properties of carbon nanotubes krisztian kordas [email protected]

38
YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006 Properties of carbon nanotubes Krisztian Kordas [email protected] Microelectronics and Materials Physics Laboratories Department of Electrical and Information Engineering P.O. Box 4500, FIN-90014 University of Oulu Understanding carbon nanotubes Oulu, 1-2 October 2008

Upload: chavi

Post on 01-Feb-2016

33 views

Category:

Documents


0 download

DESCRIPTION

Microelectronics and Materials Physics Laboratories Department of Electrical and Information Engineering P.O. Box 4500, FIN-90014 University of Oulu. Properties of carbon nanotubes Krisztian Kordas [email protected]. Understanding carbon nanotubes Oulu, 1-2 October 2008. Outline. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

Properties of carbon nanotubes

Krisztian [email protected]

Microelectronics and Materials Physics Laboratories

Department of Electrical and Information Engineering

P.O. Box 4500, FIN-90014 University of Oulu

Understanding carbon nanotubesOulu, 1-2 October 2008

Page 2: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

Outline

Understanding carbon nanotubesOulu, 1-2 October 2008

−Polymorphism of carbon

−Electrical properties−Thermal transport−Optical properties−Mechanical behavior

Page 3: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

Allotropic forms of carbon: Diamond, graphite …

C-C: 1.54 Å

sp3 – diamond

sp2 – graphite

C-C: 1.42 Å

www.wikipedia.org

www.wikipedia.org

−Polymorphism of carbon−Electrical properties−Thermal transport−Optical properties−Mechanical behavior

Understanding carbon nanotubesOulu, 1-2 October 2008

Page 4: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

Allotropic forms of carbon: Defects in graphitic carbon

fullerenesC60 = 12 pentagons + 20 hexagons

Eulers polyhedron formula|V|-|E|+|F| = 2, where |V|, |E|, |F| indicate the number of vertices,

edges, and faces Understanding carbon nanotubesOulu, 1-2 October 2008

Krishnan, A., Dujardin, E., Treacy, M.M.J., Hugdahl, J., Lynum, S., Ebbesen, T.W. Nature, 1997, 388, 451-454.

cones

−Polymorphism of carbon−Electrical properties−Thermal transport−Optical properties−Mechanical behavior

Page 5: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

The rolled graphene layers (up to 50) are in co-axial arrangement. The typical diameter is 1-5 nm (SWCNTs) and 5-100 nm (MWCNTs) with lengths up to a few cm!

Bundles of SWCNTs

MWCNT

Carbon nanotubes

Understanding carbon nanotubesOulu, 1-2 October 2008

M. Monthioux, et al., Carbon 39 (2001) 1261–1272

Bundles of MWCNTs

−Polymorphism of carbon−Electrical properties−Thermal transport−Optical properties−Mechanical behavior

Page 6: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

Other forms of carbon

Understanding carbon nanotubesOulu, 1-2 October 2008

Bamboo-type CNTs

Carbon onions

J. Miyawaki, et al., Adv. Mater. 2006, 18, 1010

Carbon nanohorns

F. Banhart, T. Füller, Ph. Redlich and P.M. Ajayan, Chem. Phys. Lett. 269, 349 (1997)

Ph. Redlich, F. Banhart, Y. Lyutovich and P.M. Ajayan, Carbon 36, 561 (1998)

F. Banhart and P.M. Ajayan, Nature 382, 433-435 (1996)

Carbon onions and diamonds

−Polymorphism of carbon−Electrical properties−Thermal transport−Optical properties−Mechanical behavior

Page 7: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

Chirality of CNTs

Understanding carbon nanotubesOulu, 1-2 October 2008

−Polymorphism of carbon−Electrical properties−Thermal transport−Optical properties−Mechanical behavior

Page 8: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

Chirality of CNTs

Understanding carbon nanotubesOulu, 1-2 October 2008

Ph. Lambin et al., Carbon 40 (2002) 1635

−Polymorphism of carbon−Electrical properties−Thermal transport−Optical properties−Mechanical behavior

Page 9: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

DOS vs. structure: Nanotubes

−Polymorphism of carbon−Electrical properties−Thermal transport−Optical properties−Mechanical behavior

The product of the DOS g(E) and the probability distribution function f(E) is the number of occupied states per unit volume at a given energy for a system in thermal equilibrium.

number of states per unit sample volume at an energy E inside an interval [E,E + dE]

probability that a fermion occupies a specific quantum state in a system at thermal equilibrium

Page 10: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

DOS vs. structure: Nanotubes

2D energy dispersion relations for bands of graphite, with overlap integral:

R. Saito, M. Fujita, G. Dresselhaus, M. S Dresselhaus, APL 60 (1992) 2204.

Understanding carbon nanotubesOulu, 1-2 October 2008

Periodic boundary condition for k.

