proj 2 · 2019-02-12 · accidental pinhole and pinspeck cameras revealing the scene outside the...

118

Upload: others

Post on 03-Aug-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR
Page 2: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Proj 2

Looks like the evaluation function changed in converting to Python, and 80% on Notre Dame is more tricky to reach.

We will tweak the percentages.

Leaderboard / Gradescope is up.

Page 3: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Extra Credit

Please tell us which extra credit you attempted in its own section of your writeup.

I’ve amended the writeup.tex to make this explicit.

Page 4: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Alternative Textbook

Concise Computer Vision, Klette, 2014

Page 5: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Bela Borsodi

Page 6: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Bela Borsodi

Page 7: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Lenses

Page 8: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Let’s design a camera

Idea 1: Put a sensor in front of an object

Do we get a reasonable image?

Slide source: Seitz

sensorworld

Page 9: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Let’s design a camera

Idea 2: Add a barrier to block most rays– Pinhole in barrier

– Only sense light from one direction.• Reduces blurring.

– In most cameras, this aperture can vary in size.

Slide source: Seitz

sensorworld barrier

Page 10: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Pinhole camera model

Figure from Forsyth

f

f = Focal length

c = Optical center of the camera

c

Real

object

Page 11: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Projection: world coordinates→image coordinates

Camera

Center

(0, 0, 0)

=

Z

Y

X

P.

.

. f Z Y

=

V

Up

.V

U

Z

fXU *−=

Z

fYV *−=

What is the effect if f and Z are equal?

p = distance from

image center

Image

center

(u0, v0)

Page 12: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Camera Obscura

The first camera• Known to Aristotle

• Depth of the room is the effective focal length

Camera Obscura, Gemma Frisius, 1558

Page 13: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Home-made pinhole camera

http://www.debevec.org/Pinhole/

Why so

blurry?

Page 14: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Shrinking the aperture

Less light gets through

[Steve Seitz]

Integrate over fewer angles

Page 15: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Shrinking the aperture

Why not make the aperture as small as possible?• Less light gets through

• Diffraction effects…

Less light gets through

[Steve Seitz]

Page 16: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Shrinking the aperture - diffraction

Light diffracts as wavelength of aperture equals wavelength of light

Page 17: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

The reason for lenses

Slide by Steve Seitz

Page 18: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Focus and Defocus

A lens focuses light onto the film• There is a specific distance at which objects are “in focus”

– other points project to a “circle of confusion” in

the image

• Changing the shape of the lens changes this distance

“circle of

confusion”

or coma

Slide by Steve Seitz

sensorworld lens

Page 19: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Thin lenses

Thin lens equation:

Any object point satisfying this equation is in focus

What is the shape of the focus region?

How can we change the focus region?

Thin lens applet: https://sites.google.com/site/marclevoylectures/applets/operation-of-a-thin-lens(by Andrew Adams, Nora Willett, Marc Levoy)

Slide by Steve Seitz

1

𝑓−

1

𝑑𝑜=

1

𝑑𝑖

Page 20: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Beyond Pinholes: Real apertures

Bokeh:

[Rushif – Wikipedia]

Page 21: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Depth Of Field

Page 22: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Depth of Field

Page 23: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Depth of Field

http://www.cambridgeincolour.com/tutorials/depth-of-field.htm

Page 24: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Aperture controls Depth of Field

Changing the aperture size affects depth of

field• A smaller aperture increases the range in which the object

is approximately in focus

• But small aperture reduces amount of light – need to

increase exposure

Page 25: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Varying the aperture

Large aperture = small DOF Small aperture = large DOF

Page 26: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Accidental Cameras

Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture.

