probabilistic modelling of performance parameters of carbon nanotube transistors

40
Probabilistic modelling of performance parameters of Carbon Nanotube transistors Department of Electrical and Computer Engineering By Yaman Sangar Amitesh Narayan Snehal Mhatre

Upload: nishi

Post on 23-Feb-2016

54 views

Category:

Documents


0 download

DESCRIPTION

Probabilistic modelling of performance parameters of Carbon Nanotube transistors. Department of Electrical and Computer Engineering. By Yaman Sangar Amitesh Narayan Snehal Mhatre. Overview. Motivation Introduction CMOS v/s CNTFETs CNT Technology - Challenges - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

Probabilistic modelling of performance parameters of Carbon Nanotube transistors

Department of Electrical and Computer Engineering

ByYaman Sangar

Amitesh NarayanSnehal Mhatre

Page 2: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

Overview■ Motivation■ Introduction■ CMOS v/s CNTFETs■ CNT Technology - Challenges■ Probabilistic model of faults■ Modelling performance parameters:◻ION / IOFF tuning ratio

◻Gate delay◻Noise Margin

■ Conclusion

04/29/2014 1

Page 3: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

Overview Motivation Introduction CMOS v/s CNTFETs CNT Technology – Challenges Probabilistic model of faults Modelling performance parameters:

ION / IOFF tuning ratio Gate delay Noise Margin

Conclusion

04/29/2014 2

Page 4: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

MOTIVATION: Why CNTFET?

04/29/2014 3

■ Dennard Scaling might not last long■ Increased performance by better algorithms?■ More parallelism?■ Alternatives to CMOS - FinFETs, Ge-nanowire FET, Si-

nanowire FET, wrap-around gate MOS, graphene ribbon FET ■ What about an inherently faster and less power consuming

device?■ Yay CNTFET – faster with low power

Page 5: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

Overview Motivation Introduction CMOS v/s CNTFETs CNT Technology – Challenges Probabilistic model of faults Modelling performance parameters:

ION / IOFF tuning ratio Gate delay Noise Margin

Conclusion

04/29/2014 4

Page 6: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

5

Carbon Nanotubes

04/29/2014

■ CNT is a tubular form of carbon with diameter as small as 1nm

■ CNT is configurationally equivalent to a 2-D graphene sheet rolled into a tube.

Page 7: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

6

Types of CNTs

04/29/2014

■ Single Walled CNT (SWNT)■ Double Walled CNT (DWNT)■ Multiple Walled CNT (MWNT)

■ Depending on Chiral angle:• Semiconducting CNT (s-CNT)• Metallic CNT (m-CNT)

Page 8: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

7

Properties of CNTs

04/29/2014

■ Strong and very flexible molecular material■ Electrical conductivity is 6 times that of copper■ High current carrying capacity■ Thermal conductivity is 15 times more than copper■ Toxicity?

Page 9: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

04/29/2014 8

CNTFET

How CNTs conduct?

■ Gate used to electrostatically induce carriers into tube■ Ballistic Transport

Page 10: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

Overview Motivation Introduction CMOS v/s CNTFETs CNT Technology – Challenges Probabilistic model of faults Modelling performance parameters:

ION / IOFF tuning ratio Gate delay Noise Margin

Conclusion

04/29/2014 9

Page 11: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

Circuit FET Delay (In Picoseconds)

Power (In uWatts)

Inverter CMOS 16.58 9.81

CNT 3.78 0.25

2 Input Nand CMOS 24.32 20.67

CNT 5.98 0.69

2 Input Nor CMOS 39.26 22.13

CNT 6.49 0.48

Simulation based Comparison between CMOS and CNT technology

04/29/2014 10

Page 12: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

04/29/2014 11Better delay

Circuit FET Delay (In Picoseconds)

Power (In uWatts)

Inverter CMOS 16.58 9.81

CNT 3.78 0.25

2 Input Nand CMOS 24.32 20.67

CNT 5.98 0.69

2 Input Nor CMOS 39.26 22.13

CNT 6.49 0.48

Simulation based Comparison between CMOS and CNT technology

Page 13: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

04/29/2014 12Better delay

At lower power!

