pricing parisian options using numerical inversion of laplace transforms · 2017. 2. 11. ·...

36
Presentation of the Parisian options Pricing of Parisian options Numerical evaluation Pricing Parisian options Pricing Parisian options using numerical inversion of Laplace transforms Jérôme Lelong (joint work with C. Labart) Tuesday 23 October 2007 J. Lelong (MathFi – INRIA) Tuesday 23 October 2007 1 / 33

Upload: others

Post on 14-Sep-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Pricing Parisian options using numerical inversion of Laplace transforms · 2017. 2. 11. · Presentation of the Parisian options Pricing of Parisian options Numerical evaluation

Presentation of the Parisian optionsPricing of Parisian options

Numerical evaluation

Pricing Parisian options

Pricing Parisian options using numericalinversion of Laplace transforms

Jérôme Lelong (joint work with C. Labart)

http://cermics.enpc.fr/~lelong

Tuesday 23 October 2007

J. Lelong (MathFi – INRIA) Tuesday 23 October 2007 1 / 33

Page 2: Pricing Parisian options using numerical inversion of Laplace transforms · 2017. 2. 11. · Presentation of the Parisian options Pricing of Parisian options Numerical evaluation

Presentation of the Parisian optionsPricing of Parisian options

Numerical evaluation

Pricing Parisian options

Plan

1 Presentation of the Parisian optionsDefinitionThe different optionsSome parity relationships

2 Pricing of Parisian optionsWhat is knownSeveral approaches

3 Numerical evaluationInversion formulaAnalytical prolongationEuler summationRegularity of the Parisian option pricesPractical implementation

J. Lelong (MathFi – INRIA) Tuesday 23 October 2007 2 / 33

Page 3: Pricing Parisian options using numerical inversion of Laplace transforms · 2017. 2. 11. · Presentation of the Parisian options Pricing of Parisian options Numerical evaluation

Presentation of the Parisian optionsPricing of Parisian options

Numerical evaluation

Pricing Parisian options

Presentation of the Parisian options

Definition

Definition

barrier options counting the time spent in a row above (resp. below) afixed level (the barrier). If this time is longer than a fixed value (thewindow width), the option is activated (“In”) or canceled (“Out”).

Parisian options are less sensitive to influential agent on the marketthan standard barrier options.

Parisian options naturally appears in the analysis of structuredproducts such as re-callable convertible bond: the owner wants torecall its bond if ever the underlying stock has been traded out of agiven range for a while.

Some attempts to use Parisian options to price credit risk derivatives.

J. Lelong (MathFi – INRIA) Tuesday 23 October 2007 3 / 33

Page 4: Pricing Parisian options using numerical inversion of Laplace transforms · 2017. 2. 11. · Presentation of the Parisian options Pricing of Parisian options Numerical evaluation

Presentation of the Parisian optionsPricing of Parisian options

Numerical evaluation

Pricing Parisian options

Presentation of the Parisian options

Definition

Definition (single barrier)

D

D b

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0-1.5

-1.0

-0.5

0.0

1.0

1.5

0.5

FIG.: single barrier Parisian option

J. Lelong (MathFi – INRIA) Tuesday 23 October 2007 4 / 33

Page 5: Pricing Parisian options using numerical inversion of Laplace transforms · 2017. 2. 11. · Presentation of the Parisian options Pricing of Parisian options Numerical evaluation

Presentation of the Parisian optionsPricing of Parisian options

Numerical evaluation

Pricing Parisian options

Presentation of the Parisian options

Definition

Definition (single barrier)

D b

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0-1.5

-1.0

0.0

0.5

1.0

1.5

-0.5

FIG.: single barrier Parisian option

J. Lelong (MathFi – INRIA) Tuesday 23 October 2007 4 / 33

Page 6: Pricing Parisian options using numerical inversion of Laplace transforms · 2017. 2. 11. · Presentation of the Parisian options Pricing of Parisian options Numerical evaluation

