probability tools with examples - ucsd mathematicsbdriver/280_18-19_prob/lecture_notes/older...

505
Bruce K. Driver Probability Tools with Examples September 28, 2018 File:prob.tex

Upload: others

Post on 24-Jun-2020

98 views

Category:

Documents


5 download

TRANSCRIPT

  • Bruce K. Driver

    Probability Tools with Examples

    September 28, 2018 File:prob.tex

  • Contents

    Part Homework Problems

    -3 Math 280A Homework Problems Fall 2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3.1 Homework 1. Due Friday, October 5, 2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    Part I Background Material

    1 Limsups, Liminfs and Extended Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.1 Infinite sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    2 Basic Metric and Topological Space Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132.1 Metric spaces as topological spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

    2.1.1 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.2 Completeness in Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.3 Supplementary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

    2.3.1 Word of Caution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182.3.2 Riemannian Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

    2.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    3 Basic Probabilistic Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    Part II Formal Development

    4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274.1 Set Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294.3 Algebraic sub-structures of sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

  • 4 Contents

    5 Finitely Additive Measures / Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335.1 Examples of Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345.2 Measures on Product Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

    5.2.1 Measures on simple product spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375.3 Simple Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    5.3.1 The algebraic structure of simple functions* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385.4 Simple Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    5.4.1 Appendix: Bonferroni Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445.5 Finitely Additive Measures on Rd and [0, 1]d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455.6 Appendix: Riemann Stieljtes integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485.7 Tonelli and Fubini’s Theorem I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495.8 Bernstein Polynomials and the Classical Weierstrass Approximation Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505.9 Simple Independence and the Weak Law of Large Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    5.9.1 Complex Weierstrass Approximation Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565.10 Simple Conditional Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585.11 Appendix: A Multi-dimensional Weirstrass Approximation Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

    6 Countably Additive Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

    6.1.1 Examples of measures on R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646.1.2 An Extension of Measure Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

    6.2 * The π – λ and monotone class theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656.2.1 The π – λ theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656.2.2 ** Monotone Class Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

    6.3 * σ - Algebra Regularity and Uniqueness Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676.4 Outer Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686.5 Construction of σ–Additive Finite Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

    6.5.1 *Other characterizations of B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736.6 Construction of σ - Finite Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756.7 Radon Measures on R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 766.8 Metric-Measure Space Regularity Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786.9 Lebesgue Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796.10 A Discrete Kolmogorov’s Extension Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796.11 Appendix: Completions of Measure Spaces* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 826.12 Supplement: Generalizations of Theorem 6.58 to Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 826.13 Appendix: Alternate measure extension construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

    7 Carathéodory’s Construction of Measures* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 877.1 General Extension and Construction Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 877.2 Extensions of General Premeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 887.3 More Motivation of Carathéodory’s Construction Theorem 7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

    Page: 4 job: prob macro: svmonob.cls date/time: 28-Sep-2018/11:15

  • Contents 5

    8 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 918.1 Measurable Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 918.2 Factoring Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 978.3 Summary of Measurability Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 988.4 Distributions / Laws of Random Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 998.5 Generating All Distributions from the Uniform Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

    9 Integration Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1039.1 Integrals of positive functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1039.2 Integrals of Complex Valued Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

    9.2.1 Square Integrable Random Variables and Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1129.2.2 Some Discrete Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

    9.3 Integration on R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1149.4 Densities and Change of Variables Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1189.5 Riesz Markov Theorem for [0, 1]d and Rd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

    9.5.1 Bone yards to the proof of Theorems 9.62 9.63 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1249.6 Some Common Continuous Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

    9.6.1 Normal (Gaussian) Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1259.7 Stirling’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

    9.7.1 Two applications of Stirling’s formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1309.7.2 A primitive Stirling type approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

    9.8 Comparison of the Lebesgue and the Riemann Integral* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1339.9 Measurability on Complete Measure Spaces* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1359.10 More Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

    10 Functional Forms of the π – λ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13910.1 Multiplicative System Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13910.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

    10.2.1 Obsolete stuff follows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14510.3 A Strengthening of the Multiplicative System Theorem* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14510.4 The Bounded Approximation Theorem* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

    11 Multiple and Iterated Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14911.1 Iterated Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14911.2 Tonelli’s Theorem and Product Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14911.3 Fubini’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15111.4 Fubini’s Theorem and Completions* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15411.5 Lebesgue Measure on Rd and the Change of Variables Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15511.6 Other change of variables proofs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

    11.6.1 δ – function localization proof of the change of variables Theorem 11.21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16211.6.2 Radon Nykodym proof. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

    11.7 The Polar Decomposition of Lebesgue Measure* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16611.8 More Spherical Coordinates* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

    Page: 5 job: prob macro: svmonob.cls date/time: 28-Sep-2018/11:15

  • 6 Contents

    11.9 Gaussian Random Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17011.9.1 *Gaussian measures with possibly degenerate covariances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

    11.10Kolmogorov’s Extension Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17311.10.1Regularity and compactness results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17311.10.2Kolmogorov’s Extension Theorem and Infinite Product Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

    11.11Appendix: Standard Borel Spaces* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17611.12More Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17911.13Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

    12 Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18312.1 Basic Properties of Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18312.2 Examples of Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

    12.2.1 An Example of Ranks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18812.3 Independence for Gaussian Random Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18912.4 Summing independent random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19112.5 A Strong Law of Large Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19212.6 A Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19312.7 The Second Borel-Cantelli Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19612.8 Kolmogorov and Hewitt-Savage Zero-One Laws. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

