properties of modified calcium carbonate/natural...

31
PROPERTIES OF MODIFIED CALCIUM CARBONATE/NATURAL FIBER FILLED POLYETHYLENE HYBRID FOAM COMPOSITES NURHASIKIN BINTI SANUSI UNIVERSITI TEKNOLOGI MALAYSIA

Upload: others

Post on 08-Sep-2019

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PROPERTIES OF MODIFIED CALCIUM CARBONATE/NATURAL …eprints.utm.my/id/eprint/60550/1/NurhasikinSanusiMFChE2016.pdf · terubahsuai dan semua jenis gentian semulajadi meningkat. Kesan

PROPERTIES OF MODIFIED CALCIUM CARBONATE/NATURAL FIBER

FILLED POLYETHYLENE HYBRID FOAM COMPOSITES

NURHASIKIN BINTI SANUSI

UNIVERSITI TEKNOLOGI MALAYSIA

Page 2: PROPERTIES OF MODIFIED CALCIUM CARBONATE/NATURAL …eprints.utm.my/id/eprint/60550/1/NurhasikinSanusiMFChE2016.pdf · terubahsuai dan semua jenis gentian semulajadi meningkat. Kesan

PROPERTIES OF MODIFIED CALCIUM CARBONATE/NATURAL FIBER

FILLED POLYETHYLENE HYBRID FOAM COMPOSITES

NURHASIKIN BINTI SANUSI

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Master of Engineering (Polymer)

Faculty of Chemical and Energy Engineering

Universiti Teknologi Malaysia

SEPTEMBER 2016

Page 3: PROPERTIES OF MODIFIED CALCIUM CARBONATE/NATURAL …eprints.utm.my/id/eprint/60550/1/NurhasikinSanusiMFChE2016.pdf · terubahsuai dan semua jenis gentian semulajadi meningkat. Kesan

iii

Dedicated to my late dad and mom

I will always missing you

Page 4: PROPERTIES OF MODIFIED CALCIUM CARBONATE/NATURAL …eprints.utm.my/id/eprint/60550/1/NurhasikinSanusiMFChE2016.pdf · terubahsuai dan semua jenis gentian semulajadi meningkat. Kesan

iv

ACKNOWLEDGEMENT

In the name of ALLAH S.W.T and His blessing, I am really grateful because

still had a chance and strength to finish my thesis and hopefully I can help my family

to get a better life.

First and foremost, my heartfelt gratitude goes to my supervisor, Associate

Professor Dr. Wan Aizan Binti Wan Abdul Rahman. Her encouragement and

motivation, advices, helps, criticisms and guidance since the first day we met will

always in my mind. Without her continued support and interest, this thesis would

not have been the same as presented here. I wish to express my deep appreciation to

all the technicians of laboratory of Polymer Engineering especially Encik Nordin

Ahmad. Million thanks to Dr. Rohah, Kak Dayangku Intan, Kak Rafida, Kak Ekmi

and Mohd Sofi for always supporting me. Thanks for all the memories in UTM. To

my siblings, thanks for always be by my side during my up and down.

Page 5: PROPERTIES OF MODIFIED CALCIUM CARBONATE/NATURAL …eprints.utm.my/id/eprint/60550/1/NurhasikinSanusiMFChE2016.pdf · terubahsuai dan semua jenis gentian semulajadi meningkat. Kesan

v

ABSTRACT

Modified calcium carbonate (CaCO3) filler was analyzed for its thermal,

biodegradability and hazardousness of the material to the environment. Then,

modified CaCO3/natural fiber filled low density polyethylene (LDPE) hybrid foam

composites were produced and characterized for their physical and mechanical

properties. Hybrid CaCO3/natural fiber LDPE foam composites were prepared by

melt mixing in two roll mill and foaming process was done using hot press at 160 °C

with varied amounts of modified CaCO3 filler. Fibers used in this experimental were

kenaf, banana pseudostem, coconut coir and pineapple leaf. The amounts of natural

fiber were varied from 0 to 40 part per hundred (phr). Biodegradability test using

enzymatic and soil burial for modified CaCO3 showed decrease in weight after 30

days of incubation and 49 days (7 Week), respectively. No abnormality showed

from animal and terrestrial plant for hazard assessment of modified CaCO3. Sample

containing 10 phr of modified CaCO3 filler showed the highest value of flexural

strength which was 289.22 MPa. For all samples, increasing the modified CaCO3

filler increased the compressive strength of the foam composite. Density of foam

composites increased with increasing the amount of modified CaCO3 filler and all

types of fiber loading. The effect of kenaf fiber loading showed 15 phr of fiber

represented the highest value of flexural strength which was 1531.30 MPa.