Condition for having metallic nanotube:

−Polymorphism of carbon−Electrical properties−Thermal transport−Optical properties−Mechanical behavior

Page 11: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

DOS vs. structure: Nanotubes

V0 is the hopping matrix element for adjacent 2p orbitals of C atoms having distance of d0

CT White, et al., PRB, 47 (1993) 5485.

Understanding carbon nanotubesOulu, 1-2 October 2008

−Polymorphism of carbon−Electrical properties−Thermal transport−Optical properties−Mechanical behavior

Page 12: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

DOS vs. structure: Nanotubes

J.W.G. Wildöer, et al., Nature, 391 (1998) 59.T.W. Odom, et al., Nature 391 (1998) 62.

−Polymorphism of carbon−Electrical properties−Thermal transport−Optical properties−Mechanical behavior

tunnelling spectroscopy

Page 13: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

DOS vs. structure: Nanotubes

Understanding carbon nanotubesOulu, 1-2 October 2008

Uniaxial stress

Twist

A. Kleiner and S. Eggert, PRB, 63 (2001) 73408.

Primary metallic or small-gap semiconducting nanotubes are tubes with band gaps that arise solely from breaking the bond symmetry due to curvature. The unified gap equation as a function of chirality and deformations:

−Polymorphism of carbon−Electrical properties−Thermal transport−Optical properties−Mechanical behavior

Page 14: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

DOS vs. structure: Penta-Hexa-Heptites

P.M. Ajayan, Nanotube course, Oulu, 2005.

Understanding carbon nanotubesOulu, 1-2 October 2008

•453

−Polymorphism of carbon−Electrical properties−Thermal transport−Optical properties−Mechanical behavior

Page 15: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

FETs with individual CNTs

Understanding carbon nanotubesOulu, 1-2 October 2008

Back-side gated structures on over-doped Si wafers

−Polymorphism of carbon−Electrical properties−Thermal transport−Optical properties−Mechanical behavior

R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and Ph. Avouris, APL 73 (1998) 2447.IBM group

IW

LC V V VDS n O GS T DS ( )

IW

LC V V

VV

W

LC V V V

V

DS n O G TDS

DS

n O G T DSDS

2

2

2

( )

Q C VV

V WLn O GDS

T ( )2

Q CV

C V V WLn

O GS T

( )

I satW

LC V V

V V

W

LC V V

DS n O GS TGS DS

nO GS T

( ) ( )( )

22

2

2

2

constant

A

B

C

www.plato.ul.ie/academic/Vincent.Casey/PH4608SS2/MOSFET.ppt

Page 16: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

FETs with individual CNTs

Understanding carbon nanotubesOulu, 1-2 October 2008

Back-side gated structures on over-doped Si wafers

SWCNTs acting as p-type channels

−Polymorphism of carbon−Electrical properties−Thermal transport−Optical properties−Mechanical behavior

R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and Ph. Avouris, APL 73 (1998) 2447.IBM group

Deformed MWCNTs acting as gate controlled channels

Page 17: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

Doping of CNTs

V. Derycke, R.Martel, J.Appenzeller, P.Avouris, Nano. Lett. 1 (2001) 453.IBM group

Understanding carbon nanotubesOulu, 1-2 October 2008

Changing the p-type character to n-type by annealing and/or K-doping

−Polymorphism of carbon−Electrical properties−Thermal transport−Optical properties−Mechanical behavior

Page 18: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

Transistors, logic circuits, memory, oscillator

A. Bachtold, P. Hadley, T. Nakanishi, C.Dekker, Science 294 (2001) 1317.Delft group

−Polymorphism of carbon−Electrical properties−Thermal transport−Optical properties−Mechanical behavior

http://home.tudelft.nl/en/

Page 19: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

Doping of CNTs and logic gates

A. Javey, Q. Wang, A. Urai, Y. Li, H.Dai, Nano. Lett. 2 (2002) 929.Stanford group

−Polymorphism of carbon−Electrical properties−Thermal transport−Optical properties−Mechanical behavior

G: -40 V; SD: 20 V anneals to desorb oxygen

Page 20: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

R ~1nm!

Field-emission from CNTs

Understanding carbon nanotubesOulu, 1-2 October 2008

Philip G. Collins and A. Zettl, PRB 55 (1997) 9391.

