projectile and circular motion

Upload: penny19

Post on 05-Apr-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 Projectile and Circular Motion

    1/37

    CHAPTER

    3Projectile and circular motion

    REmEmbER

    Before beginning this chapter, youshould be able to:

    analyseuniformmotionalongastraightlinealgebraically

    performvectoraddition

    resolvevectorsintocomponents

    applytheenergyconservationmodeltoenergytransfersandtransformations

    usetheareaunderaforce-versus-distance(ordisplacement)graphtodetermineworkdonebyaforcewithchangingmagnitude.

    KEy idEAs

    After completing this chapter, youshould be able to:

    analysethemotionofprojectilesnearEarthssurface

    analyseuniformcircularmotioninahorizontalplane

    applyNewtonssecondlawtonon-uniformcircularmotioninaverticalplane

    analysethemotionofplanetsandsatellitesbymodellingtheirorbitsasuniformcircularorbitalmotion

    applyNewtonsLawofUniversalGravitationtothemotionofplanetsandsatellites

    analyseenergytransformationsasobjectschangepositioninachanginggravitationaleld

    distinguishbetweenweightlessnessandapparentweightlessness.

    Predicting the path of a projectile can be a matter of life and death.

  • 8/2/2019 Projectile and Circular Motion

    2/37

    47CHAPTER 3 Projectile and circular motion

    Projectile motionAny object that is launchedinto the air is a projectile. A basketball throwntowardsagoal,atrapezeartistsoaringthroughtheair,andapackagedroppedfromahelicopterareallexamplesofprojectiles.

    Exceptfor thoseprojectileswhosemotion isinitiallystraight upor down,orthosethathavetheirownpowersource(likeaguidedmissile),projectiles

    generally follow a parabolic path. Deviations from this path can be causedeitherbyairresistance,byspinningoftheobjectorbywind.Theseeffectsareoftensmallandcanbeignoredinmanycases.Amajorexception,however,istheuseofspininmanyballsports,butthiseffectwillnotbedealtwithinthisbook.

    Falling downImagine a ball that has been released somedistance above the ground. Once the ballisset inmotion, the only forces acting onitaregravity(straightdown)and air resistance(straightup).

    After the ball is released, the projectiondevice (hand, gun, slingshot or whatever)stopsexertingadownwardsforce.

    The net force on the ball in the gure atrightisdownwards.Asaresult,theballaccel-eratesdownwards.Ifthesizeoftheforcesandthemassoftheballareknown,theaccelera-tioncanbecalculatedusingNewtonsSecondLawofMotion.

    Often the force exerted on the ball by airresistanceisverysmallincomparisontotheforce ofgravity, and socan beignored.Thismakesitpossibletomodelprojectilemotion

    byassumingthattheaccelerationoftheballisdueonlytogravityandisaconstant9.8ms -2downwards.

    sample problem 3.1

    Ahelicopterdeliveringsuppliestoaood-strickenfarmhovers100m abovetheground.Apackageofsuppliesisdroppedfromrest,justoutsidethedoorofthehelicopter.Airresistancecanbeignored.(a) Calculatehowlongittakesthepackagetoreachtheground.(b) Calculate how farfromits originalposition thepackagehas fallen after

    0.5s,1.0s,1.5s,2.0setc.untilthepackagehashittheground.(Youmay

    liketouseaspreadsheethere.)Drawascalediagramofthepackagespos-itionathalf-secondintervals.

    (a) u=0ms-1,x=100m,a=10ms-2,t=?

    x=ut+1

    2at

    2

    100m=0ms-1t+1

    2(10ms-2)t2

    100

    5 0.=t2

    t=4.5s

    weight

    air resistance

    velocity

    The forces acting on a ball

    falling downwards

    weight

    air resistance

    velocity

    The forces acting on a ball

    falling downwards

    Air resistance istheforce

    appliedtoanobjectoppositeto

    itsdirectionofmotion,bythe

    airthroughwhichitismoving.

    Air resistance istheforce

    appliedtoanobjectoppositeto

    itsdirectionofmotion,bythe

    airthroughwhichitismoving.

    eLessons:

    Ball toss movie

    eles-0031

    Air resistance movie

    eles-0035

    eBookpluseBookplus

    eLessons:

    Ball toss movie

    eles-0031

    Air resistance movie

    eles-0035

    eBookpluseBookplus

    Solution:Solution:

  • 8/2/2019 Projectile and Circular Motion

    3/37

    UNIT 3 AREA OF STUDY 1 Motion in one and two dimensions48

    (Note:thenegativesquarerootcanbeignoredhereasweareinterestedonlyin motionthathasoccurredafterthepackagewasreleasedatt=0,i.e.positivetimes.)

    (b) t=0.5s,u=0ms-1,a=10ms-2,x=?

    x=ut+1

    2at2

    =00.5s+

    1

    2 (10ms-2

    )(0.5s)2

    =1.23m

    Repeatthisfort=1s,1.5s,2setc.togaintheresultslistedinthefol-lowingtableandillustratedatleft.

    Table 3.1 Vertical distance travelled over time

    TIME (s) 0.5 1 1.5 2 2.5 3 3.5 4 4.5

    VERTICAL

    DISTANCE (m)1.3 5 11 20 31 45 61 80 100

    Revision question 3.1

    A camera is dropped by a tourist from a lookout and falls vertically to the ground.The thud of the camera hitting the hard ground below is heard by the tourist3.0 seconds later. Air resistance and the time taken for the sound to reach thetourist can be ignored.

    (a) How far did the camera fall?

    (b) What was the velocity of the camera when it hit the ground below?