Increasing fiber loading into foam composite resulted in decreasing flexural strength

and cause lowered the compressive strength. Effects of different types of fiber on

foam composites were evaluated. Kenaf showed the highest flexural strength which

was 1531.30 MPa and coconut coir fiber showed the highest result which was 51.23

MPa for compressive strength.

Page 6: PROPERTIES OF MODIFIED CALCIUM CARBONATE/NATURAL …eprints.utm.my/id/eprint/60550/1/NurhasikinSanusiMFChE2016.pdf · terubahsuai dan semua jenis gentian semulajadi meningkat. Kesan

vi

ABSTRAK

Pengisi kalsium karbonat (CaCO3) terubahsuai telah dianalisis untuk termal,

keterbiodegradasikan dan tahap bahaya bahan kepada alam sekitar. Kemudian,

komposit busa polietilena ketumpatan rendah (LDPE) terisi hibrid CaCO3

terubahsuai/gentian semulajadi telah dihasilkan dan dicirikan untuk sifat fizikal dan

mekanikalnya. Komposit busa LDPE hibrid CaCO3/gentian semulajadi telah

disediakan dengan percampuran leburan menggunakan mesin penggolek berkembar

dan proses pembusaan dilakukan menggunakan mesin tekanan panas pada suhu 160

°C dengan kandungan pengisi CaCO3 terubahsuai yang berbeza. Gentian yang

digunakan di dalam eksperimen ini adalah kenaf, batang semu pisang, sabut kelapa

dan daun nanas. Jumlah gentian semulajadi yang digunakan berubah daripada 0

sehingga 40 bahagian per seratus (phr). Ujian keterbiodegradasikan menggunakan

enzim dan ditanam dalam tanah untuk CaCO3 terubahsuai menunjukkan penurunan

berat sampel masing-masing setelah 30 hari inkubasi dan 49 hari (7 Minggu). Tiada

kelainan ditunjukkan daripada haiwan dan tumbuhan daratan untuk penilaian tahap

bahaya daripada pengisi CaCO3 terubahsuai. Sampel mengandungi 10 phr pengisi

CaCO3 terubahsuai menunjukkan nilai kekuatan lenturan tertinggi iaitu 289.22 MPa.

Untuk semua sampel, peningkatan pengisi CaCO3 terubahsuai telah meningkatkan

kekuatan mampatan komposit busa. Ketumpatan komposit busa meningkat apabila

jumlah pengisi CaCO3 terubahsuai dan semua jenis gentian semulajadi meningkat.

Kesan pemuatan gentian kenaf menunjukkan 15 phr gentian menghasilkan nilai

tertinggi bagi kekuatan lenturan iaitu 1531.30 MPa. Peningkatan pemuatan gentian

dalam komposit busa menurunkan kekuatan lenturan dan menyebabkan penurunan

kekuatan mampatan. Kesan untuk berbagai jenis gentian ke atas komposit busa telah

dinilai. Kenaf menunjukkan kekuatan lenturan yang tertinggi 1531.30 MPa dan

sabut kelapa menunjukkan nilai tertinggi dalam kekuatan mampatan iaitu 51.23 MPa.

Page 7: PROPERTIES OF MODIFIED CALCIUM CARBONATE/NATURAL …eprints.utm.my/id/eprint/60550/1/NurhasikinSanusiMFChE2016.pdf · terubahsuai dan semua jenis gentian semulajadi meningkat. Kesan

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES xi

LIST OF FIGURES xii

LIST OF SYMBOLS xiv

LIST OF ABBREVIATIONS xv

LIST OF APPENDICES xvi

1 INTRODUCTION 1

1.1 Research Background 1

1.2 Problem Statements 3

1.3 Objectives 4

1.4 Scope of Study 5

1.5 Significance of Study 6

2 LITERATURE REVIEW 7

2.1 Overview of Foam 7

2.2 Basics of Foam Formation 9

2.3 Technique Manufacturing of Foam 11

Page 8: PROPERTIES OF MODIFIED CALCIUM CARBONATE/NATURAL …eprints.utm.my/id/eprint/60550/1/NurhasikinSanusiMFChE2016.pdf · terubahsuai dan semua jenis gentian semulajadi meningkat. Kesan

