production and use of biogÁs - fenix.ciencias.ulisboa.pt · 1859: first biogas ... produção de...

117
[email protected] MESTRADO INTEGRADO EM ENGENHARIA DA ENERGIA E DO AMBIENTE Aula N Production and use of BIOGÁS Doutor Santino Di Berardino

Upload: lyhanh

Post on 09-Nov-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

[email protected]

MESTRADO INTEGRADO EM ENGENHARIA DA ENERGIA E DO AMBIENTE

Aula N

Production and use of

BIOGÁS

Doutor Santino Di Berardino

22

Biogas - important data

1776: Discovery of the gas Methane (Alessandro Volta).

1859: First Biogas Application biogás, leprosarium (Bombay)

1895: First European application Street lighting Exeter (England).

1895-1940: Small specific applications

1940-1945: Use in heating, lighting and municipal trucks (Second World War).

1945-1972: Abundance of conventional energy. No use in developed countries. Use in China and India) in small communities

1973 – 2004 - After the first Energetic crises methane from anaerobic digestion is more and more used.

33

Biogas Composition

BIOGAS COMPOSITION % Methane (CH4) 55 - 80

Carbon dioxide (CO2) 20 - 40

Hydrogen (H2) 1 - 3

Nytrogen (N2) 0,5 - 2,5

Oxygen (O2) 0,1 - 1

Hydrogen sulphide (H2S) 0,1 - 0,5

Amonia (NH3) 0,1 - 0,5

Carbon Monoxide (CO) 0 - 0,1

4

.PARÂMETROS

ANALISADOS

ETAR de Loures

(Lamas )

Suinicultura Efluente rico

em sulfatos

Fábrica de

Lacticínios

CH4 (%)

CO2 (%)

H2S (mg/l)

73

27

0,9

80

20

3,4

55

38

70000

93

7

--

Gas Composition-Portuguese Digesters

55

Biogas Characteristics

Not visible gas

Low toxicity. It contains, normally, low percentage of Carbon monoxide and sulphide

Heat value between 5000 to 7 000 kcal/m3

depending on CO2 percentage

Lower explosion risks than butane or propane due to low density

Corrosive, depending on H2S content

6

Características do Biogás

Componente Gás Natural

Gás de aterro

Gás de ETAR

Gás Agropecuária

Metano (%)

90-99

40-55

50-65

50-80

CO2 (%)

0-5

35-50

35-50

20-50

H2S (ppmv)

< 15

< 200

500-3000

< 3000

Poder Calorífico

(Kcal/m3)

9300-10300

4000-5500

4000-6500

5000-8000

7

Biogas – Actual and Future Use

Biogas was essentially produced for environmental purposes - Treatment of organic residues (Industrial, domestic, agricultural solid wastes etc).

Methane from anaerobic digestion is a renewable energy and a clean and economic domestic combustible.

Today can play a role more important, also agricultural crop, energetic cultures and forest residues can be used to feed digesters, for energy production.

The amount of methane gas produced varies with the amount of organic waste fed to the digester

8

Impact of biogas

Biogas energy has interesting aspects, as it is a renewable source and contributes to the reduction of fuel imports. Methane gas is the cleanest and most economical domestic fuel.

At the national level biogas can be produced for environmental reasons and/or for energetic purposes. The byproduct of waste and effluent treatment.

When is intensively produced, it can only replace more than 10 % of natural gas consumption.

However, it is a virtually inexhaustible source when, in addition to being generated from waste, sewage and other organic waste, it is produced from plant crops planted for that purpose and constitutes an energy alternative

9

Prevision

In the current phase of the world economy, the alternative ofrenewable sources has short, medium and long term prospectsfrankly positive.

The global energy crisis has highlighted the energy vulnerabilityof the European Union, which relies heavily on oil in the MiddleEast, the most explosive area in the world.

It is therefore essential to diversify the sources and nature offuels in order to ensure survival, development and continuity,and to increase research into alternative sources of energy, inthe substitution of oil and oil products.