Presentation of the Parisian optionsPricing of Parisian options

Numerical evaluation

Pricing Parisian options

Presentation of the Parisian options

Definition

Definition (double barrier)

D

D

D

bup

bdown

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

FIG.: double barrier Parisian option

J. Lelong (MathFi – INRIA) Tuesday 23 October 2007 5 / 33

Page 7: Pricing Parisian options using numerical inversion of Laplace transforms · 2017. 2. 11. · Presentation of the Parisian options Pricing of Parisian options Numerical evaluation

Presentation of the Parisian optionsPricing of Parisian options

Numerical evaluation

Pricing Parisian options

Presentation of the Parisian options

The different options

Payoff

Parisian Down In Call,

(ST −K )+1 ∃ 0≤t1<t2≤Tt2−t1≥D , s.t. ∀u∈[t1,t2] Su≤L

.

L is the barrier and D the option window.

Parisian Up Out Call,

(ST −K )+1 ∀ 0≤t1<t2≤Tt2−t1≥D , s.t. ∃u∈[t1,t2] Su<L

.

Parisian Double Out Call

(ST −K )+1 ∀ 0≤t1<t2≤Tt2−t1≥D ,∃u∈[t1,t2] s.t. Su<Lup and Su>Ldown

.

J. Lelong (MathFi – INRIA) Tuesday 23 October 2007 6 / 33

Page 8: Pricing Parisian options using numerical inversion of Laplace transforms · 2017. 2. 11. · Presentation of the Parisian options Pricing of Parisian options Numerical evaluation

Presentation of the Parisian optionsPricing of Parisian options

Numerical evaluation

Pricing Parisian options

Presentation of the Parisian options

The different options

DefinitionThe price of a Parisian Down In Call (PDIC) is given by

f (T) = e−(r+ m22 )T EP

(emZT (x eσZT −K )+1 ∃ 0≤t1<t2≤T

t2−t1≥D , s.t. ∀u∈[t1,t2] Zu≤b)︸ ︷︷ ︸

"star" price

,

where b = 1σ log

( Lx

)and Z is a P−B.M.

Let W = (Wt , t ≥ 0) be a B.M on (Ω,F ,Q), with F =σ(W ). Assumethat

St = x e(r−δ− σ22 )t+σWt .

We set m = r−δ− σ22

σ . We can introduce P∼Q s.t.

e−rT EQ(φ(St , t ≤ T)) = e−(r+ m22 )T EP(emZT φ(x eZt , t ≤ T))

where Z is P-B.M.

J. Lelong (MathFi – INRIA) Tuesday 23 October 2007 7 / 33

Page 9: Pricing Parisian options using numerical inversion of Laplace transforms · 2017. 2. 11. · Presentation of the Parisian options Pricing of Parisian options Numerical evaluation

Presentation of the Parisian optionsPricing of Parisian options

Numerical evaluation

Pricing Parisian options

Presentation of the Parisian options

The different options

Brownian Excursions I

Tb T−b

D

b

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

FIG.: Brownian excursions

J. Lelong (MathFi – INRIA) Tuesday 23 October 2007 8 / 33

Page 10: Pricing Parisian options using numerical inversion of Laplace transforms · 2017. 2. 11. · Presentation of the Parisian options Pricing of Parisian options Numerical evaluation

Presentation of the Parisian optionsPricing of Parisian options

Numerical evaluation

Pricing Parisian options

Presentation of the Parisian options

The different options

Brownian Excursions II

gbt = supu ≤ t | Zu = b,

T−b = inft > 0 | (t −gb

t ) 1Zt<b > D,

T+b = inft > 0 | (t −gb

t ) 1Zt>b > D.

T−b : first time the B.M. Z stays below b longer than D.

Price of a PDIC :

f (T) = e−(r+ m22 )T EP(emZT (x eσZT −K )+︸ ︷︷ ︸

Call payoff

1T−b <T ︸ ︷︷ ︸

Parisian part

).

