probabilistic r5v2/3 assessments rick bradford peter holt 17 th december 2012

108
Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Upload: hannah-padley

Post on 15-Dec-2015

217 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Probabilistic R5V2/3 Assessments

Rick Bradford

Peter Holt

17th December 2012

Page 2: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Introduction & Purpose

• Why probabilistic R5V2/3?

• If deterministic R5V2/3 gives a lemon

• If you want to know about lifetime / reality

• Trouble with ‘bounding’ data is,– It’s not bounding– It’s arbitrary– Most of the information is not used

Page 3: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

What have we done? (All 316H)

• 2009/10: HPB/HNB Bifs – R5V4/5 (Peter Holt)

• 2011: HYA/HAR Bifs – Creep Rupture (BIFLIFE)

• 2012: HYA/HAR Bifs – R5V2/3 (BIFINIT)

• Today only R5V2/3

Page 4: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Psychology Change

• Best estimate rather than conservative

• Including best estimate of error / scatter

• The conservatism comes at the end…– ..in what “failure” (initiation) probability is

regarded as acceptable…– …and this may depend upon the application

(safety case v lifetime)

Page 5: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

So what is acceptable?

• Will vary – consult Customer

• For “frequent” plant might be ~0.2 failures per reactor year (e.g., boiler tubes)

• For HI/IOGF plant might be 10-7pry to 10-5 pry (maybe)

• But the would be assessment the same!

Page 6: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

What’s the Downside?• MINOR: Probabilistic assessment is more

work than deterministic

• MAJOR: Verification– The only way of doing a meaningful

verification of a Monte Carlo assessment is to do an independent Monte Carlo assessment!

• Learning Points: Can be counterintuitive– Acceptance by others– Brainteaser

Page 7: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Aim of Today

• Probabilistic “How to do it” guide

• For people intending to apply – I hope

• Knowledge of R5V2/3 assumed

• We’ve only done it once

• So everything based on HAR bifurcations experience (316H)

Page 8: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Limitation

• Only the crack initiation part of R5V2/3 addressed

• Not the “precursor” assessments– Primary stress limits– Stress range limit– Shakedown– Cyclically enhanced creep

• Complete job will need to address these separately

Page 9: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Agenda• Introduction 9:30 – 10:00• Computing platform 10:00 – 10:15• Methodology

– Deterministic 10:15 – 10:45– Probabilistic 10:45 – 12:30

• Lunch 12:30 – 13:00• Input Distributions

– Materials Data (316) 13:00 – 14:30– Loading / Stress 14:30 – 14:45– Plant History 14:45 – 15:00

Page 10: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Computing Platform

• So far we’ve used Excel• Latin Hypercube add-ons available• RiskAmp / “@Risk” ??• Most coding in VBA essential• Minimise output to spreadsheet during

execution• Matlab might be a natural platform• I expect Latin Hypercube add-ons would

also be available – but not checked• Develop facility within R-CODE/DFA?

Page 11: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Run Times

• Efficient coding crucial • Typically 50,000 – 750,000 trials• (Trial = assessment of whole life of one

component with just one set of randomly sampled variables)

• Have achieved run times of 0.15 to 0.33 seconds per trial on standard PCs (~260 load cycles)

• Hence 2 hours to 3 days per run

Page 12: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Methodology

• We shall assume Monte Carlo

• Monte Carlo is just deterministic assessment done many times

• So the core of the probabilistic code is the deterministic assessment

Page 13: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Deterministic Methodology

• R5V2/3 Issue 3 (Revision 1 2013 ?)