10

Biogas Production process

Energia da biomassa

11

Use of products

Energia da biomassa

12

Biomass gasification

Energia da biomassa

13

Power to methane (P2G or P2G)

Energia da biomassa

14

Scheme of a agricultural biogas plant

15Energia da biomassa

16Energia da biomassa

17Energia da biomassa

18Energia da biomassa

19Energia da biomassa

20Energia da biomassa

21

Biogas Plants In Europe

Energia da biomassa

22

Estimate biogas production with COD

Chemical/Oxygen Demand

•Measures amount of oxygen required to oxidiseorganic matter

•Used widely in aerobic water treatment

•Characterizes wastewaters and organic feedstocks

•Estimates energy content of substrate

23

Biogas Production-calculation

COD is used to evaluate the Methane production, according to relation:

CH4 + O2 = CO2 + H2 O

At 0ºC e a 1 atmosphere 1 kg of COD (to oxidizeMethane) corresponde a 0,35 m3 de CH4.

Or 1 mol of Methane takes 64 g of COD to be oxidised

COD

24

Net COD levels for aerobic and anaerobic wastewater treatment

(Quaiser, 2013)

25

Methane production from COD

If you Know the COD of your material you can estimate methane production.

COD = COD biodegradable + COD not biodegradable

COD biodegradable generates methane, neworganisms and allows respiration

Energia da biomassa

26

Production of methane from complete anaerobic degradation of 1 kg of COD under standard conditions:

1 – COD equivalent to CH4

CH4 + 2O2 ------------------> CO2 + 2H2O16 g e 64g => 16 g CH4 ~ 64 g O2 (CQO)

=> 1 g CH4 ~ 64/16 = 4 g CQO ------------ (1)

2: Conversion of CH4 in equivalent volumeAccording to the gas laws, 1 mole of gas at Standard Temperature and Pressure (TPS occupies a volume of 22.4 L. =>1 Mole CH4 ~

22.4 L CH4

=> 16 g CH4 ~ 22.4 L CH4

=> 1 g CH4 ~ 22.4/16 = 1.4 L CH4 -- (2)

Methane Production from COD

27

3 – Production of CH4 por unit of removed COD

From eq. (1) and eq. (2),,=> 1 g CH4 ~ 4 g COD ~ 1.4 L CH4

=> 4 g COD ~ 1.4 L CH4

=> 1 g COD ~ 1.4/4 = 0.35 LCH4

or 1 Kg COD ~ 0.35 m3 CH4 ----------- (3)

Anaerobic degradation of 1 Kg de COD produces 0.35 m3

CH4 a TPS excluding the losses and the growth of new cellules.

.

Methane Production from COD

28

Total Solids, Volatile Solids

Total Solids (TS)= Dry weight of substrate

Volatile Solids (VS)= organic matter. Combustible (weight of solids volatile at a temperature of 550° C) proportion of TS,

Non-volatile Solids (Ash) = Minerals etc. left over from combustion

Methane production is often evaluated from the amount of SV in a given substrate

29

Production of Volatile Solids

Cow = 10 kg VS por dia

Swine = 8.5 kg VS por dia

Chicken = 12 kg VS por dia

(for 1000 kg of living weight)

Approximately just 40-60% of VS in converted into biogas (biodegradable fraction), dependin on the substrate and digestion type and regimen.

30

Gas production from some compounds

Fats have the major energy potential.

Than Proteins and carbo-hydrate

Matter CH4 Specific production (m3/kg SV)

Carbo-hidrates 0,5

Proteins 0,7

Lipids 1,2

31

Biogas Yield

31

32

Biogas production-mixed wastes

Composição Carbo-hidrate

Proteína Lípidos Produtividade de gás

(m3/kg)

Resíduos com alta produção de gás

12% 38% 50% 1,020

Resíduos com média produção de gás

15% 54% 44% 0,980

Resíduos com baixa produção de gás

24% 50% 26% 0,880

33

Animal Nº Produção Biogás (m3/(animal.dia)

vacas 1 1,3

bezerros 1,5 0,85

suinos 9,6 0,135

homens 65 0,02

galinhas 150 0,009

Equivalence of biogas production in wastes

34

Energy and fertilizing property of cropBiomassa Agrícola produzível Colheita por M O Produção CH4 Azoto

