probabilistic fatigue

Upload: particles2152

Post on 13-Apr-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 Probabilistic Fatigue

    1/177

    Introduction

    Professor Darrell F. Socie

    Department of Mechanical and

    Industrial Engineering

    2003-2005 Darrell Socie, All Rights Reserved

    Probabilistic Aspects of Fatigue

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 1 of 352

    Contact Information

    Darrell Socie

    Mechanical Engineering

    1206 West Green

    Urbana, Illinois 61801

    Office: 3015 Mechanical Engineering Laboratory

    [email protected]

    Tel: 217 333 7630

    Fax: 217 333 5634

  • 7/27/2019 Probabilistic Fatigue

    2/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 2 of 352

    Fatigue Calculations

    Who really believesthese numbers ?

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 3 of 352

    SAE Specimen

    Suspension

    Transmission

    Bracket

    Fatigue Under Complex Loading: Analysis and Experiments, SAE AE6, 1977

  • 7/27/2019 Probabilistic Fatigue

    3/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 4 of 352

    Analysis Results

    1 10 100

    48 Data Points

    COV 1.27

    99.9 %

    99 %

    90 %

    50 %

    10 %

    1 %

    0.1 %

    CumulativeProbability

    Analytical Life / Experimental Life

    Strain-Life analysis of all test data

    Non conservative

    Conservative

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 5 of 352

    Material Variability

    1 10 100

    99.9 %

    99 %

    90 %

    50 %

    10 %

    1 %

    0.1 %

    CumulativeProbability

    Analytical Life / Experimental Life

    Material Analysis

    Strain-Life back calculation of specimen lives

  • 7/27/2019 Probabilistic Fatigue

    4/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 6 of 352

    Probabilistic Models

    Probabilistic models are no better than theunderlying deterministic models

    They require more work to implement

    Why use them?

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 7 of 352

    Quality and Cost

    Taguchi

    Identify factors that influence performance

    Robust design reduce sensitivity to noise

    Assess economic impact of variation

    Risk / Reliability

    What is the increased risk from reduced testing ?

  • 7/27/2019 Probabilistic Fatigue

    5/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 8 of 352

    Risk

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    Risk

    Time, Flights etc

    Acceptable risk

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 9 of 352

    Reliability

    99 %

    80 %

    50 %

    10 %

    1 %

    0.1 %

    ExpectedFailures

    106

    Fatigue Life

    105104103

  • 7/27/2019 Probabilistic Fatigue

    6/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 10 of 352

    Risk Contribution Factors

    OperatingTemperature

    Analysis Uncertainty

    Speed

    Material

    Properties

    ManufacturingFlaws

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 11 of 352

    Uncertainty and Variability

    customers

    materials manufacturing

    usage

    107

    Fatigue Life, 2Nf

    1

    10 102 103 104 105 106

    0.1

    10-2

    1

    10-3

    10-4StrainAmplitude

    time

    50%

    100 %

    F

    ailures

    Strength

    Stress

  • 7/27/2019 Probabilistic Fatigue

    7/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 12 of 352

    Deterministic versus Random

    Deterministic from past measurements the future positionof a satellite can be predicted with reasonable accuracy

    Random from past measurements the future position ofa car can only be described in terms of probability andstatistical averages

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 13 of 352

    Deterministic Design

    Stress Strength

    SafetyFactor

    Variability and uncertainty is accommodated by introducingsafety factors. Larger safety factors are better, but how muchbetter and at what cost?

  • 7/27/2019 Probabilistic Fatigue

    8/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 14 of 352

    Probabilistic Design

    Stress Strength

    Reliability = 1 P( Stress > Strength )

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 15 of 352

    3Approach3 contains 99.87% of the data

    If we use 3 on both stress and strength

    The probability of the part with the lowest strengthhaving the highest stress is very small

    P( s < S ) = 2.3 10-3

    == 5.4103.5)Sss(P)failure(P 6I

    For 3 variables, each at 3 :

    = 7.5102.1)failure(P 8

  • 7/27/2019 Probabilistic Fatigue

    9/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 16 of 352

    Benefits

    Reduces conservatism (cost) compared toassuming the worst case for every designvariable

    Quantifies life drivers what are the mostimportant variables and how well are theyknown or controlled ?

    Quantifies risk

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 17 of 352

    Probabilistic Aspects of Fatigue

    Introduction

    Basic Probability and Statistics

    Statistical Techniques

    Analysis Methods

    Characterizing Variability

    Case Studies

    FatigueCalculator.com

    GlyphWorks

  • 7/27/2019 Probabilistic Fatigue

    10/177

    Basic Probability and Statistics

    Professor Darrell F. Socie

    Department of Mechanical and

    Industrial Engineering

    2003-2005 Darrell Socie, All Rights Reserved

    Probabilistic Aspects of Fatigue

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 19 of 352

    Probabilistic Aspects of Fatigue

    Introduction

    Basic Probability and Statistics

    Statistical Techniques

    Analysis Methods

    Characterizing Variability

    Case Studies

    FatigueCalculator.com

    GlyphWorks

  • 7/27/2019 Probabilistic Fatigue

    11/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 20 of 352

    Deterministic versus Random

    Deterministic from past measurements the future positionof a satellite can be predicted with reasonable accuracy

    Random from past measurements the future position ofa car can only be described in terms of probability andstatistical averages

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 21 of 352

    Random Variables

    Discrete - fixed number of outcomes

    Colors

    Continuous - may have any value in thesample space

    Strength

  • 7/27/2019 Probabilistic Fatigue

    12/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 22 of 352

    Descriptive Statistics

    Mean or Expected Value Variance / Standard Deviation

    Coefficient of Variation

    Skewness

    Kurtosis

    Correlation Coefficient

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 23 of 352

    Mean or Expected Value

    Central tendency of the data

    ( )N

    x

    XExMean

    N

    1ii

    x

    =====

  • 7/27/2019 Probabilistic Fatigue

    13/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 24 of 352

    Variance / Standard Deviation

    Dispersion of the data

    ( )N

    )xx(

    XVar

    N

    1i

    2i

    =

    =

    )X(Varx=

    Standard deviation

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 25 of 352

    Coefficient of Variation

    x

    xCOV

    =

    Useful to compare different dispersions

    = 10 = 1

    COV = 0.1

    = 100 = 10

    COV = 0.1

  • 7/27/2019 Probabilistic Fatigue

    14/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 26 of 352

    Skewness

    Skewness is a measure of the asymmetry of the dataaround the sample mean. If skewness is negative, thedata are spread out more to the left of the mean thanto the right. If skewness is positive, the data are spreadout more to the right. The skewness of the normaldistribution (or any perfectly symmetric distribution) is zero.

