prokaryotic dna organization - clark science center in cloning a gene •isolate plasmid vector...

41
Fig. 11.8 Prokaryotic DNA organization Circular DNA Condensed by packaging proteins (e.g. H-NS, IHF) • Supercoiled

Upload: doancong

Post on 30-Mar-2018

224 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

Fig. 11.8

Prokaryotic DNA organization

• Circular DNA• Condensed by

packaging proteins(e.g. H-NS, IHF)

• Supercoiled

Page 2: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

Bidirectionalreplication

• Replication starts atori (oriC in E. coli)

• Continuesbidirectionally

• Chromosome attachedto plasma membrane

Fig. 11.11

Page 3: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

Rolling circle replication

Fig. 11.12

Used by plasmids and somebacteriophage

Page 4: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

DNApolymerases

• 3 DNA polymerases• Synthesize 5´-3´• DNA pol III = DNA

replication• DNA pol I, II = DNA

damage repair

Page 5: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

Replication fork

Fig. 11.15

Page 6: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

Quinolones

Fig. 35.5

Page 7: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

Fig. 35.6

Page 8: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

DNA replication

Fig, 11.16

Page 9: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

Fig. 11.16

Page 10: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

DNA ligase

• Can ligate 5´-PO4 to 3´OH without insertionof nucleotide

Fig. 11.17

Page 11: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

Creating arecombinantplasmid

Fig. 14.4

Page 12: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

Steps in cloning a gene

• Isolate plasmid vector– Plasmid DNA isolation

• Isolate gene of interest– Chromosomal DNA isolation– Polymerase chain reaction

• Cut plasmid and gene of interest with samerestriction endonuclease

Page 13: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

Polymerase chainreaction (PCR)

• Requires DNApolymerase that is notinactivated by hightemperatures

• Taq, Ventpolymerases isolatedfrom thermophiles

Fig,14.8

Page 14: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

Restriction endonucleases

Fig. 14.2

Page 15: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase
Page 16: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

Fig. 14.11

Page 17: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

Fig. 14.11

Page 18: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase
Page 19: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

Transcription of RNA

Fig. 11.21

mRNA

rRNA

tRNA

sRNA

Page 20: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

Fig. 11.22

Prokaryotic Promoter

Page 21: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

Fig. 12.2

Page 22: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

Prokaryotic Terminator

Fig. 12.3

• Rho-independent=– 6 uridines follow hairpin– Requires no accessory

proteins• Rho-dependent=

– No uridines after harpin– Requires Rho to displace

RNA polymerse

Page 23: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

Rifampin

• Binds to RNA polymerase• Inhibits transcription, killing cell

Page 24: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

Polycistronic mRNA

Fig. 12.1

• Multiple genes on single transcript• Transcription from a single promoter• Usually genes on a polycistronic mRNA are related to a

specific function or structure• No introns in within genes

Page 25: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

Coupled transcription-translation

Fig. 12.6

Page 26: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

Prokaryotic Ribosome

Fig. 12.12

Page 27: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

Fig. 12.12

Translational Domain• Formed by association of 30S and 50S subunits• 16S rRNA binds to and aligns mRNA

16S rRNA 3´-UUCCUU-5´mRNA 5´-AAGGAA-3´

Page 28: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

tRNA structure

Fig. 12.7

Page 29: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

Amino-acyl tRNA=“Charged” tRNA-cognate amino acid attachedto 3´ end

Fig. 12.10

Page 30: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase
Page 31: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

Initiation ofProtein

Synthesis

Fig. 12.14

Page 32: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

Fig. 11.19

Alignment to allow in-frame translation

Page 33: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

Initiation ofProtein

Synthesis

Fig. 12.14

tRNA 3´-UAC-5´mRNA 5´-AUG-3´

Page 34: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

Prokaryotic Initiator tRNA

Fig. 12.13

Page 35: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

Elongation

Fig. 12.15

Page 36: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

Peptide Bond Formation

Fig. 12.16

Page 37: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase
Page 38: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

Termination

Fig. 12.17

Page 39: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

Tetracyclines• Includes doxycycline, chlortetracycline• Binds to 30S subunit• Interferes with aminoacyl-tRNA binding to A site

Fig. 35.9

Page 40: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

Macrolide antibiotics

Fig. 35.11

Erythromycin

• Includes clindamycin, azithromycin• Binds 23S rRNA of 50S subunit• Inhibits peptide chain elongation

Page 41: Prokaryotic DNA organization - Clark Science Center in cloning a gene •Isolate plasmid vector –Plasmid DNA isolation •Isolate gene of interest –Chromosomal DNA isolation –Polymerase

Aminogycosideantibiotics

• Includes streptomycin, gentamicin,neomycin, tobramycin, kanamycin

• Binds to 30S subunit• Inhibits protein synthesis• Causes misreading of mRNA Fig. 35.10