progress report

25
Low Cost, Compact Microwave Reflectometer for Non-Destructive Testing Matthew Rangen and Keith Bruno March 3, 2005 Bradley University Department of Electrical and Computer Engineering

Upload: networkingcentral

Post on 20-May-2015

226 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: Progress Report

Low Cost, Compact Microwave Reflectometer for Non-Destructive Testing

Matthew Rangen and Keith Bruno

March 3, 2005

Bradley University

Department of Electrical and Computer Engineering

Page 2: Progress Report

Overview

• Objective

• Background

• Block Diagram

• Tasks & Schedule

• Current Results• MATLAB• Network Analyzer

• Future Work

Page 3: Progress Report

Objective

The objective of the project is to determine the reflection coefficient of an unknown load by the use of a six-port network analyzer integrated with a workstation.

Page 4: Progress Report

Background

The reflection coefficient can be found by knowing a reference signal and sampling selected power outputs in a micro-strip circuit. With these known quantities and using a specific algorithm, the reflection coefficient can be calculated.

Page 5: Progress Report

Detailed Block Diagram

Page 6: Progress Report

Tasks & Schedule(previous)

Final Exams6 to11May

Final Report due, Presentation & Final Exams29 to 5April/May

Final Report & Presentation Preparation22 to 28

Verify Operation15 to 21

·8 to 14

System Integration & Testing1 to 7April

··25 to 31

Test 6-Port·18 to 24

Spring Break11 to 17

 

·Test Programming Code4 to 10March

Fabricate 6-PortIntegrate MATLAB & A/D25 to 3Feb/March

Design & Simulate InterfaceTest Equations18 to 24

·Implement Equations in MATLAB11 to 17 

Design & Simulate 6-Port ·4 to 10February

Purchase: Detectors & USB A/D

Simulate & Test 90º Hybrid  ·28 to 3Jan/Feb

Design 90º HybridDevelop Calibration& Measuring Equations

21 to 27January

Keith BrunoMatthew Rangen

Page 7: Progress Report

MATLAB Work

OverallCalibrationFlowchart

Page 8: Progress Report

Calibration Work

Calibration FlowEquations

pi, k = Pi , k /P 4, k

TS , R = pi , k / pi , 5

Γk /Γk

2= ck + jsk

γi = (cj − ck)[(si − sj)(ck − cl) − (ci − cj)(sk − sl)] + (ck − cl)[(sl − si)(cj − ck) − (cl − ci)(sj − sk)]

fn = Tn, k *k=1

4

∑ γk

gn = Tn, k *k=1

4

∑ γk *ck

hn = 2 * Tn, k *k=1

4

∑ γ * sk

en =

(Tn, k −1) *k=1

4

∑ γk

Γk

2

Page 9: Progress Report

Calibration Work

Calibration Flow Equations Part 2

ξ 1 = (gs * hd) − (hs * gd)

ξ 2 = (hs * fd) − ( fs * hd)

ξ 3 = (hs *ed) − (es * hd)

ξ 4 = (gs * fd) − ( fs * gd)

ξ 5 = (gs *ed) − (es * gd)

Mi , j =(ξ 1

2 /2) −ξ 2ξ 3 −ξ 4ξ 5

ξ 22 + ξ 4

2

Ni , j =ξ 3

2 + ξ 52

ξ 22 + ξ 4

2

A4

2= Mi , j − (Mi , j

2 −Ni , j)(1/ 2)

a4 =A4

2*ξ 2 + ξ 3

ξ 1

b4 =A4

2*ξ 4 + ξ 5

ξ 1

Page 10: Progress Report

Calibration Work

Calibration Flow Equations Part 3

Ri , k =Ti , k −1

Γk

2 + Ti , k[ A4

2+ 2 *ck * a4 − 2* sk *b4]

ai =Ri , l(sm − sn) + Ri , m(sn − sl) + Ri , n(sl − sm)

2[cl(sm − sn) + cm(sn − sl) + cn(sl − sm)

bi =Ri , l(cm − cn) + Ri , m(cn − cl) + Ri , n(cl − cm)