    ( )3

    N

    1i

    3i

    N

    )xx(

    XSkewness

    =

    =

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 27 of 352

    Kurtosis

    Kurtosis is a measure of how outlier-prone a distribution is.The kurtosis of the normal distribution is 3. Distributions thatare more outlier-prone than the normal distribution havekurtosis greater than 3; distributions that are lessoutlier-prone have kurtosis less than 3.

    ( )4

    N

    1i

    4i

    N

    )xx(

    XKurtosis

    =

    =

  • 7/27/2019 Probabilistic Fatigue

    15/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 28 of 352

    Covariance

    A measure of the linear association betweenrandom variables

    [ ])Y()X(E)Y,X(COV YXxy ==

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 29 of 352

    Correlation Coefficient

    0 X

    Y

    0 X

    Y

    0 X

    Y

    0 X

    Y

    0 X

    Y

    0 X

    Y

    = 1 = 0 = -1

    0 < < 1 ~0 ~ 0

    [ ]

    YX

    YX )Y()X(E

    =

  • 7/27/2019 Probabilistic Fatigue

    16/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 30 of 352

    Probability

    Basic probabilityConditional probability

    Reliability

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 31 of 352

    Basic Probability

    ( ) 1AP0

    ( ) certain1AP =

    ( ) eimposssibl0AP =

    The probability of event A occurring:

  • 7/27/2019 Probabilistic Fatigue

    17/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 32 of 352

    Conditional Basic Probability

    ( ) ( ) ( ) ( )BandABorA

    BAPBPAPBAP IU +=

    ( ) ( )

    ( )APBAP

    ABP I=

    ( ) ( )

    ( )BP

    BAPBAP

    I=

    P(B) given A has occurred

    union intersection

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 33 of 352

    Independent Events

    1 2

    If A and B are unrelated

    ( ) ( )BPABP =

    ( ) ( )APBAP =

    ( ) ( ) ( )BPAPBAP =I

    Suppose the probability of bar 1 failing is 0.03and the probability of bar 2 failing is 0.04.

    What is the probability of the structure failing?

  • 7/27/2019 Probabilistic Fatigue

    18/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 34 of 352

    Failure Probability

    Bar 1 or bar 2 fails

    ( ) 03.0AP =

    ( ) 04.0BP =

    ( ) ( ) ( ) 0012.0BPAPBAP ==I

    P( failure) = 0.03 + 0.04 - 0.0012 = 0.0688

    ( ) ( ) ( ) ( )BAPBPAPBAP IU +=

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 35 of 352

    Reliability

    P( no failure ) = Reliability

    ) AnotofyprobabilitAPDefine

    ( ) ( )A1PAP =

    ( )BAPliabilityRe I=

    ( ) ( ) ( )BPAPBAP =I

    ) 9312.096.097.0BAP ==I

    For the 2 bar structure

    ( ) 0688.0liabilityRe1failureP ==

  • 7/27/2019 Probabilistic Fatigue

    19/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 36 of 352

    Structural Reliability

    Collapse occurs if any member fails

    ) )n4321 AAAAAPAP = IIII

    ) ) ) ) ) )n4321 APAPAPAPAPAP =

    ( ) linkeachfor01.0APSuppose =( ) ( ) 932.099.0AP 7 ==

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 37 of 352

    Reliability

    6

    5

    4

    3

    2

    1

    010-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 1

    Standard

    Deviations

    Probability

  • 7/27/2019 Probabilistic Fatigue

    20/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 38 of 352

    6 Sigma

    6 sigma is 1 in a billion ( 0.999999999 Reliability )

    Suppose a structure has 1000 bolted joints:

    ( ) ( ) 999999.0999999999.0AP 1000 ==1 in a million

    3 sigma is ( 0.99865 Reliability )

    ( ) ( ) 26.099865.0AP1000

    ==74 % failures

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 39 of 352

    Statistical Distributions

    Uniform

    Normal

    LogNormal

    Gumble

    Weibull

    http://www.itl.nist.gov/div898/handbook/

    A useful on-line reference:

  • 7/27/2019 Probabilistic Fatigue

    21/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 40 of 352

    Cumulative Distribution Function

    ( ) ( )xXPXFx =

    ( ) 0Fx =

    ( ) 1Fx =

    0

    1

    a b

    Fx(X)

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 41 of 352

    Probability Density Function

    ( ) ( )dxXfbXaPb

    a

    x= Strength )

    Strength

    Stress

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 65 of 352

    Joint Probability Density

    ( )

    ( )

    +

    =

    2

    y

    y

    y

    y

    x

    x

    2

    x

    x2

    2yx

    xy

    yyx2

    x

    12

    1exp

    12

    1y,xf

    correlation coefficient

    Normal distributions

  • 7/27/2019 Probabilistic Fatigue

    34/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 66 of 352

    2D - Joint Probability Density

    Contours ofequal probability

    y

    xx

    Y

    -3x

    3Y

    12

    34

    Stress

    Strength

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 67 of 352

    Acceptable Risk

    Safety

    P(failure) ~ 10-6 10-9

    Economic

    P(failure) ~ 10-2 10-4

  • 7/27/2019 Probabilistic Fatigue

    35/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 68 of 352

    Extreme Values

    For most durability problems, we are not interested inthe large extremes of stress or strength. Failure is muchmore likely to come from moderately high stressescombined with moderately low strengths.

