pro ceedin g of ciam - gadjah mada university · proceeding of conf. on industrial and appl. math.,...

13
Editor L S Fa Ins Jal Ph Fa rs: .H. Wiry .R. Pud aculty of Math stitut Teknolo lan Ganesha 1 hone : +62 22 ax : +62 22 Pro Confe Indus 6 th –8 th Institut yanto japrase hematics and ogi Bandung 10 Bandung, I 2 2502545 2 250 6450 ocee erence strial a h July 201 t Teknolo tya Natural Scien Indonesia. edin on and App 10 ogi Bandu nces ngof plied M ung IS f CIA Mathem SSN: 977-2 AM matics 208-70510-0 0-8

Upload: others

Post on 26-Sep-2019

13 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Pro ceedin g of CIAM - Gadjah Mada University · Proceeding of Conf. on Industrial and Appl. Math., Bandung‐Indonesia 2010 ii Introduction This proceeding contains papers which

EditorLS FaInsJalPhFa

rs: .H. Wiry.R. Pudj

aculty of Mathstitut Teknololan Ganesha 1

hone : +62 22ax : +62 22

Pro ConfeIndus 6th – 8thInstitut

yanto japrase

hematics and ogi Bandung 10 Bandung, I2 2502545 2 250 6450 

ocee

erence strial a

h July 201t Teknolo

tya

Natural Scien

Indonesia.

edin

on and App

10 ogi Bandu

nces

ng of

plied M

ung 

IS

f CIA

Mathem

SSN: 977-2

AM 

matics 

208-70510-00-8

Page 2: Pro ceedin g of CIAM - Gadjah Mada University · Proceeding of Conf. on Industrial and Appl. Math., Bandung‐Indonesia 2010 ii Introduction This proceeding contains papers which

Proceeding of Conf. on Industrial and Appl. Math., Bandung‐Indonesia 2010  

i  

Electronic Proceeding

Conference on Industrial and Applied Mathematics

6 - 8 July 2010 

The Committees of the conference  Scientific Committee

Larry Forbes (University of Tasmania, Australia) Robert McKibbin (Messey University, New Zealand) Susumu Hara (Nagoya University, Japan) Edy Soewono (ITB, Indonesia) Chan basaruddin (University of Indonesia, Indonesia) Roberd Saragih (ITB, Indonesia)

Organizing Committee

L.H. Wiryanto (Chair) Sri Redjeki Pudjaprasetya Novriana Sumarti Andonowati Kuntjoro Adji Sidarto

Technical Committee

Jalina Wijaya Agus Yodi Gunawan Nuning Nuraini Janson Naiborhu Adil Aulia Lina Anugerah Ismi Ridha Ikha Magdalena

Maulana Wimar Banuardhi Indriani Rustomo Pritta Etriana Adrianus Yosia Rafki Hidayat Intan Hartri Putri Yunan Pramesi Haris Freddy Susanto

Page 3: Pro ceedin g of CIAM - Gadjah Mada University · Proceeding of Conf. on Industrial and Appl. Math., Bandung‐Indonesia 2010 ii Introduction This proceeding contains papers which

Proceeding of Conf. on Industrial and Appl. Math., Bandung‐Indonesia 2010  

ii  

Introduction This proceeding contains papers which were presented in Conference on Industrial and Applied Mathematics. The editors would like to express their deepest gratitude to all presenters, contributors/authors and participants of this conference for their overwhelming supports that turn this conference into a big success. While every single effort has been made to ensure consistency of format and layout of the proceedings, the editors assume no responsibility for spelling, grammatical and factual errors. Besides, all opinions expressed in these papers are those of the authors and not of the conference Organizing Committee nor the editors. The Conference on Industrial and Applied Mathematics is the first international conference held at Institut Teknologi Bandung-Indonesia, during July 6 – 8, 2010; hosted by Industrial and Financial Mathematics Research Division, Faculty of Mathematics and Natural Sciences ITB. The research division has continuing research interests in financial mathematics, optimization, applied probability, control theory and its application; biological, physical modeling and the application of mathematics in sciences, fluid dynamics, and numerical methods and scientific computing. The conference provided a venue to exchange ideas in those areas and any aspect of applied mathematics, in promoting both established and new relationships. Permission to make a digital or hardcopies of this proceeding for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage. Editors:

L.H. Wiryanto S.R. Pudjaprasetya Faculty of Mathematics and Natural Sciences Institut Teknologi Bandung Jalan Ganesha 10 Bandung, Indonesia. Phone : +62 22 2502545 Fax : +62 22 250 6450

Page 4: Pro ceedin g of CIAM - Gadjah Mada University · Proceeding of Conf. on Industrial and Appl. Math., Bandung‐Indonesia 2010 ii Introduction This proceeding contains papers which

Proceeding of Conf. on Industrial and Appl. Math., Bandung‐Indonesia 2010  

iii  

Table of Content Page

The committees of the conference i

Introduction ii

Table of Content iii

Research Articles:

1 An adaptive nonstationary control method and its application to positioning control problems, Susumu Hara

1-8

2 Some aspects of modelling pollution transport in groundwater aquifers, Robert McKibbin 

9-16

3 Jets and Bubbles in Fluids – Fluid Flows with Unstable Interfaces, Larry K. Forbes  

17-25

4 Boundary Control of Hyperbolic Processes with Applications in Water Flow, M. Herty and S. Veelken 

26-28

5  Isogeometric  methods  for  shape  modeling  and  numerical  simulation, Bernard Mourrain, Gang Xu  

29-33

6  FOURTH‐ORDER  QSMSOR  ITERATIVE   METHOD  FOR  THE  SOLUTION  OF ONE‐DIMENSIONAL PARABOLIC PDE’S,  J. Sulaiman, M.K. Hasan, M. Othman, and S. A. Abdul Karim  

34-39

7  A  Parallel  Accelerated  Over‐Relaxation  Quarter‐Sweep  Point  Iterative Algorithm  for  Solving  the Poisson  Equation, Mohamed Othman, Shukhrat  I. Rakhimov, Mohamed Suleiman and Jumat Sulaiman 

 

40-43

8  Value‐at‐Risk  (VaR)  using  ARMA(1,1)‐GARCH(1,1),  Sufianti and Ukur A. Sembiring  

44-49

9  Decline Curve Analysis  in a Multiwell Reservoir System using State‐Space Model, S. Wahyuningsih(1), S. Darwis(2), A.Y. Gunawan(3 ), A.K. Permadi 

 

50-53

10  Study  of  Role  of  Interferon‐Alpha  in  Immunotherapy  through Mathematical Modelling, Mustafa Mamat, Edwin Setiawan Nugraha, Agus Kartono , W M Amir W Ahmad  

54-62

11  Improving  the performance of  the Helmbold universal portfolio with an unbounded learning parameter, Choon Peng Tan and Wei Xiang Lim 

 

63-66

12  Optimal  Design  The  Interval  Type‐2  Fuzzy  PI+PD  Controller  And  67-71

Page 5: Pro ceedin g of CIAM - Gadjah Mada University · Proceeding of Conf. on Industrial and Appl. Math., Bandung‐Indonesia 2010 ii Introduction This proceeding contains papers which

Proceeding of Conf. on Industrial and Appl. Math., Bandung‐Indonesia 2010  

iv  

Superconducting  Energy  Magnetic  Storage  (SMES)  For  Load  Frequency Control   Optimization On Two Area Power System, Muh Budi R Widodo, M Agus Pangestu H.W 

 13  Dependence of biodegradability of xenobiotic polymers on population of 

microorganism, Masaji Watanabe  and Fusako Kawai 

 

72-78

14  PROTOTYPE  OF  VISITOR  DISTRIBUTION  DETECTOR  FOR  COMMERCIAL BUILDING, Sukarman,  Suharyanto, Samiadji Herdjunanto 

 

