process optimization qbd 20180507 - unimi.it

57
1 Textmasterformat in Mastervorlage eingeben 1 QbD conference – 08.05.2018 Milan

Upload: others

Post on 02-Oct-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Process optimization QbD 20180507 - unimi.it

1Textmasterformat in Mastervorlage eingeben1

QbD conference – 08.05.2018 Milan

Page 2: Process optimization QbD 20180507 - unimi.it

2Textmasterformat in Mastervorlage eingeben2

Process optimisation considering QbD and using DoE –the basis for scale up

Stefanie Keser / Glatt Pharmaceutical Services GmbH & CO. KG

Page 3: Process optimization QbD 20180507 - unimi.it

3Textmasterformat in Mastervorlage eingeben33

1. Quality by design

2. Case study 1:

Optimisation of modified release coating process

3. Case study 2:

Optimisation of drug layering process

4. Summary

Agenda

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 4: Process optimization QbD 20180507 - unimi.it

4Textmasterformat in Mastervorlage eingeben4

“Systematic process to build quality into a product “

• Quality can not be tested into product

1. Quality by design

http://www.biotrains.com/course/quality-by-design/, access: 20.04.2018

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 5: Process optimization QbD 20180507 - unimi.it

5Textmasterformat in Mastervorlage eingeben5

1.1. Current quality assurence

Doug Dean and Frances Bruttin, PwC Consulting, FDA Science Board Meeting, NOV16,2001

Sigma ppm defective yield costs of QA

2 σ 308 537 69,20% 25 - 35 %

3 σ 66 807 93,30% 20 - 25 %

4 σ 6 210 99,40% 12 - 18 %

5 σ 233 99,98% 4 - 8 %

6 σ 3,4 100,00% 1 - 3 %

7 σ 1

Pharma

Microelectronics

� What is wrong with the pharmaceutical industry ???

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 6: Process optimization QbD 20180507 - unimi.it

6Textmasterformat in Mastervorlage eingeben6

1.2. Quality by endproduct testing

Doug Dean and Frances Bruttin, PwC Consulting, FDA Science Board Meeting, NOV16,2001

Sigma ppm defective yield costs of QA

2 σ 308 537 69,20% 25 - 35 %

3 σ 66 807 93,30% 20 - 25 %

4 σ 6 210 99,40% 12 - 18 %

5 σ 233 99,98% 4 - 8 %

6 σ 3,4 100,00% 1 - 3 %

7 σ 1

Pharma

Delivered to

patient

�FDA : Initiative to enhance and modernize the regulation of

pharmaceutical manufacturing and product quality (2002)

Quality tested

into product

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 7: Process optimization QbD 20180507 - unimi.it

7Textmasterformat in Mastervorlage eingeben7

1.3. Process Validation

Traditional process validation: „turn a blind eye“ approach

• 3 process validation lots

� after process validation: „principle hope“

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 8: Process optimization QbD 20180507 - unimi.it

8Textmasterformat in Mastervorlage eingeben8

1.3. Process Validation:

General Principles and Practices (2011)

• Links product and process developmentto commercial manufacturing process

� lifecycle concept

� process improvement and innovationthrough sound science

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 9: Process optimization QbD 20180507 - unimi.it

9Textmasterformat in Mastervorlage eingeben9

1.3. Process Validation:

General Principles and Practices (2011)

Phase 1: Process Design

Commercial process is defined based on knowledge gained through

development and scale up activities.

Phase 2: Process Qualification

Process design is confirmed as being capable of reproducible commercial

manufacturing (Confirmation Batches).

Phase 3: Continued Process Verification

Ongoing assurance is gained during routine production that the process

remains in a state of control (Product Quality Review PQR).