• Will include new weldments Appendix A4

• BUT when used for 316H probabilistics, we advise revised rules for primary reset

• NB: Deterministic assessments should continue to use the ‘old’ Manus O’Donnell rules E/REP/ATEC/0027/AGR/01

Page 14: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Hysteresis Cycle Construction• R5V2/3 Appendix A7• Always sketch what the generic cycle will

look like for your application• Helpful to write down the intended

algorithm in full as algebra• Recall that the R5 hysteresis cycle

construction is all driven by the elastically calculated stresses

• Example – HANDOUT (from BIFINIT-RB) • Remember that the dwell stress cannot be

less than the rupture reference stress

Page 15: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Talking to the HANDOUT

• A brief run-through the elements of R5V2/3 Appendix A7 hysteresis cycle construction methodology using the hysteresis cycle on the next slide as the basis of the illustration

Page 16: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Illustrative Hysteresis Cycle

A

B

C

D

E

F

G

H

J

Page 17: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Weldments• R5V2/3 Appendix A4

• Initially use parent stress-strain data

• WSEF used in hysteresis cycle construction – not FSRF

• WER – leave nucleation cycles out of parent fatigue endurance

• Factor dwell stress by ratio of weld:parent cyclic strength (unless replaced by rupture reference stress)

• For 2mm thick we assumed weld = parent

Page 18: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Creep Dwell

• Creep relaxation, and hence damage, by integration of forward creep law

• Prohibits relaxation below rupture reference stress

• Strain hardening – both terms evaluated at the same strain

• Both evaluated at same point in scatter, h

,,,,,, TT

Z

E

dt

dc

Rrefccc

Page 19: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Primary Reset Issue: 316H

• Is creep strain reset to zero at the start of each dwell – so as to regenerate the initial fast primary creep rate?

• Existing advice is unchanged for deterministic assessments…

• Reset primary creep above 550oC

• Do not reset primary creep at or below 550oC…

• …use continuous hardening instead (creep strain accumulates over cycles)

Page 20: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Primary Reset Issue: 316H

• For probabilistic assessments we advise the use of primary reset at all temperatures

• But with two alleviations,– Application of the zeta factor, z– Only reset primary creep if the previous

unload caused significant reverse plasticity

• “significant” plasticity in this context has been taken as >0.01% plastic strain, though 0.05% may be OK

Page 21: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

The zeta factor

tt

t

cc tdTtt ,,,~c

tt

t

cRref

Pc tdTt ,,,~

c

cc ~ Pc

Pc ~

fccD /

Pccsodeod Z

E

Page 22: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Probabilistics

• Is it all just normal distributions?

• No

• Also Log-normal, also…

• All sorts of weird & wonderful pdfs

• Or just use random sampling of a histogram…

Page 23: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Normal and Log-Normal PDFs

• Normal pdf

• Log-normal is the same with z replaced by ln(z)

• Integration measure is then d(ln(z))=dz/z

2

2

2exp

2

1

zz

zP

Page 24: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

A Brief Reminder of the Basics: PDFs versus cumulative

distributions, definitions of mean, median, variance, standard deviation, CoV, correlation

coefficient. Illustrative graphs. DO VIA HANDOUT

• Illustrate number of standard deviations against probability for normal distribution, e.g., 1.65 sigma = 95%, etc.

Page 25: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Non-Standard Distribution:Elastic Follow-Up

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4 6 8 10

Z

Pro

ba

bil

ity

pe

r u

nit

Z

Page 26: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Non-Standard Distribution: Overhang

actual plant overhang distribution

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85

overhang (m)

fra

cti

on

of

bif

urc

ati

on

s

Page 27: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Non-Standard Distribution Thermal Transient Factor wrt Reference Trip

0

50

100

150

200

250

300

0.50

0.53

0.56

0.59

0.62

0.65

0.68

0.71

0.74

0.77

0.80

0.83

0.86

0.89

0.92

0.95

0.98

1.01

1.04

1.07

1.10

System Load Factor

Fre

qu

en

cy

Page 28: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

How Many Distributed Variables

• Generally – lots!

• If a quantity is significantly uncertain…

• …and you have even a very rough estimate of its uncertainty…

• …then include it as a distributed variable.

