propagation delay, power...

22
EE141 – Fall 2005 Lecture 7 Propagation Delay, Propagation Delay, Power Dissipation Power Dissipation EE141 2 Important! Software Lab 3 this week Enrollments increased to 86 Hw-3 due on Thursday 5pm Check it out early (time to ask questions)

Upload: doandat

Post on 29-Aug-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

1

EE141 – Fall 2005Lecture 7

Propagation Delay, Propagation Delay, Power DissipationPower Dissipation

EE141 2

Important!

Software Lab 3 this week

Enrollments increased to 86

Hw-3 due on Thursday 5pm• Check it out early (time to ask questions)

2

EE141 3

Today’s Lecture

Inverter Performance

Power Dissipation

Review:

MOS Capacitances: MOS Capacitances: Dynamic BehaviorDynamic Behavior

3

EE141 5

CGDCGS

CSB CDBCGB

(Miller)

Capacitive Device Model

= CGCS + CGSO = CGCD + CGDO

= CGCB= Cdiff

G

S D

B

= Cdiff

EE141 6

Gate-Channel Capacitance

S D

G

CGC

S D

G

CGCS D

G

CGC

Cut-off Resistive Saturation

Off/Lin Cgate = Cox·W·Leff

Textbook: page 109

CGCB CGCS CGCD

Sat Cgate = (2/3)·Cox·W·Leff ox

oxox t

C ε=

4

EE141 7

Gate Overlap Capacitance

doxO xCC ⋅=

xd xd

L d

Polysilicon gate

Top view

Gate-bulkoverlap

Source

n+

Drain

n+W

xd xd

L d

Polysilicon gate

Top view

Gate-bulkoverlap

Source

n+

Drain

n+W

Off/Lin/Sat CGSO = CGDO = CO·W

tox

n+ n+

Cross section

L

Gate oxidetox

n+ n+

Cross section

L

Gate oxide

EE141 8

Diffusion Capacitance

Bottom

Side wall

Side wallChannel

Source

Channel-stop implant

Substrate

W

NA+

NA

LS

ND

xj

Cdiff = Cbottom + Csw

= Cj · AREA + Cjsw · PERIMETER

Off/Lin/Sat Cdiff = Cj·LS·W + Cjsw·(2LS+W)

5

EE141 9

Capacitive Device Model

Gate-Channel Capacitance• CGC = Cox·W·Leff (Off, Linear)• CGC = (2/3)·Cox·W·Leff (Saturation)

Gate Overlap Capacitance• CGSO = CGDO = CO·W (Always)

Junction/Diffusion Capacitance• Cdiff = Cj·LS·W + Cjsw·(2LS + W) (Always)

Zero-bias Cdiff > CgateMOS On Cdiff ≤ Cgate

EE141 10

FanoutVoutVin

CL

SimplifiedModel

M3

M4

M1

M 2

Cw Cg3Cdb1

Cg4

Vout2

Cdb2

VDDVDD

Vin VoutCgd12

Computing the Capacitances

1

2

3

Miller effect

Reverse biased junction

Off Sat (M4)Lin (M3)

4No Miller effect

6

EE141 11

Computing the Capacitances

Miller effect

(Off Sat*)(Lin*)

* assuming LH transition at Vout

Reverse biased junction1

2

3

Propagation DelayPropagation Delay

7

EE141 13

CMOS Inverter Propagation Delay: Approach 1

V out

Iavg

V DD

V in = V DD

CL

avg

swingLpHL I

VCt

2⋅=

DDn

LpHL Vk

Ct⋅

~

EE141 14

CMOS Inverter Propagation Delay: Approach 2

V out

R n

V DD

V in = V DD

CL

)( LonpHL CRft ⋅=

Lon CR ⋅= 69.0

0.360.5

1

RonCL t

Voutln(0.5)