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 10: Process optimization QbD 20180507 - unimi.it

10Textmasterformat in Mastervorlage eingeben10

phase I phase II phase III registration market launch

preclinical development clinical development

analytical characterisation / compatibility studies / stability studies

formulation development

process development

CTM supply for phase I and II

formulation & process optimisation

scale-up to pilot scale

CTM supply phase III

registration batches

scale-up to commercial & validation

launch / commercial Supplies

developmentof API

preclinicalStudies

Process Validation

Phase 1:

Process Design

Phase 2: Process Qualification

1.3. Process Validation (2011)

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Phase 3: Continued Process Verification

Page 11: Process optimization QbD 20180507 - unimi.it

11Textmasterformat in Mastervorlage eingeben11

1.4. QbD Approach

QTPP

• Define the Quality Target Product Profile

• Meet the requirements of the patients

CQAs• Determine the Critical Quality Attributes

Riskassessment

• Links CQAs to Critical Material/ ProcessParameters

• Evaluates potential risks

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 12: Process optimization QbD 20180507 - unimi.it

12Textmasterformat in Mastervorlage eingeben12

1.4. QbD Approach: Risk assessment

• Cause and Effect diagrams (Fish bone / Ishikawa diagram)

• FMEA (Failure Mode and Effect Analysis)

• importance

• occurence probability

• discovery probability

�risk priority number (RPN) for each Critical Process Parameters

�rating of risk priority numbers

�definition parameters to be investigated in DoE

Chao et al.

fishbone diagram (Chao et al)

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 13: Process optimization QbD 20180507 - unimi.it

13Textmasterformat in Mastervorlage eingeben13

1.4. QbD Approach

TPP

• Define the Target Product Profile

• Meet the requirements of the patients

CQAs• Determine the Critical Quality Attributes

Riskassessment

• Links CQAs to Critical product/process parameters

• Evaluates potential risks

• Determines parameters to be investigated

CPPs

• Evaluated via Design of Experiments

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 14: Process optimization QbD 20180507 - unimi.it

14Textmasterformat in Mastervorlage eingeben14

1.4. QbD Approach: Design of experiments

1. Choose experimental design

�Conduct preliminary experiment � define factor range

2. Conduct randomized experiments

3. Analyse data

4. Create multidimensional surface model

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 15: Process optimization QbD 20180507 - unimi.it

15Textmasterformat in Mastervorlage eingeben15

1. QbD Approach

Design space

• Develop a design space

Control strategy

• Design and implement a control stategy

Continiousimprovement

• Manage product life cycle, includungcontinual improvement

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 16: Process optimization QbD 20180507 - unimi.it

16Textmasterformat in Mastervorlage eingeben16

2. Case Study 1Optimisation of modified release coating

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 17: Process optimization QbD 20180507 - unimi.it

17Textmasterformat in Mastervorlage eingeben17

sugar beads

drug layer

seal coating

MR coating

final coating

2. Modified release coating (MR) process

Dissolution profile

0

20

40

60

80

100

120

0 120 240 360 480 600 720 840 960 1080 1200

tim e (m in)

dis

so

luti

on

ra

te (

%)

• 8 hrs lagtime

• pulsatile release profile

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 18: Process optimization QbD 20180507 - unimi.it

18Textmasterformat in Mastervorlage eingeben18

Modified release coating

• Eudragit RS / RL

• triethylcitrate

• talc

• water

• 20% solids concentration

2. Modified Release / pulsatile pellet

formulation

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 19: Process optimization QbD 20180507 - unimi.it

19Textmasterformat in Mastervorlage eingeben19

2. CQAs

Description of CQA Target dimension

1 particle size 1 - 1,25 µm 100 %

2 practical yield of product 100 %

3 coating weight gain 100 %

4 assay 100 %

5 in-vitro dissolution / 6 hours < 3 %

6 in-vitro dissolution / 8 hours < 10 %

7 in-vitro dissolution / 10 hours 50 %

8 in-vitro dissolution / 12 hours 100 %

9 in vitro dissolution t50% 10 hours

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 20: Process optimization QbD 20180507 - unimi.it