Price of a Double Parisian Out Call :

f (T) = e−(r+ m22 )T EP(emZT (x eσZT −K )+︸ ︷︷ ︸

Call payoff

1T−blow

>T 1T+bup

>T ︸ ︷︷ ︸Parisian part

).

J. Lelong (MathFi – INRIA) Tuesday 23 October 2007 9 / 33

Page 11: Pricing Parisian options using numerical inversion of Laplace transforms · 2017. 2. 11. · Presentation of the Parisian options Pricing of Parisian options Numerical evaluation

Presentation of the Parisian optionsPricing of Parisian options

Numerical evaluation

Pricing Parisian options

Presentation of the Parisian options

Some parity relationships

Some parity relationships

Same kind of parity relationships as for standard barrier options. Forinstance,

P

D

U

O

I

P (x,T ;K ,L;r,δ) = xK P

U

D

O

I

C

(1

x,T ;

1

K,

1

L;δ,r

).

PDOP(x,T ;K ,L;r,δ) = E(emZT (K −x eσZT )+ 1T−

b >T

)e−

(r+ m2

2

)T

.

By introducing the new B.M. W =−Z , we can rewrite

E(e−mWT (K −x e−σWT )+ 1T+

−b>T

)e−

(r+ m2

2

)T =

xK E

(e−(m+σ)WT

(1

xeσWT − 1

K

)+1T+

−b>T

)e−

(r+ m2

2

)T

.

J. Lelong (MathFi – INRIA) Tuesday 23 October 2007 10 / 33

Page 12: Pricing Parisian options using numerical inversion of Laplace transforms · 2017. 2. 11. · Presentation of the Parisian options Pricing of Parisian options Numerical evaluation

Presentation of the Parisian optionsPricing of Parisian options

Numerical evaluation

Pricing Parisian options

Presentation of the Parisian options

Some parity relationships

Link between single and double barrier Parisian options

Consider a Double Parisian Out Call (DPOC)

DPOC(x,T ;K ,Ld,Lu;r,δ) = e−( m22 +r)TE

[emZT (ST −K )+1T−

bd>T 1T+

bu>T

].

Rewrite the two indicators

1T−bd

>T 1T+bu

>T = 1︸︷︷︸Call

− 1T−bd

<T ︸ ︷︷ ︸PDIC(L=Ld)

− 1T+bu

<T ︸ ︷︷ ︸PUIC(L=Lu)

+1T−bd

<T 1T+bu

<T ︸ ︷︷ ︸new term

.

J. Lelong (MathFi – INRIA) Tuesday 23 October 2007 11 / 33

Page 13: Pricing Parisian options using numerical inversion of Laplace transforms · 2017. 2. 11. · Presentation of the Parisian options Pricing of Parisian options Numerical evaluation

Presentation of the Parisian optionsPricing of Parisian options

Numerical evaluation

Pricing Parisian options

Pricing of Parisian options

Plan

1 Presentation of the Parisian optionsDefinitionThe different optionsSome parity relationships

2 Pricing of Parisian optionsWhat is knownSeveral approaches

3 Numerical evaluationInversion formulaAnalytical prolongationEuler summationRegularity of the Parisian option pricesPractical implementation

J. Lelong (MathFi – INRIA) Tuesday 23 October 2007 12 / 33

Page 14: Pricing Parisian options using numerical inversion of Laplace transforms · 2017. 2. 11. · Presentation of the Parisian options Pricing of Parisian options Numerical evaluation

Presentation of the Parisian optionsPricing of Parisian options

Numerical evaluation

Pricing Parisian options

Pricing of Parisian options

What is known

What is known about Parisian options

There is no explicit formula for the law of T−b : we only know its

Laplace transform1.

We know that the r.v. T−b and ZT−

bare independent and we know the

density of ZT−b

.

