algorithm for Udp-Max-Npl with lim-ited supply.

Sketch of Proof:Let r(p, a) be the revenue of price assignment p and corresponding(optimal) allocation a (Maximum Weighted Bipartite b-Matching).

Given prices p let [p | p(e) = p′] be prices obtained by changingprice of e to p′. We prove that the following is a 2-approx algo:

LocalSearch: Initialize p arbitrarily and compute theoptimal allocation a. While there exists product e andprice p′ 6= p(e) such that

r(p, a) < r([p | p(e) = p′], a′),

where a′ is the optimal allocation given prices[p | p(e) = p′], set p(e) = p′.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 86: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Summary (UDP):

Udp-Min-{Pl,Npl} is intractable (no const approx), evenwith PL

Udp-Max-{Pl,Npl} is tractable (const approx), even withNPL and limited supply

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 87: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

—————————————————————————————————————

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 88: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

APX-hardness of G -SUSP due to Guruswami et al. (2005).

Applications in realistic network settings often lead to sparseproblem instances. Hardness of approximation still holds if:

G has constant degree d

paths have constant lengths ≤ ℓ

at most a constant number B of paths per edge

only constant height valuations

Theorem

G -SUSP on sparse instances is APX-hard.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 89: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

We reduce a variant of MaxSat.

Max2Sat(3): clauses of length 2, every literal appears in at most 3clauses

We need to design gadgets that imitate clauses in the SATinstance.

We start out from the weight gadgets which will model literals.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 90: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

1

1 1

111

L L1 2

Lp(2)L1

p( ) prof

2 2

444

1 11 2

Clause Gadgets

Literal gadget Lj for every occurrence of literal lj ,gives maximum profit 2 if p(Lj) ∈ {1, 2}.Connect L1 and L2, if l1, l2 form a clause.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 91: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

3

1

1 1

111

L L1 2

P

Lp(2)L1

p( ) prof P

2 2

444

230

1 11 2

Clause Gadgets

Literal gadget Lj for every occurrence of literal lj ,gives maximum profit 2 if p(Lj) ∈ {1, 2}.Connect L1 and L2, if l1, l2 form a clause.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 92: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

3 3

3

1

1 1

111

1

L L1 2

P

S

Lp(2)L1

p( ) prof P S

2 2

444

230

667

1 11 2

Clause Gadgets

Literal gadget Lj for every occurrence of literal lj ,gives maximum profit 2 if p(Lj) ∈ {1, 2}.Connect L1 and L2, if l1, l2 form a clause.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 93: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

333 3 3 3

3

11

1

1 1

111

1

L L1 2

P

S

Lp(2)L1

p( ) prof P S

2 2

444

230

667

1 11 2

Clause Gadgets

Literal gadget Lj for every occurrence of literal lj ,gives maximum profit 2 if p(Lj) ∈ {1, 2}.Connect L1 and L2, if l1, l2 form a clause.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 94: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

2

1,819

1,61

20

y1,2

21

1,4

1,4

22

1,2

23

1,6x

24

1,8 1

25

2

Lemma

Let C be a clause gadget with literal gadgets L1 and L2. Maxi-mum profit obtainable from C is 25 and is reached if and only if{p(L1), p(L2)} = {1, 2} or p(L1) = p(L2) = 2. C gives profit 24 ifp(L1) = p(L2) = 1.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 95: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

xj xjxj

_xj

_

Literal gadgets L(xj), L(x j) belonging to literals xj or x j are joinedtogether. Adding a sufficient number of dummies gives a cyclicstructure of exactly 6 literal gadgets.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 96: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

xj

xj

xj

_

xj

_

Literal gadgets L(xj), L(x j) belonging to literals xj or x j are joinedtogether. Adding a sufficient number of dummies gives a cyclicstructure of exactly 6 literal gadgets.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 97: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

xj

xj

xj

xj

_

xj

_

xj

_

Dummies

Literal gadgets L(xj), L(x j) belonging to literals xj or x j are joinedtogether. Adding a sufficient number of dummies gives a cyclicstructure of exactly 6 literal gadgets.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 98: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

xjxj

_

xjxj

_

xj

_

xj

3

33

3

33

Literal gadgets L(xj), L(x j) belonging to literals xj or x j are joinedtogether. Adding a sufficient number of dummies gives a cyclicstructure of exactly 6 literal gadgets.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 99: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Prices p on this instances are SAT-feasible, if

p(L) ∈ {1, 2} for all literal gadgets L

p(L1(xj)) = p(L2(xj)) = p(L3(xj)) and

p(L1(x j)) = p(L2(x j)) = p(L3(x j)) for all xj .

Lemma

Any price assignment p can be transformed in polynomial time intoa SAT-feasible price assignment p∗ of no smaller profit.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 100: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

An O(ℓ2)-Approximation (SUSP)

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 101: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Define (smoothed) s-SUSP by changing the objective to

S∈Λ(p)

e∈S

p(e),

where Λ(p) = {S ∈ S | p(e) ≤ δ(S)∀ e ∈ S}.

We derive an O(ℓ)-approximation for s-SUSP.

1 For every e ∈ U compute the optimal price p∗(e) assuming allother prices were 0.

2 Resolve existing conflicts.

Set S is conflicting, if

∃ e, f ∈ S : p∗(e) ≤ δ(S) < p∗(f ).

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 102: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Upper bounding technique

1 For every e ∈ U compute the optimal price p∗(e) assuming allother prices were 0.

2 Our upper bound: Opt ≤∑

e∈U p∗(e)

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 103: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Conflict graph for price assignment p∗:

α (e,S)

α (T)

α (e) profit of e on non−conflicting sets��

profit of e on conflicting set S

total profit on conflicting set T

Vertices represent products, directed hyperedges representconflicting sets. Profit out of non-conflicting sets is assigned tovertices, conflicting profit to hyperedges.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 104: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

Conflicts are resolved by transforming the conflict graph:

Step 1: In order of increasing prices check for each product e if

T∈In(e)

α(T ) >1

2

S∈Out(e)

α(e, S),

and remove e from all outgoing edges in this case.

Step 2: Let R = {e |Out(e) = ∅}, E = {S=̂(V , W ) |W ⊆ R}.Edges in E carry half the profit of all edges in the graph. Ifα(R) > α(E) set p(e) = 0 for all e ∈ R.

Step 3: Remove the remaining edges.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net

Page 105: Pricing for Revenue Maximization in General Scenarios and ... · Patrick Briest Piotr Krysta Dept. of Computer Science University of Dortmund Germany 03-10-2006 Patrick Briest, Piotr

IntroductionOverview

Single-Minded Unlimited-Supply PricingUnit-Demand Pricing

Hardness ResultsApproximation Algorithms

We obtain a conflict graph for some non-conflicting priceassignment p.

Lemma

In the transformation the overall α-value decreases by at most afactor O(ℓ).

Opt of SUSP is upper bounded by ℓ times the α-value of p∗’sconflict graph, thus:

Theorem

The above algorithm computes an O(ℓ2)-approximation for SUSP.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net