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 69 of 352

    Key Points

    Basic Nomenclature

    Random VariablesStatistical Distribution

    Cumulative distribution function

    Mean

    Variance

    ProbabilityMarginal

    Conditional

    Joint

  • 7/27/2019 Probabilistic Fatigue

    36/177

    Statistical Techniques

    Professor Darrell F. Socie

    Department of Mechanical and

    Industrial Engineering

    2003-2005 Darrell Socie, All Rights Reserved

    Probabilistic Aspects of Fatigue

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 71 of 352

    Probabilistic Aspects of Fatigue

    Introduction

    Basic Probability and Statistics

    Statistical Techniques

    Analysis Methods

    Characterizing Variability

    Case Studies

    FatigueCalculator.com

    GlyphWorks

  • 7/27/2019 Probabilistic Fatigue

    37/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 72 of 352

    Statistical Techniques

    Normal Distributions LogNormal Distributions

    Monte Carlo

    Sampling

    Distribution Fitting

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 73 of 352

    Failure Probability

    )Sss(P I

    Let be the stress and S the fatigue strength

    Given the distributions of and S find theprobability of failure

    Stress, Strength, S

    s

  • 7/27/2019 Probabilistic Fatigue

    38/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 74 of 352

    Normal Variables

    Linear Response Function

    =

    +=n

    1iiio XaaZ

    Xi ~ N( i , Ci )

    =

    +=n

    1iiioz aa

    = =n

    1i

    2

    i

    2

    iz a

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 75 of 352

    Calculations

    Z = S -

    z = S -

    22

    Sz +=

    ~ N( 100 , 0.2 ) = 20

    z

    = 200 -100 = 100

    S ~ N( 200 , 0.1 ) S = 20

    Stress, Strength, S

    Safety factor of 2

    2.282020 22z =+=

    Let Z be a random variable:

  • 7/27/2019 Probabilistic Fatigue

    39/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 76 of 352

    Failure Probability

    Failure will occur whenever Z

  • 7/27/2019 Probabilistic Fatigue

    40/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 78 of 352

    Fatigue Data

    bf

    'f

    )N2(2

    S=

    102 103 104 105 106 107

    Fatigue Life101

    1000

    100

    10

    1

    StressAmplitude

    '

    f

    b

    1

    'f

    f2

    SN2

    =

    b1

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 79 of 352

    LogNormal Variables

    =

    =n

    1i

    a

    ioiXaZ

    as are constant and Xi ~ LN( xi , Ci )

    ==

    n

    1i

    a

    io

    i

    XaZmedian

    ( )=

    +=n

    1i

    a2

    XZ 1C1CCOV2

    i

    i

  • 7/27/2019 Probabilistic Fatigue

    41/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 80 of 352

    Calculations

    Stress, Strength, S

    ~ LN( 250 , 0.2 ) = 50

    ~ LN( 1000 , 0.1 ) = 100

    b

    1

    'f

    f2

    SN2

    =

    'f

    b = -0.125

    2

    S8'

    f

    8

    f2

    SN2Z

    ==

    8'f

    8

    f2

    SN2Z

    ==

    ( ) ( ) 1COV1COV1COV2

    f

    2 8282

    SZ ++=

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 81 of 352

    Results

    'fS/2 2Nf Pe rce ntile Life

    x 250 1000 355,368 99.9 17,706,069

    COVx 0.2 0.1 4.72 99 4,566,613

    95 1,363,200

    lnx 5.50 6.90 11.21 90 715,589

    X 245 995 73,676 50 73,676

    x 50 100 1,676,831 10 7,586

    lnx 0.198 0.100 1.774 5 3,982

    1 1,189

    b = -0.125 0.1 307

  • 7/27/2019 Probabilistic Fatigue

    42/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 82 of 352

    Monte Carlo Methods

    ( ) ( )

    +

    =

    +cbf

    'f

    'f

    b2

    f

    2'ff N2N2

    EE

    2

    SK

    Given random variables for Kf, S,Find the distribution of 2Nf

    'f

    'fand

    Z = 2Nf= ?

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 83 of 352

    Simple Example

    Probability of rolling a 3 on a die

    1 2 3 4 5 6

    fx(x) 1/6

    Uniform discrete distribution

  • 7/27/2019 Probabilistic Fatigue

    43/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 84 of 352

    Computer Simulation

    1. Generate random numbers between 1 and 6,all integers

    2. Count the number of 3s

    Let Xi = 1 if 30 otherwise

    ( ) =

    =n

    1i

    iXn

    13P

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 85 of 352

    EXCEL

    =ROUNDUP( 6 * RAND() , 0 )

    =IF( A1 = 3 , 1 , 0 )

    =SUM($B$1:B1)/ROW(B1)

    5 0 0

    3 1 0.5

    4 0 0.333333

    4 0 0.25

    5 0 0.2

    6 0 0.166667

    1 0 0.142857

    3 1 0.25

    3 1 0.333333

    6 0 0.3

  • 7/27/2019 Probabilistic Fatigue

    44/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 86 of 352

    Results

    0.1

    0.2

    0.3

    0.4

    1 100 200 300 400 500

    trials

    probability

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 87 of 352

    Evaluate

    x

    yP( inside circle )

    4

    rP

    2=

    = 4 P

    x = 2 * RAND() - 1y = 2 * RAND() - 1

    IF( x2 + y2 < 1 , 1 , 0 )

    1

    -1

    1

    -1

  • 7/27/2019 Probabilistic Fatigue

    45/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 88 of 352

    0

    1

    2

    3

    4

    1 100 200 300 400 500

    trials

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 89 of 352

    Monte Carlo Simulation

    Stress, Strength, S

    ~ LN( 250 , 0.2 ) = 50

    ~ LN( 1000 , 0.1 ) = 100'f

    b = -0.125

    2

    S

    b

    1

    'f

    f2

    SN2

    =

    Randomly choose values of S andfrom their distributions'f

    Repeat many times

  • 7/27/2019 Probabilistic Fatigue

    46/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 90 of 352

    Generating Distributions

    0

    1

    x

    Fx(X)

