prof. david r. jackson dept. of ece fall 2013 notes 12 ece 6340 intermediate em waves 1

46
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

Upload: miles-nicholson

Post on 31-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

1

Prof. David R. JacksonDept. of ECE

Fall 2013

Notes 12

ECE 6340 Intermediate EM Waves

Page 2: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

2

Wave Impedance

Assume TMz wave traveling in the +z direction

1ˆt tTM

H z EZ

ˆ ˆ ˆTMt tz E Z z z H

ˆTMt tE Z z H

ˆ TMt tz E Z H

TM z z

c

k kZ

k

From previous notes:

so

or

Page 3: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

3

-z wave:

z zk k zz z j k zjk z jk ze e e so we can simply substitute

1ˆt tTM

H z EZ

1ˆt tTM

H z EZ

Summary:+ sign: +z wave

- sign: - z wave

Wave Impedance (cont.)

In this formula the wavenumber and the wave impedance are taken to be the same for negative and positive

traveling waves.

Page 4: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

4

TEz wave:

TE

z z

kZ

k k

1ˆt tTE

H z EZ

Wave Impedance (cont.)

Note: 2TE TMZ Z

Page 5: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

5

Transverse Equivalent Network (TEN)

Denote

(assume TMz wave) Also, write

0( , , ) ( , ) ( )t tE x y z E x y V z

( ) z zjk z jk zV z V e V e

0 ˆ( , ) ( , ) ( , )t TM tE x y e x y x y

ˆ( , , ) ( , ) ( , ) ( )t TM tE x y z e x y x y V z

where Note: V(z) behaves as a voltage function.

Note: We can assume that both the unit vector and the transverse amplitude function are both real (because of the corollary to the “real” theorem).

Hence we have

There is still flexibility here, since there can be any real scaling constant in the definition of t.

Page 6: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

6

Transverse Equivalent Network (cont.)

1ˆˆ ( , )

1ˆˆ ( , )

z

z

jk zt TM tTM

jk zTM tTM

H z e x y V eZ

z e x y V eZ

1ˆt tTM

H z EZ

( ) zjk zV z V e

ˆ( , , ) ( , ) ( , ) ( )t TM tE x y z e x y x y V z

For the magnetic field we have

The result for the transverse magnetic field is then

1ˆ ˆt t tTM

H z E z EZ

Now use

Page 7: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

7

Transverse Equivalent Network (cont.)

Define

ˆ ˆˆ( , ) ( , )TMTMh x y z e x y

ˆ( , , ) ( , ) ( , ) ( )t TM tH x y z h x y x y I z

and

Note: I(z) behaves as a transmission-line current function.

( )z zjk z jk z

TM TM

V e V eI z

Z Z

We then have

Page 8: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

8

Transverse Equivalent Network (cont.)

Summary

ˆ ˆˆ( , ) ( , )TMTMh x y z e x y

ˆ( , , ) ( , ) ( , ) ( )t TM tH x y z h x y x y I z

ˆ( , , ) ( , ) ( , ) ( )t TM tE x y z e x y x y V z

( )z zjk z jk z

TM TM

V e V eI z

Z Z

( ) z zjk z jk zV z V e V e

Page 9: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

9

TEN

( )

( )t

t

V z E

I z H

+z-z

zWaveguide

Z0 = ZTM or ZTE + V (z)-

I (z)

zkz = kz of waveguide mode

Transverse Equivalent Network (cont.)

Page 10: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

10

Transverse Equivalent Network (cont.)Note on Power

*1

2TENP VI

* *

*

2*

1 1ˆ ˆ

2 21 ˆˆ ˆ( , ) ( , ) ( ) ( , ) ( , ) ( )21 ˆˆ ˆ( , )2

WGz t t

TM t TM t

TMt TM

S E H z E H z

e x y x y V z h x y x y I z z

VI x y e h z

ˆˆ ˆ ˆˆ ˆ ˆ ˆ ˆ 1TM TM TMTMe h z e z e z z z

2*1( , )

2WGz tS VI x yHence

TEN:

WG:

A B C B A C C A B Note :

Page 11: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

11

Transverse Equivalent Network (cont.)