−Polymorphism of carbon−Electrical properties−Thermal transport−Optical properties−Mechanical behavior

Page 21: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

E-J characteristic curve measured using an 0.25 cm2 anode in 2×10-7 mbar pressure. ITO glass is used as anode, which is separated 0.5 mm from the sample. Turn-on and threshold fields are 3.2 V/μm and 4.4 V/μm. The inset shows the corresponding fairly linear Fowler-Nordheim plot.

S. Hofmann, C. Ducati, B. Kleinsorge, J. Robertson, Appl. Phys. Lett 83 (2003) 4661.

Field-emitter nanofibers

Understanding carbon nanotubesOulu, 1-2 October 2008

−Polymorphism of carbon−Electrical properties−Thermal transport−Optical properties−Mechanical behavior

Page 22: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

Ballistic transport: standing waves and resonance scattering in SWCNTs

200 mV periods: quantized energies of electron standing waves

1.5 V periods are due to localized states

J. Kong, et al., PRL 87 (2001) 106801.

−Polymorphism of carbon−Electrical properties−Thermal transport−Optical properties−Mechanical behavior

Page 23: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

Quantum conductance

Experiments in gated 2D electron (Fermi) gas e.g. GaAs/AlGaAs heterostructures with point type contacts. (Any point contact between metals is also good).

Tn(Ef) is the transmission probability of different sub-bands at the Fermi level.

At finite temperatures:

Understanding carbon nanotubesOulu, 1-2 October 2008

−Polymorphism of carbon−Electrical properties−Thermal transport−Optical properties−Mechanical behavior

Conductance at a given gate at 0 K

http://arxiv.org/PS_cache/cond-mat/pdf/0512/0512609v1.pdf

Page 24: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

Quantum conductancein nanotubes

MWCNTs - single channel is present.

Understanding carbon nanotubesOulu, 1-2 October 2008

S. Frank, P. Poncharal, Z. L. Wang, W. A. de Heer, Science, 280 (1998) 1744.

Ballistic transport:- No heat dissipation in the wire but

at the contacts (elastic scattering is allowed)

- Quantized conductance (elastic scattering ruins it)

−Polymorphism of carbon−Electrical properties−Thermal transport−Optical properties−Mechanical behavior

Page 25: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

Only tunneling between adjacent shells!

B. Bourlon et al., PRL 93 (2004) 176806.

Inter-shell transport

Understanding carbon nanotubesOulu, 1-2 October 2008

−Polymorphism of carbon−Electrical properties−Thermal transport−Optical properties−Mechanical behavior

Page 26: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

Dependence of the phase of the electron wave on the magnetic field (vector potential).

A. Bachtold, Nature 397 (1999) 673.

Aharonov-Bohm oscillations

Understanding carbon nanotubesOulu, 1-2 October 2008

−Polymorphism of carbon−Electrical properties−Thermal transport−Optical properties−Mechanical behavior

Page 27: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006K. Tsukagosh, Nature 401 (1999) 572.

Magnetoresistance

Understanding carbon nanotubesOulu, 1-2 October 2008

−Polymorphism of carbon−Electrical properties−Thermal transport−Optical properties−Mechanical behavior

Page 28: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

Ballistic electrical and thermal transportin carbon nanotubes

Understanding carbon nanotubesOulu, 1-2 October 2008

E. Brown et al., APL 87 (2005) 23107.

10,10 CNT d ~1.4 nm 120 phonon channels200,200 CNT d ~27.5 nm 2400 phonon channels.

2N is the number of channels

−Polymorphism of carbon−Electrical properties−Thermal transport−Optical properties−Mechanical behavior

264 K

114 K

Page 29: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

Extremely high current carrying capability.

Large current carrying capabilityBallistic carriers

A SWNT bulb made from SWNT filament compared with a tungsten bulb operated at same voltage (20 V). The nanotube bulb shows a high brightness and reliability.

J Wei, H Zhou, D Wu, BQ Wei, Carbon nanotube filaments in household light bulbs, Appl. Phys. Lett. 84 (2004) 4869.

BQ Wei, R Vajtai, PM Ajayan, Appl. Phys. Lett. 71 (2001) 1172.

−Polymorphism of carbon−Electrical properties−Thermal transport−Optical properties−Mechanical behavior

Page 30: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

The thermal conductance of an individual MWCNT. Inset: Solid line represents κ(T) of an individual MWCNT, broken and dotted lines are 80 nm and 200 nm) bundles, respectively. The positive thermoelectric power suggests hole-type major carriers taking part in the conductivity. The high Lorentz-ratio κ/σT~2-6×10-6 WΩ/K2 suggests phonon transport.