20Textmasterformat in Mastervorlage eingeben20

2. Important configuration and processing

parameters

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

WURSTER partition height

inlet air distribution plate

spray nozzle configuration

batch size

inlet air volume inlet air temperature

atomisation air pressure

product temperature

spray rate

Page 21: Process optimization QbD 20180507 - unimi.it

21Textmasterformat in Mastervorlage eingeben21

• WURSTER partition height

• inlet air distribution plate

• spray nozzle configuration

• batch size

• inlet air volume

• inlet air temperature

• atomisation air pressure

• spray rate / product temperature

2. Potential critical process parameters

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 22: Process optimization QbD 20180507 - unimi.it

22Textmasterformat in Mastervorlage eingeben22

• WURSTER partition height

• inlet air distribution plate

• spray nozzle configuration

• batch size

• inlet air volume � fluidisation

• inlet air temperature � sticking of polymer

• atomisation air pressure � droplet size

• spray rate / product temperature � humidity / sticking of polymer

2. Critical process parameters

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 23: Process optimization QbD 20180507 - unimi.it

23Textmasterformat in Mastervorlage eingeben23

2. Coating parameters and ranges

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

levels

low medium high

inlet air volume 110 130 150

atomisation air

pressure1,4 2 2,6

product temperature 27 30 33

inlet air temperature 45 55 65

Page 24: Process optimization QbD 20180507 - unimi.it

24Textmasterformat in Mastervorlage eingeben24

2. STAVEX Vertex-Centroid Design / 19 trials

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

No. inlet air volumeatomisation air

pressureproduct

temperatureinlet air

temperature

(m³/h) (bar) (°C) (°C)

1 110 1,4 27 65

2 110 2,6 27 45

3 110 2,6 27 65

4 110 2,6 33 65

5 150 1,4 33 45

6 150 2,6 27 65

7 130 2 30 55

8 110 1,4 30 45

9 130 1,4 27 45

10 110 1,4 33 55

11 110 2 33 45

12 130 1,4 33 65

13 130 2,6 33 45

14 150 1,4 27 55

15 150 2 27 45

16 150 1,4 30 65

17 150 2 33 65

18 150 2,6 30 45

19 150 2,6 33 55

Page 25: Process optimization QbD 20180507 - unimi.it

25Textmasterformat in Mastervorlage eingeben25

findings

• 2 batches stopped� lump formation � high inlet temperature (65°C)

• Low inlet temperature & low spray pressure � no sticking

• Stickyness temperatur dependend

• Most problematic : high inlet temperatrue, high product temperature, low inlet air flow rate

• Spray pressure uncritical

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 26: Process optimization QbD 20180507 - unimi.it

26Textmasterformat in Mastervorlage eingeben26

2. Impact of fluid bed impact factors on the

in-vitro dissolution profiles

0

20

40

60

80

100

120

0 120 240 360 480 600 720 840 960 1080 1200

dis

so

luti

on

ra

te (

%)

time (min)

1 / R0520-01-09A 3 / R0520-01-11A 4 / R0520-01-12A 10 / R0520-01-16A

11 / R0520-01-18A 8 / R0520-01-15A 7 / R0520-01-14A 9 / R0520-01-17A

14 / R0520-01-23A 15 / R0520-01-26A

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 27: Process optimization QbD 20180507 - unimi.it

27Textmasterformat in Mastervorlage eingeben27

2. In-vitro dissolution 8 h (goal: < 10%)

Constant:• atomisation air pressure = 2,6 bar

• inlet air temperature = 65°C

Variable impact factors:• product temperature

• inlet air volume

Result:

< 10% dissolution at highest inlet

air volume

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 28: Process optimization QbD 20180507 - unimi.it

28Textmasterformat in Mastervorlage eingeben28

2. In-vitro dissolution 8 h (goal: < 10%)

Constant:

• inlet air volume = 130 m³/h

• atomisation air pressure = 2,6 bar

Variable:• product temperature

• inlet air temperature

Result:

< 10% dissolution at lowest inlet air

and product temperature

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 29: Process optimization QbD 20180507 - unimi.it

29Textmasterformat in Mastervorlage eingeben29

2. In-vitro dissolution 8 h (goal: < 10%)

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Constant:

• inlet air volume = 150 m³/h

• atomisation air pressure = 2,6 bar

Variable:• product temperature

• inlet air temperature

Result:Product temperature <30°C result in

dissolution <10%

Page 30: Process optimization QbD 20180507 - unimi.it

30Textmasterformat in Mastervorlage eingeben30

2. In-vitro dissolution 8 h (goal: < 10%)

Constant:• product temperature = 33°C

• inlet air temperature = 65°C

Variable:• atomisation air pressure

• inlet air volume

Result• only inlet air volume has an

impact on the in vitro

dissolution profile

• no impact of atomisation air

pressure

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 31: Process optimization QbD 20180507 - unimi.it

31Textmasterformat in Mastervorlage eingeben31

Process Parameters (Factors)inlet air

volumeatomisation

air pressureproduct

temperatureinlet air

temperature

Response Factors

1 size 1 - 1,25 mm

2 practical yield

3 practical yield CR coating

4 assay

5 dissolution 8 hours

6 dissolution 10 hours

7 dissolution t 50%

probably important

possibly important

arbitrary

2. Impact of fluid bed parameters on the quality of modified release pellets

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 32: Process optimization QbD 20180507 - unimi.it

32Textmasterformat in Mastervorlage eingeben32

• moderate inlet air temperature (45 – 55°C)

• moderate product temperature (27 – 30°C)

• high fluidisation air volume

• atomisation air pressure: no impact

intact film damaged film

2. Feasible parameters for the coating with

Eudragit RS / RL aqueous dispersion

Dissolution profiles from a Multifactorial Design Study

0

20

40

60

80

100

120

0 120 240 360 480 600 720 840 960 1080 1200

time (min)

dis

so

luti

on

rate

(%

)

� avoid intermediate sticking of pellets with moderate temperatures and

vigorous fluidization

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 33: Process optimization QbD 20180507 - unimi.it

33Textmasterformat in Mastervorlage eingeben33

2. Knowledge and Design space

Knowledge space Design space

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Limits exceeded

Page 34: Process optimization QbD 20180507 - unimi.it

34Textmasterformat in Mastervorlage eingeben34

3. Case Study 2Optimization of drug layering process

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 35: Process optimization QbD 20180507 - unimi.it

35Textmasterformat in Mastervorlage eingeben35

• Established process

• Fluidized bed system (Wurster – process)

• Drug layering (DL) on starter pellets 150 µm

• water-based process

Goal:

• process optimisation for regular GMP manufacturingand scale up

• robust process and reproducible product quality

3. Manufacturing process to be optimized:

Drug layering (DL) process (case study 1)

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 36: Process optimization QbD 20180507 - unimi.it

36Textmasterformat in Mastervorlage eingeben36

3. Critical Quality attributes

Critical quality attributes

Process:

1 High yield

2 Short process time

Product:

3 Assay (95 – 105 %)

4 Minimal amount of oversized particles

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

H

H

Overall targets

- High product quality

- High process efficiency

- Robustness

- Reproducibility

- Relationships process parameter to

product quality

Page 37: Process optimization QbD 20180507 - unimi.it

37Textmasterformat in Mastervorlage eingeben37

Process parameter

Inlet air temperature °C 70 ± 20

Atomisation air pressure bar 2.5 ± 0.5

Inlet air volume m3/h 700 - 850

Mean spray rate g/min 75

Spraying time h 10

Mass of spraying liquid kg 45

Yield practical % 96 – 101

Oversized particles > 250 µm % 1 – 2

Weight gain % 80 – 100

3. DL process in pilot scale (18“ Wurster):

the starting point before optimisation

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 38: Process optimization QbD 20180507 - unimi.it

38Textmasterformat in Mastervorlage eingeben38

3. Two level full factorical design

at lab scale (6“ Wurster)

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Inlet air temperature [°C]

Sp

ray r

ate

[g

/min

]

Process parameter Low level

High Level

Inlet air

temperature [°C]

65 70

Spray rate [g/min] 10 17

Atomisation air

pressure [bar]

2,5 4

• Drug layering process was scaled down to a 6“ Wurster

Page 39: Process optimization QbD 20180507 - unimi.it

39Textmasterformat in Mastervorlage eingeben39

Impact factors Response variables Batch Inlet air

temper.