Chesney et al. have shown that it is possible to compute the Laplacetransforms (w.r.t. maturity time) of the Parisian option prices.

1[Chesney et al., 1997]

J. Lelong (MathFi – INRIA) Tuesday 23 October 2007 13 / 33

Page 15: Pricing Parisian options using numerical inversion of Laplace transforms · 2017. 2. 11. · Presentation of the Parisian options Pricing of Parisian options Numerical evaluation

Presentation of the Parisian optionsPricing of Parisian options

Numerical evaluation

Pricing Parisian options

Pricing of Parisian options

Several approaches

Monte Carlo approachCrude Monte Carlo simulations perform badly because of the timediscretisation.Attempt to improve the crude Monte Carlo by Baldi, Caramellino andIovino.

Recover the density of T−b by numerically inverting its the Laplace

transform.

EP(emZT (x eσZT −K )+1T−b <T ) =

EP(emZT−

b emWT−T−

b (x eσZT−

b eσWT−T−

b −K )+1T−b <T ),

where W ⊥⊥ Z .

f ?(T) =∫ ∞

0

∫R

emy em2

2 (T−t) C(x eσy ,T − t)1t<T dT−b ⊗ZT−

b(t,y),

where C(z, t) is the price of a Call option with maturity t and spot z.Actually dT−

b ⊗ZT−b= dT−

b×dZT−

b.

J. Lelong (MathFi – INRIA) Tuesday 23 October 2007 14 / 33

Page 16: Pricing Parisian options using numerical inversion of Laplace transforms · 2017. 2. 11. · Presentation of the Parisian options Pricing of Parisian options Numerical evaluation

Presentation of the Parisian optionsPricing of Parisian options

Numerical evaluation

Pricing Parisian options

Pricing of Parisian options

Several approaches

EDP approach

EDP for the price V (t,x) of a vanilla call option

∂t V + 1

2σ2x2∂xxV + rx∂xV − rV = 0 (t,x) ∈ [0,T)×R∗

+.

The payoff is not Markovian. Need to introduce a second statevariable =⇒ solve a 2-dimensional EDP2.

τ= t − supu ≤ t : Su ≥ L.∂t V + 1

2 σ2x2∂xxV + rx∂xV − rV = 0, on [0,T)× (L,∞),

∂t V + 12 σ

2x∂xxV + rx∂xV − rV +∂τV = 0, on [0,T)× [0,L),

continuity condition : V (L, t,τ) = V (L, t,0).

2[Haber et al., 1999]

J. Lelong (MathFi – INRIA) Tuesday 23 October 2007 15 / 33

Page 17: Pricing Parisian options using numerical inversion of Laplace transforms · 2017. 2. 11. · Presentation of the Parisian options Pricing of Parisian options Numerical evaluation

Presentation of the Parisian optionsPricing of Parisian options

Numerical evaluation

Pricing Parisian options

Pricing of Parisian options

Several approaches

Laplace transform approach

Use Laplace transforms as suggested by Chesney, Jeanblanc and Yor3.Few numerical computations but not straightforward to implement.

We have managed to find “closed” formulae for the Laplacetransforms of the Parisian (single and double barrier) option prices.

3[Chesney et al., 1997]

J. Lelong (MathFi – INRIA) Tuesday 23 October 2007 16 / 33

Page 18: Pricing Parisian options using numerical inversion of Laplace transforms · 2017. 2. 11. · Presentation of the Parisian options Pricing of Parisian options Numerical evaluation

Presentation of the Parisian optionsPricing of Parisian options

Numerical evaluation

Pricing Parisian options

Pricing of Parisian options

Several approaches

Example of a Laplace transform

For all λ> (m+σ)2

2 and K > L, the Laplace transform of a Parisian Down Incall price is given by

f ?(λ) = ψ(−θpD)e2bθ

θψ(θp

D)K e(m−θ)k

(1

m−θ − 1

m+σ−θ)

,

with

ψ(z)∆=

∫ +∞

0xe−

x22 +zxdx = 1+z

p2πe

z22 N (z),

N (z)∆=

∫ z

−∞1p2π

e−u22 du.