    12.8.1 Hewitt-Savage Zero-One Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20012.9 Another Construction of Independent Random Variables* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

    13 The Standard Poisson Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20513.1 Poisson Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20513.2 Exponential Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

    13.2.1 Appendix: More properties of Exponential random Variables* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20613.3 The Standard Poisson Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20813.4 Poission Process Extras* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

    14 Lp – spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21314.1 Modes of Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21314.2 Almost Everywhere and Measure Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21414.3 Jensen’s, Hölder’s and Minkowski’s Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21714.4 Completeness of Lp – spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21914.5 Density Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22014.6 Relationships between different Lp – spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

    14.6.1 Summary: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22314.7 Uniform Integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

    14.7.1 Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22714.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22814.9 Appendix: Convex Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

    Page: 6 job: prob macro: svmonob.cls date/time: 28-Sep-2018/11:15

  • Contents 7

    15 Hilbert Space Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23515.1 Compactness Results for Lp – Spaces* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24015.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

    16 Conditional Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24316.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

    16.1.1 Conditioning Gaussian Random Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24716.1.2 Probability Kernels and Regular Conditional Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

    16.2 Additional Properties of Conditional Expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25116.3 Conditional Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25516.4 Construction of Regular Conditional Distributions* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

    17 The Radon-Nikodym Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25917.1 Proof of the Change of Variables Theorem* 11.21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

    18 Some Ergodic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

    Part III Stochastic Processes I

    19 The Markov Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27319.1 Markov Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27419.2 Discrete Time Homogeneous Markov Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27819.3 Continuous time homogeneous Markov processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27919.4 Continuous Time Markov Chains on Denumerable State Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28519.5 First Step Analysis and Hitting Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28819.6 Finite state space chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

    19.6.1 Invariant distributions and return times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30019.6.2 Some worked examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30119.6.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

    19.7 Appendix: Kolmogorov’s extension theorem II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30419.8 Removing the standard Borel restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30519.9 *Appendix: More Probability Kernel Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

    20 (Sub and Super) Martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30920.1 (Sub and Super) Martingale Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30920.2 Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31320.3 Stopping Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

    20.3.1 Summary of some of the more notable Chapter 20 convergence results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31920.4 Stochastic Integrals and Optional Stopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32020.5 Submartingale Maximal Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32220.6 Submartingale Upcrossing Inequality and Convergence Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32420.7 *Supermartingale inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

    Page: 7 job: prob macro: svmonob.cls date/time: 28-Sep-2018/11:15

  • 8 Contents

    20.7.1 Maximal Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33020.7.2 The upcrossing inequality and convergence result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

    20.8 Martingale Closure and Regularity Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33220.9 Backwards (Reverse) Submartingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33420.10Some More Martingale Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

    20.10.1More Random Walk Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33820.11Appendix: Some Alternate Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

    21 Some Martingale Examples and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34321.1 Aside on Large Deviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34321.2 A Polya Urn Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34521.3 Galton Watson Branching Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34721.4 Kakutani’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

    Part IV (Weak) Convergence of Random Sums

    22 Random Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35722.1 Weak Laws of Large Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

    22.1.1 A WLLN Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35822.2 Kolmogorov’s Convergence Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36022.3 The Strong Law of Large Numbers Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

    22.3.1 Strong Law of Large Number Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36522.4 Kolmogorov’s Three Series Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

    22.4.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36922.5 Maximal Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37122.6 Bone Yards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

    22.6.1 Kronecker’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37422.6.2 Older variants on the proof of Kolmogorov’s three series Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

    23 Weak Convergence Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37723.1 Convolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37723.2 Total Variation Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37823.3 A Coupling Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38123.4 Weak Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38323.5 “Derived” Weak Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39023.6 Convergence of Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39223.7 Weak Convergence Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39423.8 Compactness and tightness of measures on (R,BR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39823.9 Extensions to Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

    23.9.1 Finitely additive measures for Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40223.10Metric Space Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

    23.10.1A point set topology review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407

    Page: 8 job: prob macro: svmonob.cls date/time: 28-Sep-2018/11:15

  • Contents 9

    23.10.2Proof of Skorohod’s Theorem 23.86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40823.10.3Proof of Proposition – The Portmanteau Theorem 23.87 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40923.10.4Proof of Prokhorov’s compactness Theorem 23.89 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410

    24 Characteristic Functions (Fourier Transform) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41324.1 Basic Properties of the Characteristic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41324.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41524.3 Tail Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41624.4 Continuity Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41824.5 A Fourier Transform Inversion Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42224.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42524.7 Appendix: Bochner’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42724.8 Appendix: Some Calculus Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430

    25 Weak Convergence of Random Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43525.1 Lindeberg-Feller CLT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43725.2 More on Infinitely Divisible Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44225.3 Stable Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44625.4 *Appendix: Lévy exponent and Lévy Process facts – Very Preliminary!! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

    Part V Stochastic Processes II

    26 Gaussian Random Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45526.1 Gaussian Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45526.2 Existence of Gaussian Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45726.3 Gaussian Field Interpretation of Pre-Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458

    27 Versions and Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46127.1 Kolmolgorov’s Continuity Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46127.2 Kolmolgorov’s Tightness Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

    28 Brownian Motion I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46728.1 Donsker’s Invariance Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46728.2 Path Regularity Properties of BM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46828.3 Scaling Properties of B. M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472

    29 Filtrations and Stopping Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47329.1 Measurability Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47329.2 Stopping and optional times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47429.3 Filtration considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

    29.3.1 ***More Augmentation Results (This subsection neeed serious editing.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480

    Page: 9 job: prob macro: svmonob.cls date/time: 28-Sep-2018/11:15

  • 10 Contents

    30 Continuous time (sub)martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48330.1 Submartingale Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48530.2 Regularizing a submartingale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

    31 Homework Problem Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49531.1 Resnik repeats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

    Page: 10 job: prob macro: svmonob.cls date/time: 28-Sep-2018/11:15

  • Part

    Homework Problems

  • -3

    Math 280A Homework Problems Fall 2018

    Problems are from Resnick, S. A Probability Path, Birkhauser, or from thelecture notes. The problems from the lecture notes are restated here.