VDD

8

EE141 15

MOS Transistor as a SwitchTraversed path

ID

VDS

VDDVDD /2

VGS = VDD

Rmid

R0

∫∫ ⋅−

=⋅−

===

2

1

2

1

2

1 )()(1)(1))((

1212

t

t D

DSt

ton

t

ttoneq dttItV

ttdttR

tttRavgR

( ))()(21

21 tRtRR ononeq +⋅≈

VGS ≥ VT

S DRon

EE141 16

The Transistor as a Switch

VGS ≥ VT

S DRon

( ) ( )

⋅+⋅

+⋅+⋅

⋅=21

212

1

DDDSAT

DD

DDDSAT

DDeq VI

VVI

VRλλ

⋅⋅−⋅≈ DD

DSAT

DDeq V

IVR λ

651

43

ID

VDS

VDDVDD /2

VGS = VDD

Rmid

R0

( )021 RRR mideq +⋅=

9

EE141 17

0 0.5 1 1.5 2 2.5

x 10-10

-0.5

0

0.5

1

1.5

2

2.5

3

t (sec)

Vou

t(V)

tp = 0.69 CL·(Reqn+Reqp)/2?

tpHL

tpLH

Transient Response

EE141 18

Design for Performance

Keep capacitances small

Increase transistor sizes• watch out for self-loading!

Increase VDD (?)

10

EE141 19

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.41

1.5

2

2.5

3

3.5

4

4.5

5

5.5

VDD

(V)

t p(nor

mal

ized

)

Delay as a function of VDD

)2(')(52.0

4369.0

DSATnTnDDDSATnnn

DDL

DSATn

DDLpHL VVVVkLW

VCI

VCt−−⋅⋅⋅

⋅=

⋅=

Req

EE141 20

2 4 6 8 10 12 142

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8x 10

-11

S

t p(sec

)

Device Sizing

(fixed load)

Self-loading effect:Intrinsic capacitancesdominate

11

EE141 21

1 1.5 2 2.5 3 3.5 4 4.5 53

3.5

4

4.5

5x 10

-11

β

t p(sec

)

NMOS/PMOS Ratio

tpLH tpHL

tp β = Wp/Wn

EE141 22

t pH

L(ns

ec)

0.35

0.3

0.25

0.2

0.15

trise (nsec)10.80.60.40.20

Impact of Rise Time on Delay

tp = tstep(i) + η·tstep(i-1)

12

Power DissipationPower Dissipation

EE141 24

Where Does Power Go in CMOS?

Dynamic Power Consumption• Charging and discharging capacitors

Short Circuit Currents• Short-circuit path between supply rails

during switching

Leakage• Leaking diodes and transistors

13

EE141 25

#1: Dynamic Power Dissipation

Vin Vout

CL

Vdd

Not a function of transistor sizes!Need to reduce CL, Vdd, and f to reduce power

Energy/transition = CL·Vdd2

Power = Energy/transition·f = f·CL·Vdd2

EE141 26

Modification for Circuits with Reduced Swing

Can exploit reduced swing for lower power(e.g., reduced bit-line swing in memory)

E0→1 = CL·Vdd·(Vdd – Vt)

CL

Vdd

Vdd – Vt

Vdd

14

EE141 27

Adiabatic Charging

i(t) R C

C

Consider

Charging a capacitor

∫ ⋅⋅=⋅=T

avgC TIC

dtiC

V0

11

2

21

ddVC ⋅

TVCI C

avg⋅

=

2

0

2

0

22 )( C

T

avg

T

avgdis VCT

CRTIRdtIRdttiRE ⋅⋅⋅

=⋅⋅=⋅≥⋅= ∫ ∫

EE141 28

Adiabatic Charging

CC

CI Vdt

dVCRVIRV +⋅=+⋅=

VI = constExponential current

2

21

CR VCE ⋅= 2CR VC

TRCE ⋅=

I = IavgLinear ramp on VI

minimal energywins if T > 2RC

t

I

t

It

V

t

V

15

EE141 29

Node Transition Activity and Power

Consider switching a CMOS gate for N clock cycles

EN = CL·Vdd2·n(N)