• The Latin Hypercube can handle it

Page 29: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012
Page 30: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012
Page 31: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

How Many Distributed VariablesHere are those used for the HYA/HAR

bifurcations (PJH distribution types given)…Bifurcation inlet sol inner radius (PERT)Bifurcation inlet sol outer radius (PERT)Boiler tube sol inner radius (PERT)Boiler tube sol outer radius (PERT)Inner radius oxidation metal loss k parameter (Log-

Normal)Off-Load IGA at bore (Log-Normal)Chemical clean IGA at bore (Log-Normal or

Uniform)Outer radius metal loss (Log-Normal)

Page 32: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

How Many Distributed VariablesDeadweight moment (Normal)Bifurcation thermal moment (Normal)Unrestricted MECT (not used by PJH)Gas temperature (Normal) Steam temperature (Normal)Metal temperature interpolation parameter

(Normal)Follow-up factor, Z (PERT)Carburisation allowance (Log-Normal of Sub-Set)Number of restricted tubes post-clean (not used by

PJH)

Page 33: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

How Many Distributed Variables

Restriction after 3rd clean (not used by PJH)

Overhang distribution (actual overhangs used)

Tube thermal moment (Normal)

Bifurcation 0.2% proof stress (Log-Normal)

Tube 0.2% proof stress (Log-Normal)

Zeta () (Log-Normal)

Ramberg-Osgood A parameter (Log-Normal)

Young's modulus (Log-Normal)

Page 34: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

How Many Distributed Variables

The weld fatigue endurance (Log-Normal)The bifurcation parent fatigue endurance (Log-

Normal)The boiler tube fatigue endurance (Log-Normal)The minimum differential pressure in hot standby

(Uniform distribution of a set of cases)The start-up peak thermal stress (Ditto)The trip peak thermal stress (Ditto)The minimum temperature during hot standby

(Ditto)

Page 35: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

How Many Distributed Variables

Creep strain rate (weld) (Log-Normal)

Creep strain rate (bifurcation) (Log-Normal)

Creep strain rate (boiler tube) (Log-Normal)

Creep ductility (weld) (Log-Normal)

Creep ductility (bifurcation) (Log-Normal)

Creep ductility (boiler tube) (Log-Normal)

Page 36: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Where are the pdfs?

• “But what if no one has given me a pdf for this variable”, I hear you cry.

• Ask yourself, “Is it better to use an arbitrary single figure – or is it better to guestimate a mean and an error?”

• If you have a mean and an error then any vaguely reasonable pdf is better than assuming a single deterministic value

Page 37: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

How is Probabilistics Done?

• (Monte Carlo) probabilistics is just deterministic assessment done many times

• This means random sampling (i.e. each distributed variable is randomly sampled and these values used in a trial calculation)

• But how are the many results weighted?

Page 38: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Options for Sampling: (1)Exhaustive

(Numerical Integration)

• Suppose we want +/-3 standard deviations sampled at 0.25 sd intervals

• That’s 25 values, each of different probability.

• Say of 41 distributed variables• That’s 2541 = 2 x 1057 combinations• Not feasible – by a massive factor

Page 39: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Options for Sampling: (2)Unstructured Combination

• Each trial has a different probability

• Range of probabilities is enormous

• Out of 50,000 trials you will find that one or two have far greater probability than all the others

• So most trials are irrelevant

• Hence grossly inefficient

Page 40: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Options for Sampling: (2)Random but Equal Probability

• Arrange for all trials to have the same probability

• Split all the pdfs into “bins” of equal area (= equal probability) – say P

• Then every random sample has the same probability, PN, N = number of variables

Page 41: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Equal Area “Bins” Illustrated for 10 Bins (More Likely to Use 10,000 Bins)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-3.000 -2.000 -1.000 0.000 1.000 2.000 3.000

Bins

mean of last bin (1.755)

Page 42: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Bins v Sampling Range

• 10 bins = +/- 1.75 standard deviations (not adequate)

• 300 bins = +/- 3 standard deviations (may be adequate)

• 10,000 bins = +/- 4 standard deviations (easily adequate for “frequent”; not sure for “HI/IOGF/IOF”)

Page 43: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Optimum Trial Sampling Strategy

• Have now chosen the bins for each variable

• Bins are of equal probability

• So we want to sample all bins for all variables with equal likelihood

• How can we ensure that all bins of all variables are sampled in the smallest number of trials?

• (Albeit not in all combinations)

Page 44: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Answer: Latin Hypercube

• N-dimensional cube

• N = number of distributed variables

• Each side divided into B bins

• Hence BN cells

• Each cell defines a particular randomly sampled value for every variable

• i.e., each cell defines a trial

• All trials are equally probable

Page 45: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Latin Hypercube

• A Latin Hypercube consists of B cells chosen from the possible BN cells such that no cell shares a row, column, rank,… with any other cell.