The total complex power flowing down the waveguide is then

2*1( , )

2WG WG

z t

S S

P S dS VI x y dS

2( , )WG TEN

t

S

P P x y dS or

If we choose2

( , ) 1t

S

x y dS

WG TENP Pthen

Page 12: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

12

At z = 0:

Hence

0 0 0 0t t t tE E H H

(0 ) (0 ) (0 ) (0 )V V I I

Junction:

These conditions are also true at a TL junction.

TEN: Junction

(EM boundary conditions)

+

-

+

-00 0,TM

zZ k 01 1,TMzZ k(0 )V (0 )V

(0 )I (0 )I

z0 r

same cross sectional shape

z = 0

Page 13: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

13

Example: Rectangular Waveguide

TE10 mode incident

01 00

01 00

TE TE

TE TE

Z Z

Z Z

1T

TEN:

T1

00 0,TEzZ k 01 1,TE

zZ k

b a

0

r

z

a

z = 0

x

y

#0

#1

Page 14: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

14

0 000 2

0 20

0 0 0

2 2

0 0

/

1 1

TE

z

Zk

ka

k

k a k a

101 2

1

1

TEZ

k a

Similarly,

0 376.730313461771 [ ]

Example: Rectangular Waveguide (cont.)

Page 15: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

15

Example (Numerical Results)X-band waveguide

f = 10 GHz

2.2225 [cm]

1.0319 [cm]

a

b

Choose 2.2 ( )r teflon

6.749 [GHz] ( )cf air - filled guide

00 01510.25 [ ] 285.18 [ ]TE TEZ Z

0.28295

0.71705T

The results are:

0 154.74 [rad/m]zk 1 276.87 [rad/m]zk

Page 16: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

16

Example (cont.)

2 2%

%

100 100 0.28295 8.00

100 8.00 92.0

r

t

P

P

Note:2% 100tP T

This is because the impedances of the two guides are different.

%

%

8.00

92.0

r

t

P

P

(conservation of energy and orthogonality)

0 0z zP P

0 inc refz z zP P P

2ref incz zP P

0z tP P

conservation of energy

othogonality

Page 17: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

17

2 22

% 01 012 2

2

0000

( , )2 2

100 1001

( , ) 22

t

tTE TES

t

TEtTES

V Tx y dS

Z ZP

Vx y dS ZZ

Alternative calculation:

% 92.0tP 2% 00

01

100TE

t TE

ZP T

Z

Example (cont.)

Page 18: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

18

Example (cont.)

ˆ( , , ) ( , ) ( , ) ( )t TE tH x y z h x y x y I z

ˆ( , , ) ( , ) ( , ) ( )t TE tE x y z e x y x y V z

Fields

1ˆ( , , ) sin zjk zt

xE x y z y Te

a

1

01

1ˆ( , , ) sin zjk z

t TE

xH x y z x Te

a Z

0 0ˆ( , , ) sin z zjk z jk zt

xE x y z y e e

a

0 0

00

1ˆ( , , ) sin z zjk z jk z

t TE

xH x y z x e e

a Z

Air region:

Dielectric region:

ˆ ˆ,

ˆ ˆ,

, sin

TE

TE

t

e x y y

h x y x

xx y

a

0 0

0 0

1

1

00

01

1

1

z z

z z

z

z

jk z jk zair

jk z jk zairTE

jk zdiel

jk zdielTE

V z e e

I z e eZ

V z Te

I z TeZ

b a

0

r

z

a

z = 0

x

y

#0

#1

TL part

Page 19: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

19

Matching Elements

A couple of commonly used matching elements:

Capacitive diaphragm

x

y

Inductive post (narrow)x

yTEN

Z0TE Z0

TE Lp

TEN

Z0TE Z0

TE Cd

00 10TE

z

Zk

Page 20: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

20

Discontinuity

Rectangular waveguide with a post:

Top view:

Higher-order mode region

z

x

TE10TE10

Post

TE10

ap = radius of post

Assumption: only the TE10 mode can propagate.

Page 21: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

21

Discontinuity (cont.)

TEN : Z0TE Z0

TE Lp

Note: The discontinuity is a approximately a shunt load because the tangential electric field of the dominant mode is approximately continuous, while the tangential magnetic field of the dominant mode is not (shown later).

Top view:

The TL discontinuity is chosen to give the same reflected and transmitted

TE10 waves as in the actual waveguide.