2[cl(sm − sn) + cm(sn − sl) + cn(sl − sm)

Ai = ai + jbi

Page 11: Progress Report

MATLAB Work

MeasureFlowchart

Page 12: Progress Report

Measurement Work

Measurement Equations

Ai = ai + jbi

Fi =(−1)i

2qi[ Aj

2(bk −bl) + Ak

2(bl −bj) + Al

2(bj −bk)]

Gi =(−1)i

2qi[ Aj

2(ak − al) + Ak

2(al − aj) + Al

2(aj − ak)]

Hi =(−1)i

2qi[ Aj

2(akbl − albk) + Ak

2(albj − ajbl) + Al

2(ajbk − akbj)]

Γt =

Fi *Pi , t + ji=1

4

∑ Gi *Pi , t

i=1

4

Hi *Pi , t

i=1

4

Page 13: Progress Report

6-Port Network Analyzer

MSUBMSub1

Rough=0.0948 milTanD=0.0013T=1.4 milHu=3.9e+34 milCond=5.8E+7Mur=1Er=3.0H=20.0 mil

MSub

S_ParamSP1

Step=1.0 MHzStop=8.0 GHzStart=4.0 GHz

S-PARAMETERS

V_1ToneSRC1

Freq=6 GHzV=polar(1,0) V

RR1R=50 Ohm

TermTerm4

Z=50 OhmNum=4

TermTerm5

Z=50 OhmNum=5

TermTerm3

Z=50 OhmNum=3

TermTerm6

Z=50 OhmNum=6

MLANGLang1

L=9.04 mmS=5.1 milW=3.8 milSubst="MSub1"

Hybrid90HYB3

PhaseBal=0GainBal=0 dBLoss=0 dB

-900

IN ISO

Hybrid90HYB2

PhaseBal=0GainBal=0 dBLoss=0 dB

-900

IN ISO

Hybrid90HYB4

PhaseBal=0GainBal=0 dBLoss=0 dB

-900

IN ISO

TermTerm2

Z=50 OhmNum=2

TermTerm1

Z=50 OhmNum=1

Hybrid90HYB1

PhaseBal=0GainBal=0 dBLoss=0 dB

-900

IN ISO

Page 14: Progress Report

90° Hybrid

Input Port Output Port

Isolated Port Output Port

}90° phase-shift

difference

Page 15: Progress Report

90° Hybrid

TermTerm3

Z=50 OhmNum=3

MLINTL16

L=3.2029 cmW=0.127701 cmSubst="MSub1"

MLINTL15

L=3.2029 cmW=0.127701 cmSubst="MSub1"

TermTerm4

Z=50 OhmNum=4

S_ParamSP1

Step=1.0 MHzStop=8.0 GHzStart=4.0 GHz

S-PARAMETERS

MSUBMSub1

Rough=0.0948 milTanD=0.0013T=1.4 milHu=3.9e+34 milCond=5.8E+7Mur=1Er=3.0H=20.0 mil

MSub

MLINTL14

L=3.2029 cmW=0.127701 cmSubst="MSub1"

TermTerm2

Z=50 OhmNum=2

MLINTL1

L=3.2029 cmW=0.127701 cmSubst="MSub1"

TermTerm1

Z=50 OhmNum=1

MLINTL18

L=0.785475 cmW=0.211619 cmSubst="MSub1"

MLINTL2

L=0.785475 cmW=0.211619 cmSubst="MSub1"

MLINTL17

L=0.800725 cmW=0.127701 cmSubst="MSub1"

MLINTL7

L=0.800725 cmW=0.127701 cmSubst="MSub1"

MTEE_ADSTee4

W3=0.211619 cmW2=0.127701 milW1=0.127701 cmSubst="MSub1"

MTEE_ADSTee3

W3=0.127701 cmW2=0.127701 cmW1=0.211619 cmSubst="MSub1"

MTEE_ADSTee2

W3=0.127701 cmW2=0.127701 cmW1=0.211619 cmSubst="MSub1"

MTEE_ADSTee1

W3=0.211619 cmW2=0.127701 cmW1=0.127701 cmSubst="MSub1"

