progress on aerospace applications of the nimrod code · alfonso g. tarditi nasa johnson space...

27
Progress on Aerospace Applications of the NIMROD Code Alfonso G. Tarditi NASA Johnson Space Center, Houston, TX & University of Houston-Clear Lake, Houston, TX

Upload: others

Post on 21-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Progress on Aerospace Applicationsof the NIMROD Code

    Alfonso G. Tarditi

    NASA Johnson Space Center, Houston, TX&

    University of Houston-Clear Lake, Houston, TX

    http://www.go2pdf.com

  • Plasma MHD Aerospace Applications

    Chemical/MHD Propulsion

    Lunar Environment

    Electric Propulsion

    Plasma Aerodynamics

    Lightning

    MHD/Chemical Prulsion

    Plasma-Spacecraft

    http://www.go2pdf.com

  • Introduction

    Application interests for MHD simulation in aerospacetechnology• MHD Augmented Propulsion (UHCL)• RF Magnetized Plasma Sources, Atmospheric Plasma

    Torches (Propulsion, Re-entry plasma) (UHCL/JSC)• Plasma Actuator/Airfoil for Hypersonic Flight (UHCL)• Plasma Actuator/Airfoil for Hypersonic Flight (UHCL)• FRC-based Electric Propulsion (Fusion/Propulsion)• Lightning Stroke Simulation (JSC)• Magnetic Reconnection (UHCL)

    http://www.go2pdf.com

  • Introduction

    NIMROD code developments: latest and in progress• Upgrade of version 3.2.4 with external arrays (n,V,p,B and

    grid) input, sources and 0-D neutrals• Externally defined, initial resistivity profile• Grid pre-processor generator for general, curved boundaries• Grid pre-processor generator for general, curved boundaries

    http://www.go2pdf.com

  • Current Developments:Lightning Stroke Plasma Channel

    http://www.go2pdf.com

  • Lightning Stroke Plasma Channel: The Big Picture

    Triggered lightning, cloud-to-ground scenario

    http://www.go2pdf.com

  • Launch of ARES I-

    http://www.go2pdf.com

  • Visualization of the Electric Field Enhancement

    [Godfrey, 1970]

    http://www.go2pdf.com

  • Model Assumptions

    • Attachment already occurred• Lighting stroke with established return current path• Lightning channel path simulated with a given initial density and

    temperature distribution, providing a lower resistivity path• Vertical electric field to support the discharge

    http://www.go2pdf.com

  • 2D Simulation Domain

    x

    y

    http://www.go2pdf.com

  • 2D Simulation Domain: Gridding Example

    http://www.go2pdf.com

  • y

    Higher Resistivity

    2D Initial Condition: Plasma Channel

    x

    Lower Resistivity

    Higher Resistivity

    http://www.go2pdf.com

  • 3D Simulation Domain

    z

    r

    http://www.go2pdf.com

  • Further Developments: Swept Stroke

    Swept arc channel: current density in region 1 is larger (shorter path) thanin region 2 [Larsson, J. Phys. D: Appl. Phys. 33, 1876 (2000)]

    http://www.go2pdf.com

  • Further Developments: Swept Stroke (II)

    Ligthning swept stroke simulation on an aircraft surface [Larsson, J. Phys.D: Appl. Phys. 33, 1876 (2000)]

    http://www.go2pdf.com

  • 0-D Plasma-Neutral Model

    • Uniform neutral gas component (with given density, flowvelocity and temperature)

    • NIMROD equations include plasma-neutral interaction viadensity, momentum and temperature sources

    • In progress: time-dependent 0-D Neutral Gas Equations

    http://www.go2pdf.com

  • ( ) nSn n D nt

    ∂+∇ ⋅ = ∇ ⋅ ∇ +

    ∂V

    pt

    ∂ + ⋅∇ = × −∇ −∇ ⋅ ∇ + ∂

    VV V V J V SB

    0-D Plasma-Neutral Model (II)

    Sources in the n, V, T NIMROD Eqs.

    pt

    + ⋅∇ = × −∇ −∇ ⋅ ∇ + ∂ VV V J V SB

    11 Tn T p S

    tnT Q

    γ γ∂ + ⋅∇ = − ∇ ⋅ −∇ ⋅ + + − ∂ −

    V V q

    http://www.go2pdf.com

  • n a ioniz e a recomb eS n·n ·v n·n ·vσ σ= −

    0-D Plasma-Neutral Model (III)

    • For given neutral atom density na and ionization andrecombination cross sections the source/sink term in thecontinuity equation is given by

    ( )v a collS mn = −V V

    • The momentum source term can be expressed in term of the totalelastic (polarization scattering) and anelastic (ionization,recombination, charge exchange) collision frequencies in theform

    http://www.go2pdf.com

  • • The time evolution neutral atom density na can be tracked from

    0-D Plasma-Neutral Model (IV)

    ( )a a e recomb ionizd n n nvd t

    σ σ= −

    • Similar (0-D) fluid equations can be written for the neutralmomentum and temperature

    • Currently the “closure” for the neutral model is simplyVa=constant

    http://www.go2pdf.com

  • Ongoing Applications

    • Magnetic nozzle flow• De Laval Magnetic Nozzle• FRC Plasmoid formation in flowing plasma

    http://www.go2pdf.com

  • Plasmoid Thruster Experiment (PTX)

    PTX Schematic (NASA MSFC/U. Alabama)

    http://www.go2pdf.com

  • Plasma Flow in Magnetic Nozzle

    • The plasma currents in the nozzle: physical analysis andestimates

    • Perturbation of the external magnetic field: qualitative picture• Reconnection patterns and detachment: physical picture

    Magnetic NozzlePlasma Flow

    http://www.go2pdf.com

  • De Laval Magnetic Nozzle NIMROD Simulation

    Mach # contours in t=0

    t=0

    r

    z

    r

    Density contours

    t=0.9 µs

    z

    http://www.go2pdf.com

  • t=170 ns

    t=18 ns

    t=0 r

    z

    De Laval Magnetic Nozzle NIMROD Simulation

    Time evolution of Mach # contours

    t=900 ns

    t=660 ns

    http://www.go2pdf.com

  • Simulation of Plasmoid Formation in the Nozzle

    NIMROD Simulation: density contours and field lines withinduced translating plasmoid in a 10 m long magnetic nozzle

    http://www.go2pdf.com

  • Simulation Hardware

    “Columbia” at NASA-Ames: 23 SGI® Altix™ Itaniunm clusters, 14,336Total Cores 88.88 teraflop/s theoretical peak

    http://www.go2pdf.com

  • Conclusions

    • MHD/NIMROD has applications in the aerospace sector• 0-D Plasma-neutral interaction model supports a larger spectrum

    of applications• NIMROD simulations set to explore innovative propulsion

    configurations

    http://www.go2pdf.com