Max

spray

rate

Atomisa-

tion air

pressure

Yield Weight

gain

Assay Oversized

particles

>250 µm

Amount

fines

<125 µm

LOD end

of

spraying

LOD

after

drying

Mean

spray

rate

Spray

time

Min.

product

temper.

Bulk

density

°C g/min bar % % % % % % % g/min min °C g/ml

DL 1 65 10 2.5 92.8 62.5 98.5 0.6 5.2 2.6 2.2 9.60 124 48.8 0.81

DL 2 70 10 2.5 92.6 61.0 94.5 0.8 4.6 1.8 1.8 9.60 124 51.4 0.83

DL 3 65 17 2.5 95.6 77.1 97.9 1.8 5.6 3.0 2.6 12.27 97 42.9 0.78

DL 4 70 17 2.5 95.4 75.7 99.2 1.4 5.6 2.6 2.5 12.39 96 45.8 0.81

DL 5 65 10 4 95.1 74.3 102.0 0 7.2 2.4 2.4 9.67 123 48.1 0.83

DL 6 70 10 4 97.2 84.1 104.7 0 6.0 1.8 2.0 9.64 111 51.6 0.89

DL 7 65 17 4 94.2 69.4 96.5 0 5.0 3.1 2.7 12.39 96 41.6 0.86

DL 8 70 17 4 93.0 63.3 98.9 0 5.7 2.6 2.3 12.14 98 44.6 0.83

3. Two level full factorial design:

results of lab scale (6“ Wurster)

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 40: Process optimization QbD 20180507 - unimi.it

40Textmasterformat in Mastervorlage eingeben40

DL 3 and DL 4 with highest fraction of DL pellets > 200 µm (agglomerates):

3. Particle size distribution of DL pellets

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 41: Process optimization QbD 20180507 - unimi.it

41Textmasterformat in Mastervorlage eingeben41

Atomisation air pressure [bar]

• no particles > 250 µm with

AAP > 3,5 bar for all spray rates

• process in a robust state

• low risk for particle agglomeration

Particles > 250 µm (%)

0% 0,5 % 1 %

3. Impact of spray rate and atomisation air

pressure (AAP)

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 42: Process optimization QbD 20180507 - unimi.it

42Textmasterformat in Mastervorlage eingeben42

Atomisation air pressure [bar]

• assay > 98% with high AAP (small

droplets) and moderate spray

rates

= risk for spray drying

• robust DL formulation and

process with at broad range of

parameters

Assay [%]

98,0 % 100 %

3. Impact of spray rate and atomisation air

pressure (AAP)

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 43: Process optimization QbD 20180507 - unimi.it

43Textmasterformat in Mastervorlage eingeben43

3. Regression analysis

• quantitative ranking list according to R2

• identification of the impact factor with the strongest influence on response

variable

• correlation between response variables (e.g. weight gain and assay)

• evaluation of precision changes on all levels

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 44: Process optimization QbD 20180507 - unimi.it

44Textmasterformat in Mastervorlage eingeben44

3. Regression analysis for DL process

P a r a m e t e r 1 P a r a m e t e r 2 S lo p e m

q u a l i t a t iv e R 2

Im p a c t f a c t o r s

A t o m is a t io n a ir p r e s s u r e O v e r s i z e d p a r t ic le s > 2 5 0 µ m - 0 .7 4 4