J. Lelong (MathFi – INRIA) Tuesday 23 October 2007 17 / 33

Page 19: Pricing Parisian options using numerical inversion of Laplace transforms · 2017. 2. 11. · Presentation of the Parisian options Pricing of Parisian options Numerical evaluation

Presentation of the Parisian optionsPricing of Parisian options

Numerical evaluation

Pricing Parisian options

Numerical evaluation

Plan

1 Presentation of the Parisian optionsDefinitionThe different optionsSome parity relationships

2 Pricing of Parisian optionsWhat is knownSeveral approaches

3 Numerical evaluationInversion formulaAnalytical prolongationEuler summationRegularity of the Parisian option pricesPractical implementation

J. Lelong (MathFi – INRIA) Tuesday 23 October 2007 18 / 33

Page 20: Pricing Parisian options using numerical inversion of Laplace transforms · 2017. 2. 11. · Presentation of the Parisian options Pricing of Parisian options Numerical evaluation

Presentation of the Parisian optionsPricing of Parisian options

Numerical evaluation

Pricing Parisian options

Numerical evaluation

Inversion formula

Fourier series representation

Fact

Let f be a continuous function defined on R+ and α a positive number.Assume that the function f (t)e−αt is integrable. Then, given the Laplacetransform f , f can be recovered from the contour integral

f (t) = 1

2πi

∫ α+i∞

α−i∞est f (s)ds, t > 0.

Problem : the Laplace transforms have been computed for real values ofthe parameter λ.=⇒ We have to prove that they are analytic in a complex half plane andfind their abscissa of convergence.

J. Lelong (MathFi – INRIA) Tuesday 23 October 2007 19 / 33

Page 21: Pricing Parisian options using numerical inversion of Laplace transforms · 2017. 2. 11. · Presentation of the Parisian options Pricing of Parisian options Numerical evaluation

Presentation of the Parisian optionsPricing of Parisian options

Numerical evaluation

Pricing Parisian options

Numerical evaluation

Analytical prolongation

Analytical prolongation

Proposition 1 (abscissa of convergence)

The abscissa of convergence of the Laplace transforms of the star prices of

Parisian options is smaller than (m+σ)2

2 . All these Laplace transforms are

analytic on the complex half plane z ∈C : Re(z) > (m+σ)2

2 .

Proof : It is sufficient to notice that the star price of a Parisian option isbounded by E(emZT (x eσWT +K )).

E(emZT (x eσWT +K )) ≤ K em2

2 T +x e(m+σ)2

2 T =O (e(m+σ)2

2 T ).

Hence, [Widder, 1941, Theorem 2.1] yields that the abscissa ofconvergence of the Laplace transforms of the star prices is smaller that(m+σ)2

2 . The second part of the proposition ensues from [Widder, 1941,Theorem 5.a]. N

J. Lelong (MathFi – INRIA) Tuesday 23 October 2007 20 / 33

Page 22: Pricing Parisian options using numerical inversion of Laplace transforms · 2017. 2. 11. · Presentation of the Parisian options Pricing of Parisian options Numerical evaluation

Presentation of the Parisian optionsPricing of Parisian options

Numerical evaluation

Pricing Parisian options

Numerical evaluation

Analytical prolongation

Analytical prolongation

Lemma 1 (Analytical prolongation of N )

The unique analytic prolongation of the normal cumulative distributionfunction on the complex plane is defined by

N (x+ iy) = 1p2π

∫ x

−∞e−

(v+iy)2

2 dv.

