principles of semiconductor devices-l35

Upload: liakman

Post on 09-Apr-2018

232 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/8/2019 Principles of Semiconductor Devices-L35

    1/22

    Alam ECE-606 S09 1

    www.nanohub.org

    NCN

    ECE606: Solid State DevicesLecture 35: MOSFET I-V Characteristics (I)

    Muhammad Ashraful [email protected]

  • 8/8/2019 Principles of Semiconductor Devices-L35

    2/22

    Topic Map

    Alam ECE-606 S09 2

    Equilibrium DC Small

    signal

    Large

    Signal

    Circuits

    Diode

    Schottky

    BJT/HBT

    MOSCAP

    MOSFET

  • 8/8/2019 Principles of Semiconductor Devices-L35

    3/22

    Outline

    Alam ECE-606 S09 3

    1. Introduction

    2. Sub-threshold (depletion) current

    3. Super-threshold, inversion current

    4. Conclusion

  • 8/8/2019 Principles of Semiconductor Devices-L35

    4/22

    Subthreshold Region (VG < Vth)

    4

    n+ n+p

    GS D

    n

    y

    EC

    EV

  • 8/8/2019 Principles of Semiconductor Devices-L35

    5/22

    Subthreshold Region (VG < Vth)

    5

    n

    y

    EC

    EV y

    ( )

    1

    2

    2

    1sqi

    D nc

    A

    v

    h

    c

    in

    h

    W

    Q

    ne

    Q I qD

    L

    Dq W

    L N

    =

    =

    ln ID

    s

    or VG/m

    Subthreshold

    slope

    ( )

    2/

    1GqV

    iinv

    c A

    m

    h

    D nqWW eL N

    Q1

    Q2

  • 8/8/2019 Principles of Semiconductor Devices-L35

    6/22

    Recall the definition of body coefficient (m)

    Alam ECE-606 S09 6

    ( )1 S Om C C= +VG

    OC

    CSS

    O GS G

    O S

    C VV

    C C m =

    +

    Body Effect Coefficient

    ( )01 S O Tm x W = +

    1.1 m 1.4

    in practice:

  • 8/8/2019 Principles of Semiconductor Devices-L35

    7/22

    Outline

    Alam ECE-606 S09 7

    1. Introduction

    2. Sub-threshold (depletion) current

    3. Super-threshold, inversion current

    4. Conclusion

  • 8/8/2019 Principles of Semiconductor Devices-L35

    8/22

    Post-Threshold MOS Current (VG>Vth)

    Alam ECE-606 S09 8

    ( )0

    = DSV

    D eff

    ch

    iQI VV

    Wd

    L

    1) Square Law

    2) Bulk Charge

    3) Simplified Bulk Charge

    4) Exact (Pao-Sah or Pierret-Shields)

    [ ]) )( = i G G TC V VQ mVV

    [ ]) )( = G Ti GC V VV VQ

    ( )2 22( )

    + =

    Si A B

    G Gi FB B

    O

    Qq N V

    C V V V VC

  • 8/8/2019 Principles of Semiconductor Devices-L35

    9/22

    Effect of Gate Bias

    9

    P

    S G D

    B

    VGS

    n+ n+

    Gated doped or p-MOS with adjacent n+ region

    a) gate biased at flat-band

    b) gate biased in inversion

    A. Grove, Physics of Semiconductor Devices, 1967.

    WDM

    VGS >VT

    WD

    2BVBI

    y

  • 8/8/2019 Principles of Semiconductor Devices-L35

    10/22

    The Effect of Drain Bias

    Alam ECE-606 S09 10

    2D band diagram for an n-MOSFET

    a) device

    b) equilibrium (flat band)

    c) equilibrium (S > 0)

    d) non-equilibrium with VG and VD>0 applied

    SM. Sze, Physics of Semiconductor

    Devices, 1981 and Pao and Sah.

    FN

  • 8/8/2019 Principles of Semiconductor Devices-L35

    11/22

    Effect of a Reverse Bias at Drain

    Alam ECE-606 S09 11

    S = 2B +VRVBI+VR

    WDM

    VGS >VT VR( )

    WD

    VR VR VR

    Gated doped or p-MOS with adjacent, reverse-biased n+ region

    a) gate biased at flat-band

    b) gate biased in depletion

    b) gate biased in inversion

    A. Grove, Physics of Semiconductor Devices, 1967.

  • 8/8/2019 Principles of Semiconductor Devices-L35

    12/22

    Inversion Charge in the Channel

    Alam ECE-606 S09 12

    P

    S G

    B

    n+ n+ ( )