• For N = 2 and B = 8 an example of a Latin Hypercube is a chess board containing 8 rooks none of which are en prise.

• Any Latin Hypercube defines B trials which sample all B bins of every one of the N variables.

Page 46: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Example – The ‘Latin Square’

• N=2 Variables and B=4 Samples per Variable

1 2 3 4

1

2

3

4

•B cells are randomly occupied such that each row and column contains only one occupied cell.

•The occupied cells then define the B trial combinations.

Page 47: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Generation of the Latin Square

• A simple way to generate the square/hypercube

4 123

3

1

4

2

•Assign the variable samples in random order to each row and column.

•Occupy the diagonal to specify the trial combinations.

•These combinations are identical to the ones on the previous slide.

Page 48: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Range of Components

• Modelling just one item – or a family of items?

• Note that distributed variables do not just cover uncertainties but can also cover item to item differences, – Temperature– Load– Geometry– Metal losses

Page 49: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Plant History• A decision is required early on…

• Model on the basis of just a few idealised load cycles…

• …or use the plant history to model the actual load cycles that have occurred

• Can either random sample to achieve this

• Or can simply model every major cycle in sequence if you have the history (reactor and boiler cycles)

• Reality is that all cycles are different

Page 50: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Cycle Interaction• Even if load cycles are idealised, if one or

more parameters are randomly sampled every cycle will be different

• Hence a cycle interaction algorithm is obligatory

• And since all load cycles differ, the hysteresis cycles will not be closed, even in principle

• This takes us beyond what R5 caters for

• Hence need to make up a procedure

Page 51: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Unapproved Cycle Interaction• “Symmetrisation” of the hysteresis cycles

has no basis when they are not repeated• Suggested methodology is,

• This leads to “symmetrisation on average”

• a = 0 symmetrises every cycle• a = 0.93 is believed reasonable

symrevi

revi

revi

,1 1

i

symrevi

i

revi

,

Page 52: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Multiple Assessment Locations

• In general you will need to assess several locations to cover just one component

• E.g., a weld location, a stress-raiser location, and perhaps a second parent location

• “Failure” (crack initiation) conceded when any one location “fails”

• So need to assess all locations in parallel at the same time

Page 53: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Correlations Between Locations

• Are the material property distributions the same for all locations?

• Even if they are the same distributions, is sampling to be done just once to cover all locations? (Perfect correlation)

• Or are the properties obtained by sampling separately for each location (uncorrelated)

• Ditto for the load distributions

Page 54: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Time Dependent Distributions

• Most distributed variables will be time independent

• Hence sampled once at start of life, then constant through life

• But some may involve sampling repeatedly during service life

• E.g., transient loads are generally different cycle by cycle

Page 55: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Time Dependent Distributions• Cycle-to-cycle variations in cyclic loading

may be addressed…• Deterministically, from plant data• Probabilistically but as time independent

(sampled just once) – not really right• Probabilistically sampled independently on

every cycle• Latter case can be handled outwith the

Latin Hypercube but must be on the basis of equal probabilities

• Combination of the above for different aspects of the cyclic loading

Page 56: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Imposing Correlations

• Correlations can be extremely important to the result

• Proprietary software will include facilities for correlating variables

• Input the correlation coefficient

• If writing your own code, here’s how correlation may be imposed…

• HANDOUT

Page 57: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Terminology: “Trial”

• A trial is an assessment of one component for one particular possible plant history

• It covers all assessment locations for one component

• It covers the whole of life, hence all load cycles

• Have achieved 0.15 seconds per trial for 3 assessment locations, ~260 cycles over 260,000 hours life, on core i5 PC (41 distributed variables)

Page 58: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

How Many Trials Do You Need?

• It will depend on the application• The smaller the “failure” probability, the

larger the number of trials needed to calculate it by Monte Carlo

• If there is a large number of components per reactor, the number of trials needed to get a good reactor-average “failure” probability will be much smaller than required to resolve “failure” probabilities for individual components across the whole reactor

Page 59: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

How Many Trials Do You Need?