    Terminal velocity

    The air resistance on a falling object increases as its velocity increases. Anobject falling fromrest initially experiencesno air resistance. As theobjectaccelerates due to gravity (see the diagram on page 47), the air resistanceincreases. Eventually, if the object doesnt hit a surface rst, the air resist-ancewillbecomeaslargeastheobjectsweight.Thenetforceonitbecomeszeroandtheobjectcontinuestofallwithaconstantvelocity,referredtoasitsterminal velocity.

    Moving and fallingIfaballisthrownhorizontally,theonlyforceactingontheballonceithasbeenreleasedisgravity(ignoringairresistance).Astheforceofgravityisthesame regardlessofthemotionof theball, theballwillstillaccelerate down-

    wardsatthesamerateasif itweredropped.Therewillnotbeanyhorizontalaccelerationasthereisnonetforceactinghorizontally.Thismeansthatwhiletheballsverticalvelocitywillchange,itshorizontalvelocityremainsthesamethroughoutitsmotion.

    Itistheconstanthorizontalvelocityandchangingverticalvelocitythatgiveprojectilestheircharacteristicparabolicmotion.

    Noticethat thevertical distance travelled bythe ballin each time periodincreases,butthatthehorizontaldistanceisconstant.

    1.3

    5.0

    11

    20

    31

    45

    61

    80

    0.0

    100

    Verticaldistanc

    e(m)

    ground

    1.3

    5.0

    11

    20

    31

    45

    61

    80

    0.0

    100

    Verticaldistanc

    e(m)

    ground

    Afallingobjectreachesits

    terminal velocitywhenthe

    upwardsairresistancebecomes

    equaltothedownwardforceofgravity.

    Afallingobjectreachesits

    terminal velocitywhenthe

    upwardsairresistancebecomes

    equaltothedownwardforceofgravity.

  • 8/2/2019 Projectile and Circular Motion

    4/37

    49CHAPTER 3 Projectile and circular motion

    The vertical

    velocity

    increases

    (i.e. object

    accelerates).

    The horizontal velocity remains the

    same (i.e. there is no acceleration).

    Position of a ball at constant time intervals

    Keep them separated

    Inmodellingprojectilemotion,theverticalandhorizontalcomponentsofthemotionaretreatedseparately.1. The total time taken for the projectile motion is determined by the

    verticalpartofthemotionastheprojectilecannotcontinuetomovehori-zontally once it has hit the ground, the target or whatever else it mightcollidewith.

    2. Thistotal time can then be usedto calculate the horizontaldistance, orrange,overwhichtheprojectiletravels.

    sample problem 3.2Imaginethehelicopterdescribedinsampleproblem3.1isnotstationary,butisyingataslowandsteadyspeedof20ms-1andis100mabovetheground

    whenthepackageisdropped.(a) Calculatehowlongittakesthepackagetohittheground.(b) Whatistherangeofthepackage?(c) Calculatetheverticaldistancethepackagehasfallenafter0.5s,1.0s,1.5s,

    2.0s,etc.untilthepackagehasreachedtheground.(Youmayliketouseaspreadsheethere.)Thencalculatethecorrespondinghorizontaldistance,andhencedrawascalediagramofthepackagespositionathalf-secondintervals.

    Remember,thehorizontalandverticalcomponentsofthepackagesmotionmustbeconsideredseparately.

    (a) Inthispartofthequestiontheverticalcomponentisimportant.Verticalcomponent:u=0ms-1,x=100m,a=10ms-2,t=?

    x=ut+1

    2at

    2

    100m=0ms-1t+1

    2(10ms-2)t2

    100

    5 0.=t2

    t=4.5s

    Solution:Solution:

  • 8/2/2019 Projectile and Circular Motion

    5/37

    UNIT 3 AREA OF STUDY 1 Motion in one and two dimensions50

    (Note:again,thepositivesquarerootistakenasweareconcernedonly

    withwhathappensaftert=0.)

    (b) Therangeofthepackageisthehorizontaldistanceoverwhichittravels.It

    isthehorizontalcomponentofvelocitythatmustbeusedhere.

    Horizontalcomponent:u=20ms-1(Theinitialvelocityofthepackage

    is the same as the velocity of the helicopter in which it has been

    travelling.) a=0ms-2 (No forces act horizontally so there is no horizontal

    acceleration.)

    t=4.5s(frompart(a)ofthisexample)

    x=?

    x=ut+1

    2at2

    =20ms-14.5s+0

    =90m

    (c)

    Table 3.2 Vertical and horizontal components of thepackages motion

    VERTICAL COMPONENT HORIZONTAL COMPONENT

    u=0ms-1,t=0.5s,a=10ms-2,x=?

    x=ut+1

    2at

    2

    =0ms-10.5s+1

    2(10ms-2)(0.5s)2

    =1.3m

    u=20ms-1,t=0.5s,a=0ms-2,x=?

    x=ut+1

    2at

    2

    =20ms-10.5s+0

    =10m

    Repeatthecalculationsshownintable3.2fort=1s,1.5s,2s,etc.togaintheresultsshownintable3.3.Thescalediagramofthepackagespositionis

    shownonpage51.

    Table 3.3 Vertical and horizontal distance travelled over time

    TIME (s)

    VERTICAL DISTANCE

    (m)

    HORIZONTAL

    DISTANCE (m)

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    4.5

    1.3

    5.0

    11

    20

    31

    45

    61

    80

    100

    10

    20

    30

    40

    50

    60

    70

    80

    90

    eModelling:

    Falling from a helicopter

    Spreadsheets model a package

    falling from a helicopter.

    doc-0033

    eBookpluseBookplus

    eModelling:

    Falling from a helicopter

    Spreadsheets model a package

    falling from a helicopter.

    doc-0033

    eBookpluseBookplus

  • 8/2/2019 Projectile and Circular Motion

    6/37

    51CHAPTER 3 Projectile and circular motion

    1.3

    5.0

    11

    20

    31

    45

    61

    80

    Verticaldistance(m)

    Horizontal distance (m)

    0.0

    0 10 20 30 40 50 60 70 80 90

    100

    Revision question 3.2

    A ball is thrown horizontally at a speed of 40 m s1 from the top of a cliff into theocean below and takes 4.0 seconds to land in the water. Air resistance can beignored.