    Randomly choose a value between 0 and 1

    x = Fx-1( RAND )

    RAND

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 91 of 352

    Generating Distributions in EXCEL

    =LOGINV(RAND(),ln,ln)

    =NORMINV(RAND(),,)

    Normal

    Log Normal

  • 7/27/2019 Probabilistic Fatigue

    47/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 92 of 352

    EXCEL

    893 204 134,677

    1102 301 32,180

    852 285 6,355

    963 173 929,249

    1050 283 35,565

    1080 265 77,057

    965 313 8,227

    1073 213 420,456

    1052 226 224,000

    954 322 5,878

    965 240 68,671

    993 207 277,192

    1191 368 11,967

    831 210 59,473

    '

    f

    2

    S2N

    f

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 93 of 352

    Simulation Results

    103

    99.9 %

    99 %

    90 %

    50 %

    10 %

    1 %

    0.1 %

    104 105 106 107 108

    Monte Carlo Analytical

    Mean 11.25 11.21

    Std 1.79 1.77

    CumulativeProbability

    Life

  • 7/27/2019 Probabilistic Fatigue

    48/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 94 of 352

    Summary

    Simulation is relatively straightforward and simple

    Obtaining the necessary input data is difficult

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 95 of 352

    Nomenclature

    Population: the totality of the observations

    Sample: a subset of the population

    Population mean: x

    Population variance: x2

    Sample mean: X

    Sample variance: s2

    ( ) xXE =( ) 2x2sE =

  • 7/27/2019 Probabilistic Fatigue

    49/177

  • 7/27/2019 Probabilistic Fatigue

    50/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 98 of 352

    Translation

    90% confidence

    If we sampled a population many times toestimate the mean, 90% of the time the truepopulation mean would lie between thecomputed upper and lower limit.

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 99 of 352

    Confidence Interval - mean

    Lower limit of

    xx

    1n,n

    stX

    Upper limit of

    xx

    1n,n

    stX +

    For a normal distribution:

  • 7/27/2019 Probabilistic Fatigue

    51/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 100of 352

    Sample Size

    0 5 10 15 20 25 30

    Sample size, n

    0

    0.5

    1.0

    1.5

    2.0

    xx

    1n,n

    stX

    n

    t 1n,

    95%

    90%

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 101of 352

    5 Samples from Normal Distribution

    0

    20

    40

    60

    80

    100

    120

    140

    0 10 20 30 40 50 60 70 80 90 100

    95 % confidence 5 samples will be outside confidence limit

    Lower limit above mean

    Upper limit below mean

    Sample Number

    x = 100 x = 10

  • 7/27/2019 Probabilistic Fatigue

    52/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 102of 352

    Confidence Interval - variance

    Upper limit of

    2

    x1n,1

    2

    2

    xs)1n(

    For a normal distribution:

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 103of 352

    Sample Size

    0 5 10 15 20 25 300

    2

    4

    6

    8

    10

    Sample size, n

    2

    x1n,1

    2

    2

    xs)1n(

    1n,12

    )1n(

    95%

    50%

    90%

  • 7/27/2019 Probabilistic Fatigue

    53/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 104of 352

    Maximum Load Data

    99.9 %

    99 %

    90 %

    50 %

    10 %

    1 %

    0.1 %

    100 1000

    Median 431

    COV 0.34

    200 500

    Maximum force from 42 drivers

    CumulativeProbability

    90% confidence COV 0.41

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 105of 352

    Maximum Load Data

    Maximum Load

    0 200 400 600 800 1000 1200

    0.001

    0.002

    0.003

    0.004

    Pr

    obabilityDensity

    Normal COV = 0.34

    LogNormal

    Normal COV = 0.41

    Uncertainty in Variance is just as important,perhaps more important than the choice of the distribution

  • 7/27/2019 Probabilistic Fatigue

    54/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 106of 352

    Choose the Best Distribution

    0 200 400 600 800 1000

    Maximum Load

    Normal

    LogNormal

    Gumble

    Weibull

    0.001

    0.002

    0.003

    ProbabilityDensity

    15 samples from a Normal Distribution

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 107of 352

    Goodness of Fit Tests

    99.9 %

    99 %

    90 %

    50 %

    10 %

    1 %

    0.1 %

    0 200 400 600 800 1000

    CumulativeProbability

    99.9 %

    99 %

    90 %

    50 %

    10 %

    1 %

    0.1 %

    99.9 %

    99 %

    90 %

    50 %

    10 %

    1 %

    0.1 %

    0 200 400 600 800 1000

    CumulativeProbability

    99.9 %

    99 %

    90 %

    50 %

    10 %

    1 %

    0.1 %

    100 1000200 500

    CumulativeProbability

    99.9 %

    99 %

    90 %

    50 %

    10 %

    1 %

    0.1 %

    99.9 %

    99 %

    90 %

    50 %

    10 %

    1 %

    0.1 %

    100 1000200 500

    CumulativeProbability

    99.9 %

    99 %

    80 %

    50 %

    10 %

    1 %

    200 400 600 800CumulativeProbability

    99.9 %

    99 %

    80 %

    50 %

    10 %

    1 %

    200 400 600 800CumulativeProbability

    Normal

    LogNormal

    Gumble

    200

    99.9 %99 %

    80 %

    50 %

    10 %

    1 %

    0.1 %

    1000500

    CumulativeProbability

    200

    99.9 %99 %

    80 %

    50 %

    10 %

    1 %

    0.1 %

    1000500

    CumulativeProbability

    Weibull

  • 7/27/2019 Probabilistic Fatigue

    55/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 108of 352

    Analytical Tests

    Stephens, M. A. (1974). EDF Statistics for Goodness of Fit and Some Comparisons,Journal of the American Statistical Association, Vol. 69, pp. 730-737.

    Kolmogorov-Smirnov

    Chakravarti, Laha, and Roy, (1967). Handbook of Methods of Applied Statistics, Volume I,John Wiley and Sons, pp. 392-394.

    Anderson-Darling

    Snedecor, George W. and Cochran, William G. (1989), Statistical Methods, Eighth Edition,Iowa State University Press.