viii

2.4 Application of Foam 12

2.5 Foam Composite 13

2.6 Overview of Natural Fibers 14

2.7 Materials 16

2.7.1 Polyethylene 16

2.7.2 Calcium Carbonate as Filler 18

2.7.3 Kenaf Fiber 19

2.7.4 Banana Pseudostem Fiber 20

2.7.5 Coconut Coir Fiber 21

2.7.6 Pineapple Leaf Fiber (PALF) 22

2.7.7 Azodicarbonamide as Chemical Blowing Agent 23

2.7.8 Dicumyl Peroxide as Cross-linking Agent 24

3 RESEARCH METHODOLOGY 26

3.1 Materials 26

3.1.1 Modified Calcium Carbonate (CaCO3) Filler 26

3.12 Low Density Polyethylene (LDPE) 27

3.1.3 Kenaf Fiber 28

3.1.4 Other Fibers 29

3.1.5 Azodicarbonamide (ADC) 30

3.16 Dicumyl Peroxide (DCP) 30

3.2 Analysis of Modified CaCO3 Filler 30

3.2.1 Fourier Transform-Infrared (FTIR) 30

3.2.2 Differential Scanning Calorimetry (DSC) 31

3.2.3 Thermogravimetric Analysis (TGA) 31

3.2.4 Biodegradability Test of Modified CaCO3 Filler 31

3.2.4.1 Enzymatic Test 31

3.2.4.2 Soil Burial Test 33

3.2.5 Assessing the Hazard of Material 34

3.2.5.1 Aquatic Life 34

3.2.5.2 Animal 34

3.2.5.3 Terrestrial Plant 34

3.3 Formulation Development 36

3.3.1 Preparation of Foam Composite 36

Page 9: PROPERTIES OF MODIFIED CALCIUM CARBONATE/NATURAL …eprints.utm.my/id/eprint/60550/1/NurhasikinSanusiMFChE2016.pdf · terubahsuai dan semua jenis gentian semulajadi meningkat. Kesan

ix

3.4 Properties of Foamed Composites 37

3.4.1 Mechanical Properties 37

3.4.1.1 Flexural Strength 37

3.4.1.2 Compression Strength 38

3.4.2 Physical Properties 39

3.4.2.1 Density 39

3.4.2.2 Moisture Content 39

3.5 Morphology Study 40

3.6 Summary of Overall Process 41

4 RESULTS AND DISCUSSION 42

4.1 Analysis of Modified CaCO3 Filler 42

4.1.1 Fourier Transform-Infrared (FTIR) 42

4.1.2 Thermal Characterization 43

4.1.2.1 Differential Scanning Calorimetry (DSC) 43

4.1.2.2 Thermogravimetric Analysis (TGA) 45

4.1.3 Biodegradability Test of Modified CaCO3 Filler 46

4.1.3.1 Enzymatic Test 46

4.1.3.2 Soil Burial Test 50

4.1.4 Assessing the Hazard of Material 53

4.1.4.1 Aquatic Life 53

4.1.4.2 Animal 54

4.1.4.3 Terrestrial Plant 55

4.2 Polyethylene Foam Composite 57

4.2.1 Effect of Modified CaCO3 Filler 57

4.2.1.1 Density Test 57

4.2.1.2 Flexural Test 58

4.2.1.3 Compression Test 60

4.2.2 Effect of Kenaf Fiber Loading 61

4.2.2.1 Density Test 61

4.2.2.2 Flexural Test 62

4.2.2.3 Compression Test 63

4.2.3 Effect of Different Types of Fiber 64

4.2.3.1 ATR-FTIR 64

Page 10: PROPERTIES OF MODIFIED CALCIUM CARBONATE/NATURAL …eprints.utm.my/id/eprint/60550/1/NurhasikinSanusiMFChE2016.pdf · terubahsuai dan semua jenis gentian semulajadi meningkat. Kesan

x

4.2.3.2 Moisture Content 65

4.2.3.3 Density Test 66

4.2.3.4 Flexural Test 69

4.2.3.5 Compression Test 71

5 CONCLUSION AND RECOMMENDATIONS 73

5.1 Conclusion 73

5.2 Recommendations and Future Works 74

REFERENCES 75

APPENDICES A - C 84-88

Page 11: PROPERTIES OF MODIFIED CALCIUM CARBONATE/NATURAL …eprints.utm.my/id/eprint/60550/1/NurhasikinSanusiMFChE2016.pdf · terubahsuai dan semua jenis gentian semulajadi meningkat. Kesan

xi

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Average diameter of natural fibers 21