00 10

0

2

0

1

TE

z

Zk

k a

Higher-order mode region

z

x

TE10TE10

Page 22: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

22

Discontinuity (cont.)

Top view:

Narrow strip model for post (w = 4ap)

Assume center of post is at x = x0

Flat strip model (strip of width w)

In this model (flat strip model) the equivalent circuit is exactly a shunt inductor (proof given later).

z

x

TE10TE10

w

z = 0- z = 0+

x0

Page 23: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

23

Discontinuity (cont.)

Top view:

inc scay y yE E E

10

sin zjk zincy

xE e

a

scayE field produced by strip current

(that is, the field scattered by the strip)

z

x

TE10TE10

w

z = 0- z = 0+

x0

Page 24: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

24

Discontinuity (cont.)

We assume a field representation in terms of TEm0 waveguide modes (therefore, there is only a y component of the electric field).

Note that TMm0 modes do not exist.

0

0

1

1

, , sin

, , sin

mz

mz

jk zscay m

m

jk zscay m

m

m xE x y z A e

a

m xE x y z A e

a

Transverse fields radiated by the post current (no y variation):

1/220 2

0mz

mk k

a

0

0

1 0

1 0

, , sin

, , sin

mz

mz

jk zsca mx TE

m m

jk zsca mx TE

m m

A m xH x y z e

Z a

A m xH x y z e

Z a

0

1ˆt tTE

m

H z EZ

By symmetry, the scattered field should have no y variation.

Page 25: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

25

Discontinuity (cont.)

Top view:

0 0y yE z E z

From boundary conditions:

0 0sca scay yE z E z Hence

z

x

TE10TE10

w

z = 0- z = 0+

x0

10

sin zjk zincy

xE e

a

Page 26: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

26

Discontinuity (cont.)

Equate terms of the Fourier series:

1 1

sin sinm mm m

m x m xA A

a a

m m mA A A 1 1 1A A A

10 ˆ sint

xE y V z

a

0 0V V Modeling equation: so

0 0sca scay yE z E z

10 100 0sca scay yE E

10 100 0y yE E

Page 27: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

27

Discontinuity (cont.)

0 0V V

Z0TE Z0

TE jXp

This establishes that the circuit model for the flat strip must be a parallel element.

p pX L

Page 28: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

28

Discontinuity (cont.)

0 0x x syH z H z J x

00

1sinm m syTE

mm

m xA A J x

Z a

From the Fourier series for the magnetic field, we then have:

Magnetic field:

0

sinsy mm

m xJ x j

a

0

2sin

a

m sy

m xj J x dx

a a

00

12 sinm syTE

mm

m xA J x

Z a

Represent the strip current as

or

Page 29: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

29

Discontinuity (cont.)

1 10

2sin sinm mTE

m mm

m x m xA j

Z a a

Therefore

Hence0

2

TEm

m m

ZA j

In order to solve for jm, we need to enforce the condition that Ey = 0 on the strip.

Page 30: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

30

Discontinuity (cont.)

0 0 022

0

1/

2 2

2

sy

w wJ x I x x x

wx x

Assume that the strip is narrow, so that a single “Maxwell” function describes accurately the shape of the current on the strip:

0

2sin

a

m sy

m xj J x dx

a a

0

0

/2

0 2/2 2

0

2 1/sin

2

x w

m

x w

m xj I dx

a awx x

Hence

I0 is the unknown

(I0 is the total current on the strip.)

Page 31: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

31

Discontinuity (cont.)

Hence

where

0

2m mj I c

a

0

0

/2

2/2 2

0

1/sin

2

x w

m

x w

m xc dx

awx x

Note: cm can be evaluated in closed form (in terms of the Bessel function J0).

00 sin

2m

m xm wc J

a a

(Please see the Appendix.)

Page 32: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

32

Discontinuity (cont.)

To solve for I0, enforce the electric field integral equation (EFIE):

0inc scay yE E on strip

10

0

1

, , sin

, , sin

z

mz

jk zincy

jk zscay m

m

xE x y z e

a

m xE x y z A e

a

0 01

sin sin2 2m

m

x m x w wA x x x

a a

Hence

(unit-amplitude incident mode)

0 00,2 2

w wz x x x

Page 33: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

33

Discontinuity (cont.)