    Chi-squareany univariate distribution

    tends to be more sensitive near the center of the distribution

    gives more weight to the tails

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 109of 352

    Distributions

    Normal Strength

    Dimensions

    LogNormal Fatigue Lives

    Large variance in properties or loads

    Gumble Maximums in a population

    Weibull Fatigue Lives

  • 7/27/2019 Probabilistic Fatigue

    56/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 110of 352

    Statistics Software

    www.palisade.com

    BestFit Minitab

    www.minitab.com

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 111of 352

    Central Limit Theorem

    as n is the standard normal distribution

    If X1, X2, X3 .. Xn is a random sample from the population,with sample mean X, then the limiting form of

    n/

    XZ X

    =

  • 7/27/2019 Probabilistic Fatigue

    57/177

  • 7/27/2019 Probabilistic Fatigue

    58/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 114of 352

    Results

    0

    10

    20

    30

    40

    50

    60

    6 12 18 24 30 36

    Z

    Frequency

    Central limit theorem states that the result should benormal for large n

    500 trials

    CZ = 0.20

    XZ = 21.12

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 115of 352

    Central Limit Theorem

    Sums: Z = X1 X2 X3 X4 .. Xn

    Z Normal as n increases

    Products: Z = X1

    X2

    X3

    X4

    .. Xn

    Z LogNormal as n increases

    Normal and LogNormal distributions are often employedfor analysis even though the underlying populationdistribution is unknown.

  • 7/27/2019 Probabilistic Fatigue

    59/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 116of 352

    Key Points

    All variables are random and can be characterizedby a statistical distribution with a mean and variance.

    The final result will be normally distributed even ifthe individual variable distributions are not.

    Analysis Methods

    Professor Darrell F. Socie

    Department of Mechanical and

    Industrial Engineering

    2003-2005 Darrell Socie, All Rights Reserved

    Probabilistic Aspects of Fatigue

  • 7/27/2019 Probabilistic Fatigue

    60/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 118of 352

    Probabilistic Aspects of Fatigue

    Introduction Basic Probability and Statistics

    Statistical Techniques

    Analysis Methods

    Characterizing Variability

    Case Studies

    FatigueCalculator.com

    GlyphWorks

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 119of 352

    Reliability Analysis

    1 32

    0.2

    0.4

    0.6

    0.8

    ProbabilityDensity

    0.2

    0.4

    0.6

    0.8

    ProbabilityDensity

    1 32

    0.1

    0.2

    0.3

    0.4

    -3 -2 -1 0 1 2 3

    ProbabilityDensity

    Stressing Variables

    Strength Variables0.2

    0.4

    0.6

    0.8

    Proba

    bilityDensity

    1 32

    P( Failure )

    Analysis

    ?

  • 7/27/2019 Probabilistic Fatigue

    61/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 120of 352

    Probabilistic Analysis Methods

    Monte CarloSimple

    Hypercube sampling

    Importance sampling

    Analytical

    First order reliability method FORM

    Second order reliability method SORM

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 121of 352

    Limit States

    Limit States

    Equilibrium

    Strength

    Deformation

    Wear Functional

  • 7/27/2019 Probabilistic Fatigue

    62/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 122of 352

    Limit State Problems

    Z(X) = Z( Q, L, b, h )

    Response function

    Limit State function

    g = Z(X) - Zo = 0

    Same as the failure function

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 123of 352

    Limit States

    Stress

    Strength

    g < 0

    g > 0

    failures

    g = Strength - Stress

  • 7/27/2019 Probabilistic Fatigue

    63/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 124of 352

    Monte Carlo

    Stress

    Strength

    g < 0

    g > 0

    failures

    Monte Carlo is simple but what if each of these calculationsrequired a separate FEM model?

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 125of 352

    Low Probabilities of Failure

    Stress

    Strength

    failures

    rare event

    Need about 105 simulations for P(Failure) = 10-4

  • 7/27/2019 Probabilistic Fatigue

    64/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 126of 352

    Transform Variables

    u1

    u2

    x

    x1

    xu

    =

    u1 = 0

    u1 = 1

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 127of 352

    Standard Monte Carlo

    -4 -3 -2 -1 0 1 2 3 4-4

    -3

    -2

    -1

    0

    1

    2

    3

    4u1

    u2

    1000 trials

    g = 3 ( u1 + u2 )

    018.0

    N

    N)f(P f ==

    u1 and u2 normally distributed

  • 7/27/2019 Probabilistic Fatigue

    65/177

  • 7/27/2019 Probabilistic Fatigue

    66/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 130of 352

    Stratified Sample

    -4 -3 -2 -1 0 1 2 3 4-4

    -3

    -2

    -1

    0

    1

    2

    3

    4u1

    u2

    Each box should haveone sample drawn at randomfrom the underlying pdf

    100 trials

    25 simulations

    = 0.02

    = 0.0093

    2,500 calculations

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 131of 352

    Latin Hypercube Sample

    -4 -3 -2 -1 0 1 2 3 4-4

    -3

    -2

    -1

    0

    1

    2

    3

    4u1

    u2

    10 trials

    25 simulations

    = 0.017 = 0.038

    250 calculations

  • 7/27/2019 Probabilistic Fatigue

    67/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 132of 352

    Importance Sampling (continued)

    -4 -3 -2 -1 0 1 2 3 4-4

    -3

    -2

    -1

    0

    1

    2

    3

    4

    u1

    u2

    = 2

    The probability of a sampleoutside the circle is PS = 0.14( 2 standard deviations )

    0183.0PN

    N)f(P S

    S

    f ==

    138 simulations

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 133of 352

    Analytical Methods Strategy

    Develop a response function

    Transform the set of N variables to a set ofuncorrelated u variables with =0 and =1

    Locate the most likely failure point

    Approximate the integral of the jointprobability distribution over the failure region

  • 7/27/2019 Probabilistic Fatigue

    68/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 134of 352

    Analytical Methods Outline

    Response Surface

    Transform Variables

    Limit State Concept

    Most Probable Point

    Probability Integration

    FORM

    SORM

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 135of 352

    Response Surface Methodology

    Response surface methodology is a wellestablished collection of mathematical andstatistical techniques for applications where theresponse of interest is influenced by several

    variables.