    (a) What is the height of cliff above sea level of the throwers hand releases theball from a height of 2.0 metres above the ground?

    (b) What horizontal distance did the ball cover?

    (c) Calculate the vertical component of the velocity at which the ball hits thewater.

    (d) At what angle to the horizontal does the ball strike the water?

    What goes up must come downMostprojectilesaresetinmotionwithvelocity.Thesimplestcaseisthatofaballthrowndirectlyupwards.Theonlyforceactingontheballisthatofgravity(ignoringairresistance).Theballacceleratesdownwards.Initially,thisresultsintheballslowingdown.Eventually,itcomestoahalt,thenbeginstomovedownwards,speedingupasitgoes.Noticethat,whenairresistanceisignored,themotionoftheballisiden-

    ticalwhetheritisgoinguporcomingdown.Theballwillreturnwiththesamespeedwithwhichitwasprojected.Throughoutthemotionillustratedinthe

    Digital doc:

    Investigation 3.1:

    Predicting the range of

    a projectile

    The aim of this investigation is

    to predict the range (that is, thehorizontal distance travelled) of

    a projectile with a known initial

    horizontal velocity, and then to

    test the prediction.

    eBookpluseBookplus

    Digital doc:

    Investigation 3.1:

    Predicting the range of

    a projectile

    The aim of this investigation is

    to predict the range (that is, thehorizontal distance travelled) of

    a projectile with a known initial

    horizontal velocity, and then to

    test the prediction.

    eBookpluseBookplus

  • 8/2/2019 Projectile and Circular Motion

    7/37

    UNIT 3 AREA OF STUDY 1 Motion in one and two dimensions52

    gurebelow(andforwhichgraphsareshown),theaccelerationoftheballis

    aconstant10ms-2downwards.Acommonerrormadebyphysicsstudentsis

    tosuggestthattheaccelerationoftheballiszeroatthetopofitsight.Ifthis

    weretrue,wouldtheballevercomedown?

    The motion of a ball projected

    vertically upwards

    Graphs of motion for a ball thrown

    straight upwards

    (a) going up (b) going down

    v v

    x (m)

    t(s)

    (a)

    v (m s1)

    t(s)

    (b)

    a (m s2)

    t(s)

    (c)

    10

    Theaxiomwhatgoesupmustcomedownappliesequallysotobulletsasitdoestoballs.Unfortunately,thismeansthatpeoplesometimesgetkilledwhentheyshootgunsstraightupintotheair.Ifthebulletleftthegunataspeedof60ms-1, itwill return toEarth atroughlythesamespeed.Thisspeediswellandtrulyfastenoughtokillapersonwhoishitbythereturningbullet.

    sample problem 3.3

    Adancerjumpsverticallyupwardswithaninitialvelocityof4.0ms-1.Assume

    thedancerscentreofmasswasinitially1.0mabovetheground,andignore

    airresistance.

    (a) Howlongdidthedancertaketoreachhermaximumheight?

    (b) Whatwasthemaximumdisplacementofthedancerscentreofmass?

    (c) Whatistheaccelerationofthedanceratthetopofherjump?

    (d) Calculatethevelocityof thedancerscentreofmasswhenitreturnstoits

    originalheightabovetheground.

    aS a maTTer of facTaS a maTTer of facT

  • 8/2/2019 Projectile and Circular Motion

    8/37

    53CHAPTER 3 Projectile and circular motion

    Thereareseveralwaysofarrivingatthesameanswer.Ashasbeendoneinthisexample,itisalwaysgoodpracticetominimisetheuseofanswersfrompre-viouspartsofaquestion.Thismakesyouranswersmorereliable,preventingamistakemadeearlieronfromdistortingtheaccuracyofyourlatercalcula-tions.Forthisproblem,assignupaspositiveanddownasnegative.

    (a) u=4.0ms-1,a= -10ms-2,v=0ms-1(asthedancercomestoahaltatthehighestpointofthejump),t=?

    v=u+at

    0ms-1=4.0ms-1+ (-10ms-2)t

    t=4 0

    10

    1

    2

    . m s

    m s

    -

    -

    =0.40s

    Thedancertakes0.40storeachherhighestpoint.

    (b) u=4.0ms-1,a= -10ms-2,v=0ms-1(asthedancercomestoahaltatthehighestpointofthejump),x=?

    v2=u2+2ax

    (0ms-1)2=(4.0ms-1)2+2(-10ms-2)x

    16m=20x

    x=0.80m

    Themaximumdisplacementofthedancerscentreofmassis0.80m.

    (c) Atthetopofthejump,theonlyforceactingonthedanceristheforceofgravity(thesameasatallotherpointsofthejump).Thereforetheaccel-erationofthedancerisaccelerationduetogravity:10ms-2downwards.

    (d) For this calculation, only the downwards motion needs to beinvestigated.

    u=0ms-1(asthedancercomestoahaltatthehighestpointofthejump),

    a= -10ms-2,x= -0.80m(asthemotionisdownwards),v=?

    v2=u2+2ax

    v2=(0ms1)2+2(10ms2)(0.80m)

    v= -4.0ms-1

    (Note: here, the negative square root is used, as the dancer is movingdownwards. Remember, the positive and negative signs show directiononly.)

    Thevelocityofthedancerscentreofmasswhenitreturnstoitsoriginalheightis4.0ms-1downwards.

    Revision question 3.3

    A basketball player jumps directly upwards so that his centre of mass reaches amaximum displacement of 50 cm.