3.1 Modified CaCO3 filler composition 26

3.2 Data properties of LDPE resin 27

3.3 Ingredients to prepare nutrient-salt agar medium (dissolved

in 1 L of water) 32

3.4 Rating for visible effects on the surface of test sample 33

3.5 Formulation to determine the optimum of modified CaCO3

filler loading in LDPE foam composite 36

3.6 Formulation to determine the optimum of fiber loading in

LDPE foam composite 37

4.1 Result obtained from enzymatic test 47

4.2 SEM micrographs LDPE foam with different amount of

modified CaCO3 58

4.3 SEM mircographs of (a) kenaf, (b) banana, (c) coconut and

(d) PALF 67

4.4 SEM micrographs of LDPE foam with different types of

fiber, (a) kenaf, (b) banana, (c) coconut and (d) PALF

foam composites 70

Page 12: PROPERTIES OF MODIFIED CALCIUM CARBONATE/NATURAL …eprints.utm.my/id/eprint/60550/1/NurhasikinSanusiMFChE2016.pdf · terubahsuai dan semua jenis gentian semulajadi meningkat. Kesan

xii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 Illustration of gas loss during foam expansion 10

2.2 Result of gas volume at different bubble radius with constant

amount of CO2 at 0.05 g and temperature of 100 °C; Ef is

the maximum represents ideal gas expansion. (Assumption:

gas loss and product geometry were efficiency of foaming) 11

2.3 Schematic cell wall image of the natural plants 15

2.4 Cellular structure of LDPE foams 17

2.5 Micrographs of longitudinal and cross-sectional area of

banana fiber 21

2.6 Micrographs of longitudinal and cross-sectional area of coconut

coir fiber 22

2.7 Structure of dicumyl peroxide 25

3.1 Modified CaCO3 filler 27

3.2 (a) Kenaf bast, (b) banana pseudo-stem trunk, (c) coconut coir

and (d) pineapple leaf fibers 29

3.3 Sample preparation for enzymatic test 32

3.4 Vase containing 50 g (left) and 100 g (right) of modified

CaCO3 filler mixed with soil 35

3.5 Control plant 35

3.6 Shape of compression sample 38

3.7 Methodology flowchart to study calcium carbonate/fiber

filled polyethylene hybrid foam composites 41

4.1 FTIR spectrum for modified CaCO3 and virgin CaCO3 43

4.2 DSC thermogram for modified CaCO3 44

4.3 TGA plot for modified CaCO3 45

Page 13: PROPERTIES OF MODIFIED CALCIUM CARBONATE/NATURAL …eprints.utm.my/id/eprint/60550/1/NurhasikinSanusiMFChE2016.pdf · terubahsuai dan semua jenis gentian semulajadi meningkat. Kesan

xiii

4.4 Discoloration and porosity effect on the modified CaCO3

filler surface after 30 days of incubation with Bacillus fungi 49

4.5 Representative weight loss curves of EM, Bacillus and

Aspergillus niger fungi samples after 10, 20 and 30 days 50

4.6 Optical micrographs for surface of (a) sample of modified

CaCO3 filler after nine months (36 weeks) buried in the soil and

(b) control sample 51

4.7 Graph of weight loss for soil burial test sample against duration

of test 52

4.8 TGA curves of modified CaCO3 after soil burial and control

sample 53

4.9 pH value for water in fish tank 54

4.10 Weight of two hamsters during the assessment 55

4.11 Weight of terrestrial plant during the assessment 56

4.12 Observation on number of leaves of terrestrial plant 56

4.13 Effect of modified CaCO3 filler on the foam density 57

4.14 Influence of modified CaCO3 volume fraction on flexural

strength of foam composites 60

4.15 Influence of modified CaCO3 volume fraction on

compressive strength of foam composites 61

4.16 Effect of fiber loading on the foam density 62

4.17 Influence of fiber loading on flexural strength of foam

composites 63

4.18 Influence of fiber loading on compressive strength of

foam composites 64

4.19 IR spectra of foam composites with different types of fiber 65

4.20 Average moisture content for different types of fiber 66

4.21 Foam density for different types of fiber 67

4.22 Flexural strength of different natural fibers reinforced LDPE

foam composites 69

4.23 Compressive strength of different natural fibers reinforced

LDPE foam composites 72

Page 14: PROPERTIES OF MODIFIED CALCIUM CARBONATE/NATURAL …eprints.utm.my/id/eprint/60550/1/NurhasikinSanusiMFChE2016.pdf · terubahsuai dan semua jenis gentian semulajadi meningkat. Kesan