    -3.1 Homework 1. Due Friday, October 5, 2018

    • Read over Lecture notes Chapter 1.• Lecture note Exercises: 1.1, 1.2, and 1.3.

  • Part I

    Background Material

  • 1

    Limsups, Liminfs and Extended Limits

    Notation 1.1 The extended real numbers is the set R̄ := R∪{±∞} , i.e. itis R with two new points called ∞ and −∞. We use the following conventions,±∞ · 0 = 0, ±∞ · a = ±∞ if a ∈ R with a > 0, ±∞ · a = ∓∞ if a ∈ R witha < 0, ±∞+ a = ±∞ for any a ∈ R, ∞+∞ =∞ and −∞−∞ = −∞ while∞−∞ is not defined. A sequence an ∈ R̄ is said to converge to ∞ (−∞) if forall M ∈ R there exists m ∈ N such that an ≥M (an ≤M) for all n ≥ m.

    Lemma 1.2. Suppose {an}∞n=1 and {bn}∞n=1 are convergent sequences in R̄,

    then:

    1. If an ≤ bn for1 a.a. n, then limn→∞ an ≤ limn→∞ bn.2. If c ∈ R, then limn→∞ (can) = c limn→∞ an.3. {an + bn}∞n=1 is convergent and

    limn→∞

    (an + bn) = limn→∞

    an + limn→∞

    bn (1.1)

    provided the right side is not of the form ∞−∞.4. {anbn}∞n=1 is convergent and

    limn→∞

    (anbn) = limn→∞

    an · limn→∞

    bn (1.2)

    provided the right hand side is not of the for ±∞ · 0 of 0 · (±∞) .

    Before going to the proof consider the simple example where an = n andbn = −αn with α > 0. Then

    lim (an + bn) =

    ∞ if α < 10 if α = 1−∞ if α > 1while

    limn→∞

    an + limn→∞

    bn“ = ”∞−∞.

    This shows that the requirement that the right side of Eq. (1.1) is not of form∞−∞ is necessary in Lemma 1.2. Similarly by considering the examples an = n1 Here we use “a.a. n” as an abbreviation for almost all n. So an ≤ bn a.a. n iff there

    exists N 0 shows the necessity for assuming right hand side of

    Eq. (1.2) is not of the form ∞ · 0.Proof. The proofs of items 1. and 2. are left to the reader.

    Proof of Eq. (1.1). Let a := limn→∞ an and b = limn→∞ bn. Case 1., supposeb = ∞ in which case we must assume a > −∞. In this case, for every M > 0,there exists N such that bn ≥M and an ≥ a− 1 for all n ≥ N and this implies

    an + bn ≥M + a− 1 for all n ≥ N.

    Since M is arbitrary it follows that an + bn → ∞ as n → ∞. The cases whereb = −∞ or a = ±∞ are handled similarly. Case 2. If a, b ∈ R, then for everyε > 0 there exists N ∈ N such that

    |a− an| ≤ ε and |b− bn| ≤ ε for all n ≥ N.

    Therefore,

    |a+ b− (an + bn)| = |a− an + b− bn| ≤ |a− an|+ |b− bn| ≤ 2ε

    for all n ≥ N. Since ε > 0 is arbitrary, it follows that limn→∞ (an + bn) = a+b.Proof of Eq. (1.2). It will be left to the reader to prove the case where lim an

    and lim bn exist in R. I will only consider the case where a = limn→∞ an 6= 0and limn→∞ bn = ∞ here. Let us also suppose that a > 0 (the case a < 0 ishandled similarly) and let α := min

    (a2 , 1). Given any M < ∞, there exists

    N ∈ N such that an ≥ α and bn ≥ M for all n ≥ N and for this choice of N,anbn ≥ Mα for all n ≥ N. Since α > 0 is fixed and M is arbitrary it followsthat limn→∞ (anbn) =∞ as desired.

    For any subset Λ ⊂ R̄, let supΛ and inf Λ denote the least upper bound andgreatest lower bound of Λ respectively. The convention being that supΛ = ∞if ∞ ∈ Λ or Λ is not bounded from above and inf Λ = −∞ if −∞ ∈ Λ or Λ isnot bounded from below. We will also use the conventions that sup ∅ = −∞and inf ∅ = +∞.

    Notation 1.3 Suppose that {xn}∞n=1 ⊂ R̄ is a sequence of numbers. Then

    lim infn→∞

    xn = limn→∞

    inf{xk : k ≥ n} and (1.3)

    lim supn→∞

    xn = limn→∞

    sup{xk : k ≥ n}. (1.4)

  • 8 1 Limsups, Liminfs and Extended Limits

    We will also write lim for lim infn→∞ and lim for lim supn→∞

    .