Antonio Torralba, William T. Freeman

Page 27: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Accidental Cameras

James Hays

Page 28: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

DSLR – Digital Single Lens Reflex Camera

Page 29: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

DSLR – Digital Single Lens Reflex Camera

Your

eye

The

world

1. Objective (main) lens

2. Mirror

3. Shutter

4. Sensor

5. Mirror in raised position

6. Viewfinder focusing lens

7. Prism

8. Eye prescription lens

“See what the main lens sees”

Page 30: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Shutters

[The Slo-Mo Guys]

Page 31: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Shutters

[The Slo-Mo Guys]

Page 32: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Shutters

[The Slo-Mo Guys]

Page 33: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Sensors: Rolling shutter vs. global shutter

Most modern cameras have purely digital shutters.

[Reddit – r/educationalgifs –

u/Mass1m01973]

Page 34: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Sensor ISO

ISO = old film terminology

= sensitivity to light

ISO 200 is twice as sensitive as ISO 100.

Digital Photography:

ISO = ‘gain’ or amplification of sensor signal

Page 35: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

[Don Pettit]

Page 36: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

[Don Pettit]

Page 37: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Field of View (Zoom)

Page 38: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Field of View (Zoom)

Page 39: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Field of View (Zoom) = Cropping

Page 40: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

f

FOV depends of Focal Length

Smaller FOV = larger Focal Length

f

Page 41: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

From Zisserman & Hartley

Page 42: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Field of View / Focal Length

Large FOV, small f

Camera close to car

Small FOV, large f

Camera far from the car

Page 43: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Fun with Focal Length (Jim Sherwood)

http://www.hash.com/users/jsherwood/tutes/focal/Zoomin.mov

Page 44: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Lens Flaws

Page 45: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Lens Flaws: Chromatic Aberration

Dispersion: wavelength-dependent refractive index• (enables prism to spread white light beam into rainbow)

Modifies ray-bending and lens focal length: f()

Color fringes near edges of image

Corrections: add ‘doublet’ lens of flint glass, etc.

Page 46: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Chromatic Aberration

Near Lens Center Near Lens Outer Edge

Page 47: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Radial Distortion (e.g. ‘barrel’ and ‘pin-cushion’)

Straight lines curve around the image center

Page 48: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Radial Distortion

Radial distortion of the image• Caused by imperfect lenses

• Deviations are most noticeable for rays

that pass through the edge of the lens

No distortion Pin cushion Barrel

Corrected Barrel Distortion

Image from Martin Habbecke

Page 49: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Vignetting

Optical system occludes rays entering at obtuse angles.

Causes darkening at edges.

‘Old mode’ - but WHY?

Computer-aided lens design (optimization) and

manufacturing made removing (all) these flaws

_much_ easier.

Page 50: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

A photon’s life choices

• Absorption

• Diffusion

• Reflection

• Transparency

• Refraction

• Fluorescence

• Subsurface scattering

• Phosphorescence

• Interreflection

λ

light source

?