xiv

LIST OF SYMBOLS

% - percent

°C - degree celcius

°C/min - degree celcius per minute

µm - micrometre

cm - centimetre

cm-1 - per centimetre

Ef - foaming efficiency

Ev - foaming effectiveness

g - gram

g/cm3 - gram per cubic metre

h - hour

kV - kilovolt

mg - milligram

min - minute

min-1 - per minute

ml - millilitre

ml/min - millilitre per minute

mm - millimetre

Tc - crystallization temperature

Tm - melting temperature

w/v - weight per volume

L - litre

GPa - gigapascal

N - newton

MPa - megapascal

Page 15: PROPERTIES OF MODIFIED CALCIUM CARBONATE/NATURAL …eprints.utm.my/id/eprint/60550/1/NurhasikinSanusiMFChE2016.pdf · terubahsuai dan semua jenis gentian semulajadi meningkat. Kesan

xv

LIST OF ABBREVIATIONS

ADC - Azodicarbonamide

ASTM - American standard testing materials

CaCO3 - Calcium carbonate

CO2 - Carbon dioxide

DCP - Dicumyl peroxide

DSC - Differential scanning calorimetry

EPDM - Ethylene propylene diene monomer

EVA - Ethylene-vinyl acetate

FTIR - Fourier Transform-Infrared

HDPE - High density polyethylene

LDPE - Low density polyethylene

N2 - Nitrogen gas

NaOH - Sodium hydroxide

PE - Polyethylene

PLA - Poly(lactic) acid

PP - Polypropylene

PS - Polystyrene

PU - Polyurethane

PVC - Polyvinyl chloride

RIM - Reaction-injection molding

SAXS - Small-angle X-ray scattering

SEM - Scanning electron microscopy

TGA - Thermogravimetric analysis

UV - Ultraviolet

ZnO - Zinc oxide

Page 16: PROPERTIES OF MODIFIED CALCIUM CARBONATE/NATURAL …eprints.utm.my/id/eprint/60550/1/NurhasikinSanusiMFChE2016.pdf · terubahsuai dan semua jenis gentian semulajadi meningkat. Kesan

xvi

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Table 1: Formulation to determine the optimum amount of

azodicarbonamide (ADC) as blowing agent 84

Table 2: Formulation to determine the optimum amount of

dicumyl peroxide (DCP) as cross-linking agent 84

B Table 1: Result of weight loss result for enzymatic test 85

C Table 1: Data of temperature and pH for water fish tank 87

Table 2: Weight of dwarf hamster recorded 88

Table 3: Data of weight plant toxicity test 88

Table 4: Data of number of leaves plant toxicity test 88

Page 17: PROPERTIES OF MODIFIED CALCIUM CARBONATE/NATURAL …eprints.utm.my/id/eprint/60550/1/NurhasikinSanusiMFChE2016.pdf · terubahsuai dan semua jenis gentian semulajadi meningkat. Kesan

CHAPTER 1

INTRODUCTION

1.1 Research Background

In foam industry, the challenges that encounter were waste disposal

(including biodegradability), recycling and economically feasible (Klempner and

Sendijarevic, 2004). Due to production of foam that is frequently from petroleum

based material, the usage of synthetic resins alone in plastic compounding results in

longer time was taken to degrade in landfill. The lack of degradability and

compostability lead to the modification of polymer chain of petroleum-based resin as

the alternative way to sustain the environmental.

Generally, the addition of calcium carbonate (CaCO3) may decrease the

tensile strength, compare with similar quantities of silicates in polymer compound,

also, addition of untreated CaCO3 in polymer compound reduces impact strength

(Waterman et al., 1978). However, calcium carbonate appeared to be an effective

additive to enhance the compressive behaviours (Konar et al., 2013). This is the

most popular mineral filler in plastic industry which are economical and compatible

with a wide range of polymer resins.

Page 18: PROPERTIES OF MODIFIED CALCIUM CARBONATE/NATURAL …eprints.utm.my/id/eprint/60550/1/NurhasikinSanusiMFChE2016.pdf · terubahsuai dan semua jenis gentian semulajadi meningkat. Kesan

2

One option for the replacement of petroleum-based polymers is natural

polymers such as native starch, fiber and chitosan. The natural polymers are readily

available, inexpensive and biodegradable (Tharanathan, 2003). The attention on

natural plant fibers as reinforcement in plastic application to replace synthetic fibers

arise as they are renewability, low density and high specific strength (Ochi, 2008).