79-85

15  APPLICATION ANFIS FOR NOISE CANCELLATION, Sukarman 

 86-93

16  THE STABILITY OF THE MECD SCHEME FOR LARGE SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS, Supriyono  

94-99

17  Real  Time  Performance  of  Fuzzy  PI+Fuzzy  PD  Self  Tuning  Regulator  In Cascade  Control,  Mahardhika  Pratama,  Syamsul  Rajab,  Imam  Arifin, Moch.Rameli  

100-103

18  APPROXIMATION  OF  RUIN  PROBABILITY  FOR  INVESTMENT  WITH INDEPENDENT  AND  IDENTICALLY  DISTRIBUTED  RANDOM  NET  RETURNS AND MULTIVARIATE  NORMAL MEAN  VARIANCE MIXTURE  DISTRIBUTED FORCES  OF  INTEREST  IN  FIXED  PERIOD,  Ryan  Kurniawan  and  Ukur  Arianto Sembiring 

 

104-108

19  Stochastic History Matching  for  Composite  Reservoir,  Sutawanir Darwis, Agus  Yodi  Gunawa,  Sri  Wahyuningsih,  Nurtiti  Sunusi,  Aceng  Komarudin Mutaqin, Nina Fitriyani  

109‐115

20  PROBABILITY  ANALYSIS  OF  RAINY  EVENT  WITH  THE  WEIBULL DISTRIBUTION AS A BASIC MANAGEMENT IN OIL PALM PLANTATION, Divo D. Silalahi  

116‐120 

21  A Multi‐Scale Approach to the Flow Optimization of Systems Governed by the Euler Equations, Jean Medard T. Ngnotchouye, Michael Herty, and Mapundi K. Banda 

 

121‐126 

22  Modelling  and  Simulating  Multiphase  Drift‐flux  Flows  in  a  Networked Domain, Mapundi K. Banda, Michael Herty , and Jean Medard T. Ngnotchouye 

 

127‐133

23  Calculating Area of Earth’s Surface Based on Discrete GPS Data, Alexander A S Gunawan , Aripin Iskandar 

 

134‐137 

24  Study on Application of Machine Vision using  Least‐Mean‐Square  (LMS), Hendro Nurhadi and Irhamah 

 

138‐144 

25  Cooperative Linear Quadratic Game for Descriptor System, Salmah 

 145‐250 

Page 6: Pro ceedin g of CIAM - Gadjah Mada University · Proceeding of Conf. on Industrial and Appl. Math., Bandung‐Indonesia 2010 ii Introduction This proceeding contains papers which

Proceeding of Conf. on Industrial and Appl. Math., Bandung‐Indonesia 2010  

v  

26  ARMA Model Identification using Genetic Algorithm (An Application to Arc Tube  Low  Power Demand Data),  Irhamah, Dedy Dwi  Prastyo  and M. Nasrul Rohman 

 

151‐155 

27  A Particle Swarm Optimization  for Employee Placement Problems  in  the Competency Based Human Resource Management  System,  Joko Siswanto and The Jin Ai 

 

156‐161 

28  Measuring Similarity between Wavelet Function and Transient in a Signal with Symmetric Distance Coefficient, Nemuel Daniel Pah 

 

162‐166 

29  An  Implementation  of  Investment  Analysis  using  Fuzzy  Mathematics, Novriana Sumarti and Qino Danny 

 

167‐169

30  Simulation  of  Susceptible  Areas  to  the  Impact  of  Storm  Tide  Flooding along Northern Coasts of Java, Nining Sari Ningsih, Safwan Hadi, Dwi F. Saputri , 

Farrah Hanifah, and Amanda P.Rudiawan 

 

170‐178 

31  Fuzzy  Finite  Difference  on  Calculation  of  an  Individual’  Bank  Deposits, Novriana Sumarti and Siti Mardiah 

 

179‐183 

32  An  Implementation of Fuzzy Linear System  in Economics, Novriana Sumarti and Cucu Sukaenah  

184‐187

33  Compact  Finite  Difference  Method  for  Solving  Discrete    Boltzmann Equation, PRANOWO, A. GATOT BINTORO  

188-193

34  Natural convection heat transfer with an Al2O3 nanofluids at low Rayleigh number, Zailan Siri, Ishak Hashim and  Rozaini Roslan 