    Remark 1.4. Notice that if ak := inf{xk : k ≥ n} and bk := sup{xk : k ≥n}, then {ak} is an increasing sequence while {bk} is a decreasing sequence.Therefore the limits in Eq. (1.3) and Eq. (1.4) always exist in R̄ and

    lim infn→∞

    xn = supn

    inf{xk : k ≥ n} and

    lim supn→∞

    xn = infn

    sup{xk : k ≥ n}.

    The following proposition contains some basic properties of liminfs and lim-sups.

    Proposition 1.5. Let {an}∞n=1 and {bn}∞n=1 be two sequences of real numbers.Then

    1. lim infn→∞ an ≤ lim supn→∞

    an and limn→∞ an exists in R̄ iff

    lim infn→∞

    an = lim supn→∞

    an ∈ R̄.

    2. There is a subsequence {ank}∞k=1 of {an}∞n=1 such that limk→∞ ank =lim supn→∞

    an. Similarly, there is a subsequence {ank}∞k=1 of {an}∞n=1 such thatlimk→∞ ank = lim infn→∞ an.

    3.lim supn→∞

    (an + bn) ≤ lim supn→∞

    an + lim supn→∞

    bn (1.5)

    whenever the right side of this equation is not of the form ∞−∞.4. If an ≥ 0 and bn ≥ 0 for all n ∈ N, then

    lim supn→∞

    (anbn) ≤ lim supn→∞

    an · lim supn→∞

    bn, (1.6)

    provided the right hand side of (1.6) is not of the form 0 · ∞ or ∞ · 0.

    Proof. 1. Since

    inf{ak : k ≥ n} ≤ sup{ak : k ≥ n} ∀n,

    lim infn→∞

    an ≤ lim supn→∞

    an.

    Now suppose that lim infn→∞ an = lim supn→∞

    an = a ∈ R. Then for all ε > 0,there is an integer N such that

    a− ε ≤ inf{ak : k ≥ N} ≤ sup{ak : k ≥ N} ≤ a+ ε,

    i.e.a− ε ≤ ak ≤ a+ ε for all k ≥ N.

    Hence by the definition of the limit, limk→∞ ak = a. If lim infn→∞ an = ∞,then we know for all M ∈ (0,∞) there is an integer N such that

    M ≤ inf{ak : k ≥ N}

    and hence limn→∞ an =∞. The case where lim supn→∞

    an = −∞ is handled simi-larly.

    Conversely, suppose that limn→∞ an = A ∈ R̄ exists. If A ∈ R, then forevery ε > 0 there exists N(ε) ∈ N such that |A− an| ≤ ε for all n ≥ N(ε), i.e.

    A− ε ≤ an ≤ A+ ε for all n ≥ N(ε).

    From this we learn that

    A− ε ≤ lim infn→∞

    an ≤ lim supn→∞

    an ≤ A+ ε.

    Since ε > 0 is arbitrary, it follows that

    A ≤ lim infn→∞

    an ≤ lim supn→∞

    an ≤ A,

    i.e. that A = lim infn→∞ an = lim supn→∞

    an. If A = ∞, then for all M > 0

    there exists N = N(M) such that an ≥ M for all n ≥ N. This show thatlim infn→∞ an ≥M and since M is arbitrary it follows that

    ∞ ≤ lim infn→∞

    an ≤ lim supn→∞

    an.

    The proof for the case A = −∞ is analogous to the A =∞ case.2. – 4. The remaining items are left as an exercise to the reader. It may

    be useful to keep the following simple example in mind. Let an = (−1)n andbn = −an = (−1)n+1 . Then an + bn = 0 so that

    0 = limn→∞

    (an + bn) = lim infn→∞

    (an + bn) = lim supn→∞

    (an + bn)

    while

    lim infn→∞

    an = lim infn→∞

    bn = −1 and

    lim supn→∞

    an = lim supn→∞

    bn = 1.

    Thus in this case we have

    lim supn→∞

    (an + bn) < lim supn→∞

    an + lim supn→∞

    bn and

    lim infn→∞

    (an + bn) > lim infn→∞

    an + lim infn→∞

    bn.

    Page: 8 job: prob macro: svmonob.cls date/time: 28-Sep-2018/11:15

  • 1.1 Infinite sums 9

    1.1 Infinite sums

    Definition 1.6. For an ∈ [0,∞] , let

    ∞∑n=1

    an := limN→∞

    N∑n=1

    an = supN

    N∑n=1

    an.

    Remark 1.7. If an, bn ∈ [0,∞] and λ ≥ 0, then∞∑n=1

    (an + λbn) =

    ∞∑n=1

    an + λ ·∞∑n=1

    bn.

    Indeed,

    ∞∑n=1

    (an + λbn) = limN→∞

    N∑n=1

    (an + λbn) = limN→∞

    [N∑n=1

    an + λ

    N∑n=1

    bn

    ]

    = limN→∞

    N∑n=1

    an + λ limN→∞

    N∑n=1

    bn =

    ∞∑n=1

    an + λ ·∞∑n=1

    bn.

    We will refer to the following basic proposition as the monotone convergencetheorem for sums (MCT for short).

    Proposition 1.8 (MCT for sums). Suppose that for each n ∈ N, {fn (i)}∞i=1is a sequence in [0,∞] such that ↑ limn→∞ fn (i) = f (i) by which we meanfn (i) ↑ f (i) as n→∞. Then

    limn→∞

    ∞∑i=1

    fn (i) =

    ∞∑i=1

    f (i) , i.e.

    limn→∞

    ∞∑i=1

    fn (i) =

    ∞∑i=1

    limn→∞

    fn (i) .