By introducing the kenaf fibers to the foamed composite, the tensile strength will be

improved because kenaf fiber is known to have the potential as a reinforcing fiber in

thermoplastic composites (Karnani et al., 1997). Addition of kenaf fibers gives

tendency of foamed composite susceptible to be attack by microorganism during

disposal.

Abundantly waste from agriculture and the availability give idea to

researchers to develop the usage of natural fibers. The uses of these fibers are driven

solely by their environmental attributes and inexpensive nature. Sugarcane bagasse,

oil palm empty fruit bunch and banana pseudo-stem are some of the natural

cellulosic fibre that widely available in Malaysia. These advantages make us

interested to add some value from this waste in polymer foam production. In

addition, agricultural wastes can have great commercial application and facilitate

extra income to farmers. This works is one of the efforts to utilize the usage of

agricultural waste.

Foams can be flexible or rigid and their properties depend on the chemical

nature of the polymer, the manufacturing process, the density and the cell

morphologies (Biron, 2007). Polyolefin foams are flexible, tough and good resistant

to chemical and abrasion. Generally, they posses intermediate mechanical properties

between rigid and highly flexible foams. They are known to have good thermal

insulation and superior electrical properties (Landrock, 1995). Yu et al., (2011) have

reported that low-density polyethylene (LDPE) has wide foaming temperature

window because the high degree of long chain branching lead to higher

macromolecular entanglement density and higher macromolecular chain interactions.

This made the cells growth easy to stabilize. Since early 1940s, LDPE foam is

Page 19: PROPERTIES OF MODIFIED CALCIUM CARBONATE/NATURAL …eprints.utm.my/id/eprint/60550/1/NurhasikinSanusiMFChE2016.pdf · terubahsuai dan semua jenis gentian semulajadi meningkat. Kesan

3

produced and become a major commercial foam product with wide application

because it outstanding foamability (Yu et al., 2011).

1.2 Problem Statements

As an alternative way for cost saving and reduce the consumption of

petroleum-based material, inorganic filler such as calcium carbonate has been used in

plastic industries. Using CaCO3 alone in compounding may decrease the properties

compare to pure resin. The addition of compatibilizer, coupling agent and

chemically modification on CaCO3 itself will help good interfacial with polymer

matrix and directly contributed to sufficient stress transfer from matrix to fibre.

Modified CaCO3 have been used in this research. The modified filler contains 90 %

of CaCO3 and consists of alkane, amides, ethylene propylene diene monomer

(EPDM), stearic acid and silane.

One of the main problems of LDPE foam is not readily biodegradable.

Addition of modified CaCO3 in LDPE foam cannot solve the environmental issue

because this inorganic filler will normally undergo carbon mineralization and

deterioration if thermal oxidation occurs during compost. Li et. al., (2013) said only

one weight loss from three or four phase during the decomposition of calcium

carbonate at 600 – 850 °C. Natural fibers that abundantly and wide availability and

other reachable agro-waste around the world contribute the sustainable technology

research. The main purpose to yield lighter composites with lower cost introduced

natural fibres compared to high expensive reinforced polymer composites using glass

fibre. Common petroleum-based plastics, such as polyethylene (PE) and

polypropylene (PP) are used widespread with natural fibres like sisal, hemp, kenaf,

and jute (Bledzki and Gassan, 1999). The combination of natural fibers to reinforced

PE foam also will help increase bioavailability of the biodegradation in the

compound.

Page 20: PROPERTIES OF MODIFIED CALCIUM CARBONATE/NATURAL …eprints.utm.my/id/eprint/60550/1/NurhasikinSanusiMFChE2016.pdf · terubahsuai dan semua jenis gentian semulajadi meningkat. Kesan

4

Foam performance can be enhanced by fiber reinforcement (Kannan et al.,

1981). Fiber length, fiber-volume fraction, fiber content and fiber orientation give

great influence in the strength of the foam. Longer fibers were significantly more

effective than shorter fiber in improving strength and modulus of foams under tensile

and flexural loading. However, long fiber having difficulties during processing and

it is a challenge to prevent fiber breakage during the compounding. Lee et al.,

(2013) has used internal mixer in their research face fiber breakage problem and

indirectly reduce the reinforcing capability of the kenaf fiber in polypropylene and

poly(butylene succinate) composites. Thus, in this research, two roll mills have been

used to compound the LDPE resin with other ingredients.