Page 16: Progress Report

90° Hybrid Results

4.5 5.0 5.5 6.0 6.5 7.0 7.54.0 8.0

-45

-40

-35

-30

-25

-20

-15

-10

-5

-50

0

freq, GHz

dB(S(1,1))

dB(S(1,2))

dB(S(1,3))

dB(S(1,4))

Page 17: Progress Report

90° Hybrid Results

Eqn ph=phase(S(1,4))-phase(S(1,3))

m3freq=m3=-272.650

6.000GHz

m4freq=m4=89.996

6.704GHz

m3freq=m3=-272.650

6.000GHz

m4freq=m4=89.996

6.704GHz

4.5 5.0 5.5 6.0 6.5 7.0 7.54.0 8.0

-250

-200

-150

-100

-50

0

50

100

-300

150

freq, GHz

ph

Readout

m3

Readout

m4

Page 18: Progress Report

Lange Coupler

Coupled Port

Through Port

Input Port

Isolated Port

Page 19: Progress Report

Lange Coupler

MLANGLang1

L=9.0417 mmS=5.1 milW=3.8 milSubst="MSub1"

MSUBMSub1

Rough=0.0948 milTanD=0.0013T=1.4 milHu=3.9e+34 milCond=5.8E+7Mur=1Er=3.0H=20.0 mil

MSub

TermTerm3

Z=50 OhmNum=3

TermTerm1

Z=50 OhmNum=1

TermTerm4

Z=50 OhmNum=4

S_ParamSP1

Step=1.0 MHzStop=8.0 GHzStart=4.0 GHz

S-PARAMETERS

TermTerm2

Z=50 OhmNum=2

Page 20: Progress Report

Lange Coupler Results

m3freq=m3=-11.640

6.000GHz

m2freq=m2=-1.997

6.000GHz

m1freq=m1=-5.827

6.000GHz

m4freq=m4=-15.163

6.000GHz

m3freq=m3=-11.640

6.000GHz

m2freq=m2=-1.997

6.000GHz

m1freq=m1=-5.827

6.000GHz

m4freq=m4=-15.163

6.000GHz

4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.84.0 8.0

-18

-17

-16

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-19

-1

freq, GHz

dB(S(1,1))

Readout

m3dB(S(1,2))

Readout

m2

dB(S(1,3))

Readout

m1

dB(S(1,4))

Readout

m4

Page 21: Progress Report

Future Work

• MATLAB Work• Finish MATLAB code and test with arbitrary

values• Determine the procedure of operating the

oscilloscope through remote access• Implement oscilloscope readings into

MATLAB code• Stream-line code

Page 22: Progress Report

Future Work

• Six-Port Network Analyzer• Determine power measurements in ADS at the

four output ports• Design loads used for calibration• Simulate six-port network in ADS• Fabricate network analyzer

Page 23: Progress Report

Tasks & Schedule(current)

Matthew Rangen Keith Bruno

January 21 to 27 Develop Calibration & Measuring Equations

Design & Simulate 90º Hybrid

Jan/Feb 28 to 3 · · February 4 to 10 · 11 to 17 Implement Equations in MAT LAB

Design & Simulate Lange Coupler

18 to 24 · · Feb/March 25 to 3 · Design & Simulate 6-port March 4 to 10 Test Programming Code · 11 to 17 Spring Break 18 to 24 · Fabricate 6-port Parts 25 to 31 Integrate MATLAB & Oscilloscopes Fabricate 6-port April 1 to 7 Purchase Detectors 8 to 14 Test 6-port 15 to 21 System Integration & Testing 22 to 28 Final Report & Presentation Preparation April/May 29 to 5 Final Report due, Presentation & Final Exams May 6 to11 Final Exams

Page 24: Progress Report

Overview

• Objective

• Background

• Block Diagram

• Tasks & Schedule

• Current Results• MATLAB• Network Analyzer

• Future Work

Page 25: Progress Report

Questions?

Check us out at:

cegt201.bradley.edu/projects/proj2005/sixpna