    We allow for the possibility that these expression may equal to +∞.

    Proof. Let M :=↑ limn→∞∑∞i=1 fn (i) . As fn (i) ≤ f (i) for all n it follows

    that∑∞i=1 fn (i) ≤

    ∑∞i=1 f (i) for all n and therefore passing to the limit shows

    M ≤∑∞i=1 f (i) . If N ∈ N we have,

    N∑i=1

    f (i) =

    N∑i=1

    limn→∞

    fn (i) = limn→∞

    N∑i=1

    fn (i) ≤ limn→∞

    ∞∑i=1

    fn (i) = M.

    Letting N ↑ ∞ in this equation then shows∑∞i=1 f (i) ≤ M which completes

    the proof.

    Proposition 1.9 (Tonelli’s theorem for sums). If {akn}∞k,n=1 ⊂ [0,∞] ,then

    ∞∑k=1

    ∞∑n=1

    akn =

    ∞∑n=1

    ∞∑k=1

    akn.

    Here we allow for one and hence both sides to be infinite.

    Proof. First Proof. Let SN (k) :=∑Nn=1 akn, then by the MCT (Proposi-

    tion 1.8),

    limN→∞

    ∞∑k=1

    SN (k) =

    ∞∑k=1

    limN→∞

    SN (k) =

    ∞∑k=1

    ∞∑n=1

    akn.

    On the other hand,

    ∞∑k=1

    SN (k) =

    ∞∑k=1

    N∑n=1

    akn =

    N∑n=1

    ∞∑k=1

    akn

    so that

    limN→∞

    ∞∑k=1

    SN (k) = limN→∞

    N∑n=1

    ∞∑k=1

    akn =

    ∞∑n=1

    ∞∑k=1

    akn.

    Second Proof. Let

    M := sup

    {K∑k=1

    N∑n=1

    akn : K,N ∈ N

    }= sup

    {N∑n=1

    K∑k=1

    akn : K,N ∈ N

    }and

    L :=

    ∞∑k=1

    ∞∑n=1

    akn.

    Since

    L =

    ∞∑k=1

    ∞∑n=1

    akn = limK→∞

    K∑k=1

    ∞∑n=1

    akn = limK→∞

    limN→∞

    K∑k=1

    N∑n=1

    akn

    and∑Kk=1

    ∑Nn=1 akn ≤M for all K and N, it follows that L ≤M. Conversely,

    K∑k=1

    N∑n=1

    akn ≤K∑k=1

    ∞∑n=1

    akn ≤∞∑k=1

    ∞∑n=1

    akn = L

    and therefore taking the supremum of the left side of this inequality over Kand N shows that M ≤ L. Thus we have shown

    ∞∑k=1

    ∞∑n=1

    akn = M.

    Page: 9 job: prob macro: svmonob.cls date/time: 28-Sep-2018/11:15

  • 10 1 Limsups, Liminfs and Extended Limits

    By symmetry (or by a similar argument), we also have that∑∞n=1

    ∑∞k=1 akn =

    M and hence the proof is complete.

    Definition 1.10. A sequence {an}∞n=1 ⊂ R is summable (absolutely con-vergent) if

    ∑∞n=1 |an| < ∞. When {an}

    ∞n=1 ⊂ R is summable we let a±n =

    max (∓an, 0) and define,∞∑n=1

    an :=

    ∞∑n=1

    a+n −∞∑n=1

    a−n . (1.7)

    Remark 1.11. From Eq. (1.7) it follows that∣∣∣∣∣∞∑n=1

    an

    ∣∣∣∣∣ ≤∞∑n=1

    a+n +

    ∞∑n=1

    a−n =

    ∞∑n=1

    (a+n + a

    −n

    )=

    ∞∑n=1

    |an| .

    Proposition 1.12 (Linearity). If {an}∞n=1 and {bn}∞n=1 are summable λ ∈ R,

    then {an + λbn}∞n=1 is summable and

    ∞∑n=1

    (an + λbn) =

    ∞∑n=1

    an + λ

    ∞∑n=1

    bn.

    Proof. Let cn := an + λbn so that |cn| ≤ |an|+ |λ| |bn| and hence∞∑n=1

    |cn| =∞∑n=1

    |an + λbn| ≤∞∑n=1

    |an|+ |λ|∞∑n=1

    |bn|

  • 1.1 Infinite sums 11

    Proposition 1.15 (Fatou’s Lemma for sums). Suppose that for each n ∈ N,{hn (i)}∞i=1 is any sequence in [0,∞] , then

    ∞∑i=1

    lim infn→∞

    hn (i) ≤ lim infn→∞

    ∞∑i=1

    hn (i) .

    The next proposition is referred to as the dominated convergence theorem(DCT for short) for sums.

    Proposition 1.16 (DCT for sums). Suppose that for each n ∈ N,{fn (i)}∞i=1 ⊂ R is a sequence and {gn (i)}

    ∞i=1 is a sequence in [0,∞) such that;

    1.∑∞i=1 gn (i)

  • 2

    Basic Metric and Topological Space Notions

    The reader may refer to this chapter when the need arises later.