Proof : It is sufficient to notice that the function defined above isholomorphic on the complex plane (and hence analytic) and that itcoincides with the normal cumulative distribution function on the realaxis. N

J. Lelong (MathFi – INRIA) Tuesday 23 October 2007 21 / 33

Page 23: Pricing Parisian options using numerical inversion of Laplace transforms · 2017. 2. 11. · Presentation of the Parisian options Pricing of Parisian options Numerical evaluation

Presentation of the Parisian optionsPricing of Parisian options

Numerical evaluation

Pricing Parisian options

Numerical evaluation

Euler summation

Trapezoidal rule I

f (t) = 1

2πi

∫ α+i∞

α−i∞est f (s)ds.

A trapezoidal discretisation of step h = πt leads to

f πt

(t) = eαt

2tf (α)+ eαt

t

∞∑k=1

(−1)k Re

(f

(α+ i

t

)).

Proposition 2 (adapted from [Abate et al., 1999])

If f is a continuous bounded function satisfying f (t) = 0 for t < 0, we have

∣∣∣e πt

(t)∣∣∣ ∆= ∣∣∣f (t)− f π

t(t)

∣∣∣≤ ∥∥f∥∥∞ e−2αt

1−e−2αt .

Proposition 2 actually holds for h < 2πt .

J. Lelong (MathFi – INRIA) Tuesday 23 October 2007 22 / 33

Page 24: Pricing Parisian options using numerical inversion of Laplace transforms · 2017. 2. 11. · Presentation of the Parisian options Pricing of Parisian options Numerical evaluation

Presentation of the Parisian optionsPricing of Parisian options

Numerical evaluation

Pricing Parisian options

Numerical evaluation

Euler summation

Trapezoidal rule II

We want to compute numerically

f πt

(t)∆= eαt

2tf (α)+ eαt

t

∞∑k=1

(−1)k Re

(f

(α+ i

t

)).

We still need to approximate the series.

sp(t)∆= eαt

2tf (α)+ eαt

t

p∑k=1

(−1)k Re

(f

(α+ i

πk

t

)).

very slow convergence of sp(t) =⇒ need of an acceleration technique.

J. Lelong (MathFi – INRIA) Tuesday 23 October 2007 23 / 33

Page 25: Pricing Parisian options using numerical inversion of Laplace transforms · 2017. 2. 11. · Presentation of the Parisian options Pricing of Parisian options Numerical evaluation

Presentation of the Parisian optionsPricing of Parisian options

Numerical evaluation

Pricing Parisian options

Numerical evaluation

Euler summation

Euler summation

For p,q > 0, we set

E(q,p, t) =q∑

k=0Ck

q 2−qsp+k(t).

Proposition 3

Let f ∈C q+4 such that there exists ε> 0 s.t. ∀k ≤ q+4, f (k)(s) =O (e(α−ε)s),where α is the abscissa of convergence of f . Then,

∣∣∣f πt

(t)−E(q,p, t)∣∣∣≤ teαt

∣∣f ′(0)−αf (0)∣∣

π2

p! (q+1)!

2q (p+q+2)!+O

(1

pq+3

),

when p goes to infinity.

J. Lelong (MathFi – INRIA) Tuesday 23 October 2007 24 / 33

Page 26: Pricing Parisian options using numerical inversion of Laplace transforms · 2017. 2. 11. · Presentation of the Parisian options Pricing of Parisian options Numerical evaluation

Presentation of the Parisian optionsPricing of Parisian options

Numerical evaluation

Pricing Parisian options

Numerical evaluation

Regularity of the Parisian option prices

Regularity of the Parisian option prices

Proposition 4Let f be the “star” price of a Parisian option of maturity t. f is of class C ∞

and for all k ≥ 0, f (k)(t) =O

(e

(m+σ)2

2 t)

when t goes to infinity.

Proof :

f (t) = E[

emZt (eσZt −K )+1T−b <t

].