    (a) What is the velocity of the basketballers centre of mass when it returns to itsoriginal height above the ground?

    (b) For how long was the basketballers centre of mass above its originalheight?

    Solution:Solution:

  • 8/2/2019 Projectile and Circular Motion

    9/37

    UNIT 3 AREA OF STUDY 1 Motion in one and two dimensions54

    Hagg md ar

    Sometimesdancers,basketballersandhighjumpersseemtohanginmidair.Itisasthoughtheforceofgravityhadtemporarilystoppedactingonthem.Ofcoursethisisnotso!Itisonlythepersonscentreofmassthat

    moves inaparabolic path.Thearrangement of thepersonsbodycanchangethepositionofthecentreofmass,causingthebodytoappeartobehanginginmidaireventhoughthecentreofmassisstillfollowingitsoriginalpath. Highjumperscanusethiseffecttoincreasetheheightoftheirjumps.Bybendingherbodyasshepassesoverthebar,PetrinaPricecancausehercentreofmasstobeoutsideherbody!Thisallowsherbodytopassoverthebar,whilehercentreofmasspassesunderit.TheamountofenergyavailabletoraisePetrinascentreofmassislimited,soshecanraisehercentre ofmass only by a certain amount.This technique allowsher toclearahigherbarthanothertechniquesforthesameamountofenergy.

    Australian high jumper Petrina Prices centre of mass passes

    under the bar, while her body passes over the bar!

    Shooting at an angleGenerally, projectilesareshot, thrownordrivenat some angle to thehori-

    zontal.Inthesecasestheinitialvelocitymayberesolvedintoitshorizontal

    andverticalcomponentstohelpsimplifytheanalysisofthemotion.

    Ifthevelocity and the angleto the horizontal are known, the sizeof the

    componentscanbecalculatedusingtrigonometry.

    Themotion ofprojectiles withaninitial velocityat an angleto the hori-zontalcanbedealtwithinexactlythesamemannerasthosewitha velocity

    straightuporstraightacross.However,theinitialvelocitymustbeseparated

    intoitsverticalandhorizontalcomponents.

    sample problem 3.4

    Astuntdriveristryingtodriveacaroverasmallriver.Thecarwilltravelupa

    ramp(atanangleof40)andleavetheramptravellingat22ms-1.Theriveris

    50mwide.Willthecarmakeit?

    pHySicS in focuS pHySicS in focuS

    The velocity can be resolved

    into a vertical and a horizontal

    component.

    Q

    vhorizontal

    = v cos Q

    vvertical

    = vsin Qv

    The velocity can be resolved

    into a vertical and a horizontal

    component.

    Q

    vhorizontal

    = v cos Q

    vvertical

    = vsin Qv

  • 8/2/2019 Projectile and Circular Motion

    10/37

    55CHAPTER 3 Projectile and circular motion

    40n 40n

    50 m

    river

    velo

    city

    =22

    ms1

    Assignupaspositiveanddownasnegative.

    Beforeeitherpartofthemotioncanbeexamined,itisimportanttocalculatetheverticalandhorizontalcomponentsoftheinitialvelocity.

    40n

    vhorizontal

    = 22 cos 40n

    = 17 m s1

    = 14 m s1

    vvertical

    = 22 sin 40n

    v= 22 m s1

    Therefore the initial vertical velocity is 14ms-1 and the initial horizontalvelocityis17ms-1.

    Inordertocalculatetherangeofthecar(howfaritwilltravelhorizontally),itisclearthatthehorizontalpartofitsmotionmustbeconsidered.However,theverticalpartisalsoimportant.Theverticalmotionisusedtocalculatethetimeintheair.Then,thehorizontalmotionisusedtocalculatetherange.

    Table 3.4 Calculating the horizontal and vertical components

    VERTICAL COMPONENT HORIZONTAL COMPONENT

    (Usethersthalfofthemotionfromtake-offuntilthecarhasreachedits

    highestpoint.)

    u=14ms-1,a=-10ms-2,

    v=0ms-1(asthecarcomestoa

    verticalhaltatitshighestpoint),

    t=?

    v=u+at

    0=14ms-1+(-10ms-2)t

    t=14

    10

    1

    2

    m s

    m s

    -

    -

    =1.4s

    Asthisisonlyhalfthemotion,thetotal

    timeintheairis2.8s.(Itispossible

    todoublethetimeinthissituation

    becausewehaveignoredairresistance.

    Thetwopartsofthemotionare

    symmetrical.)

    u=17ms-

    1,t=2.8s(beingtwicethetimetakentoreachmaximumheightas

    calculatedfortheverticalcomponent),

    a=0ms-2,x=?

    x=ut

    =17ms-12.8s

    =48m

    Therefore,theunluckystuntdriverwillfallshortofthesecondrampandwillland intheriver.Maybethestudyofphysicsshouldbeaprerequisiteforallstuntdrivers!

    Soution:Soution:

    eModelling:

    Free throw shooter

    A spreadsheet is used to predict

    the conditions for a basketballer to

    shoot a basketball into a hoop.

    doc-0034

    eBookpluseBookplus

    eModelling:

    Free throw shooter

    A spreadsheet is used to predict

    the conditions for a basketballer to

    shoot a basketball into a hoop.

    doc-0034

    eBookpluseBookplus

    eModelling:

    Modelling a stunt driver

    Worksheets build on the Falling

    from a helicopter spreadsheets to

    produce a powerful spreadsheet for

    modelling any projectile motion.

    doc-0035

    eBookpluseBookplus

    eModelling:

    Modelling a stunt driver

    Worksheets build on the Falling

    from a helicopter spreadsheets to

    produce a powerful spreadsheet for

    modelling any projectile motion.

    doc-0035

    eBookpluseBookplus

  • 8/2/2019 Projectile and Circular Motion

    11/37

    UNIT 3 AREA OF STUDY 1 Motion in one and two dimensions56

    Revision question 3.4

    A hockey ball is hit towards the goal at an angle of 25 to the ground with aninitial speed of 32 km h1.