    Definition 2.1 (Pseudo-Metrics). Let X be a non-empty set. A functiond : X × X → [0,∞) is called a pseudo-metric on X if d is symmetric andsatisfies the triangle inequality, i.e.

    1. (Symmetry) d(x, y) = d(y, x) for all x, y ∈ X, and2. (Triangle inequality) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

    If we further assume that d is non-degenerate in the sense that d(x, y) = 0if and only if x = y ∈ X, then we say d is a metric on X.

    Notice that any subset, Y, of a (pseudo) metric space (X, d) is a metric spaceby simply restricting d to Y × Y.

    Example 2.2. Let us mention just a very few examples of (pseudo-metric) spaces.

    1. Let X = R. Then d (x, y) = |y − x| is the usual metric on R. Another usefulmetric is d (x, y) =

    ∣∣tan−1 (y)− tan−1 (x)∣∣ .2. If X = Rd, then d (x, y) =

    √∑dj=1 (yj − xj)

    2is the usual Euclidean dis-

    tance metric on Rd. Subsets like the unit sphere in Rd are metric spaces aswell.

    3. Let X = C ([0, 1] ,C) be the continuous function thed (f, g) := maxx∈[0,1] |f (x)− g (x)| is a metric while d (f, g) :=maxx∈[0,1/2] |f (x)− g (x)| is a Pseudo - metric on X.

    4. Any normed space (X, ‖·‖) (see Definition ??) is a metric space withd(x, y) := ‖x− y‖ . Thus the space `p(µ) (as in Theorem ??) is a metricspace for all p ∈ [1,∞].

    5. Let X denote the C1 – periodic fucntions on R. Then d (f, g) :=maxx∈R |f ′ (x)− g′ (x)| is a pseudo-metric on X.

    Througout this chapter, let (X, d) be a pseudo-metric space and we will oftenjust say (X, d) is a metric space even though we may allow d to be degenerateunless explicitly noted.

    Definition 2.3. Let (X, d) be a metric space. The open ball B(x, δ) ⊂ Xcentered at x ∈ X with radius δ > 0 is the set

    B(x, δ) := {y ∈ X : d(x, y) < δ}.

    We will often also write B(x, δ) as Bx(δ). We also define the closed ball cen-tered at x ∈ X with radius δ > 0 as the set Cx(δ) := {y ∈ X : d(x, y) ≤ δ}.

    Definition 2.4. A sequence {xn}∞n=1 ⊂ X is said to converge to a point x ∈ Xif limn→∞ d (x, xn) = 0 and abbreviate this by writing xn → x or xn

    d→ x asn→∞.

    If xn → x and xn → y, then

    d (x, y) ≤ d (x, xn) + d (xn, y)→ 0 as n→∞

    and so d (x, y) = 0. If d is non-degenerate, then x = y and limits are uniqueotherwise they are not.

    Definition 2.5. A set E ⊂ X is bounded if E ⊂ B (x,R) for some x ∈ X andR 0such that Bx(δ) ⊂ V. In particular show Bx(δ) is open for all x ∈ X and δ > 0.Hint: by definition V is not open iff V c is not closed.

    Definition 2.6. A subset A ⊂ X is a neighborhood of x if there exists anopen set V ⊂o X such that x ∈ V ⊂ A. We will say that A ⊂ X is an openneighborhood of x if A is open and x ∈ A.1 When d is non-degenerate we require all the possible limits of {xn} to be in F. This

    then implies that if x ∈ F and y ∈ X with d (x, y) = 0, then y ∈ F as well.

  • 14 2 Basic Metric and Topological Space Notions

    The following “continuity” facts of the metric d will be used frequently inthe remainder of this book.

    Lemma 2.7. For any non empty subset A ⊂ X, let dA(x) := inf{d(x, a)|a ∈A}, then

    |dA(x)− dA(y)| ≤ d(x, y) ∀x, y ∈ X (2.1)and in particular if xn → x in X then dA (xn) → dA (x) as n → ∞. Moreoverthe set Fε := {x ∈ X : dA(x) ≥ ε} is closed in X.

    Proof. Let a ∈ A and x, y ∈ X, then

    dA(x) ≤ d(x, a) ≤ d(x, y) + d(y, a).

    Take the infimum over a in the above equation shows that

    dA(x) ≤ d(x, y) + dA(y) ∀x, y ∈ X.

    Therefore, dA(x)− dA(y) ≤ d(x, y) and by interchanging x and y we also havethat dA(y) − dA(x) ≤ d(x, y) which implies Eq. (2.1). If xn → x ∈ X, then byEq. (2.1),

    |dA(x)− dA(xn)| ≤ d(x, xn)→ 0 as n→∞so that limn→∞ dA (xn) = dA (x) . Now suppose that {xn}∞n=1 ⊂ Fε and xn → xin X, then

    dA (x) = limn→∞

    dA (xn) ≥ ε

    since dA (xn) ≥ ε for all n. This shows that x ∈ Fε and hence Fε is closed.

    Corollary 2.8. The function d satisfies,

    |d(x, y)− d(x′, y′)| ≤ d(y, y′) + d(x, x′).

    In particular d : X × X → [0,∞) is “continuous” in the sense that d(x, y) isclose to d(x′, y′) if x is close to x′ and y is close to y′. (The notion of continuitywill be developed shortly.)