 

194-199

35  Optimization model for estimating productivity growth in Malaysian food manufacturing industry, Nordin Hj. Mohamad, and Fatimah Said 

 

200-206

36  Numerical study of natural convection  in a porous cavity with transverse magnetic  field  and  non‐uniform  internal  heating,  Habibis Saleh, Ishak Hashim and Rozaini Roslan  

207‐211 

37  THE  DISTRIBUTION  PATTERN  AND  ABUNDANCE  OF  ASTEROID  AND ECHINOID AT RINGGUNG WATERS SOUTH LAMPUNG, Arwinsyah Arka, Agus Purwoko, Oktavia 

 

212‐215 

38  Low  biomass  of macrobenthic  fauna  at  a  tropical mudflat:  an  effect  of latitude?, Agus Purwoko and Wim J. Wolff  

216‐224 

39  Density and biomass of  the macrobenthic  fauna of  the  intertidal area  in Sembilang national park, South Sumatra, Indonesia, Agus Purwoko and Wim J. Wolff 

 

225‐234 

Page 7: Pro ceedin g of CIAM - Gadjah Mada University · Proceeding of Conf. on Industrial and Appl. Math., Bandung‐Indonesia 2010 ii Introduction This proceeding contains papers which

Proceeding of Conf. on Industrial and Appl. Math., Bandung‐Indonesia 2010  

vi  

40  Intelligent traffic  light system for AMJ highway, Nur Ilyana Anwar Apandi, Puteri Nurul Fareha M. Ahmad Mokhtar, Nur Hazahsha Shamsudin and Anis Niza Ramani and Mohd Safirin Karis  

235‐238 

41  Goodness  of  Fit  Test  for Gumbel Distribution  Based  on  Kullback‐Leibler Information using Several Different Estimators, S. A. Al‐Subh , K. Ibrahim , M. T. Alodat , A. A. Jemain 

 

239‐245 

42  Impact  of  shrimp  pond  development  on  biomass  of  intertidal macrobenthic fauna: a case study at Sembilang, South Sumatra, Indonesia, Agus Purwoko, Arwinsyah Arka and Wim J. Wolff 

 

246‐256

Page 8: Pro ceedin g of CIAM - Gadjah Mada University · Proceeding of Conf. on Industrial and Appl. Math., Bandung‐Indonesia 2010 ii Introduction This proceeding contains papers which

Proceeding of Conf. on Industrial and Appl. Math., Bandung-Indonesia 2010

145

Cooperative Linear Quadratic Game for Descriptor System

Salmah Department of Mathematics, Gadjah Mada University, Yogyakarta, DI Yogyakarta, Indonesia

(Email: [email protected])

ABSTRACT In this paper the cooperative linear quadratic game problem will be considered. In the game, either there is one individual who has multiple objectives or there are a number of players all facing linear quadratic control problem, will cooperate together to obtain optimal result. For ordinary system case the set of Pareto efficient equilibria can be determined for these games. In this paper the result will be generalized for descriptor system. KEYWORDS Dynamic, game, cooperative, descriptor, system. I. INTRODUCTION

Dynamic game theory brings three keys to many situations in economy, ecology, and elsewhere: optimizing behavior, multiple agents presence, and decisions consequences. Therefore this theory has been used to study various policy problems especially in macro-economic. In applications one often encounters systems described by differential equations system subject to algebraic constraints. The descriptor systems, gives a realistic model for this systems. In policy coordination problems, questions arise, are policies coordinated and which information do the parties have. One scenario is cooperative open-loop game. According this, the parties can not react to each other’s policies, and the only information that the players know is the model structure and initial state. II. PRELIMINARIES In this paper we will consider a linear open-loop dynamic game in which the player satisfy a linear descriptor system and minimize quadratic objective function. For finite horizon problem, solution of generalized Riccati differential equation is studied. If the planning horizon is extended to infinity the differential Riccati equation will become an algebraic Riccati equation. Formally, the players are assumed to minimize the performance criteria