James Hays

Page 51: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

A photon’s life choices

• Absorption

• Diffusion

• Reflection

• Transparency

• Refraction

• Fluorescence

• Subsurface scattering

• Phosphorescence

• Interreflection

λ

light source

James Hays

Page 52: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

A photon’s life choices

• Absorption

• Diffuse Reflection

• Reflection

• Transparency

• Refraction

• Fluorescence

• Subsurface scattering

• Phosphorescence

• Interreflection

λ

light source

James Hays

Page 53: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

A photon’s life choices

• Absorption

• Diffusion

• Specular Reflection

• Transparency

• Refraction

• Fluorescence

• Subsurface scattering

• Phosphorescence

• Interreflection

λ

light source

James Hays

Page 54: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

A photon’s life choices

• Absorption

• Diffusion

• Reflection

• Transparency

• Refraction

• Fluorescence

• Subsurface scattering

• Phosphorescence

• Interreflection

λ

light source

James Hays

Page 55: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

A photon’s life choices

• Absorption

• Diffusion

• Reflection

• Transparency

• Refraction

• Fluorescence

• Subsurface scattering

• Phosphorescence

• Interreflection

λ

light source

James Hays

Page 56: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

A photon’s life choices

• Absorption

• Diffusion

• Reflection

• Transparency

• Refraction

• Fluorescence

• Subsurface scattering

• Phosphorescence

• Interreflection

λ1

light source

λ2

James Hays

Page 57: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

A photon’s life choices

• Absorption

• Diffusion

• Reflection

• Transparency

• Refraction

• Fluorescence

• Subsurface scattering

• Phosphorescence

• Interreflection

λ

light source

James Hays

Page 58: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

A photon’s life choices

• Absorption

• Diffusion

• Reflection

• Transparency

• Refraction

• Fluorescence

• Subsurface scattering

• Phosphorescence

• Interreflection

t=1

light source

t=n

James Hays

Page 59: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

A photon’s life choices

• Absorption

• Diffusion

• Reflection

• Transparency

• Refraction

• Fluorescence

• Subsurface scattering

• Phosphorescence

• Interreflection

λ

light source

(Specular Interreflection)

James Hays

Page 60: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Lambertian Reflectance

• In computer vision, surfaces are often assumed to be ideal diffuse reflectors with no dependence on viewing direction.

James Hays

Page 61: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Grayscale intensity

0.92 0.93 0.94 0.97 0.62 0.37 0.85 0.97 0.93 0.92 0.99

0.95 0.89 0.82 0.89 0.56 0.31 0.75 0.92 0.81 0.95 0.91

0.89 0.72 0.51 0.55 0.51 0.42 0.57 0.41 0.49 0.91 0.92

0.96 0.95 0.88 0.94 0.56 0.46 0.91 0.87 0.90 0.97 0.95

0.71 0.81 0.81 0.87 0.57 0.37 0.80 0.88 0.89 0.79 0.85

0.49 0.62 0.60 0.58 0.50 0.60 0.58 0.50 0.61 0.45 0.33

0.86 0.84 0.74 0.58 0.51 0.39 0.73 0.92 0.91 0.49 0.74

0.96 0.67 0.54 0.85 0.48 0.37 0.88 0.90 0.94 0.82 0.93

0.69 0.49 0.56 0.66 0.43 0.42 0.77 0.73 0.71 0.90 0.99

0.79 0.73 0.90 0.67 0.33 0.61 0.69 0.79 0.73 0.93 0.97

0.91 0.94 0.89 0.49 0.41 0.78 0.78 0.77 0.89 0.99 0.93

Page 62: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

ColorR

G

B

James Hays

Page 63: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Images in Python NumpyN x M RGB image “im”