    (a) What are the horizontal and vertical components of the initial velocity of theball?

    (b) How long does the ball spend in ight?(c) What is the range of the hockey ball?

    Projectile motion calculationsHerearesometipsforprojectilemotioncalculations.Ithelpstodrawadiagram.Alwaysseparatethemotionintoverticalandhorizontalcomponents.Remembertoresolvetheinitialvelocityintoitscomponentsifnecessary.Thetimeinightisthelinkbetweentheseparateverticalandhorizontalcomponentsofthemotion.Attheendofanycalculation,checktoseeifthequantitiesyouhavecalcu-

    latedarereasonable.

    The real world including air resistanceSofarinthischapter,theeffectsofairresistancehavebeenignoredsothatwecaneasilymodelprojectilemotion.Thereasontheforceofairresistancecom-plicatesmatters somuchis that itis not constantthroughoutthemotion. Itdependsonthevelocityoftheprojectile,thesurfaceareathatisbeinghitbytheair,thetypeofsurfaceandeventhespinoftheprojectile.Forobjectswiththesamesurfaceandspin,airresistanceincreasesasthespeedoftheobjectincreases.Nomatterwhataffectstheamountofairresistance,onethingisalwaystrue

    airresistanceopposesthemotionoftheprojectile.Logintowww.jacplus.

    com.autolocatetheProjectilemotionappletweblinkforthischapter.

    path ofprojectilewithout airresistance

    path of a projectilewith air resistanceF

    a.r.

    Fa.r.

    Fa.r.

    w

    w

    w

    While the magnitude of air resistance changes throughout the motion, it always

    opposes the direction of the motion.

    Weblink:

    Projectile motion applet

    eBookpluseBookplus

    Weblink:

    Projectile motion applet

    eBookpluseBookplus

  • 8/2/2019 Projectile and Circular Motion

    12/37

    57CHAPTER 3 Projectile and circular motion

    Uniform circular motionHumansseemtospendalotoftimegoingaroundincircles.Trafcatround-abouts,childrenonmerry-go-rounds,cyclists invelodromes.Ifyoustop tothinkabout it, you are always goingaround incirclesas a result ofEarthsrotation.ThesatellitesorbitingEarth,includingtheMoon,travelinellipses.However,

    theirorbitscanbemodelledascircularmotion.

    The motion of satellites around Earth can be modelled as circular motion with a

    constant speed.

    Getting nowhere fastRalphhasbeenabaddogandhasbeenchainedup.Toamusehimself,herunsincircles.Ralphsowner,Julie,isa physics teacher. She knows thatnomatter howgreatRalphs averagespeed is,healwaysends up inthesameplace,sohisaveragevelocityisalwayszero.

    Instantaneous velocity

    Although Ralphs average velocity for a single lapis zero, his instantaneous velocity is continuallychanging.Velocityisavectorandhasamagnitudeanddirection.WhilethemagnitudeofRalphsvelocitymaybeconstant,thedirectioniscontinuallychanging.Atonepoint,Ralphistravellingeast,sohisinstantaneousvelocity is in aneasterlydirection. A short time later, he will be travellingsouth,sohisinstantaneousvelocityisinasoutherlydirection.IfRalph couldmaintain a constant speed, themagnitude ofhis velocity

    wouldnotchange,butthedirectionwouldbecontinuallychanging.Thespeed is therefore constant andcanbecalculatedusing theformula

    v=x

    t,wherevistheaveragespeed,xisthedistancetravelledandtisthetime

    interval.Itismostconvenienttousetheperiodoftheobjecttravellinginacircle.Thus:

    v=x

    t

    =circumference

    period

    =2pr

    wherer=radiusofthecircleT=period.

    Instantaneous velocityisthe

    velocityataparticularinstant

    oftime.

    Instantaneous velocityisthe

    velocityataparticularinstant

    oftime.

    Theperiodofarepeatedcircularmotionisthetime

    takenforacompleterevolution.

    Theperiodofarepeatedcircularmotionisthetime

    takenforacompleterevolution.

  • 8/2/2019 Projectile and Circular Motion

    13/37

    UNIT 3 AREA OF STUDY 1 Motion in one and two dimensions58

    sample problem 3.5

    Ralphschainis7.0mlongandattachedtoasmallpostinthemiddleofthegarden.Ittakesanaverageof9stocompleteonelap.(a) WhatisRalphsaveragespeed?(b) WhatisRalphsaveragevelocityafterthreelaps?

    (c) WhatisRalphsinstantaneousvelocityatpointA?(Assumehetravelsataconstantratearoundthecircle.)

    (a) To calculate Ralphs speed, we need to know how far hehas travelled.Usingtheformulaforthecircumferenceofacircle(distance=2pr):

    distance=2p7.0m

    =44m.

    Now,theaveragespeedcanbecalculated.

    v=x

    t

    =44

    9

    m

    s

    =5ms-1

    Ralphtravelswithanaveragespeedof5ms-1.

    (b) Afterthreelaps,Ralph isinexactlythesameplaceashe started,sohisdisplacementiszero.Nomatterhowlonghetooktoruntheselaps,hisaveragevelocitywouldstillbezero,asvav=

    D

    D

    x

    t.

    (c) Ralphsvelocityisaconstant5ms-1ashetravelsaroundthecircle.Attheinstant inquestion, themagnitudeofhis instantaneous velocity isalso5ms-1.ThismeansRalphsvelocityis5ms-1north.