EN: the energy consumed for N clock cyclesn(N): the number of 0→1 transitions in N clock cycles

clkddLNclkN

Navg fVCNNnf

NEP ⋅⋅⋅

=⋅=

∞→∞→

2)(limlim

NNn

N

)(lim10 ∞→→ =α

Pavg = α0→1·CL·Vdd2·fclk

EE141 30

#2: Short-Circuit Currents

Vin Vout

C L

Vdd

0.15

0.10

0.05

5.04.03.02.01.00.0

I VD

D(m

A)

Vin (V)

16

EE141 31

Short circuit current goes to zero if tfall >> trise,but can’t do this for cascade logic, so ...

How To Keep Short-Circuit Currents Down?

EE141 32

0 1 2 3 4 50

1

2

3

4

5

6

7

8

Vdd =1.5

Vdd =2.5

Vdd =3.3

Minimizing Short-Circuit Power

Keep the input and output rise/fall times the same (<10% of total consumption)

If Vdd < VTn + |VTp| then short-circuit power can be eliminated!From: Veendrick, IEEE Journal of Solid-State Circuits, Aug’84

tsin / tsout

P nor

m

17

EE141 33

Vout

Vdd

Sub-ThresholdCurrent

Drain JunctionLeakage

Sub-threshold current is one of the most compelling issuesin low-energy circuit design!

#3: Leakage

EE141 34

Np+ p+

Reverse Leakage Current

+

-Vdd

GATE

IDL = JS × A

JS = 10-100 pA/µm2 at 25 deg C for 0.25µm CMOSJS doubles for every 9 deg C!

Reverse-Biased Diode Leakage

18

EE141 35

ID versus VGS

0 0.5 1 1.5 2 2.50

1

2

4

5

6x 10-4

Long Channel

Short Channel

quadraticlinear

quadratic

VGS (V)

I D(A

)

3

EE141 36

Sub-Threshold Conduction

Typical values for S:60 – 100 mV/decade

The Slope FactorS is ∆VGS for ID2 /ID1 =10

0 0.5 1 1.5 2 2.510

-12

10-10

10-8

10-6

10-4

10-2

VT

Linear

Exponential

Quadratic

VGS (V)

I D(A

)

qkT

CCn

eII

Tox

D

nV

DT

GS

=+=

φ

φ

,1

0

19

EE141 37

Sub-Threshold Leakage Component

Leakage control is critical for low-voltage operation

EE141 38

VDS from 0 to 0.5V

−=

−kT

qVnkT

qV

D

DSGS

eeII 10

Sub-Threshold ID vs. VGS

ID

VGS

20

EE141 39

Sub-Threshold ID vs. VDS

( )DSkT

qVnkT

qV

D VeeIIDSGS

⋅+

−=

−λ110

VGS from 0 to 0.3V

ID

VDS

Hw3, Prob4n=1.5kT/q = 26mV

EE141 40

Vin=5V

Vout

CL

Vdd

Istat

Wasted energy …Should be avoided in most cases,but could help reducing energy in others (e.g. sense amps)

#4: Static Power Consumption

Pstat = P(in=1)·Vdd·Istat

21

EE141 41

Prime choice: Reduce voltage!• Recent years have seen an acceleration in

supply voltage reduction• Design at very low voltages still open question

(0.6 … 0.9 V by 2010!)

Reduce switching activity

Reduce physical capacitance

Principles for Power Reduction

EE141 42

Threshold Variations

Sub-threshold Conduction

Parasitic Resistances

The Sub-Micron MOS Transistor

22

EE141 43

VT

L

Long-channel threshold

Threshold as a function ofchannel length (for low VDS)

VDS

VT

Threshold Variations

Low VDS threshold

Drain induced barrier lowering (DIBL) (for low L)

EE141 44

Next Lecture

Optimizing for Performance and Power