– im[0,0,0] = top-left pixel value in R-channel

– Im[x, y, b] = x pixels to right, y pixels down in the bth channel

– Im[N-1, M-1, 3] = bottom-right pixel in B-channel

0.92 0.93 0.94 0.97 0.62 0.37 0.85 0.97 0.93 0.92 0.99

0.95 0.89 0.82 0.89 0.56 0.31 0.75 0.92 0.81 0.95 0.91

0.89 0.72 0.51 0.55 0.51 0.42 0.57 0.41 0.49 0.91 0.92

0.96 0.95 0.88 0.94 0.56 0.46 0.91 0.87 0.90 0.97 0.95

0.71 0.81 0.81 0.87 0.57 0.37 0.80 0.88 0.89 0.79 0.85

0.49 0.62 0.60 0.58 0.50 0.60 0.58 0.50 0.61 0.45 0.33

0.86 0.84 0.74 0.58 0.51 0.39 0.73 0.92 0.91 0.49 0.74

0.96 0.67 0.54 0.85 0.48 0.37 0.88 0.90 0.94 0.82 0.93

0.69 0.49 0.56 0.66 0.43 0.42 0.77 0.73 0.71 0.90 0.99

0.79 0.73 0.90 0.67 0.33 0.61 0.69 0.79 0.73 0.93 0.97

0.91 0.94 0.89 0.49 0.41 0.78 0.78 0.77 0.89 0.99 0.93

0.92 0.93 0.94 0.97 0.62 0.37 0.85 0.97 0.93 0.92 0.99

0.95 0.89 0.82 0.89 0.56 0.31 0.75 0.92 0.81 0.95 0.91

0.89 0.72 0.51 0.55 0.51 0.42 0.57 0.41 0.49 0.91 0.92

0.96 0.95 0.88 0.94 0.56 0.46 0.91 0.87 0.90 0.97 0.95

0.71 0.81 0.81 0.87 0.57 0.37 0.80 0.88 0.89 0.79 0.85

0.49 0.62 0.60 0.58 0.50 0.60 0.58 0.50 0.61 0.45 0.33

0.86 0.84 0.74 0.58 0.51 0.39 0.73 0.92 0.91 0.49 0.74

0.96 0.67 0.54 0.85 0.48 0.37 0.88 0.90 0.94 0.82 0.93

0.69 0.49 0.56 0.66 0.43 0.42 0.77 0.73 0.71 0.90 0.99

0.79 0.73 0.90 0.67 0.33 0.61 0.69 0.79 0.73 0.93 0.97

0.91 0.94 0.89 0.49 0.41 0.78 0.78 0.77 0.89 0.99 0.93

0.92 0.93 0.94 0.97 0.62 0.37 0.85 0.97 0.93 0.92 0.99

0.95 0.89 0.82 0.89 0.56 0.31 0.75 0.92 0.81 0.95 0.91

0.89 0.72 0.51 0.55 0.51 0.42 0.57 0.41 0.49 0.91 0.92

0.96 0.95 0.88 0.94 0.56 0.46 0.91 0.87 0.90 0.97 0.95

0.71 0.81 0.81 0.87 0.57 0.37 0.80 0.88 0.89 0.79 0.85

0.49 0.62 0.60 0.58 0.50 0.60 0.58 0.50 0.61 0.45 0.33

0.86 0.84 0.74 0.58 0.51 0.39 0.73 0.92 0.91 0.49 0.74

0.96 0.67 0.54 0.85 0.48 0.37 0.88 0.90 0.94 0.82 0.93

0.69 0.49 0.56 0.66 0.43 0.42 0.77 0.73 0.71 0.90 0.99

0.79 0.73 0.90 0.67 0.33 0.61 0.69 0.79 0.73 0.93 0.97

0.91 0.94 0.89 0.49 0.41 0.78 0.78 0.77 0.89 0.99 0.93

R

G

B

RowColumn

James Hays

Page 64: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

ANATOMYBut what is color?

Page 65: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

The Eye

• The human eye is a camera– Iris - colored annulus with radial muscles

– Pupil - the hole (aperture) whose size is controlled by the iris

– What’s the sensor?

– photoreceptor cells (rods and cones) in the retina

Slide by Steve Seitz

Page 66: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

The Retina

Cross-section of eye

Ganglion cell layer

Bipolar cell layer

Receptor layer

Pigmentedepithelium

Ganglion axons

Cross section of retina

Page 67: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Wait, the blood vessels are in front of the photoreceptors??

https://www.youtube.com/watch?v=L_W-IXqoxHA

Page 68: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

What humans don’t have: tapetum lucidum

Human eyes can reflect a tiny

bit and blood in the retina

makes this reflection red.

James Hays

Page 69: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Tapetum lucidum exposed (cow eye)

Page 70: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

© Stephen E. Palmer, 2002

Cones

cone-shaped

less sensitive

operate in high light

color vision

Two types of light-sensitive receptors

Rods

rod-shaped

highly sensitive

operate at night

gray-scale vision

James Hays

Page 71: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

.

0

150,000

100,000

50,000

020 40 60 8020406080

Visual Angle (degrees from fovea)

Rods

Cones Cones

Rods

FoveaBlindSpot

# R

ece

pto

rs/m

m2

© Stephen E. Palmer, 2002

Distribution of Rods and Cones

Night Sky: why are there more stars off-center?