    Proof. By Lemma 2.7 for single point sets and the triangle inequality forthe absolute value of real numbers,

    |d(x, y)− d(x′, y′)| ≤ |d(x, y)− d(x, y′)|+ |d(x, y′)− d(x′, y′)|≤ d(y, y′) + d(x, x′).

    Example 2.9. Let x ∈ X and δ > 0, then Cx (δ) and Bx (δ)c are closed subsetsof X. For example if {yn}∞n=1 ⊂ Cx (δ) and yn → y ∈ X, then d (yn, x) ≤ δ forall n and using Corollary 2.8 it follows d (y, x) ≤ δ, i.e. y ∈ Cx (δ) . A similarproof shows Bx (δ)

    cis closed, see Exercise 2.2.

    Lemma 2.10 (Approximating open sets from the inside by closedsets). Let A be a closed subset of X and Fε := {x ∈ X|dA(x) ≥ ε} @ Xbe as in Lemma 2.7. Then Fε ↑ Ac as ε ↓ 0.

    Proof. It is clear that dA(x) = 0 for x ∈ A so that Fε ⊂ Ac for each ε > 0and hence ∪ε>0Fε ⊂ Ac. Now suppose that x ∈ Ac ⊂o X. By Exercise 2.2 thereexists an ε > 0 such that Bx(ε) ⊂ Ac, i.e. d(x, y) ≥ ε for all y ∈ A. Hencex ∈ Fε and we have shown that Ac ⊂ ∪ε>0Fε. Finally it is clear that Fε ⊂ Fε′whenever ε′ ≤ ε.

    Definition 2.11. Given a set A contained in a metric space X, let Ā ⊂ X bethe closure of A defined by

    Ā := {x ∈ X : ∃ {xn} ⊂ A 3 x = limn→∞

    xn}.

    That is to say Ā contains all limit points of A. We say A is dense in X ifĀ = X, i.e. every element x ∈ X is a limit of a sequence of elements from A.A metric space is said to be separable if it contains a countable dense subset,D.

    Exercise 2.3. Given A ⊂ X, show Ā is a closed set and in fact

    Ā = ∩{F : A ⊂ F ⊂ X with F closed}. (2.2)

    That is to say Ā is the smallest closed set containing A.

    Exercise 2.4. If D is a dense subset of a metric space (X, d) and E ⊂ X isa subset such that to every point x ∈ D there exists {xn}∞n=1 ⊂ E with x =limn→∞ xn, then E is also a dense subset of X. If points in E well approximateevery point in D and the points in D well approximate the points in X, thenthe points in E also well approximate all points in X.

    Exercise 2.5. Suppose (X, d) is a metric space which contains an uncountablesubset Λ ⊂ X with the property that there exists ε > 0 such that d (a, b) ≥ εfor all a, b ∈ Λ with a 6= b. Show that (X, d) is not separable.

    2.1 Metric spaces as topological spaces

    Let (X, d) be a metric space and let τ = τd denote the collection of opensubsets of X. (Recall V ⊂ X is open iff V c is closed iff for all x ∈ V thereexists an ε = εx > 0 such that B (x, εx) ⊂ V iff V can be written as a (possiblyuncountable) union of open balls.) Although we will stick with metric spacesin this chapter, it will be useful to introduce the definitions needed here in themore general context of a general “topological space,” i.e. a space equippedwith a collection of “open sets.”

    Page: 14 job: prob macro: svmonob.cls date/time: 28-Sep-2018/11:15

  • 2.1 Metric spaces as topological spaces 15

    Definition 2.12 (Topological Space). Let X be a set. A topology on X isa collection of subsets (τ) of X with the following properties;

    1. τ contains both the empty set (∅) and X.2. τ is closed under arbitrary unions.3. τ is closed under finite intersections.

    The elements V ∈ τ are called open subsets of X. A subset F ⊂ X is saidto be closed if F c is open. I will write V ⊂o X to indicate that V ⊂ X andV ∈ τ and similarly F @ X will denote F ⊂ X and F is closed. Given x ∈ Xwe say that V ⊂ X is an open neighborhood of x if V ∈ τ and x ∈ V. Letτx = {V ∈ τ : x ∈ V } denote the collection of open neighborhoods of x.

    Of course every metric space (X, d) is also a topological space where we takeτ = τd.

    Definition 2.13. Let (X, τ) be a topological space and A be a subset of X.

    1. The closure of A is the smallest closed set Ā containing A, i.e.

    Ā := ∩{F : A ⊂ F @ X} .

    (Because of Exercise 2.3 this is consistent with Definition 2.11 for the clo-sure of a set in a metric space.)

    2. The interior of A is the largest open set Ao contained in A, i.e.

    Ao = ∪{V ∈ τ : V ⊂ A} .

    3. A ⊂ X is a neighborhood of a point x ∈ X if x ∈ Ao.4. The accumulation points of A is the set

    acc(A) = {x ∈ X : V ∩ [A \ {x}] 6= ∅ for all V ∈ τx}.

    5. The boundary of A is the set bd(A) := Ā \Ao.6. A is dense in X if Ā = X and X is said to be separable if there exists a

    countable dense subset of X.

    Remark 2.14. The relationships between the interior and the closure of a setare:

    (Ao)c =⋂{V c : V ∈ τ and V ⊂ A} =

    ⋂{C : C is closed C ⊃ Ac} = Ac

    and similarly, (Ā)c = (Ac)o. Hence the boundary of A may be written as

    bd(A) := Ā \Ao = Ā ∩ (Ao)c = Ā ∩Ac, (2.3)

    which is to say bd(A) consists of the points in both the closures of A and Ac.