hectare metano[t/ha/a] (%) [Nm³/kgMO) (%) kgN/t

Alfa-alfa erba medica 30 30 290 56 7Cereais-grãos 1 84,39 365 53 12Silagem cereais -toda a planta 35 35,34 260 52,5 4Silagem erva de cobertura 25 30,1 330 56 8Milho-grãos secos 11 85,26 365 52,8 10Milho-grãos molhados 15 58,8 372 53 7Silagem de milho 45 31,68 330 52,5 3stelo do milho 1 61,92 468 52 0Ensilado de feijões 30 37,6 265 54,6 9Silagem de beterraba 90 10 468 53 1,7Silagem de ervilhas 30 29,9 294 55,8 0Silagem de beterraba açucareira 50 20,5 400 53 1,6Silagem de forragem ervas 35 33,82 330 54 7,5Podas de verdes 15 55 80 53 0segala não madura-intercalar 25 22,25 310 54 4Culturas intercalares gerais 5 32 300 54 2,5Aveia -graõs 6 84,13 320 54,1 12Silagem de aveia - 18 29,7 320 53,5 4,2Colza 3,5 83,6 500 65,7 -Silagem de colza 11 13,12 380 55,5 3,2trifoglio vermelho silagem 30 26,1 300 55,3 5,8segala-grãos 7 85,26 365 52 11Silagem ervas segala (lolium) 35 30,1 320 54,6 6,25Palha 6 80,84 200 51 3,5Silagem de erva do sudan 50 20,5 254 52 3Ensilado de girassol (planta) 9 20,1 230 55 3,5Tritical grãos 8 85,76 360 52,4 12Silagem de tritical inteira 20 31,7 300 53 6,3Silagem de rape geral 60 12,75 365 54 2,2Grãos de milho 7 85,26 369 52,75 13,5Ensilado de cevada (toda a planta) 32 35 300 53 4,4Mistura milho-tutoli 20 59 350 52,7 Azoto

35

Energy and fertilizing potential of some crops

Prod. Espec.t/ha

Prod espe. Biogásm3/t

Prod biogás(m3/ha/dia)

Azoto fixado(kg/ha/ano)

Aveia 40 96 12 200

Tritical 30 110 9 225

Luzerna 50 90 12 219

Alfa-alfa 35 87 8 210

36

Evolution of biogás production

37

Biogas from some substrates

38

Tipo de resíduo Matéria orgânica (ton/dia)

Lixos urbanos 4 000

Lamas de ETAR’s 625

Excreta de suiniculturas 750

Excreta de bovinos 2 300

Excreta de aviários 400

TOTAL 8 075

ESPÉCIE 1989

Bovinos 1 401 340

Ovinos 2 921 113

Caprinos 719 755

Suínos 2 423 957

Cavalar 36 246

Muares 37 129

Asininos 77 515

Perus 1 168 243

Galináceos 28 320 020

Potencial em Portugal

3939

Biogas Use

Domestic use (Cooking, lighting etc.)

Heating

Supplement to natural gas

Combined Heat Power (CHP)

Vehicle fuel

Fuel Cells

4040

•Requirements to remove gaseous components depends the biogas utilisation.

•Basic compounds to remove are: Water, Suspended Solids H2S and, eventually, CO2

Biogas Treatment

4141

Biogas Treatment Technologies

Many technologies are available to remove specific compounds

COMPOUND TO REMOVE

TECNOLOGY PRINCIPLE

Water Demister Physic Cyclone separator Physic

Moisture trap Physic

Water tap Physic

Adsorption to silica Physic

Glycol drying unit Physic

H2S Air oxygen dosing Biologic FeCl3 dosing to digester slurry chemical Adsorption to Fe2O3 pellets Physico-chemical Absorption with caustic solution Physico-chemical Absorption with iron solution Physico-chemical Absorption closed loop systems Physico-chemical Membrane separation Physic Biological filters Biologic Activated carbon Physico-chemical Molecular sieves Physic

CO2 Pressure swing adsorption Physico-chemical Membrane separation Physic Absorption techniques Physico-chemical

4242

Power Equivalences of Biogas

43

Combustível Poder calorífico(kCal/m3)

Biogás 5 130

Biogás purificado 7 600

Gás de cidade 4 000

Propano 22 000

Butano 11 000

Gasóleo, fuel-óleo, etc. 8 545

Gasolina 7 280

Carvão 6 600

Electricidade 860 kcal/kWh

Metano puro 8 500

Gás natural 9 400-19 500

Poderes caloríficos

44

Combustível Quantidades Gás de cidade 1,28 m3

Propano 0,23 m3

1 m3 de biogás 0,46 kg

equivale a: Butano 0,183 m3

0,475 kg

Gasóleo e fuel-óleo 0,6 l

Álcool 1,3 l

Gasolina 0,7 l

Electricidade 6 kWh

Equivalence between biogas and

commercial fuels

45

Carbon dioxide

Carbon dioxide (CO2) is an inert, colorless, odorless, heavier gas than air. It is medically toxic, asphyxiant, and has a standard Occupational Exposure (OES) of 5,000 ppm. The high CO2 content in the biogas leads to a low calorific value.