Averted vision: http://en.wikipedia.org/wiki/Averted_visionJames Hays

Page 72: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Rod / Cone sensitivity

Page 73: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Does the eye alias?

Spatially, apparently not. The retina (sensor) has high resolution, but the optics (lens) of the eye cannot meet that resolution. The image is blurred optically before being sampled (removes high-frequency content!)

[Thanks to Leslie Bresnahan]

4x downsample

nearest neighbor

Page 74: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Electromagnetic Spectrum

http://www.yorku.ca/eye/photopik.htm

Human Luminance Sensitivity Function

Page 75: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

© Stephen E. Palmer, 2002

.

400 450 500 550 600 650

RE

LA

TIV

E A

BS

OR

BA

NC

E (

%)

WAVELENGTH (nm.)

100

50

440

S

530 560 nm.

M L

Three kinds of cones:

Physiology of Color Vision

Page 76: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

The Physics of Light

Any patch of light can be completely described

physically by its spectrum: the number of photons

(per time unit) at each wavelength 400 - 700 nm.

400 500 600 700

Wavelength (nm.)

# Photons(per ms.)

© Stephen E. Palmer, 2002

Page 77: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

The Physics of Light

.

# P

hoto

ns

D. Normal Daylight

Wavelength (nm.)

B. Gallium Phosphide Crystal

400 500 600 700

# P

hoto

ns

Wavelength (nm.)

A. Ruby Laser

400 500 600 700

400 500 600 700

# P

hoto

ns

C. Tungsten Lightbulb

400 500 600 700

# P

hoto

ns

Some examples of the spectra of light sources

© Stephen E. Palmer, 2002

Page 78: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

The Physics of Light

Some examples of the reflectance spectra of surfaces

Wavelength (nm)

% P

hoto

ns R

eflecte

d

Red

400 700

Yellow

400 700

Blue

400 700

Purple

400 700

© Stephen E. Palmer, 2002

Page 79: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

© Stephen E. Palmer, 2002

.

400 450 500 550 600 650

RE

LA

TIV

E A

BS

OR

BA

NC

E (

%)

WAVELENGTH (nm.)

100

50

440

S

530 560 nm.

M L

Three kinds of cones:

Physiology of Color Vision

• Why are M and L cones so close?

• Why are there 3?

Page 80: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Impossible Colors

Can you make the cones respond in ways that typical light spectra never would?

http://en.wikipedia.org/wiki/Impossible_colors

James Hays

Page 81: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR
Page 82: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Tetrachromatism

• Most birds, and many other animals, have cones for ultraviolet light.

• Some humans seem to have four cones (12% of females).

• True tetrachromatism is _rare_; requires learning.

Bird cone

responses

James Hays

Page 83: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Bee vision

Page 84: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR
Page 85: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

What is color?

Why do we even care about human vision in this class?

Page 86: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Why do we care about human vision?

• We don’t, necessarily.

• But biological vision shows that it is possible to make important judgements from images.

James Hays

Page 87: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Why do we care about human vision?

• We don’t, necessarily.

• But biological vision shows that it is possible to make important judgements from images.

• It’s a human world -> cameras imitate the frequency response of the human eye to try to see as we see.

Page 88: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Ornithopters

James Hays

Page 89: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

"Can machines fly like a bird?" No, because airplanes don’t flap.

"Can machines fly?" Yes, but airplanes use a different mechanism.

"Can machines perceive?" Is this question like the first, or like the second?

Adapted from Peter Norvig

Page 90: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Cameras with Three Sensors

Objective Lens

[Edmund Optics; Adam Wilt]

Page 91: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Color Sensing in Camera (RGB)

• 3-chip vs. 1-chip: quality vs. cost

• Why more green?

http://www.cooldictionary.com/words/Bayer-filter.wikipedia

Why 3 colors?

Slide by Steve Seitz

Page 92: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Cheaper/More Compact Color Sensing: Bayer Grid

Estimate RGBat ‘G’ cells from neighboring values

Slide by Steve Seitz

Page 93: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Why more green?