    Reviion quetion 3.5

    A battery operated toy car completes a single lap of a circular track in 15 s withan average speed of 1.3 m s1. Assume that the speed of the toy car is constant.

    (a) What is the radius of the track?

    (b) What is the magnitude of the toy cars instantaneous velocity halfwaythrough the lap?

    (c) What is the average velocity of the toy car after half of the lap has beencompleted?

    (d) What is the average velocity of the toy car over the entire lap?

    Changing velocities and accelerationsAnyobjectmovinginacirclehasacontinuallychangingvelocity.Rememberthat although the magnitude of the velocity is constant, the direction ischanging.Asallobjectswithchanging velocitiesare experiencing anaccel-eration,thismeansallobjectsthataremovinginacircleareaccelerating.

    Anacceleration canbecausedonlybyanunbalancedforce, sonon-zeronet force isneeded tomove anobject ina circle. For example, a hammerthrowermustapplyaforcetothehammertokeepitmovinginacircle.Whenthehammerisreleased,itmovesoffwiththevelocityithadattheinstantofrelease.Thenetforceonthehammeristhegravitationalforceonit(neglectingthesmallamountofairresistance),andthehammerwillexperienceprojec-tilemotion.

    7.0 m

    N

    A

    S

    EW

    7.0 m

    N

    A

    S

    EW

    Solution:Solution:

  • 8/2/2019 Projectile and Circular Motion

    14/37

    59CHAPTER 3 Projectile and circular motion

    The hammer is always accelerating while it moves in a circle.

    In which direction is the force?

    Thegure at left showsdiagrammatically the head of the hammer movinginacircleattwodifferenttimes.Ittakes tsecondstomovefromAtoB.To

    determinetheacceleration,thechangeinvelocitybetweenthesetwopointsmustbedetermined.Vectoradditionmustbeusedtodothis.

    Dv=v2-v1

    Dv=v2+(-v1).

    Notice that when the Dv vector is transferredback to the original circlehalfwaybetweenthetwopointsintime,itispointingtowardsthecentreofthecircle.(See thegurebelow.) (Such calculationsbecomemoreaccuratewhen very small time intervals areused;however, a large time interval hasbeenusedheretomakethediagramclear.)

    Asa=Dv

    t,theaccelerationvectorisinthesamedirectionasDv,buthasa

    differentmagnitudeanddifferentunits.

    AB

    v2

    v2

    v1

    v1

    $v

    $v

    (a) (b)

    (a) Vector addition (b) The change in velocity is towards the centre of the circle.

    No matter which time interval is chosen, the acceleration vector alwayspoints towards the centre of the circle. So, in order for an object to haveuniformcircularmotion,theaccelerationoftheobject must be towards thecentre ofthe circle.Such anacceleration iscalled centripetal acceleration.Theword centripetal literallymeans centre-seeking. As stated in NewtonsSecondLawofMotion,thenetforceonanobjectisinthesamedirectionastheacceleration(Fnet=ma).Therefore,thenetforceonanobjectmovingwithuniformcircularmotionistowardsthecentreofthecircle.Duetothecentre-seekingnatureofthenetforce,itiscalledthe centripetal force.

    Centripetal accelerationisthe

    centre-directedaccelerationof

    anobjectmovinginacircle.

    Centripetal accelerationisthe

    centre-directedaccelerationof

    anobjectmovinginacircle.

    Centripetal forceisthecentre-

    directedforceactingonan

    objectmovinginacircle.Inthe

    caseofacircularmotionwith

    constantspeed,thecentripetal

    forceisequaltothenetforce.

    Centripetal forceisthecentre-

    directedforceactingonan

    objectmovinginacircle.Inthe

    caseofacircularmotionwith

    constantspeed,thecentripetal

    forceisequaltothenetforce.

    As long as the thrower keeps

    turning, the hammer moves in

    a circle. When the hammer is

    released, it moves in a straight line.

    The direction in which thehammer moves while beingspun around

    The direction in which thehammer moves if let go

    Velocity vectors for a hammer

    moving in an anticlockwise circle

    AB

    v2

    v1

  • 8/2/2019 Projectile and Circular Motion

    15/37

    UNIT 3 AREA OF STUDY 1 Motion in one and two dimensions60

    Rememberthatwhilethehammerthrowerisexertingaforceonthehammerheadtowardsthecentreofthecircle,thehammerheadmustbeexertinganequalandoppositeforceonthe throwerawayfromthecentreofthecircle(accordingtoNewtonsThirdLawofMotion).

    Whenreadingaboutcircularmotion,youmayencounterthetermcentri-fugal force. Centrifugal means centre-eeing. As it has the oppositemeaningtocentripetal,thetwowordsmust notbeusedinterchangeably.Whichwordyouuse todescribethe forcesof circularmotiondependson your frameof reference. If you are outside the circularmotion ina stationary frameof reference, you can easily identify that the forceonthemovingobjectistowardsthecentreofthecircleacentripetalforce.However,ifyouaretheobjectthatismoving,thingsappearalittledifferently. Imaginethatyouaresittingonthebackseatofabusmovingquicklyaroundacorner.Youfeelasthoughyouarebeingpushedoutfromthecorner; that is, you thinka forceis pushingyou away fromthe centreofthecirclebecauseyourbodymovesoutwards.Inrealityyourbodyis

    continuingtomoveinastraightlineyouareinamovingframeofreference.Infact,yourbottomisbeingpushedtowardsthecentreofthecircleduetotheforceof friction.Thisresultsinyourleaningoutwards.Sowhatyouareexperiencingistheeffectofinertia;however,fromyourframeofreference(insidethebus),theonlyexplanationyoucanlogi-callyofferistheexistenceofanunbalancedforcepushingyououtwards.Thisforceis calledthecentrifugal force.Anobserverin thestationaryframeof referenceoutside the bus can see you aremoving ina circle(otherwiseyouwouldyoutofthebus!).Sothenetforceonyourbodymustbeacentripetalforce.