• Convergence should always be checked in two ways…

• Converging to stable probability in real time as the run proceeds

• Repeat runs with identical input to confirm reproducibility of result

Page 60: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Convergence of Initiation Rate

Initiation Results - Restricted Tubes

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0 10000 20000 30000 40000 50000

Trial No.

Init

iati

on

Rat

e p

er

Tri

al

Case 1

Case 1b

Page 61: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Convergence of Initiation Rate

Initiation Results - Unrestricted Tubes

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0 50000 100000 150000 200000 250000

Trial No.

Init

iati

on

Ra

te p

er

Tri

al

Case 3

Case 3b

Page 62: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Initiation Predictions for Repeat Cases50,000 trials (restricted)

250,000 trials (unrestricted)

No. of Initiations by 2024

Case Restricted Tubes

Unrestricted Tubes

Total

12 0.2 0.6 0.8

12b 0.2 0.6 0.8

12c 0.2 0.46 0.7

Page 63: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Outputs

• Cumulative number of crack initiations by now and by each future year

• May be fractional– Reactor average– Average per component– Optional: Prediction for individual components

• Annual probability of crack initiation – plot as graph against time

Page 64: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Annual Probability Showing Upturn

Annual Crack Initiation Probabilities versus Year (All Tubes)

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

1985 1990 1995 2000 2005 2010 2015 2020 2025

Year

Pro

ba

bili

ty p

er

Ye

ar

Page 65: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Output Correlations

• Look at correlation between cracking probability and certain distributed variables – to identify the significant variables

• Can be salutary

• Factors which seem important in deterministic assessments may not be so important in the probabilistics

• E.g., restricted tubes – temperatures not as important as stress

Page 66: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Learning Point?• Probabilistics implies stress is the

dominant issue (for this application), and yet…– It was approx operating year 26 before we

commissioned FE models of the tailpipes!– Contrast with the huge sums spent on

chemical cleaning over last 12 years– (Although this is also a boiler stability issue)

• Deterministic assessment did not reveal the relative importance of the stress analysis (and R5 methodology)

Page 67: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Specific Interesting Outputs

• Track the proportion of cycles which deploy primary reset – does this correlate with cracking? (Likely)

• Track the proportion of cycles with dwell stresses above the rupture reference stress – does this correlate with cracking? (Likely)

Page 68: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

INPUT DISTRIBUTIONS

Page 69: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Materials Data: 316H Parent

• Bradford & Holt E/REP/BBAB/0022/AGR/12

• Reviews 316H material data specifically for the purposes of BIFINIT

• There’s a lot of unpublished data around for 316H – hence the need for a review

• BIFINIT task has taken all year

• More than half time on materials review

Page 70: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Review for Your Application?

• You may not have the time, or the data, to make a similar review possible

• If yours is 316H parent then E/REP/BBAB/0022/AGR/12 should be a good guide

• For our thin (<2mm) sections we assumed weld = HAZ = parent

• You cannot do this for thick sections• Bottom line: such a comprehensive review

is not essential to benefit from probabilistics

Page 71: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Cyclic Creep Relaxation

• Under constant load 316H material shows a primary behaviour in which the strain rate drops with accumulated time/strain.

• Under a relaxing load, this behaviour is usually modelled as dependent on accumulated strain.

• Under a cyclic load application the relaxation would then be expected to show the following pattern

Stress

Time

Page 72: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Cyclic Stress Relaxation

• On the other hand, if the cycle unloading phase induces reverse plasticity, the creep deformation behaviour may revert to that at zero creep strain (so called ‘Primary reset’).

• Then the relaxation would then be expected to show the following pattern.