,)()()()(2

1),...,,(

0

21 dttuRtutxQtxuuuJT

iiTii

Tni

(1)

with all matrices are constant, Tii QQ , and

iR positive definite. The inclusion of player

j’s control effort into player I’s cost function is dropped, due to the open-loop information structure, this term drops out in the analysis. The players give control vector to the system

)()()()( 2211 tuBtuBtAxtxE ,

0)0( xx

(2)

with 1)()()( ,, xmrni

rnxrn BAE , x(t)

descriptor vector n+r dimension. While ui(t), i=1,2 are control vector im dimension which

is done by i-th player, i=1,2. Matrix E generally singular with rank .nE The initial

vector 0x is assumed to be a consistent initial

state.

We recall the following result from theory of descriptor (see [7]) system for the differential algebraic equation

0)0(),()( xxtftAxxE

(DAE)

And the associated pencil

AE (3) System (DAE) is called regular if the characteristic polynomial )det( AE is not

identically zero. If the system (DAE) is not regular then any consistent initial conditions do not uniquely determine solutions (see [13]). If the system (DAE) is regular, the roots of characteristic polynomial are the finite eigenvalues of the pencil. If E is singular the pencil (3) is said to have infinite eigenvalues which is the zero eigenvalues of the inverse

Page 9: Pro ceedin g of CIAM - Gadjah Mada University · Proceeding of Conf. on Industrial and Appl. Math., Bandung‐Indonesia 2010 ii Introduction This proceeding contains papers which

Proceeding of Conf. on Industrial and Appl. Math., Bandung-Indonesia 2010

146

pencil AE . In the next discussion we recall the Weierstrass canonical form. Theorem 1 If (3) is regular, then there exist nonsingular matrices X and Y such that

00and

00nT T

r

JIY EX Y AX

IN

(4) where J is a matrix in Jordan form whose elements are the finite eigenvalues,

k kkI R is the identity matrix and N is a

nilpotent matrix also in Jordan form. J and N are unique up to permutation of Jordan blocks. If (3) is regular the solutions of (DAE) take the form 1 1 2 2( ) ( ) ( )x t X z t X z t

where with 1 2[ ]X X X 1 2[ ]T TY Y Y , ( )

1 1T n r nX Y R , ( )

2 2T n r rX Y R and

( ) 1

1 1 1 1 00

1

2 20

( ) (0) ( ) (0) [ 0]

( ) ( )

tJt J t sn

iki

ii

z t e z e Y f s ds z I X x

dz t NY f tdt

under the consistency condition:

1

10 2

0

[0 ] (0)ik

ir i

i

dI X x N Y f

dt

Here k is the degree of nilpotency of N . That is the integer k for which 0kN and 1 0kN The index of the pencil (3) and of the descriptor system (DAE) is the degree k of nilpotency of N . If E is nonsingular, we define the index to be zero. From the above formulae then the solution

( )x t will not contain derivatives of the

function f if and only if 1k . In that case the solution ( )x t is called impulse free. In general, the solution ( )x t involves

derivatives of order 1k of the forcing function f if 3 has index k .

Next, let [ ]VW be an orthogonal matrix

such that image V equals the null space (

( )TN E ) of TE and image W equals the

null space of E . Then

1 1[ 0][ ]T TE E VW EV , where 1E is full

column rank. The next lemma characterizes pencils which have an index of at most one. Lemma 1 The following statements are equivalent: (i) pencil (4) is regular and has at most index one.

(ii)rank T

En r

V A

( ( ))Trank E VV A .

(iii) rank ([ ])EAW n r

( ( ))Trank E AWW . Since we do not want to consider derivatives of the input function in this paper, we restrict the analysis to regular index one systems here. The above discussion motivates then the next assumptions. Assumption 1 Throughout this section the next assumptions are made w.r.t. system (1):

1. matrix E is singular; 2. det ( ) 0E A ; 3. rank ([ ]EAW n r .