In this project, the following questions arise and have been identified:

1. What are the properties of modified CaCO3?

2. What are the optimum amount and processing parameter of modified

CaCO3 filler compounded with LDPE?

3. What are the physical and mechanical properties of hybrid foam

composites with additional of natural fibers?

1.3 Objectives

The aim of this research was to study the properties of hybrid LDPE foam

composites using modified CaCO3 and natural fibers. The objectives have been

formulated to achieve the research aims such as below:

i. To analyzed the modified CaCO3 filler for its thermal

characterization, biodegradability and assessing the hazard of

material.

Page 21: PROPERTIES OF MODIFIED CALCIUM CARBONATE/NATURAL …eprints.utm.my/id/eprint/60550/1/NurhasikinSanusiMFChE2016.pdf · terubahsuai dan semua jenis gentian semulajadi meningkat. Kesan

5

ii. To determine the effects of modified CaCO3 filler and kenaf fiber

loading in LDPE foam composite based on density and mechanical

test (flexural and compression test).

iii. To determine the effects of different natural fibers on density and

mechanical properties.

1.4 Scope of Study

This research is aiming to study the modified CaCO3 filler and the application

in commodity plastic as foam composite. In order to achieve the objectives of this

research, the procedures taken are followed by the step below:

1. Modified CaCO3 filler characterization.

i) Samples were brought for Fourier Transform-Infrared (FTIR), Differential

Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA).

ii) Enzymatic degradation/fungal resistance (ASTM G21) and soil burial test were

done to investigate the degradation properties.

iii) Assessment on hazard of material.

2. Foam composite preparation.

i) Optimum amount of modified CaCO3 were determined using different loading, 5,

10, 15, 20, 30, and 40 phr using two rolls mill at temperature of 120 °C for 10 mins.

ii) The sheet of LDPE was brought to hot air by hot press for foaming process using

temperature of 160 °C for 15 mins.

iv) Foamed sheet was cut into dimension 100 mm x 20 mm x 30 mm for further

testing.

v) Natural fiber hybrid foam composites were prepared with a similar method and the

fiber loading varies from 5 to 40 phr.

Page 22: PROPERTIES OF MODIFIED CALCIUM CARBONATE/NATURAL …eprints.utm.my/id/eprint/60550/1/NurhasikinSanusiMFChE2016.pdf · terubahsuai dan semua jenis gentian semulajadi meningkat. Kesan

6

3. Mechanical properties studies

i) Flexural strength – ASTM D790-10

ii) Compression strength – ASTM D3574

4. Physical properties studies

i) Density - ASTM D1622-09

ii) Moisture Content – ASTM D644

1.5 Significance of Study

LDPE is commodity plastic and well-known having unique strain-hardening

characteristics for high degree foam expansion. LDPE foam have many advantages

in foam application, unfortunately, poor in biodegradability reduce the interest as

people nowadays are compete to create green invention and sustainability.

This study explores the addition of modified CaCO3 in LDPE foam

composite with treated agricultural waste fibers. The combination of natural fibers

will reduce the problem of biodegradability and cost effectiveness for disposable

foam packaging. It is essential to keep the new invention more eco-friendly to

environment. Four types of natural cellulosic fibers were used to compare the

mechanical strength, physical properties and morphology. Kenaf bast, banana

pseudo-stem, coconut coir and pineapple leaf were left to decompose in plantation

field can be obtained widely in Malaysia was chosen to turn from landfill waste into

useful things.

Page 23: PROPERTIES OF MODIFIED CALCIUM CARBONATE/NATURAL …eprints.utm.my/id/eprint/60550/1/NurhasikinSanusiMFChE2016.pdf · terubahsuai dan semua jenis gentian semulajadi meningkat. Kesan

75

REFERENCES

Abbasi, M., Khorasani, S. N., Bagheri, R., and Esfahani, J. M. (2011). Microcellular

Foaming of Low-Density Polyethylene Using Nano-CaCO3 as a Nucleating

Agent. Polymer Composites, 1718-1725, 2011.

Akil, H.M., Omar, M.F., Mazuki, A.A.M., Safiee, S., Ishak, Z.A.M. and Bakar, A.

A. (2011). Kenaf Fiber Reinforced Composites: A Review. Materials and

Design, 32, 4107–4121.

Ammalaa, A., Batemana, S., Deana, K., Petinakisa, E., Sangwana, P., Wonga, S.,

Yuana, Q., Yua, L., Patrickb, C. and Leong, K.H. (2011). An Overview of

Degradable and Biodegradable Polyolefins. Progress in Polymer Science, 36,

1015–1049.