Circuit FET Delay (In Picoseconds)

Power (In uWatts)

Inverter CMOS 16.58 9.81

CNT 3.78 0.25

2 Input Nand CMOS 24.32 20.67

CNT 5.98 0.69

2 Input Nor CMOS 39.26 22.13

CNT 6.49 0.48

Simulation based Comparison between CMOS and CNT technology

Page 14: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

Overview Motivation Introduction CMOS v/s CNTFETs CNT Technology – Challenges Probabilistic model of faults Modelling performance parameters:

ION / IOFF tuning ratio Gate delay Noise Margin

Conclusion

04/29/2014 13

Page 15: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

■ Major CNT specific variations■ CNT density variation■ Metallic CNT induced count variation■ CNT diameter variation■ CNT misalignment■ CNT doping variation

Challenges with CNT technology

04/29/2014 14

■ Unavoidable process variations

■ Performance parameters affected

Page 16: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

CNT density variation CNT diameter variation

■ Current variation

■ Threshold voltage variation

04/29/2014 15

Page 17: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

CNT Misalignment CNT doping variation

■ Changes effective CNT length■ Short between CNTs■ Incorrect logic functionality■ Reduction in drive current

■ May not lead to unipolar behavior

04/29/2014 16

Page 18: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

Metallic CNT induced count variation

m-CNTs-CNT

■ Excessive leakage current■ Increases power consumption■ Changes gate delay■ Inferior noise performance■ Defective functionality

s-CNT

m-CNT

Vgs

Cur

rent

04/29/2014 17

Page 19: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

18

Removal of m-CNTFETs

■ VMR Technique : A special layout called VMR structure consisting of inter-digitated electrodes at minimum metal pitch is fabricated. M-CNT electrical breakdown performed by applying high voltage all at once using VMR. M-CNTs are burnt out and unwanted sections of VMR are later removed.

■ Using Thermal and Fluidic Process: Preferential thermal desorption of the alkyls from the semiconducting nanotubes and further dissolution of m-CNTs in chloroform.

■ Chemical Etching: Diameter dependent etching technique which removes all m-CNTs below a cutoff diameter.

04/29/2014

Page 20: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

Overview Motivation Introduction CMOS v/s CNTFETs CNT Technology – Challenges Probabilistic model of faults Modelling performance parameters:

ION / IOFF tuning ratio Gate delay Noise Margin

Conclusion

04/29/2014 19

Page 21: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

Probabilistic model of CNT count variation due to m-CNTs

■ ps = probability of s-CNT■ pm = probability of m-CNT■ ps = 1 - pm

■ Ngs = number of grown s-CNTs■ Ngm = number of grown m-CNTs■ N = total number of CNTs

Probability of grown CNT count

04/29/2014 20

Page 22: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

Conditional probability after removal techniques

■ Ns = number of surviving s-CNTs■ Nm = number of surving m-CNTs■ prs = conditional probability that a CNT is removed given that it is s-CNT ■ prm = conditional probability that a CNT is removed given that it is m-CNT■ qrs = 1 - prs

■ qrm = 1 -prm

04/29/2014 21

P൛Ns = ns|Ngs = ngsൟ= ngsCnsqrsnsprs

(ngs-ns) P൛Nm = nm|Ngm = ngmൟ= ngmCnmqrm

(ngm-nm)prmnm

Page 23: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

Overview Motivation Introduction CMOS v/s CNTFETs CNT Technology – Challenges Probabilistic model of faults Modelling performance parameters:

ION / IOFF tuning ratio Gate delay Noise Margin

Conclusion

04/29/2014 22

Page 24: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

Effect of CNT count variation on ION / IOFF tuning ratio

■ ION / IOFF is indicator of transistor leakage

■ Improper ION / IOFF → slow output transition or low output swing

■ Target value of ION / IOFF = 104

04/29/2014 23

Page 25: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

Current of a single CNT

ICNT = ps Is + pmIm

µ(ICNT) = psµ( Is )+ pmµ(Im )