Relying on the strong Markov property,

f (t) = E(

1T−b <tE

[(xeσ(Wt−τ+z) −K )+em(Wt−τ+z)]

|z=ZT−b

,τ=T−b

),

where W ⊥⊥FT−b

.

f (t) =∫ t

0dτ

∫ ∞

−∞dz

∫ ∞

−∞dw (xeσ(w

pτ+z) −K )+em(w

pτ+z)p(w)ν(z)µ(t −τ).

NJ. Lelong (MathFi – INRIA) Tuesday 23 October 2007 25 / 33

Page 27: Pricing Parisian options using numerical inversion of Laplace transforms · 2017. 2. 11. · Presentation of the Parisian options Pricing of Parisian options Numerical evaluation

Presentation of the Parisian optionsPricing of Parisian options

Numerical evaluation

Pricing Parisian options

Numerical evaluation

Regularity of the Parisian option prices

Density for a Parisian time

Proposition 5T−

b has a density µ w.r.t the Lebesgue measure. µ is of class C ∞ and for all

k ≥ 0, µ(k)(0) =µ(k)(∞) = 0.

Proof :

E

(e−

λ22 T−

b

)= eλb

ψ(λp

D)for λ ∈R.

Both sides are analytic on O = z ∈C;−π4 < arg(z) < π

4 . Continuity for

arg(z) =±π4 =⇒ for all u ∈R E

(e−iuT−

b

)= e

p2uib

ψ(p

2iuD).

µ(t) = 1

∫ ∞

−∞ep

2uib

ψ(p

2iuD)e−iut du.

Moreover, E(e−iuT−

b

)=O

(e−|b|

p|u|)

when |u|→∞=⇒ µ is C ∞. N

J. Lelong (MathFi – INRIA) Tuesday 23 October 2007 26 / 33

Page 28: Pricing Parisian options using numerical inversion of Laplace transforms · 2017. 2. 11. · Presentation of the Parisian options Pricing of Parisian options Numerical evaluation

Presentation of the Parisian optionsPricing of Parisian options

Numerical evaluation

Pricing Parisian options

Numerical evaluation

Practical implementation

Practical implementation

For 2α/t = 18.4, p = q = 15,∣∣f (t)−E(q,p, t)∣∣≤ S010−8 + t

∣∣f ′(0)−αf (0)∣∣10−11.

Very few terms are needed to achieve a very good accuracy.

The computation of E(q,p, t) only requires the computation of p+qterms.

J. Lelong (MathFi – INRIA) Tuesday 23 October 2007 27 / 33

Page 29: Pricing Parisian options using numerical inversion of Laplace transforms · 2017. 2. 11. · Presentation of the Parisian options Pricing of Parisian options Numerical evaluation

Presentation of the Parisian optionsPricing of Parisian options

Numerical evaluation

Pricing Parisian options

Numerical evaluation

Practical implementation

Numerical convergence for a PUOC I

Consider a Parisian Up Out Call withS0 = 110, r = 0.1, σ= 0.2, T = 1, L = 110, D = 0.1 year.

J. Lelong (MathFi – INRIA) Tuesday 23 October 2007 28 / 33

Page 30: Pricing Parisian options using numerical inversion of Laplace transforms · 2017. 2. 11. · Presentation of the Parisian options Pricing of Parisian options Numerical evaluation

Presentation of the Parisian optionsPricing of Parisian options

Numerical evaluation

Pricing Parisian options

Numerical evaluation

Practical implementation

Numerical convergence for a PUOC I

Consider a Parisian Up Out Call withS0 = 110, r = 0.1, σ= 0.2, T = 1, L = 110, D = 0.1 year.

To achieve an acceptable accuracy without any Euler summation,p ≈ 1000 is required whereas the use of the Euler summation enables tocut down to p = q ≈ 15 (e.g. only 30 terms to be computed).