Stress

Time

Page 73: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Data Analysis Behind Primary Reset and Zeta Factor

• O’Donnell E/REP/ATEC/0027/AGR/01 used only three cyclic tests, only one of which was at 550oC

• This latter test consistent with continuous hardening at 550oC

• A further 9 tests at 550oC reviewed• All these much closer to primary reset than

continuous hardening• The O’Donnell 550oC test appears

exceptional rather than typical

Page 74: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Data Analysis Behind Primary Reset and Zeta Factor

• Analysis consists of calculating relaxation using

• (a) continuous hardening, and,• (b) primary reset• Comparing with experimental relaxation

data• Calculations adjusted the forward creep

deformation behaviour according to where the cast in question lay in the scatter band

• Example for one test…

Page 75: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Example: Test 62401 at 550oCTest 62401 at 550 deg.C: Relaxations v Time

Continuous Hardening, RCC-MR Cx7, Z=1 cf Test Data

110

115

120

125

130

135

0 500 1000 1500 2000 2500 3000 3500 4000

Total Dwell Time, Hours

Str

es

s, M

Pa

RCC-MR Cx7

test data (end of dwell)

start of dwell

Page 76: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Example: Test 62401 at 550oCTest 62401 at 550 deg.C: Relaxations v TimePrimary Reset, RCC-MR Cx7, Z=1 cf Test Data

110

115

120

125

130

135

0 500 1000 1500 2000 2500 3000 3500 4000

Total Dwell Time, Hours

Str

es

s, M

Pa

RCC-MR Cx7

test data (end of dwell)

start of dwell

Page 77: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Data Analysis Behind Primary Reset and Zeta Factor

• Can’t defend continuous hardening based on available data

• Primary reset much closer but retains some conservatism

• Hence factor creep strain increase over the dwell by zeta

• 12 data points give mean ln(zeta) = -0.26 (median zeta = 0.77)

• standard deviation of ln(zeta) = 0.32

• Cap zeta at 1

Page 78: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Is Primary Reset x Zeta Pessimistic?

• Creep-fatigue tests generally have dwells of 24 hours or shorter

• Plant has dwells of typically ~1000 hours

• The short dwells in lab tests will greatly accentuate the primary creep part

• So the recommendation may be very conservative

• But there’s no other evidence at present

• (Need long dwell creep-fatigue tests)

Page 79: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Cyclic Stress-Strain?

• Same cyclic tests used to compare with R66 cyclic Ramberg-Osgood fits

• 550oC only• Cyclic hardening – and softening – also

seen in the data.• Saturated cyclic data compare reasonably

with R66• Lie between lower bound and mean• (NB: Upper bound is probably most

onerous)

Page 80: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Cyclic Stress-Strain?• Example of Hardening/Softening Behaviour

Cyclic Creep Test 62431 - 550C

0

50

100

150

200

250

0 1000 2000 3000 4000 5000 6000

Time (hrs)

Str

es

s (

MP

a)

Test (End of Dwell)

Test (Start of Dwell)

Page 81: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Cyclic Stress-Strain?

• Hence we just used R66 Ramberg-Osgood

• Together with log-normal distribution of A parameter

• With standard deviation equivalent to quoted +/-25% error

• i.e., CoV = 0.176

Page 82: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Test 62401 Stress-Strain Hysteresis Loops up to Cycle 69

Test 62401: Development of Cyclic Hardening - First 69 Cycles

-300

-200

-100

0

100

200

300

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Strain (%)

Str

ess

(MP

a)

Cycles 1 to 10Cycles 11 to 20Cycles 22-30Cycles 32 to 40Cycles 41 to 50Cycles 51 to 69

Page 83: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Test 12161 Stress-Strain Hysteresis

Loops up to Cycle 100 Test 12161 (Cast 69431) Evolution of Cyclic Hardening: First 100 Cycles

-400

-300

-200

-100

0

100

200

300

400

-8.00E-01 -6.00E-01 -4.00E-01 -2.00E-01 0.00E+00 2.00E-01 4.00E-01 6.00E-01 8.00E-01

Strain (%)

Str

es

s (

MP

a)

Cycles 1 to 10

Cycles 11 to 20

Cycles 21 to 30

Cycles 31 to 40

Cycles 41 to 100

Page 84: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Comparison of Saturated Cycle Peak Stress from Cast 69431 Creep-Fatigue Tests with R66 Expectations

Comparison of Saturated Cycle Peak Stress from Cast 69431 Tests with R66 Expectations

200

250

300

350

400

200 250 300 350 400 450 500

R66 Peak (Half Stress Range)

Te

st

Pe

ak

Str

es

s

R66 Lower Bound

R66 Best Estimate

R66 Upper Bound

Line of Equality

Page 85: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Transition to Saturated Cycle?