0 01

sin sin2 2m

m

x m x w wA x x x

a a

00 0

1

sin sin2 2 2

TEm

mm

Zx m x w wj x x x

a a

00 0 0

1

2sin sin

2 2 2

TEm

mm

Zx m x w wc I x x x

a a a

or

or

Page 34: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

34

Discontinuity (cont.)

00 0 0

1

2sin sin

2 2 2

TEm

mm

Zx m x w wI c x x x

a a a

This is in the form

0 0 02 2

w wf x I g x x x x

To solve for the unknown I0, we can use the idea of a “testing function.” We multiply both sides by a testing function and then integrate over the strip.

0 0

0 0

/2 /2

0

/2 /2

x w x w

x w x w

T x f x dx I T x g x dx

Page 35: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

35

Discontinuity (cont.)

0 0

0 0

/2 /2

00

1/2 /2

2sin sin

2

x w x wTEm

mmx w x w

Zx m xT x dx I c T x dx

a a a

Galerkin’s method: The testing function is the same as the basis function:

22

0

1/

2

T xw

x x

Page 36: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

36

Discontinuity (cont.)

0

0

0

0

/2

2/2 2

0

/2

00 2

1 /2 2

0

1/sin

2

2 1/sin

2

2

x w

x w

x wTEm

mm x w

xdx

awx x

Z m xI c dx

a awx x

Hence

Page 37: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

37

Discontinuity (cont.)

01 0

1

2

2

TEm

m mm

Zc I c c

a

Hence

10

20

1

22

TEm

mm

cI

Zc

a

10

20

1

TEm m

m

a cI

Z c

so

or

Page 38: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

38

Discontinuity (cont.)

Summary

10

20

1

TEm m

m

a cI

Z c

0

2m mj I c

a

0

2

TEm

m m

ZA j

0

0

1

1

, , sin

, , sin

mz

mz

jk zscay m

m

jk zscay m

m

m xE x y z A e

a

m xE x y z A e

a

00 sin

2m

m xm wc J

a a

Page 39: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

39

Discontinuity (cont.)

Reflection Coefficient:

1 11 1

1 1inc

A AA A

A

10

10

TEin

TEin

Z Z

Z Z

10

1010

TEpTE

in p TEp

jX ZZ Z jX

jX Z

From these equations, Xp may be found.

1A

Post Reactance:

where

jXp0 10TEZ Z 0 10

TEZ Z

Page 40: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

40

Discontinuity (cont.)

Result:

10

1

2TE

pjX Z

101 1 2

TEZA j

1 0 1

2j I c

a

10

20

1

TEm m

m

a cI

Z c

0

0 sin2m

m xm wc J

a a

010 2

0

1

TEZ

k a

Page 41: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

41

Appendix

In this appendix we evaluate the cm coefficients .

0

0

/2

2/2 2

0

1/sin

2

x w

m

x w

m xc dx

awx x

Use 0x x x

/20

2/2 2

1 1sin

2

w

m

w

m x xc dx

awx

Page 42: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

42

Appendix (cont.)

/20

2/2 2

1 1sin

2

w

m

w

m x xc dx

awx

0/2

2/2 02

sin cos1 1

cos sin2

w

m

w

m xm x

a ac dx

m xm xwx a a

This term integrates to zero (odd function).

or

Page 43: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

43

/20

2/2 2

1 1sin cos

2

w

m

w

m x m xc dx

a awx

/20

20 2

cos2

sin

2

w

m

m xm x a

c dxa w

x

Appendix (cont.)

or

Page 44: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

44

Next, use the transformation sin2

cos2

wx

wdx d

/20

0

cos sin2 2

sin cos2cos

2

m

m wm x wa

cwa

Appendix (cont.)

Page 45: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

45

/20

0

2sin cos sin

2m

m x m wc d

a a

Next, use the following integral identify for the Bessel function:

0

1cos sinnJ z z n d

so that

0

0

1cos sinJ z z d

0

0

1sin cos sin

2m

m x m wc d

a a

Appendix (cont.)

or

Page 46: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1

46

0

0

1sin cos sin

2m

m x m wc d

a a

00sin

2m

m x m wc J

a a

Hence

Appendix (cont.)