    Calculating accelerations and forcesUsingvectordiagramsandtheformulaea=

    Dv

    tandFnet=ma,itispossibleto

    calculatethe accelerationsand forcesinvolved incircularmotion.However,doingcalculations thisway is tedious,and results can be inaccurate if thevectordiagramsarenotdrawncarefully.Itismuchsimplertohaveaformulathatwillavoidthese difculties.Thederivationofsucha formula isa littlechallenging,butitisworththeeffort!Byre-examiningthetwopreviousgures(seep.59),itispossibletoseethat

    theybothcontainisoscelestriangles.Theseareshownatleft.Figure (a) is a diagram showing distances. It has the radius of the circle

    markedintwice.Theseradiiformtwosidesofanisoscelestriangle.Thethirdsideisformedbyaline,orchord,joiningpointAwithpointB.Itisthedis-

    tancebetweenthetwopoints.Whentheangle qisverysmall,thelengthofthechordisvirtuallythesameasthelengthofthearcwhichalsojoinsthesetwopoints.Asthisisadistance,itslengthcanbecalculatedusingx=vt.Figure(b)isadiagramshowingvelocities.Astheobjectwasmovingwith

    uniformcircularmotion,thelengthofthevectorsv2and-v1areidenticalandformtwosidesofanisoscelestriangle.Asbothpartsofthegureatleftarederivedfromthebottomgureonpage59,bothoftheanglesmarked asqarethe samesize.Therefore, thetrianglesareboth isosceles triangles,con-tainingthesameangle,q.Thismeanstheyaresimilartrianglestheycanbethoughtofasthesametriangledrawnontwodifferentscales.Thegureonpage61showsthesetrianglesredrawntomakethismoreobvious.

    aS a maTTer of facTaS a maTTer of facT

    The triangles shown in parts (a)

    and (b) are both isosceles triangles.

    A

    rr

    Q

    B

    (a)

    v2

    v1

    v1

    v2

    $v

    (b)

    Q

    The triangles shown in parts (a)

    and (b) are both isosceles triangles.

    A

    rr

    Q

    B

    (a)

    v2

    v1

    v1

    v2

    $v

    (b)

    Q

  • 8/2/2019 Projectile and Circular Motion

    16/37

    61CHAPTER 3 Projectile and circular motion

    Asthetrianglesaresimilar,theratiooftheirsidesmustbeconstant,so:

    Dv

    vt=

    v

    r.

    Multiplyingbothsidesbyv:

    Dv

    t=

    v

    r

    2

    .

    Asa=Dv

    t :

    a=v

    r

    2

    .

    Thisformulaprovidesawayofcalculatingthecentripetalaccelerationofamassmovingwithuniformcircularmotionhavingspeedvandradiusr.

    Iftheaccelerationofaknownmassmovinginacirclewithconstantspeedhasbeencalculated,thenetforcecanbedeterminedbyapplyingFnet=ma.

    Themagnitudeofthenetforcecanalsobecalculatedusing:

    Fnet=ma=mv

    r

    2

    .

    sample problem 3.6

    Acarisdrivenaroundaroundaboutataconstantspeedof20kmh-1(5.6ms-1).Theroundabouthasaradiusof3.5mandthecarhasamassof1200kg.(a) Whatisthemagnitudeanddirectionoftheaccelerationofthecar?(b) Whatisthemagnitudeanddirectionoftheforceonthecar?

    (a) v=5.6ms-1,r=3.5m,a=?

    a=v

    r

    2

    =( . )

    .

    5 6

    3 5

    1 2m s

    m

    -

    =9.0ms-2

    Thecaracceleratesat9.0ms-2towardsthecentreoftheroundabout.

    (b) There are two different formulae that can be used to calculate thisanswer.

    (i) Usetheanswerto(a)andsubstituteintoFnet=ma.

    a=9.0ms-2,m=1200kg,Fnet=?

    Fnet=ma

    =1200kg9.0ms-2

    =1.1104N

    (ii) UsetheformulaFnet=mv

    r

    2

    .

    v=5.6ms-1,r=3.5m,m=1200kg,Fnet=?

    Fnet=mv

    r

    2

    =1200 5 6

    3 5

    1 2kg m s

    m

    ( . )

    .

    -

    =1.1104N

    Bothmethodsgivetheforceonthecaras1.1104Ntowardsthecentreoftheroundabout.

    The two triangles aresimilar

    triangles.

    A

    rr

    Q

    B

    (a)

    v v

    $v(b)

    Q

    vt

    The two triangles aresimilar

    triangles.

    A

    rr

    Q

    B

    (a)

    v v

    $v(b)

    Q

    vt

    Solution:Solution:

  • 8/2/2019 Projectile and Circular Motion

    17/37

    UNIT 3 AREA OF STUDY 1 Motion in one and two dimensions62

    Sometimesit isnoteasy tomeasurethevelocityoftheobjectunder-goingcircularmotion.However,thiscanbecalculatedfromtheradiusofthecircleandthetimetakentocompleteonecircuitusingtheequationv= 2pr

    T.

    a =v

    r

    2

    a=2

    2

    prT

    r

    a=4 2

    2

    p rT

    SubstitutingthisintoFnet=ma:

    Fnet=m r

    T

    4 2

    2

    p.

    Revision question 3.6

    Kwong (mass 60 kg) rides the Gravitron at the amusement park. This ride movesKwong in a circle of radius 3.5 m, at a rate of one rotation every 2.5 s.

    (a) What is Kwongs acceleration?

    (b) What is the net force acting on Kwong? (Include a magnitude and a directionin your answer.)

    (c) Draw a labelled diagram showing all the forces acting on Kwong.