• R66 §8.7 advice (based on 5% of the mean fatigue cycle endurance) looks wrong – don’t use it. (CR for ATG to review)

• The above tests generally achieved 95% of the final cyclic hardening by about cycle 40 (one at cycle 70 and one at just over 100 cycles) and symmetrisation much sooner.

• cf. ~260 plant cycles over life• So we ignored the transition period and used

fully hardened from the start of life

Page 86: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Start-of-Dwell Stresses versus Cycle Number

Creep-Fatigue Test 613Z , 550 deg.C: Start-of-Dwell Stress v Cycle

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000

Cycles #

Ma

x s

tre

ss

MP

a

Page 87: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Long Dwell Softening

• Advice in R66 §8.6 – but this also seems anomalous (because it is based purely on the dwell in the previous cycle, whereas softening appears accumulative).

• (CR for ATG to review)

• Nevertheless we applied it as a sensitivity study

• It made little difference in our assessments

Page 88: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

R66 Forward Creep• RCC-MR

Primary

Secondary

• Scatter defined by factoring C1 parameter by x7.0754 and C by x6.583 for upper 95% CL

• Or reciprocals of these for lower 95% CL• Hence a Log-Normal Distribution is appropriate.• Standard deviation on ln(C) is 1.146 (CoV of

about 1.77)• NB: These factors apply to C and C1, not to the

strain rate. This makes a big difference in strain hardening.

12 nC1

c t100

C

nc C

Page 89: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

How Good is RCC-MR?• Comparisons with test data have been

done before

• J.Taylor et al E/REP/BBGB/0066/AGR/10

• Wang SERCO/E004792/001

• Conclusion: RCC-MR with R66 95%CL scatter bands is representative

• Our review against large database bought from NIMS came to the same conclusion

Page 90: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

NIMS Data cf RCC-MR, NB: log10(7) = 0.85

Log10(Ratio of NIMS Test Strain Rates to RCC-MR)

-1.20

-0.80

-0.40

0.00

0.40

0.80

1.20

480 500 520 540 560 580 600 620

Temperature, deg.C

Lo

g10

of

Rat

e R

atio

(N

IMS

/RC

C-M

R)

Rate Ratio at 100 hours

Rate Ratio at 1000 hours

Page 91: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Uniaxial Creep Ductility• R66 implies a log-normal distribution• At 550oC, median 10.7%, 98%CL 2.6%• Mean of Log10(ductility,%) 1.029• Standard deviation 0.299• Comparison made with NIMS dataset• And also with a large dataset from various

sources (referred to as GLIM)• R66 advice looks representative• So we just used R66 (log-normal)• But remember the multiaxial factor!

Page 92: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Log-Normal Distribution for R66 Uniaxial Creep Ductility of 316H

at 500-550oC: Median 10.7%, 98%CL 2.6%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40

creep ductility (%)

Cu

mu

lati

ve

Pro

ba

bili

ty

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Pro

ba

bili

ty D

en

sit

y (

pe

r 1

% s

tra

in)

Cumulative Log-Normal Probability

Log-Normal PDF (per 1% strain range)

Page 93: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Comparison of RCC-MR with NIMSNIMS Monotonic Creep Test Ductility Data

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

480 500 520 540 560 580 600 620

Temperature (C)

Lo

g1

0(C

ree

p D

uc

tilit

y (

%))

NIMS DataNIMS Data Linear FitNIMS Data Fit 98% CL'sR66 MeanR66 98% CL's

Page 94: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Comparison of RCC-MR with GLIMGLIM Monotonic Creep Test Ductility Data

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

480 500 520 540 560 580 600 620

Temperature (C)

Lo

g10

(Cre

ep

Du

cti

lity

(%

))

GLIM DataGLIM Data Linear FitGLIM Data Fit 98% CL'sR66 MeanR66 98% CL'sNIMS Data Linear FitNIMS Data Fit 98% CLs

Page 95: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

What’s Tricky about Ductility?• The test do not cover the plant conditions

of temperature and stress• Low ductilities occur only for stresses

above about 260 MPa• Lower stresses are used in monotonic

creep tests only at higher temperatures (generally 600oC plus)

• So, is ductility really inversely correlated with stress…

• …or is this just an artefact of the bias in the test matrices?