Approximate human spectral sensitivity

Less than

~400nm to 10nm

= ultraviolet (UV)

Greater than

~700nm to 1mm

= infrared (IR)

Human visible portion

of electromagnetic

(EM) spectrum

Page 94: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

RGB Camera Color Response

What’s going

on over here?

MaxMax.com

Page 95: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Display Color Response

Page 96: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Display Color Response

Page 97: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Color spaces

How can we represent color?

http://en.wikipedia.org/wiki/File:RGB_illumination.jpg

Page 98: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Color spaces: RGB

0,1,0

0,0,1

1,0,0

Image from: http://en.wikipedia.org/wiki/File:RGB_color_solid_cube.png

Any color = r*R + g*G + b*B• Strongly correlated channels

• Non-perceptual

Default color space

R = 1(G=0,B=0)

G = 1(R=0,B=0)

B = 1(R=0,G=0)

Page 99: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

IS COLOR A VECTOR SPACE?THINK-PAIR-SHARE

Got it. C = r*R + g*G + b*B

Page 100: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Color spaces: HSV

Intuitive color space

Page 101: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

If you had to choose, would you rather go without:- intensity (‘value’), or- hue + saturation (‘chroma’)?

Think-Pair-Share

James Hays

Page 102: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Most information in intensity

Only color shown – constant intensity

James Hays

Page 103: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Most information in intensity

Only intensity shown – constant color

James Hays

Page 104: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Most information in intensity

Original image

James Hays

Page 105: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Color spaces: HSV

Intuitive color space

H(S=1,V=1)

S(H=1,V=1)

V(H=1,S=0)

James Hays

Page 106: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Color spaces: YCbCr

Y(Cb=0.5,Cr=0.5)

Cb(Y=0.5,Cr=0.5)

Cr(Y=0.5,Cb=05)

Y=0 Y=0.5

Y=1Cb

Cr

Fast to compute, good for

compression, used by TV

James Hays

Page 107: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Most JPEG images & videos subsample chroma

Page 108: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

IS COLOR PERCEPTION A VECTOR SPACE?

Page 109: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Color spaces: L*a*b*

“Perceptually uniform”* color space

L(a=0,b=0)

a(L=65,b=0)

b(L=65,a=0)

James Hays

Page 110: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

XKCD

Page 111: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

More references

• https://www.colorsystem.com/

• A description of many different color systems developed through history.

• Navigate from the right-hand links.

• Thanks to Alex Nibley!

Page 112: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR
Page 113: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR
Page 114: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Rainbow color map considered harmfulBorland and Taylor

Page 115: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

WHY DOES COLOR LOOK LIKE IT MAPS SMOOTHLY TO A CIRCLE?

Wait a minute…

“Intuitive” color space?

Page 116: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

‘Color’ != position on EM spectrum

Our cells induce color perception by interpreting spectra.

Most mammals are dichromats:

• Lack ‘L’ cone; cannot distinguish green-red

• 1% of men (protanopia color blindness)

Trichromaticity evolved.No implicit reason for effect ofextra cone to be linear.

Thanks to Cam Allen-Lloyd

.

400 450 500 550 600 650

RE

LA

TIV

E A

BS

OR

BA

NC

E (

%)

WAVELENGTH (nm.)

100

50

440

S

530 560 nm.

M L

Page 117: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

‘Color’ != position on EM spectrum

Many different ways to parameterize color.Ask Prof. Thomas Serre for a qualified answer.

Or…“When some primates started growing a third cone in their retinas, the old bipolar system remained, with the third cone adding a 2nd dimension of color encoding: red versus green. since color is now encoded in a 2d space, you find that you can draw a circle of colors in that space, which when you think about the fact that wavelength is 1d is really weird.”

- aggasalk, Reddit.

Thanks to Alexander Nibley

Page 118: Proj 2 · 2019-02-12 · Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman. Accidental Cameras. James Hays. DSLR

Held and Hein (1963)