    Examples of centripetal forceWheneveranobjectisinuniformcircularmotion,thenetforceonthatobject

    must be towards thecentreof thecircle(that is,a centripetal force).Someexamplesofcommonsituationsinvolvingcentripetalforcesfollow.

    Tension

    Inphysics, tensionisusedtodescribetheforceappliedbyanobjectthatisbeingpulledorstretched.

    (b)

    Fnet

    T1

    T2

    W

    (a)

    Centripetal force is the source of fun in many theme park rides. (a) Tension contributes

    to the centripetal force in many amusement park rides. (b) The net force acting on a

    compartment

  • 8/2/2019 Projectile and Circular Motion

    18/37

    63CHAPTER 3 Projectile and circular motion

    tension (T)

    normalreaction (N)

    weight (W)

    Fnet

    Not to scale

    A component of the tension is the net force (or centripetal force) acting on the female

    skater when she is performing a death roll.

    Friction

    Whena carroundsa corner, thesidewaysfrictional forcescontributeto thecentripetal force.The forwards frictional forces of the ground on the tyres

    keepthecarmoving,butifthesidewaysfrictionalforcesarenotsufcient,the

    netforceonthecarwillnotbetowardsthecentreofthecurve.Inthissitu-

    ation,thenetforceislessthanthecentripetalforcerequiredtokeepthecar

    movinginacircleanditwillnotmakeitaroundthecorner!

    TheformulaFnet=mv

    r

    2

    showsthatasthevelocityincreases,theforceneeded

    tomoveinacirclegreatlyincreases(Fnetv2).Thisiswhyitisvitalthatcars

    donotattempttocornerwhiletravellingtoofast.

    weight (W)

    FfrictionFfriction

    Ffriction

    Ffriction

    Fnet

    normalreaction (N)

    (N)

    (N)(N)

    The sideways frictional forces of the ground on the tyres enable a car to move around

    a corner.

    Trackathletes, cyclists andmotorcyclists also rely on sideways frictional

    forcestoenablethemtomovearoundcorners.Toincreasethesizeoftheside-

    waysfrictionalforce,whichwill thereforeallowthemtocornermorequickly,

    they often lean into thecorner.The lean alsomeans that they are pushing

    onthesurface atanangle,so the reaction forceisnolongernormalto the

    ground.Ithasacomponenttowardsthecentreoftheircircularmotion.

  • 8/2/2019 Projectile and Circular Motion

    19/37

    UNIT 3 AREA OF STUDY 1 Motion in one and two dimensions64

    it

    Fnt

    ratin

    Leaning into a corner increases the size of the centripetal force, allowing a higher

    speed while cornering. The sideways friction is greater, and the reaction force of the

    ground has a component towards the centre of the circular motion.

    In velodromes, the track is banked so that a component of the normalreaction acts towards the centre of the velodrome, thus increasing the netforceinthisdirection.Asthecentripetalforceislarger,thecyclistscanmove

    aroundthecornersfasterthaniftheyhadtorelyonfrictionalone.

    Going around the bend

    Whenavehicletravelsaroundabend,orcurve,atconstantspeed,itsmotioncanbeconsideredtobepartofa circularmotion.Thecurvemakesupthearcofacircle.Inorderforacartotravelaroundacornersafely,thenetforceactingonitmustbetowardsthecentreofthecircle.Part(a)ofthenextgureshowstheforcesactingonavehicleofmass m

    travellingaroundacurvewitharadius,r,ataconstantspeed,v.Theforcesactingonthecarareweight,W,frictionandthenormalreaction,N.

    N

    W

    (a)

    Sias

    ritin (Fr)F

    nt

    ()

    Fr

    Fnt

    N sin

    Frs

    W

    (a) For the vehicle to take the corner safely, the net force must be towards the centre of

    the circle. (b) Banking the road allows a component of the normal reaction to contribute

    to the centripetal force.

  • 8/2/2019 Projectile and Circular Motion

    20/37

    65CHAPTER 3 Projectile and circular motion

    Onalevelroadtheonlyforcewithacomponenttowardsthecentreofthe

    circleis thesidewaysfriction.Thissidewaysfrictionmakesupthe wholeof

    the magnitude ofthe net force (and therefore the centripetal force) on the

    vehicle.Thatis:

    Fnet=sidewaysfriction

    =mv

    r

    2

    .

    Ifyoudrivethevehiclearoundthecurvewithaspeedsothatmv

    r

    2

    isgreater

    thanthe sidewaysfriction,the motion isno longer circularand thevehicle

    willskidoffthe road.If theroadiswet,sidewaysfriction islessanda lower

    speedisnecessarytodrivesafelyaroundthecurve.

    Iftheroadisbankedatanangleqtowardsthecentreofthecircle,acom-

    ponentofthenormalreactionNsinqcanalsocontributetothecentripetal

    force.Thisisshownindiagram(b)onpage64.

    Fnet=Frcosq + Nsinq

    Thelargercentripetalforcemeansthat,foragivencurve,bankingtheroad

    makesahigherspeedpossible.

    Loosegravelonbendsinroadsisdangerousbecauseitreducestheside-waysfrictionforce.Atlowspeedsthisisnotaproblem,butavehicletravelling

    athighspeedislikelytolosecontrolandrunofftheroadinastraightline.

    sample problem 3.7

    Acarof mass1280kgtravelsaroundabendwitharadiusof12.0m.Thetotal

    sidewaysfrictiononthewheelsis16400N.Theroadisnotbanked.Calculate

    themaximumconstantspeedatwhichthecarcanbedrivenaroundthebend

    withoutskiddingofftheroad.

    Thecarwillmaintainthecircularmotionaroundthebendif:

    Fnet=mv

    r

    2

    where

    v=maximumspeed.

    Ifv were toexceed this speed,Fnet