Page 96: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Creep Tests Do Not Address Plant Conditions

Test Matrix Temperatures v Stresses

0

50

100

150

200

250

300

350

400

450

500

480 500 520 540 560 580 600

Temperature, deg.C

Str

ess,

MP

a

GLIM Data

NIMS Data

Likely Bounding Plant Regime

Page 97: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Is Ductility Correlated with Stress – or with Temperature – or Not?

NIMS Creep Ductility cf Creep-Fatigueand Spindler, Ref.[13]

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400 450 500

Stress, MPa

Cre

ep S

trai

n a

t F

ailu

re o

r In

itia

tio

n (

%)

500 deg.C

550 deg.C

575 deg.C

600 deg.C

creep-fatigue tests (550 degC)

Spindler, Ref.[13]

Page 98: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Ductility in Creep-Fatigue• Is the effective ductility in creep-fatigue

better than implied by monotonic creep test data?

• Lowest creep strain at initiation from 7 creep-fatigue tests at 550oC was 9% (and this test was fatigue dominated)

• But creep-fatigue data looks compatible with NIMS

• Too few creep-fatigue data to deduce lower bound

• And would expect longer dwells to produce poorer ductility

Page 99: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Loading Distributions

• Loadings can be distributed because,– They vary in time– They vary from one component to another– They are of uncertain magnitude

• Can use one distribution to represent all these

• Or separate distributions

Page 100: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Loading Distributions

• Does the load correlate with some known parameter, e.g.,– Thermal load with temperature– Deadweight load with some dimension– System load with range of assumptions in a

pipework model, etc

Page 101: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Converting Load to Stress

• Given the load and dimensions, the stress may be regarded as determinate

• Or there may be some intrinsic uncertainty in the stress analysis

• But the stress is most likely to be distributed only as a consequence of the underlying distributions of load and dimensions

Page 102: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Dimension Distributions

• Start of life dimensions – drawing tolerances

• Thickness may vary over life due to corrosion – hence bringing temperature and chemistry uncertainties into play

• Dimensional distributions may be used to represent deterministic differences across the different components

• Or this can be addressed by running the code for individual components separately treating these quantities as deterministic

Page 103: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Load Cycles• First need to identify cycle types, e.g.,

– Reactor cycles to cold shutdown,– Reactor cycles to hot standby– Boiler cycles

• Decide whether each cycle to be modelled will be,– Chosen randomly, or,– Taken from a pre-determined sequence

• Numbers of cycles obviously needed• Dwell times – deterministic or sampled• Need to predict future numbers of cycles of each

type, and dwells

Page 104: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Transient Loads

• The peak transient loads usually define the peaks of the hysteresis cycles, and so are particularly important

• Try to get plant data

• Transients will generally be particularly variable

• For example, distributions of peak start-up and peak trip thermal loads can be important

Page 105: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Transient Loads

• Golden Rule: Everything best estimate

• Including the uncertainties

• Don’t make the mistake of assuming that over-estimating a transient load is conservative

• It may be optimistic if it leads to a smaller dwell stress

• Remember ALL this is for normal / typical / representative conditions – not faults

Page 106: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Initial Residual Stress• Of course the secondary part of the dwell

stress is a residual stress!• R5 does require that damage due to any

initial welding residual stress be included• But notice that, as soon as there is an

elastic-plastic hysteresis cycle due to service loading, the initial residual stresses will be modified – and probably replaced by the shakedown residual stress

• So don’t over-cook the damage due to residual stresses

• One crude method: see HANDOUT

Page 107: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

Elastic Follow-Up

• Ideal to have non-linear FEA to derive Z for a range of assumptions

• Possibly a range of different plant geometries

• Hence distribution of Z

• But this may be a luxury you cannot afford

• Good news is that results are often insensitive to Z

Page 108: Probabilistic R5V2/3 Assessments Rick Bradford Peter Holt 17 th December 2012

THE

END