    2.1.1 Continuity

    Suppose now that (X, ρ) and (Y, d) are two metric spaces and f : X → Y is afunction.

    Definition 2.15. A function f : X → Y is continuous at x ∈ X if for allε > 0 there is a δ > 0 such that

    d(f(x), f(x′)) < ε provided that ρ(x, x′) < δ. (2.4)

    The function f is said to be continuous if f is continuous at all points x ∈ X.

    The following lemma gives two other characterizations of continuity of afunction at a point.

    Lemma 2.16 (Local Continuity Lemma). Suppose that (X, ρ) and (Y, d)are two metric spaces and f : X → Y is a function defined in a neighborhoodof a point x ∈ X. Then the following are equivalent:

    1. f is continuous at x ∈ X.2. For all neighborhoods A ⊂ Y of f(x), f−1(A) is a neighborhood of x ∈ X.3. For all sequences {xn}∞n=1 ⊂ X such that x = limn→∞ xn, {f(xn)} is con-

    vergent in Y and

    limn→∞

    f(xn) = f(

    limn→∞

    xn

    ).

    Proof. 1 =⇒ 2. If A ⊂ Y is a neighborhood of f (x) , there exists ε > 0such that Bf(x) (ε) ⊂ A and because f is continuous there exists a δ > 0 suchthat Eq. (2.4) holds. Therefore

    Bx (δ) ⊂ f−1(Bf(x) (ε)

    )⊂ f−1 (A)

    showing f−1 (A) is a neighborhood of x.2 =⇒ 3. Suppose that {xn}∞n=1 ⊂ X and x = limn→∞ xn. Then for any ε >

    0, Bf(x) (ε) is a neighborhood of f (x) and so f−1 (Bf(x) (ε)) is a neighborhood

    of x which must contain Bx (δ) for some δ > 0. Because xn → x, it follows thatxn ∈ Bx (δ) ⊂ f−1

    (Bf(x) (ε)

    )for a.a. n and this implies f (xn) ∈ Bf(x) (ε) for

    a.a. n, i.e. d(f(x), f (xn)) < ε for a.a. n. Since ε > 0 is arbitrary it follows thatlimn→∞ f (xn) = f (x) .

    3. =⇒ 1. We will show not 1. =⇒ not 3. If f is not continuous at x,there exists an ε > 0 such that for all n ∈ N there exists a point xn ∈ X withρ (xn, x) <

    1n yet d (f (xn) , f (x)) ≥ ε. Hence xn → x as n→∞ yet f (xn) does

    not converge to f (x) .Here is a global version of the previous lemma.

    Page: 15 job: prob macro: svmonob.cls date/time: 28-Sep-2018/11:15

  • 16 2 Basic Metric and Topological Space Notions

    Lemma 2.17 (Global Continuity Lemma). Suppose that (X, ρ) and (Y, d)are two metric spaces and f : X → Y is a function defined on all of X. Thenthe following are equivalent:

    1. f is continuous.2. f−1(V ) ∈ τρ for all V ∈ τd, i.e. f−1(V ) is open in X if V is open in Y.3. f−1(C) is closed in X if C is closed in Y.4. For all convergent sequences {xn} ⊂ X, {f(xn)} is convergent in Y and

    limn→∞

    f(xn) = f(

    limn→∞

    xn

    ).

    Proof. Since f−1 (Ac) =[f−1 (A)

    ]c, it is easily seen that 2. and 3. are

    equivalent. So because of Lemma 2.16 it only remains to show 1. and 2. areequivalent. If f is continuous and V ⊂ Y is open, then for every x ∈ f−1 (V ) , Vis a neighborhood of f (x) and so f−1 (V ) is a neighborhood of x. Hence f−1 (V )is a neighborhood of all of its points and from this and Exercise 2.2 it follows thatf−1 (V ) is open. Conversely, if x ∈ X and A ⊂ Y is a neighborhood of f (x) thenthere exists V ⊂o X such that f (x) ∈ V ⊂ A. Hence x ∈ f−1 (V ) ⊂ f−1 (A)and by assumption f−1 (V ) is open showing f−1 (A) is a neighborhood of x.Therefore f is continuous at x and since x ∈ X was arbitrary, f is continuous.

    Definition 2.18 (Continuity at a point in topological terms). Let(X, τX) and (Y, τY ) be topological spaces. A function f : X → Y is contin-uous at a point x ∈ X if for every open neighborhood V of f(x) there is anopen neighborhood U of x such that U ⊂ f−1(V ). See Figure 2.1.

    YV

    f(x)

    f

    X

    U

    x

    f−1(V )

    Fig. 2.1. Checking that a function is continuous at x ∈ X.

    Definition 2.19 (Global continuity in topological terms). Let (X, τX)and (Y, τY ) be topological spaces. A function f : X → Y is continuous if

    f−1(τY ) :={f−1 (V ) : V ∈ τY

    }⊂ τX .

    We will also say that f is τX/τY –continuous or (τX , τY ) – continuous. LetC(X,Y ) denote the set of continuous functions from X to Y.

    Exercise 2.6. Show f : X → Y is continuous (Definition 2.19) iff f is contin-uous at all points x ∈ X.

    Exercise 2.7. Show f : X → Y is continuous iff f−1(C) is closed in X for allclo