J. Lelong (MathFi – INRIA) Tuesday 23 October 2007 28 / 33

Page 31: Pricing Parisian options using numerical inversion of Laplace transforms · 2017. 2. 11. · Presentation of the Parisian options Pricing of Parisian options Numerical evaluation

Presentation of the Parisian optionsPricing of Parisian options

Numerical evaluation

Pricing Parisian options

Numerical evaluation

Practical implementation

Numerical convergence for a PUOC II

FIG.: Convergence of the Euler summation w.r.t. q for p = 10

J. Lelong (MathFi – INRIA) Tuesday 23 October 2007 29 / 33

Page 32: Pricing Parisian options using numerical inversion of Laplace transforms · 2017. 2. 11. · Presentation of the Parisian options Pricing of Parisian options Numerical evaluation

Presentation of the Parisian optionsPricing of Parisian options

Numerical evaluation

Pricing Parisian options

Numerical evaluation

Practical implementation

Improved Monte Carlo method for a PUOC

FIG.: Convergence of the Improved Monte Carlo Method with 250 time steps.

J. Lelong (MathFi – INRIA) Tuesday 23 October 2007 30 / 33

Page 33: Pricing Parisian options using numerical inversion of Laplace transforms · 2017. 2. 11. · Presentation of the Parisian options Pricing of Parisian options Numerical evaluation

Presentation of the Parisian optionsPricing of Parisian options

Numerical evaluation

Pricing Parisian options

Numerical evaluation

Practical implementation

Convergence of a PUOC to a standard Up Out Call Barrieroption

J. Lelong (MathFi – INRIA) Tuesday 23 October 2007 31 / 33

Page 34: Pricing Parisian options using numerical inversion of Laplace transforms · 2017. 2. 11. · Presentation of the Parisian options Pricing of Parisian options Numerical evaluation

Presentation of the Parisian optionsPricing of Parisian options

Numerical evaluation

Pricing Parisian options

Numerical evaluation

Practical implementation

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Pric

e

Delay

Price Monte Carlo

Laplace Transform

Inf Price Monte Carlo

Sup Price Monte Carlo

FIG.: Comparison of the improved MC with the Laplace method

J. Lelong (MathFi – INRIA) Tuesday 23 October 2007 32 / 33

Page 35: Pricing Parisian options using numerical inversion of Laplace transforms · 2017. 2. 11. · Presentation of the Parisian options Pricing of Parisian options Numerical evaluation

Presentation of the Parisian optionsPricing of Parisian options

Numerical evaluation

Pricing Parisian options

Numerical evaluation

Practical implementation

Hedging

Is the replicating portfolio generated by the delta? Probably yes, butnot straightforward.

How to compute the deltaDifferentiate the Laplace transforms of the prices to obtain the Laplacetransforms of the deltas.Use some automatic differentiation tools to compute the Laplacetransforms of the deltas.

J. Lelong (MathFi – INRIA) Tuesday 23 October 2007 33 / 33

Page 36: Pricing Parisian options using numerical inversion of Laplace transforms · 2017. 2. 11. · Presentation of the Parisian options Pricing of Parisian options Numerical evaluation

Presentation of the Parisian optionsPricing of Parisian options

Numerical evaluation

Pricing Parisian options

Numerical evaluation

Practical implementation

Ï Abate, J., Choudhury, L., and Whitt, G. (1999).An introduction to numerical transform inversion and its application toprobability models.Computing Probability, pages 257 – 323.

Ï Chesney, M., Jeanblanc-Picqué, M., and Yor, M. (1997).Brownian excursions and Parisian barrier options.Adv. in Appl. Probab., 29(1):165–184.

Ï Haber, R., Schonbucker, P., and Wilmott, P. (1999).Pricing parisian options.Journal of Derivatives, (6):71–79.

Ï Widder, D. V. (1941).The Laplace Transform.Princeton Mathematical Series, v. 6. Princeton University Press,Princeton, N. J.

J. Lelong (MathFi – INRIA) Tuesday 23 October 2007 33 / 33