45

46

Hydrogen sulphide (H2S)

It is the most dangerous gas contained in Biogas.

It is a colorless gas, heavier than air

It is very toxic to microorganisms, plants and man even at low levels.

It smells very strongly of rotten eggs.

It constitutes the form of the sulfur energetically more stable and is very reactive (Widdel, 1988).

The limiting concentration of the odor is only 0.00047 ppm (EPA, design manual 625/1, 1985).

46

47

Water dissociation

At high concentrations does not stink. It causes death in man from concentrations of 300 ppm in the air.

Due to its toxic properties, hydrogen sulfide has a standard occupational exposure (OES) of 10 ppm.

Hydrogen sulfide is a weak, sparingly soluble acid in water, where it is dissociated into the ionic forms H2S, HS-, S = according to the following reactions

(H2S (l) HS- + H+

HS- S= + H+

47

48

Dissociation of H2S in water

48

49

Toxicity

The toxicity of the sulfiphide depends essentially on its ionic form which can pass through the cell membrane (Speece, 1983).

The relative amount of molecular hydrogen sulphide and its ionic form depends on the pH value. At pH = 7 the molecular hydrogen sulfide is about 50%.

The molecular form prevails in the acidic form and, at pH = 6, about 90% of all the hydrogen sulphide is in the molecular form that escapes into the gas phase, giving rise to a toxic gas with bad smell. Above a pH of 8-9, practically all of the dissolved hydrogen sulfide is present in the ionic form.

At neutral pH, about 50% of the dissolved hydrogen sulfide is present in the form of H2 S

50

Solubility

50

Temperature (ºC) Solubility (mg S/l)

0 6648

5 5646

10 4810

15 4150

20 3618

25 3175

30 2806

35 2491

40 2221

51

Amonia (NH3)

.

O (NH3) is a more aggressive and tear gas lighter in air with an OESof 10 ppm. It is generally in very weak concentrations, it can becorrosive to copper. Nitrogen oxides released during combustion(NOx) are also toxic

The water vapor present in the gas becomes corrosive incombination with NH3, CO2 and especially the H2S of the biogas.The maximum content of water present in the biogas depends onthe temperature, being in the values of saturation in the gas ofexit of the digester. The cooling of the biogas allows itscondensation and also of hydrogen sulphide, which becomesmore soluble at low temperatures.

51

52

Carbon Monoxide

Biogas, under normal production conditions, has a low carbon monoxide content (less than 0.1%) and is non-toxic, in contrast to, for example, city gas, which accounts for about 20% of this gas, is fatal .

52

53

Biogas Properties.typical composition

is not normally toxic due to the reduced content ofcarbon monoxide and hydrogen sulphide

It has corrosive power and characteristic odor (due tothe sulfidric), being very aggressive for equipment withcomponents in copper, brass or steel.

Due to the presence of methane, a combustible gas withits lower calorific value (P.C.I.) is about 5500 kcal / m3,when the proportion in methane is approximately 60%.

54

Properties

The other gases contained in the biogas do not pose problems in terms of toxicity or harmfulness.

Carbon dioxide, in a significant proportion (35%), occupies a perfectly dispensable volume and requires, if not suppressed, an increase in storage capacities.

Water vapor can be corrosive to the pipes after condensation.

55

Pipes and accessories

56

Water traps

57

Gas dome details

58

Biogas storage

It compensates for fluctuations between the production and use of biogas, allowing continuous operation

It allows to use the motors in hours of greater price

It consists of a reservoir capable of varying the storage volume and pressures slightly higher than atmospheric

Fixed volume reservoirs are generally hazardous because they allow air to infiltrate during times of low pressure and form explosive mixtures of ar-methane.

Nowadays, for reasons of cost, flexible gasometers are used in plastic,

59

Armazenamento do biogás

The maintenance of the exercise pressure in these units is done by compression or by structures with weights that compress the reservoirs.

As an alternative, storage medium (about 40 kg / cm 2) or high pressure (200-300 kg / cm 2) can be adopted, little applied for reasons of cost.

The compression of the gas implies loss of energy, which is of the order of 10% in the case of medium pressures and 20% in the high pressures.