    += )x,x,x,x(f)X(Z n321

  • 7/27/2019 Probabilistic Fatigue

    69/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 136of 352

    Response Surface

    X1 X2

    Z

    Fit a surface through the points

    Solution points

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 137of 352

    Mathematical Representation

    +++

    +++

    ++++=

    323312211

    2

    33

    2

    22

    2

    11

    332211o

    xxCxxCxxC

    xBxBxB

    xAxAxAA)X(Z Linear

    Incomplete Quadradic

    Complete Quadradic

    Solutions

    Linear N + 1

    Complete Quadradic N(N + 1)/2

    Incomplete Quadradic 2N + 1

  • 7/27/2019 Probabilistic Fatigue

    70/177

  • 7/27/2019 Probabilistic Fatigue

    71/177

  • 7/27/2019 Probabilistic Fatigue

    72/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 142of 352

    2D - Joint Probability Density

    Contours ofequal probability

    x

    y

    Stress

    Strength

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 143of 352

    Transform Variables

    x

    x1

    xu

    =

    u = 0u = 1

    Any distribution can be mapped into a normal distribution

    u1

    u2

    d ( )2d5.0expP

    The mathematics and behavior of normal distributionsare well understood

  • 7/27/2019 Probabilistic Fatigue

    73/177

  • 7/27/2019 Probabilistic Fatigue

    74/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 146of 352

    Failure Probability

    g = 0u1

    u2

    Strength )

    How do you really get these distributions ?

    Design Load

    How do you establish a design load ?

    How do you validate the design ?

  • 7/27/2019 Probabilistic Fatigue

    133/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 264of 352

    Stress Distribution

    Variability in loading has two components,how it is used and how it is driven.

    Car UsageHighway, city, fully loaded, empty etc.

    Driving Stylepassive, aggressive etc.

    The usage of a car is independent of the owners driving styleso that the distributions of car usage and driving style canbe obtained separately.

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 265of 352

    Car Usage

    Customer surveys

    k l c % r kl%

    1 Unloaded 27

    1 Highway 10

    2 Good Road 25

    3 Mountain 40

    4 City 25

    2 Half Load 581 Highway 5

    2 Good Road 30

    3 Mountain 30

    4 City 35

    3 Fully Loaded 15

    1 Highway 15

    2 Good Road 25

    3 Mountain 40

    4 City 20

    12 Customer UsageCategories

  • 7/27/2019 Probabilistic Fatigue

    134/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 266of 352

    Owner Behavior

    Instrumented Vehicles

    -3

    -2

    -1

    0

    1

    2

    3

    0 -1 -2 -33 2 1

    To Load, kN0 -1 -2 -33 2 1

    To Load, kN

    FromL

    oad,

    kN

    Extensive field testing foreach customer usagecategory produces a largenumber of histograms.

    Let the usage histogrambe denoted Ukl

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 267of 352

    Extrapolation

    -3

    -2

    -1

    0

    1

    2

    3

    0 -1 -2 -33 2 1

    To Load, kN0 -1 -2 -33 2 1

    To Load, kN

    FromL

    oad,kN

    -3

    -2

    -1

    0

    1

    2

    3

    0 -1 -2 -33 2 1

    To Load, kN

    FromLoad,

    kN

    -3

    -2

    -1

    0

    1

    2

    3

    0 -1 -2 -33 2 1

    To Load, kN

    FromLoad,

    kN

    Measured data, e.g. 1,000 km Extrapolated data, 300,000 km

    Ukl U*kl

  • 7/27/2019 Probabilistic Fatigue

    135/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 268of 352

    Virtual Customers

    Thousands of virtual customers can now be generatedby combining customer usage with driving style.

    = *klklki UrcNU

    [ ]iU rainflow histogram for an individual carN kilometers

    ck car loading, %

    rkl car usage, %

    *klU

    distributions of rainflow histograms fordifferent car usage classifications

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 269of 352

    Design Loads

    Initial design is done on the basis of a singleconstant amplitude load, Feq

    Find a constant amplitude load and number of cyclesthat will produce the same fatigue damage as the customeroperating a car for the design life.

  • 7/27/2019 Probabilistic Fatigue

    136/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 270of 352

    Equivalent Fatigue Loading

    101

    102

    103

    104

    105

    106

    Feq

    m

    1

    6

    m

    eq10

    FF

    =

    1Nn

    f

    =

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 271of 352

    Distribution of Feq

    FF

    Fn

    Fn= F+ FDesign Customer:

  • 7/27/2019 Probabilistic Fatigue

    137/177

  • 7/27/2019 Probabilistic Fatigue

    138/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 274of 352

    What Strength is Needed?

    F

    F

    Fn S

    S

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 275of 352

    Some Statistics

    Z = S - F

    Suppose we want a probability of failure of 1 in 50,000

    5f 10x2P

    =

    ( ) 2F

    2S

    FS

    Z

    Zf1 1.4P +

    =

    ==

    Fn = S( 1 COVS )

    Fn = F( 1 + COVF )

  • 7/27/2019 Probabilistic Fatigue

    139/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 276of 352

    Mean Component Strength

    ( ) 2F

    2S

    FS

    Z

    Zf1 1.4P +

    =

    ==

    ( )2

    F

    F

    2

    S

    n

    S

    Fn

    S

    f1

    COV1

    COVCOV

    F

    COV1

    1

    FP

    ++

    +

    =

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 277of 352

    Reliability

    1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

    10-1

    10-2

    10-3

    10-4

    10-5

    10-6

    10-7

    10-8

    10-9

    Relia

    bility

    n

    S

    F

    = 3COVF = 0.2COVS = 0.1

  • 7/27/2019 Probabilistic Fatigue

    140/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 278of 352

    Mean Strength

    FF

    Fn SS

    S = 1.4 Fn for a reliability of 2 x 10-5

    85.2COV

    F1

    S

    S

    n

    =

    =

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 279of 352

    Design

    Design calculations are made with loads Fn Large database relates Fn to vehicle parameters

    so that a new vehicle can be designed fromhistorical measurements

    Fatigue calculations are made with materialproperties standard deviations from themean

  • 7/27/2019 Probabilistic Fatigue

    141/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 280of 352

    Component Testing

    Test load is frequently higher than Fn to getfailures near the design life

    Component strength not life !