P. Kim et al., Phys. Rev. Lett. 87 (2001) 215502.J. Hone et al., Synth. Metals 103 (1999) 2498.

Thermal management of epoxy-CNT composites.

M.J. Biercuk et al., Appl. Phys. Lett. 80 (2002) 2767.

Nanotubes as perfect crystalsThermal transport

Understanding carbon nanotubesOulu, 1-2 October 2008

−Polymorphism of carbon−Electrical properties−Thermal transport−Optical properties−Mechanical behavior

Page 31: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

Zhuangchun Wu, et al. Science 305, 1273 (2004)

Optical properties

−Polymorphism of carbon−Electrical properties−Thermal transport−Optical properties−Mechanical behavior

Page 32: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

Optical properties

Understanding carbon nanotubesOulu, 1-2 October 2008

K. Kordás, T. Mustonen, G. Tóth, H. Jantunen, M. Lajunen, C. Soldano, S. Talapatra, S. Kar, R. Vajtai, P.M. Ajayan, Small 2 (2006) 1021.

−Polymorphism of carbon−Electrical properties−Thermal transport−Optical properties−Mechanical behavior

J. Maultzsch, et al., PRB 72, 205438 2005

Page 33: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

Zhuangchun Wu, et al. Science 305, 1273 (2004)J. Maultzsch, et al., PRB 72, 205438 2005.H. Kataura et al., Synth. Met. 103, 2555 (1999).

Optical properties

−Polymorphism of carbon−Electrical properties−Thermal transport−Optical properties−Mechanical behavior

Page 34: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

Mechanical properties

Understanding carbon nanotubesOulu, 1-2 October 2008

SWCNT bundles on alumina membrane support

J.P. Salvetat, et al., PRL 82 (1999) 944.

−Polymorphism of carbon−Electrical properties−Thermal transport−Optical properties−Mechanical behavior

Page 35: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

Mechanical properties

Understanding carbon nanotubesOulu, 1-2 October 2008

Good fit is obtained with SWCNTs E ~1TPaMWCNTs E ~0.3 TPa

D. Garcia-Sanchez, et al., PRL 99 (2007) 085501

−Polymorphism of carbon−Electrical properties−Thermal transport−Optical properties−Mechanical behavior

Page 36: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

•Young’s modulus ~ 1TPa•Tensile strength 4-22 GPa

•Low density

MWCNT (5 wt%) - Polystyrene composite

ET Thostenson et al., J. Phys. D 35 (2002) L77.

Young’s moduli of single- and multi-walled CNTs T Natsuki et al., Appl. Phys. A 79 (2004) 117.

J-P Salvetat et al., Phys. Rev. Lett. 82 (1999) 944.

A. Krishnan et al., Phys. Rev. B 58 (1998) 14013.

F. Li et al., Appl. Phys. Lett. 77 (2000) 3161.

Mechanical properties

Improved reinforcement:•Oxidation in acids followed by amino functionalization using triethylenetetramine•Embedding in epoxy resin

F.H. Gojny et al., Chem. Phys. Lett. 370 (2003) 820.

Understanding carbon nanotubesOulu, 1-2 October 2008

−Polymorphism of carbon−Electrical properties−Thermal transport−Optical properties−Mechanical behavior

Page 37: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

Properties of CNTs: Summary

MaterialYoung’s modulus

(GPa)Thermal conductivity

(W/mK)

Electrical resistivity

(cm)Density (g/cm3)

nanotubes 1200 3000 10-4 2.6

steel 208 52 7.2 10-5 7.8

epoxy 3.5 0.43 insulate 1.25

wood 16 0.1 insulate 0.6

SWCNTsChirality dependent band gap up to ~1 eVTunable conduction by external field (gate) or by chemicals (sensors)Large specific surface

MWCNTsStructural integrityEasy applicability: handling and assembly

http://www.nec.co.jp/press/en/0309/1701.html

http://www.samsung.coml

http://www.montreal.fi

Understanding carbon nanotubesOulu, 1-2 October 2008

Page 38: Properties of carbon nanotubes Krisztian Kordas lapy@ee.oulu.fi

YKSIKKÖ, MATTI MEIKÄLÄINEN, x.x.2006

References

Papers cited in the presentation

Springer Handbook of Nanotechnology, Bhushan, (Ed.) Springer, Heidelberg 2004.

Lecture Notes in Physics, Understanding Carbon Nanotubes, Loiseau, Lanunois, Petit, Roche, Salvetat (Eds.) Springer, Heidelberg, 2006.

Understanding carbon nanotubesOulu, 1-2 October 2008