■ ICNT = drive current of single CNT (type unknown)■ Is = drive current of single s-CNT■ Im = drive current of single m-CNT

■ ps = probability of s-CNT■ pm = probability of m-CNT

04/29/2014 24

Page 26: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

■ Ns = count of s-CNT■ Nm = count of m-CNT

■ Is,on = s-CNT current, Vgs = Vds = Vdd

■ Is,off = s-CNT current, Vgs = 0 and Vds = Vdd

■ Im = m-CNT current, Vds = Vdd

ION / IOFF ratio of CNTFET

04/29/2014 25

Page 27: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

µ (Ns) = ps (1 - prs) N

µ (Nm) = pm (1 - prm) N

ION / IOFF ratio of CNTFET

04/29/2014 26

Page 28: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

Effect of various processing parameters on the ratio µ(ION) / µ(IOFF)

■ µ(ION) / µ(IOFF) is more sensitive to prm

■ µ(ION) / µ(IOFF) = 104 for prm > 1 – 10 -4 = 99.99 % for pm = 33.33%

04/29/2014 27

1- prm

𝜇 (𝐼 𝑜𝑛)𝜇(𝐼 𝑜𝑓𝑓 )

Page 29: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

Overview Motivation Introduction CMOS v/s CNTFETs CNT Technology – Challenges Probabilistic model of faults Modelling performance parameters:

ION / IOFF tuning ratio Gate delay Noise Margin

Conclusion

04/29/2014 28

Page 30: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

2904/29/2014

Effect of CNT count variation on Gate delay

delay=C load ∆V

I drive

Page 31: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

3004/29/2014

= =

σ (delay )≈ μ (delay)σ ( I drive)

¿¿σ (delay )≈

Cload V dd

μ2¿¿

μ(delay)≈C load V dd

¿¿

¿𝑝𝑠 σ 2 ( 𝐼 𝑠 )+𝑝𝑚 σ 2 ( 𝐼𝑚 )+𝑝𝑚𝑝𝑠 [ μ ( 𝐼 𝑠 )− μ ( 𝐼𝑚 ) ] 2

Page 32: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

31

Plot of v/s

04/29/2014

= 0.3σ (delay )μ(delay )

𝜎 𝑠

𝜇𝑠

N = 10

N = 20

N = 30N = 40

N = 50

Page 33: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

3204/29/2014

Plot of v/s N

σ (delay )μ(delay )

N

0.2 0.4 0.60.8

0.9

Page 34: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

Overview Motivation Introduction CMOS v/s CNTFETs CNT Technology – Challenges Probabilistic model of faults Modelling performance parameters:

ION / IOFF tuning ratio Gate delay Noise Margin

Conclusion

04/29/2014 33

Page 35: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

34

Noise Margin of CNTFET

04/29/2014

Page 36: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

35

VIL and VIH

■ Substituting = Vin, , and

■ =

■ Differentiating with respect to Vin and substituting -1

04/29/2014

nFET

pFET

Page 37: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

04/29/2014 36

For CNTFET, For CMOS,

VIL and VIH

NML = VIL - 0

NMH = VDD – VIH

Page 38: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

Overview Motivation Introduction CMOS v/s CNTFETs CNT Technology – Challenges Probabilistic model of faults Modelling performance parameters:

ION / IOFF tuning ratio Gate delay Noise Margin

Conclusion

04/29/2014 37

Page 39: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors

38

CONCLUSION

■ Modeled count variations and hence device current as a probabilistic function

■ Studied the affect of these faults on tuning ratio and gate delay■ Inferred some design guidelines that could be used to judge the correctness

of a process■ Mathematically derived noise margin based on current equations – better

noise margin than a CMOS

04/29/2014

Page 40: Probabilistic modelling of performance parameters of Carbon Nanotube  transistors