B u lk d e n s i t y + 0 .5 1 9

A s s a y + 0 .2 5 9

W e ig h t g a in 0 0 .0 5 7

A m o u n t f in e p a r t ic le s < 1 2 5 µ m + 0 .2 4 7

M e a n s p r a y r a t e L O D e n d o f s p r a y in g + 0 .6 0 7

L O D e n d o f d r y in g + 0 .5 4 5

A s s a y 0 0 .0 8 9

W e ig h t g a in 0 0 .0 7 7

M in im a l p r o d u c t t e m p e r a t u r e - 0 .8 0 4

O v e r s i z e d p a r t ic le s > 2 5 0 µ m 0 + 0 .1 1 6

R e s p o n s e v a r ia b le s

W e ig h t g a in A s s a y + 0 .5 3 1

A m o u n t f in e p a r t ic le s < 1 2 5 µ m + 0 .2 8 8

A m o u n t f in e p a r t ic le s < 1 2 5 µ m A s s a y + 0 .5 9 6

M in im a l p r o d u c t t e m p e r a t u r e L O D e n d o f s p r a y in g - 0 .9 0 6

O v e r s i z e d p a r t ic le s > 2 5 0 µ m 0 0 .0 4 1

W e ig h t g a in 0 0 .0 0 0

+ = p o s i t iv e s lo p e / d i r e c t r e la t io n s h ip

- = n e g a t iv e s lo p e / in v e r s r e la t io n s h ip

0 = s lo p e n e a r ly z e r o / n o r e la t io n s h ip

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 45: Process optimization QbD 20180507 - unimi.it

45Textmasterformat in Mastervorlage eingeben45

3. DL process after optimisation

• process time reduced by ~ 50%

• low level of agglomerates > 250 µm

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Process parameter Before optimisation best in DoE proposal for Test 1 Test 2

18” W.

pilot scale

6” W.

lab scale

18” W.

pilot scale

18” W.

pilot scale

18” W.

pilot scale

Inlet air temperature °C 70 ± 20 70 65 – 70 70 70

Atomisation air pressure bar 2.5 ± 0.5 4.0 3.5 ± 0.5 3.5 4.0

Inlet air volume m3/h 700 - 850 80 700 → 850 700 → 850 700 → 850

Mean spray rate g/min 75 12.3 ∼ 90 120 120

Product temp. during

spraying

°C 50 43 – 55 45 - 53 46 – 49 47 – 50

Yield practical % 96 – 100 93 97 97 97

Spraying time h 10 1,6 6,3 4,8 4,8

Oversized particles >250 µm % 1 - 1.5 0 ∼ 0.5 1.6 3.1

Assay practical (relative) % 100 99 100 102 102

Page 46: Process optimization QbD 20180507 - unimi.it

46Textmasterformat in Mastervorlage eingeben46

4. Summay

�Design of Experiments (DoE) useful tool to understand and optimise process

�Design Space (DS) = reproducible product quality in small and large scale

applying a defined range of processing parameters

�this is Quality by Design (QbD)

�providing a state to the art Process Validation

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 47: Process optimization QbD 20180507 - unimi.it

47Textmasterformat in Mastervorlage eingeben47

600kg 600kg

process

development

7“ Wurster

process optimisation

(DoE)

7“ Wurster

scale up to pilot

18“ Wurster

scale up to

commercial I

32“ Wurster

scale up to

commercial II

46“ Wurster

start up commercial equipment +

process validation

46“ Wurster

number of trials

4kg 4kg 80kg 300kg

32 2

3

600kg

commercial

production

startup incl

process

validation

process development

and scale up

14

26

8

4. Process development / scale-up based on

Design Space

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 48: Process optimization QbD 20180507 - unimi.it

48Textmasterformat in Mastervorlage eingeben4848

Stefanie Keser

Project manager

Glatt Pharmaceutical Services

Werner-Glatt-Strasse 1

79589 Binzen / Germany

Phone: +49 – 7621 664 4075

E-mail: [email protected]

Dr. Norbert Pöllinger

Head of Development and Manufacturing Services

Glatt Pharmaceutical Services

Werner-Glatt-Strasse 1

79589 Binzen / Germany

Phone: +49 – 7621 664 707

Fax: +49 – 7621 664 728

E-mail: [email protected]

Thank you for your attention!