In the cooperative game, each player have a set of possible outcomes then one outcome (which in general does not coincide with a player’s overall lowest cost) is cooperatively selected. It is reasonable that the cooperative desicion is strategy that have the property that if different strategy is chosen, then at least one of the players has higher costs. Or, stated diferently, is solutions that the players outcome can not be improved by all players simultaneously. This strategy is called Pareto efficiency.

Page 10: Pro ceedin g of CIAM - Gadjah Mada University · Proceeding of Conf. on Industrial and Appl. Math., Bandung‐Indonesia 2010 ii Introduction This proceeding contains papers which

Proceeding of Conf. on Industrial and Appl. Math., Bandung-Indonesia 2010

147

Definition 1 Let U is the set of admissible

strategies. A set of strategies is called Pereto efficient if the set of inequalities

),ˆ()( ii JJ i=1,2,...,N, where at least one

of the inequalities is strict, does not allow for any solution U . The corresponding point

NNJJ ))ˆ(),...,ˆ(( 1

is called a Pareto solution. The set of all Pareto solutions is called Pareto frontier. Usually there is more then one Pareto solution. It is noted that here we are not make definiteness assumptions for matrix

iQ . Here we follow the line in [5] which is

derive Pareto solutions for linear quadratic game with ordinary systems without definiteness assumptions for matrix iQ .

While in [4] there is more simple discussion about Pareto solutions of linear quadratic game with definiteness assumptions for matrix iQ .

III. THE FINITE PLANNING HORIZON

Let we consider the game (1), (2) under the assumption that T is finite. The game (1), (2) has a set of open-loop Nash equilibrium actions 1 2( ( ) ( ))u u if and

only if 1 2( ( ) ( ))u u are open-loop Nash

equilibrium actions for the game

)()(

)(

0

0

)(

)(

00

011

2

1

2

1 tuBYtx

tx

I

J

tx

txI T

r

n

01

2

122 )0(

)0(),( xX

x

xtuBY T

(5) where player i has the quadratic cost functional:

T

iTT

ni tx

txtxQtxtxuuuJ

0 2

12121 )(

)()()()(),...,,(

dttuRtu )(~

)( (6) From (5) it follows that

))()((0)( 22112 tuBtuBYItx Tr

))()(( 22112 tuBtuBY (7) Substitution of (7) into the cost functions (6) shows that 1 2( ( ) ( ))u u are open-loop

Nash equilibrium actions for the game (1), (2) if and only if 1 2( ( ) ( ))u u are open-

loop Nash equilibrium actions for the game

)()()()( 22211111 tuBYtuBYtJxtx ,

01

1 0)0( xXIx n

(8) with cost functionals 1 2( )iJ u u for the

players given by

)(

)(

)(

0

00

0

0

0

)()()({

1

1

2212

22

21

0

211

tu

tu

tx

BYBY

IXQX

YB

YB

I

tututx

ni

T

TT

TTnT

TTT

dttuRtu iiTi )()(

dt

tu

tu

tx

Mtututx i

TTTT }

)(

)(

)(

)()()({

2

1

1

0

211

(9) where

1

2

i i i

Ti i i i

T Ti i i

Q V W

M V R N

W N R

(10) with

Page 11: Pro ceedin g of CIAM - Gadjah Mada University · Proceeding of Conf. on Industrial and Appl. Math., Bandung‐Indonesia 2010 ii Introduction This proceeding contains papers which

Proceeding of Conf. on Industrial and Appl. Math., Bandung-Indonesia 2010

148

1 1 1 2 2 1

1 2 2 2 1 2 2 2 2 2

111 1 2 2 2 2 11

21 2 2 2 2 2 21

12 1 2 2 2 2 12

222 2 2 2 2 2 22

T Ti ii i

T T T Ti ii i

T T T

T T T

T T T

T T T

Q X X V X X Y BQ Q

W X X Y B N B Y X X Y BQ Q

R B Y X X Y BQ R

R B Y X X Y BQ

R B Y X X Y BQ

R B Y X X Y BQ R

IV. SOLUTION OF COOPERATIVE GAME In the following discussion, the set of parameters, A, plays a crucial role.

}10),...,({1

1

N

iiiN andA

. The next two lemmas give a caracterization of Pareto efficient solutions. The first lemma give identification for Pareto efficient whithout convexity assumptions, while in second lemma states how to find Pareto efficient with convexity assumptions. The proof of those lemmas can be found in [4].