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 281of 352

    Interpreting the Test Data

    Component tests are done with small sample sizes

    2

    x1N,1

    2

    2

    xs)1N(

    Confidence limits

    ( )2

    F

    F2

    1N,1

    2

    S

    n

    S

    Fn

    S

    f1

    COV1

    COV1NCOV

    F

    COV11

    FP

    ++

    +

    =

  • 7/27/2019 Probabilistic Fatigue

    142/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 282of 352

    Validation

    Full scale vehicle simulation done at the end for

    design final validation

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 283of 352

    Extrapolation

    -3

    -2

    -1

    0

    1

    2

    3

    0 -1 -2 -33 2 1To Load, kN

    0 -1 -2 -33 2 1To Load, kN

    FromL

    oad,

    kN

    -3

    -2

    -1

    0

    1

    2

    3

    0 -1 -2 -33 2 1To Load, kN

    FromL

    oad,

    kN

    -3

    -2

    -1

    0

    1

    2

    3

    0 -1 -2 -33 2 1To Load, kN

    FromL

    oad,

    kN

    Measured data, e.g. 1,000 km Extrapolated data, 300,000 km

    Ukl U*kl

    How does this process work?

  • 7/27/2019 Probabilistic Fatigue

    143/177

  • 7/27/2019 Probabilistic Fatigue

    144/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 286of 352

    Probability Density

    -3

    -2

    -1

    0

    1

    2

    3

    0 -1 -2 -33 2 1

    To Load, kN

    FromLoad,kN

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 287of 352

    Kernel Smoothing

    -3

    -2

    -1

    0

    1

    2

    3

    From

    Load,kN

    0 -1 -2 -33 2 1

    To Load, kN

  • 7/27/2019 Probabilistic Fatigue

    145/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 288of 352

    Sparse Data

    -3

    -2

    -1

    0

    1

    2

    3

    FromLoad,kN

    0 -1 -2 -33 2 1

    To Load, kN

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 289of 352

    Exceedance Plot of 1 Lap

    0

    1

    2

    3

    4

    1 10 100 1000

    Cumulative Cycles

    LoadR

    ange,kN

    weibull distribution

  • 7/27/2019 Probabilistic Fatigue

    146/177

  • 7/27/2019 Probabilistic Fatigue

    147/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 292of 352

    Results

    -3

    -2

    -1

    0

    1

    2

    3

    0 -1 -2 -33 2 1

    To Load, kN

    FromL

    oad,

    kN

    -3

    -2

    -1

    0

    1

    2

    3

    FromL

    oad,

    kN

    Simulation Test Data

    0 -1 -2 -33 2 1

    To Load, kN

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 293of 352

    Exceedance Diagram

    0

    1

    2

    3

    4

    5

    6

    1 10 100 103 104

    Cycles

    1 Lap (Input Data)

    Model Prediction

    Actual 10 LapsLoadRa

    nge,kN

  • 7/27/2019 Probabilistic Fatigue

    148/177

  • 7/27/2019 Probabilistic Fatigue

    149/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 296of 352

    Issues

    In the first problem the number of cycles isknown but the variability is unknown andmust be estimated

    In the second problem the variability is knownbut the number and location of cycles isunknown and must be estimated

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 297of 352

    Assumption

    0

    16

    32

    48

    1 10 102 103 104 105

    Cumulative Cycles

    LoadR

    ange

    0

    16

    32

    48

    0

    16

    32

    48

    1 10 102 103 104 105

    On average, more severe users tendto have more higher amplitude cyclesand fewer low amplitude cycles

  • 7/27/2019 Probabilistic Fatigue

    150/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 298of 352

    Translation

    -3

    -2

    -1

    0

    1

    2

    3

    FromLoad,kN

    0 -1 -2 -33 2 1

    To Load, kN

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 299of 352

    Damage Regions

    -3

    -2

    -1

    0

    1

    2

    3

    FromLoad,kN

    0 -1 -2 -33 2 1

    To Load, kN

  • 7/27/2019 Probabilistic Fatigue

    151/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 300of 352

    ATV Data - Most Damaging in 19

    -3

    -2

    -1

    0

    1

    2

    3

    FromL

    oad,

    kN

    -3

    -2

    -1

    0

    1

    2

    3

    FromL

    oad,

    kN

    Simulation Test Data

    0 -1 -2 -33 2 1

    To Load, kN0 -1 -2 -33 2 1

    To Load, kN

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 301of 352

    ATV Exceedance

    0

    1

    23

    4

    5

    6

    1 10 100 103 104

    Cycles

    LoadR

    ange,kN

    Actual Data

    Simulation

  • 7/27/2019 Probabilistic Fatigue

    152/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 302of 352

    Airplane Data - Most Damaging in 334

    -30

    -20

    -10

    0

    10

    20

    30

    0 -10 -20 -3030 20 10

    To Stress, ksi

    FromS

    tress,

    ksi

    -30

    -20

    -10

    0

    10

    20

    30

    FromS

    tress,

    ksi

    Simulation Test Data

    0 -10 -20 -3030 20 10

    To Stress, ksi

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 303of 352

    Airplane Exceedance

    0

    10

    20

    30

    40

    1 10 100 1000Cycles

    StressRange,ksi

    Simulation

    Actual Data

  • 7/27/2019 Probabilistic Fatigue

    153/177

  • 7/27/2019 Probabilistic Fatigue

    154/177

  • 7/27/2019 Probabilistic Fatigue

    155/177

  • 7/27/2019 Probabilistic Fatigue

    156/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 310of 352

    Modeling Variability

    Products: Z = X1 X2 X3 X4 .. Xn

    Z LogNormal as n increases

    Central Limit Theorem:

    COVX

    0 0.5 1.0 1.5 2.0

    0.5

    1.0

    1.5

    lnX lnX ~ COVX

    COVX is a good measure of variability

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 311of 352

    Standard Deviation, lnx

    COVX1 2 3

    68.3% 95.4% 99.7%

    0.05

    0.1

    0.25

    0.5

    1

    1.05

    1.10

    1.28

    1.60

    2.30

    1.11

    1.23

    1.66

    2.64

    5.53

    1.16

    1.33

    2.04

    3.92

    11.1

    99.7% of the data is within a factor of 1.33 of the mean for a COV = 0.1

    COV and LogNormal Distributions

  • 7/27/2019 Probabilistic Fatigue

    157/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 312of 352

    Strain Life Analysis

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 313of 352

    Material Properties

  • 7/27/2019 Probabilistic Fatigue

    158/177

  • 7/27/2019 Probabilistic Fatigue

    159/177

  • 7/27/2019 Probabilistic Fatigue

    160/177

  • 7/27/2019 Probabilistic Fatigue

    161/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 320of 352

    29 Individual Data Sets

    '

    fMedian 820

    300 1000

    COV 0.25

    2000

    99.9 %

    99 %

    90 %

    50 %

    10 %

    1 %

    0.1 %

    CumulativeProbability

    b

    -0.12 -0.08 -0.04

    Mean -0.09

    COV 0.2599.9 %

    99 %

    90 %

    50 %

    10 %

    1 %

    0.1 %

    CumulativeProbability

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 321of 352

    29 Individual Data Sets (continued)

    0.1 1 10

    Median 0.57

    COV 1.1599.9 %

    99 %

    90 %

    50 %

    10 %

    1 %

    0.1 %

    CumulativeProbability

    'f

    -0.8 -0.6 -0.4 -0.2

    c

    Mean -0.62

    COV 0.23

    99.9 %

    99 %

    90 %

    50 %

    10 %

    1 %

    0.1 %

    CumulativeProbability

  • 7/27/2019 Probabilistic Fatigue

    162/177

  • 7/27/2019 Probabilistic Fatigue

    163/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 324of 352

    Results (continued)

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 325of 352

    Results (continued)

  • 7/27/2019 Probabilistic Fatigue

    164/177

  • 7/27/2019 Probabilistic Fatigue

    165/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 328of 352

    Strain Amplitude 1000 250

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 329of 352

    Deterministic Analysis

  • 7/27/2019 Probabilistic Fatigue

    166/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 330of 352

    Deterministic Analysis (continued)

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 331of 352

    Deterministic Analysis (continued)

  • 7/27/2019 Probabilistic Fatigue

    167/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 332of 352

    Deterministic Analysis Results

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 333of 352

    Probabilistic Analysis

  • 7/27/2019 Probabilistic Fatigue

    168/177

  • 7/27/2019 Probabilistic Fatigue

    169/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 336of 352

    Probabilistic Analysis Results

    GlyphWorks

    Professor Darrell F. Socie

    Department of Mechanical and

    Industrial Engineering

    2005 Darrell Socie, All Rights Reserved

    Probabilistic Aspects of Fatigue

  • 7/27/2019 Probabilistic Fatigue

    170/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 338of 352

    Probabilistic Aspects of Fatigue

    Introduction Basic Probability and Statistics

    Statistical Techniques

    Analysis Methods

    Characterizing Variability

    Case Studies

    FatigueCalculator.com

    GlyphWorks

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 339of 352

    GlyphWorks / Rainflow

  • 7/27/2019 Probabilistic Fatigue

    171/177

  • 7/27/2019 Probabilistic Fatigue

    172/177

  • 7/27/2019 Probabilistic Fatigue

    173/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 344of 352

    StatOutput.xls (continued)

    Channel # 6 Total Channels 1

    Variable Probabilistic Deterministic

    NumCases 11 Load History Variables 0.89 -5.42

    Median 45634 ScaleFactor 0.89 -5.42

    COV 1.91 Offset 0.00 0.00

    Stress Concentrators 0.05 -5.51

    Probability (%) Life Kf 0.05 -5.51

    99 817179 Material Properties 0.25 -14.54

    90 223648 E 0.00 -4.37

    50 45634 Sfp 0.23 3.42

    10 9311 b 0.00 -4.39

    1 2548 efp 0.00 1.42

    c 0.00 -9.86

    np 0.00 -2.32Kp 0.10 1.56

    Analysis Variables 0.37 1.00

    Uncertainty 0.37 1.00

    Life Distribution Sensitivity

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 345of 352

    StatOutput.xls (continued)

    Variable Distribution Value

    Scale

    Parameter Value

    Scale

    Parameter

    ScaleFactor Normal 100 0.25 103 0.18

    Offset Normal 0 0.10 -0.01 0.08

    Kf Uniform 3 0.05 3.0 0.04

    E None 208000 0.00 208000 0.00

    Sfp Log-Normal 1000 0.10 1054 0.11

    b None -0.1 0.00 -0.10 0.00

    efp None 1 0.20 1.0 0.00

    c None -0.5 0.00 -0.50 0.00

    np None 0.2 0.00 0.20 0.00

    Kp Log-Normal 1200 0.10 1194 0.10

    Uncertainty Log-Normal 1 0.50 0.93 0.48

    Inputs Outputs

  • 7/27/2019 Probabilistic Fatigue

    174/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 346of 352

    StatStress.flo

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 347of 352

    Rainflow Extrapolation

  • 7/27/2019 Probabilistic Fatigue

    175/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 348of 352

    Duration Extrapolation

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 349of 352

    Results Files

  • 7/27/2019 Probabilistic Fatigue

    176/177

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 350of 352

    Rainflow Duration

    Probabilistic Fatigue 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 351of 352

    Percentile Extrapolation

  • 7/27/2019 Probabilistic Fatigue

    177/177

    Probabilistic Fatigue 2003 2005 Darrell Socie Universityof Illinois at Urbana Champaign All Rights Reserved 352of 352

    Results