To improve compression yield and to avoid corrosion it is generally advantageous to purify the gas by eliminating water, carbon dioxide and hydrogen sulphide.

60

Gasholders

6161

Low Pressure Biogas Storage

There are many possibilities to store Biogas at low pressure (<50 mBar)

62

Floating gasometer

63

64

65

Double chamber gasholder

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

Biogas treatment layout for biomethane

83

84

85

86

87

88

89

90

91

92

93

94

95

Membrane purification

95

96

97

98

99

100

101

102

Heat balance of a cogeneration system

102

103

104

Uso do Biogás

104

Uso Característica Quantidade degás (m3/h)

Iluminação Lâmpada de 100 velas 0,13Lâmpada "Amanchon" 0,017

Cozinhar Queimador de 5 cm 0,330

10 cm 0,450

15 cm 0,650Por pessoa/dia 0,34-0,42

Aquecimento EsquentadorPor pessoa/m3/h 0,34-0,42Esquentador 125 kCal/mm 1,7Esquentador 320 kCal/mm 4,2Caldeira para 200 l 0,3Caldeira para 200 l comelevação até 85C

2,5

Caldeira (n = 0,15) 10 000kCal/h

2,3

Irradiador para aquecervolume de 100 m

1

Refrigeração Refrigerador (por 1 m2 deparede)

0,008

Incubador Por m3 de ar 0,05 -0,07

105

Biogas Utilisation

Microturbines

Fuel Cells

Motores de

C.I.

Gas turbine

106

107

MOTOR GERADOR

108

109

110

111

Biogas Consume

111

Tipo de Uso Consumo

Combustão 0,45 m3 por CV/h;

0,31 m3 por CV/h (biogás purificado)

Motor agasolina

1,35 - 1,9 m3 por dm3 de cilindrada e por hora

1,2 m3 por dm3 de cilindrada e por hora(biogás purificado)

Motor diesel 1,5 - 2 m3 por dm3 de cilindrada e por hora

1,1 - 1,4 m3 por dm3 de cilindrada e por hora(biogás purificado)

112

Biogas burning-emissions

Item

Tocha

Motor de C.I.

Turbina a Gás

Micro- Turbina

Fuel Cells

Heat Rate (Btu/kwhr)

NA

10-11,000

10-12,000

12-13,000

9-10,000

NOx lb/MMBtu

0.05

0.22

0.07

0.02

0.0005

CO lb/MMBtu

0.19

0.67

0.10

0.10

0.002

113

Gas Burners

113

114

Benefits from Biogas

Benefits of producing electricity in isolated areas

Environmental Benefits

Reduction of soil pollution

Reduction of methane emissions

Reduction of Nox Emissions in Quantity Dependent on Device

115115

Bibliography

•(USEPA (1979). Sludge Treatment and Disposal. U.S. Environmental Protection Agency. Washington, DC.

• Stronach S.M., Rudd T. and Lester J.N. Anaerobic digestion processes in industrial wastewater treatment, Springer-Verlag, Berlin,1986.

• Wheatley A., Anaerobic Digestion: a waste treatment technology, from Critical Reports on Applied Chemistry vol 31, Published for SCI by Elsevier applied science, 1990

• Zehnder A. J. B., Biology of Anaerobic Microorganisms,Agricultural University , Wageningen, The Netherlands, John Wiley and Sons Inc, 1988.

• Henze M. and Harremoes P., Anaerobic treatment of wastewater in fixed film reactors- A literature review, wat.Sci.Techn.,vol15,1983,1-101

• Tchobanoglous, G.; “Wastewater Engineering - Treatment, Disposal, Reuse”; Metcalf & Eddy, Inc., 3rd Edition, McGraw-Hill Publishing Company, 1991 ISBN 0-07-100824-1.a)

116

Internet resources

• www.britishbiogen.co.uk/gpg/adgpg/adgpgfront.htm

• www.adnett.org/

• www.uasb.org/SCIENCE/data_page_biodegradability.htm

• www.epa.gov/agstar/library/

• www.eere.energy.gov/consumerinfo/refbriefs/ab5.html

• www.ias.unu.edu/proceedings/icibs/

• www.bioenergyupdate.com/

• www.biogas.ch/

• www.cogen.org/

• www.energiasrenovaveis.com/

• www.novaenergie.ch/iea-bioenergy-task37/Dokumente/Biogas%20upgrading.pdf

117

1

1