Lemma 2 Let )1,0(i , with 11

N

ii .

Assume U such that

N

iii J

1

)}(min{argˆ .

Then is Pareto efficient. Lemma 3 Assume that the strategy space U is convex. Moreover, assume that the payoffs iJ

are convex, i=1,...,N. Then, if is Pareto

efficient, there exist A , such that for all U ,

)ˆ()(1 1

i

N

i

N

iiii JJ

.

Note that if iJ are convex, then

N

iii J

1

)(

is convex too for an arbitrary A . In [5], characterization for the space of admissible control U is convex is given.

Next we will consider conditions for the cost functions iJ in (1) are convex. From [5] we

recall some preliminary result. Lemma 4 Assume that U is convex. We will consider the linear quadratic cost function

dttctu

txtptp

tu

txMtutxxuTsJ

TT

T TT

)}()(

)()()(2

)(

)()()({),,,(

221

00

(11) Subject to the state dynamics

01 )(),()()()( xsxtctButAxtx ,

(12) Where ipu, and ic aresuch that (11) and

(12) have solution,

RV

VQM T . Let

nx 0 . Then ),,,0( 0xuTJ is convex as a

function of u if and only if 0),,,0( 0 xvTJ

for all v where

dttv

tzMtvtzxvTJ

T TT

)(

)()()(),,,0(

00

with 0)(),()()( sztBvtAztz . (13) Note that in the second equivalence does not depend on 0x . In particular it follows from

that if J is convex for one 0x then is convex

for all 0x .

Lemma 5 Assume that U is convex. Consider the linear quadratic cost function (11) and (12). Then if ),,,0( 0xuTJ is for some 0x ,

),,,0( 0xuTJ is convex foar all 0s and for

all 0x .

Corollary 1 Consider the linear quadratic cost function (11) and (12). Then

),,,( 0xuTsJ is convex for all 0s and 0x

if and only if ),,,0( 0xuTJ is convex for all

(an) 0x . Which holds if and only if

Page 12: Pro ceedin g of CIAM - Gadjah Mada University · Proceeding of Conf. on Industrial and Appl. Math., Bandung‐Indonesia 2010 ii Introduction This proceeding contains papers which

Proceeding of Conf. on Industrial and Appl. Math., Bandung-Indonesia 2010

149

0)0,,,0( vTJ for all v, where J is given by (13). From [5] we get the following theorem. Theorem 1 Assume that either T is finite or (A,B) is stabilizable. Then ),,,0( 0xuTJ is

convex for all (an) 0x if and only if

)0,,,0(inf vTJ exists. Note 1 In [5] we can find theorem that consider the existence of the following cost function.

dttu

txMtutxJ

T TT

)(

)()()({

0

with 0)0(),()()( xxtButAxtx ,

(14) The following Riccati equations plays important role in the next discussion.

0(

,))(())((

)()()(1

TK

QVtKBRVBtK

AtKtKAtKTT

T

;

(DRE)

QVKBRVKBKAKA TTT )()(0 1

. (ARE)

Let 21 BBB . Combining the results of Lemmas 2 and 3 and Theorem 1 and Note 1, we can derive existence and computational algorithms for both the finite and infinite horizon game problems. We just state for infinite horizon problem. Corollary 2 Consider the coocperative game (1,2) with T , seLU ,,2 and (A,B)

stabilizable. Assume (ARE), with

ii WVV and

iTi

ii

RN

NRR

2

1 has a

stabilizing solution iK , for i=1,2 respectively.

Then all Pareto efficient solutions are obtained by determining for all A ,

2211minarg)( JJuUu

, subject to

(12). The following theorem give procedure to calculate the Pareto efficient solution of the game with descriptor system. Theorem 2 Consider the cooperative game (9), (2) with T , seLU ,,2 and (A,B)

stabilizable. For A let

RV

VQMMM

T ~~

~~)( 2211 ,

Where

2211

~QQQ ,

],[~

22112211 WWVVV , and

222

2122

211

1111

~RN

NR

RN

NRR TT .