    ( ( 0)( ) )

    i ox G th

    TA T

    Q C V V V

    q VVN W W

    =

    + =

    VG=0

    VD

    =0

    VVB

    VG=0

    VD>0

    VD

    VB

    VG>0

    VD>0

    D

  • 8/8/2019 Principles of Semiconductor Devices-L35

    13/22

    Inversion Charge at one point in Channel

    Alam ECE-606 S09 13

    VGVD

    VBVG

    ( )* 2( )A

    th F

    ox

    Tq W VNV VC

    = + 2( 0)

    A Tth F

    ox

    Wq

    C

    VNV =

    =

    ( )* ( ( 0))T TAth th

    ox

    qNV V

    W WVV

    V

    C

    == +

    *( )

    i ox G th

    Q C V V =

    V

  • 8/8/2019 Principles of Semiconductor Devices-L35

    14/22

    Approximations for Inversion Charge

    Alam ECE-606 S09 14

    ( )( ) ( ) ( 0)i O G th A T T Q C V V V q N W V W V = + =

    ( ) ( )2 2( ) 22 = + +O G th S o A S oB A BC V V V q N q N V

    ( )i ox G thQ C V V V

    ( )i ox G th

    Q C V V mV

    Approximations:

    Square law approximation

    Simplified bulk charge approximation

  • 8/8/2019 Principles of Semiconductor Devices-L35

    15/22

    The MOSFET

    Alam ECE-606 S09 15

    P

    S G D

    B

    n+ n+

    VS = 0 VD > 0

    Fn = Fp = EF Fn = Fp qVD

    Fn increasingly negative from source to drain

    (reverse bias increases from source to drain)

  • 8/8/2019 Principles of Semiconductor Devices-L35

    16/22

    Elements of Square-law Theory

    Alam ECE-606 S09 16

    VG VD>0

    0

    y

    GCA : Ey

  • 8/8/2019 Principles of Semiconductor Devices-L35

    17/22

    Another view of Channel Potential

    Alam ECE-606 S09 17

    FP

    FNFN

    FPFP

    FN

    ECE

    FEV

    N+ N+

    P-doped

    Source Drain

    x

    x

  • 8/8/2019 Principles of Semiconductor Devices-L35

    18/22

    Square Law Theory

    18

    VG VD>00

    VD

    Q

    V

    1, 1,

    1, 0

    ( )D

    ii

    i N i N

    VD

    ox G th

    i N

    J dyQ dV

    Jdy C V V mV dV

    = =

    =

    =

    =

    1 1 1 1

    1

    2 2 2 22

    3 3 3 3

    3

    4 4 4 4

    4

    dV J Q Q

    dy

    dV

    J Q Q dy

    dV J Q Q

    dy

    dV J Q Q dy

    = =

    = =

    = =

    = =

    E

    E

    E

    E

    ( )2

    2

    ox D D G th D

    ch

    C V J V V V m

    L

    =

    Q1 Q2 Q3 Q4

  • 8/8/2019 Principles of Semiconductor Devices-L35

    19/22

    Square Law or Simplified Bulk Charge Theory

    Alam ECE-606 S09 19

    ( )22

    o D G T

    ch

    W C I V V mL= ID

    VDS

    VGS

    ( ) D o G T DW

    I C V V V L

    =

    VDSAT = VGS VT( )/m

    ( )2

    2

    ox D D G th D

    ch

    C V I W V V V m

    L

    =

    ( )2

    2

    ox D D G th D

    ch

    C V J V V V m

    L

    =

    ( ) ( )*,0= = = D G th D D sat G thdI

    V V mV V V V mdV

  • 8/8/2019 Principles of Semiconductor Devices-L35

    20/22

    Why does the curve roll over?

    Alam ECE-606 S09 20

    ( )2

    2

    o D G T

    ch

    W C I V V

    mL

    =

    ID

    VDS

    VGS

    VDSAT = VGS VT( )/m

    ( )i ox G thQ C V V mV

    VG VD>00

    Q

    loss of inversion

  • 8/8/2019 Principles of Semiconductor Devices-L35

    21/22

    Linear Region (Low VDS)

    Alam ECE-606 S09 21

    ID

    VDS small

    VGS

    ( ) D o G T Dch

    DS

    CH

    W I C V V V

    L

    V

    R

    =

    =

    Actual

    Subthreshold

    Conduction

    VT

    Mobility degradation

    at high VGSSlope gives mobility

    Intercept gives VT

  • 8/8/2019 Principles of Semiconductor Devices-L35

    22/22

    Summary

    Alam ECE-606 S09 22

    1) MOSFET differs from MOSCAP in that the field from theS/D contacts now causes a current to flow.

    2) Two regimes, diffusion-dominated Subthreshold and

    drift-dominated super-threshold characteristics, define

    the ID-VD-VG characteristics of a MOSFET.

    3) The simple bulk charge theory allows calculation of drain

    currents and provide many insights, but there are

    important limitations of the theory as well.