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 49: Process optimization QbD 20180507 - unimi.it

49Textmasterformat in Mastervorlage eingeben49

Back up slides

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 50: Process optimization QbD 20180507 - unimi.it

50Textmasterformat in Mastervorlage eingeben50

Case Study 3Optimisation of modified release coating process

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 51: Process optimization QbD 20180507 - unimi.it

51Textmasterformat in Mastervorlage eingeben51

sugar beads

drug layer

seal coating

MR coating

final coating

• 1. order drug release

• ~ 60% after 3 hrs

• ~ 80% after 6 hrs

4. Optimisation Modified release coating (MR)

process 2

44212 Controlled Release Pellets Prototype 27,5% :

Eudragit NE 30 D coating / 20% coating level

in vitro dissolution target profile

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700 800

batch no.

dru

g r

ele

ase (

%)

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 52: Process optimization QbD 20180507 - unimi.it

52Textmasterformat in Mastervorlage eingeben52

sugar beads

drug layer

seal coating

MR coating

top coating

4. Modified release coating formulation

• Eudragit NE 30 D

• HPMC

• talc

• water

• solids concentration: 20% w/w

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 53: Process optimization QbD 20180507 - unimi.it

53Textmasterformat in Mastervorlage eingeben53

Goal: in vitro dissolution kinetics following 1. order

• study design similar to case study 2 with Eudragit RL / RS processing

parameters to be tested:

• inlet air volume

• inlet air temperature

• product temperature

• atomisation air pressure

4. Impact of fluid bed impact factors on the

in-vitro dissolution profiles of

modified release pellets

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 54: Process optimization QbD 20180507 - unimi.it

54Textmasterformat in Mastervorlage eingeben54

44212 Controlled Release Pellets Prototype 27,5% :

Eudragit NE 30 D coating / coating level: 20%

STAVEX study results

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700 800

batch no.

dru

g r

ele

ase (

%)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

4. In-vitro dissolution profiles

6 hrs: 80% +/- 10% (preliminary specification)

3 hrs: 60% +/- 10% (preliminary specification)

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 55: Process optimization QbD 20180507 - unimi.it

55Textmasterformat in Mastervorlage eingeben55

• moderate inlet air temperature (40°C)

• low product temperature (25°C)

• high fluidisation air volume

• atomisation air pressure: no impact

4. Feasible parameters for the modified

release coating with Eudragit RS / RL

aqueous dispersion

44212 Controlled Release Pellets Prototype 27,5% :

Eudragit NE 30 D coating / coating level: 20%

STAVEX study results

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700 800

batch no.

dru

g r

ele

ase (

%)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Eudragit NE 30 D / HPMC modified release coating:

a more tolerant formulation / process than Eudragit RL / RS 30 D

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 56: Process optimization QbD 20180507 - unimi.it

56Textmasterformat in Mastervorlage eingeben56

Other Guidance documents

• PAT – A frramework for innovative Pharmaceutical Development,

Manfacturing and Quality Assurance 2004

• Formal dispute resolution: Scientfic and technical issues related to

pharmaceutical cGMP 2006

• Quality systems Approach to Pharmaceutical cGMP regulations

2006

• cGMP for phase I investigational drugs 2008

• ICH Q8, Q9, Q10

• Process validation 2011

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser

Page 57: Process optimization QbD 20180507 - unimi.it

57Textmasterformat in Mastervorlage eingeben57

Related documents

ICH Q8 (R1) Pharmaceutical Development

ICH Q9 Quality Risk management

ICH Q10 Pharmaceutical Quality System

Process optimisation considering QbD and using DoE – the basis for scale up / Stefanie Keser