Furthermore let TBRBS 1~~ . Assume that

(15) below has a stabilizing solution iX for

1i , i=1,2 respectively.

0~

)~

(~

)~

( 1 QVXBRVXBXAXA TTT

. (15) Then the set of all cooperative Pareto solutions is given by

})))(()),(({( 21 AuJuJ .

Here

)()~

(~

)( 1 txVXBRtu Ts

T

t

sstAT dsscXeBR

Tcl )(

~ )(1

Where sX is the stabilizing solution of (15)

and, with sT

cl XSVRBAA~~~ 1 ,

the closed-loop system is

0)0(),()()()( xxtctSmtxAtx cl .

In case 0(.) c with these actions the corresponding cost are

000

~),( xMxuxJ i

Ti , where iM

~ is the

unique solution of the Lyapunov equation.

Page 13: Pro ceedin g of CIAM - Gadjah Mada University · Proceeding of Conf. on Industrial and Appl. Math., Bandung‐Indonesia 2010 ii Introduction This proceeding contains papers which

Proceeding of Conf. on Industrial and Appl. Math., Bandung-Indonesia 2010

150

)~

(~

~}

~(

~~

1

1

Ts

Ti

scliiTcl

VXBR

IM

RVBXIAMMA

.

V. CONCLUSIONS In this paper we consider the solution of cooperative linear quadratic game for descriptor system. Using the theory of convex analysis we can get the result for finite and infinite horizon game. Basically, the result were obtained by reformulating the game as an ordinary linear quadratic differential game. Following the lines and combining the results of [5] and [7], similar conclusions can be derived. The above result cn be generalized straightforwardly for N-player game. REFFERENCES

[1] Basar, T., and Olsder, G.J., Dynamic Noncooperative Game Theory, second Edition, Academic Press, London, San Diego, 1995.

[2] Dai, L., Singular Control Systems, Springer Verlag, Berlin, 1989.

[3] Engwerda J., “On the Open-loop Nash Equilibrium in LQ-games”, Journal of Economic Dynamics and Control, Vol. 22, 1998, pp 729-762.

[4] Engwerda, J.C., LQ Dynamic Optimization and Differential Games Chichester: John Wiley & Sons, 2005, pp 229-260.

[5] Engwerda, J.C., “A Note on Cooperative Linear Quadratic Control”, CentER Discussion Paper, Tilburg University, The Netherlands, No 2007-15, 2007.

[6] Engwerda, J.C., “Necessary and Sufficient Conditions for Solving Cooperative Differential Games”, CentER Discussion Paper, Tilburg University, The Netherlands, No 2007-42, 2007.

[7] Engwerda and Salmah, “The Open-Loop Linear Quadratic Differential Game for index one Descriptor Systems”, Automatica, Vol. 45, Number 2, 2009.

[8] Katayama, T., and Minamino, K., “Linear Quadratic Regular and Spectral Factorization for Continuous Time Descriptor Systems”, Proceedings of the 31st Conference on decision and Control, Tucson, Arizona, 1992, pp 967-972.

[9] Lewis, F.L., “A survey of Linear Singular Systems”, Circuits System Signal Process, vol.5, no.1, 1986, pp 3-36.

[10] Minamino, K., “The Linear Quadratic Optimal Regulator and Spectral Factorization for Descriptor Systems”, Master Thesis, Department of Applied Mathematics and Physics, Faculty of Engineering, Kyoto University, 1992.

[11] Salmah, Bambang, S., Nababan, S.M., and Wahyuni, S., “Non-Zero-Sum Linear Quadratic Dynamic Game with Descriptor Systems”, Proceeding Asian Control Conference, Singapore, 2002, pp 1602-1607,.

[12] Salmah, “N-Player Linear Quadratic Dynamic Game for Descriptor System”, Proceeding of International Conference Mathematics and its Applications SEAMS-GMU, Gadjah Mada University, Yogyakarta, Indonesia, 2007.