ASTM D1623-09. Standard Test Method for Tensile and Tensile Adhesion

Properties of Rigid Cellular Plastics. 2009.

ASTM D3574-11. Standard Test Methods for Flexible Cellular Materials—Slab,

Bonded, and Molded Urethane Foams. 2012.

ASTM D3576-98. Standard Test Method for Cell Size of Rigid Cellular Plastics,

2006.

ASTM E96/E96M-10. Standard Test Methods for Water Vapor Transmission of

Materials. 2011.

ASTM G21-09. Standard Practice for Determining Resistance of Synthetic

Polymeric Materials to Fungi. 2009.

Asumani, O. M. L., Reid, R. G., and Paskaramoorthy, R. (2012). The Effects of

Alkali–Silane Treatment on the Tensile and Flexural Properties of Short Fibre

Non-Woven Kenaf Reinforced Polypropylene Composites. Composites: Part

A, 43, 1431–1440

Page 24: PROPERTIES OF MODIFIED CALCIUM CARBONATE/NATURAL …eprints.utm.my/id/eprint/60550/1/NurhasikinSanusiMFChE2016.pdf · terubahsuai dan semua jenis gentian semulajadi meningkat. Kesan

76

Auras, R., Singh, S.P. and Singh, J. (2006). Performance Evaluation of PLA against

Existing PET and PS Containers. Journal Testing Evaluation, 34, 530–536.

Bellayer, S., Tavard, E., Duquesne, S., Piechaczyk, A., and Bourbigot, S. (2009)

Mechanism of Intumescence of a Polyethylene/Calcium Carbonate/Stearic

Acid System. Polymer Degradation and Stability, 94, 797–803.

Berins, M.L. (1991). Plastics Engineering Handbook of the Society of the Plastics

Industry, 5th Edition. New York.

Biron, M. (2007). Thermoplastics and Thermoplastic Composites. Technical

Information for Plastics Users. Elsevier.

Bledzki, A. and Gassan, J. (1999). Composites Reinforced With Cellulose Based

Fibers. Progress in Polymer Science, 24, 221–74.

Cardoso, E.C.L., Lugao, A.B. and Andrade e Silva, L.G. (1998). Cross-linked

Polyethylene Foams, Via EB Radiation. Radiation Physics and Chemistry,

52, 197-200.

Carr, L.G., Parra, D.F., Ponce, P., Lugao, A.B. and Buchler, P.M. (2006). Influence

of Fibers on the Mechanical Properties of Cassava Starch Foams. Journal of

Polymer and the Environment, 14, 179–183.

Cerqueira, E. F., Baptista, C. A. R. P., and Mulinari D. R. (2011). Mechanical

Behaviour of Polypropylene Reinforced Sugarcane Bagasse Fibers

Composites. Procedia Engineering, 10, 2046–2051.

Chandra, M. D., and Murali, B. (2014). Characterization of Kenaf Fibre Reinforced

Composite. Journal of Chemical and Pharmaceutical Research, 6, 626-628.

Chandra, R. and Rustgi, R. (1998). Biodegradable Polymers, Progress in Polymer

Science, 23, 1273– 1335.

Cotgreave, T.C. and Shortall, J.B. (1977). The Mechanism of Reinforcement of

Polyurethane Foam by High-modulus Chopped Fibers. Journal Material

Science, 12, 708–717.

Dias, D.B. and de Andrade e Silva, L.G. (2007). Polyethylene Foams Cross-linked

by Electron Beam. Radiation Physics and Chemistry, 76, 1696-1697.

Galvan-Ruiz, M., Hernandez, J., Banos, L., Noriega-Montes, J., and Rodriguez-

Garcia, M. E. (2009). Characterization of Calcium Carbonate, Calcium

Oxide, and Calcium Hydroxide as Starting Point to The Improvement of

Lime for Their Use in Construction. Journal of Materials in Civil

Engineering, 21, 694–698.

Page 25: PROPERTIES OF MODIFIED CALCIUM CARBONATE/NATURAL …eprints.utm.my/id/eprint/60550/1/NurhasikinSanusiMFChE2016.pdf · terubahsuai dan semua jenis gentian semulajadi meningkat. Kesan

77

Glenn, G. M., Orts, W. J., and Nobes, G. A. R. (2001). Starch, Fiber and CaCO3

Effects on the Physical Properties of Foams Made by a Baking Process.

Industrial Crops and Products, 14, 201–212.

Glenn, G.M., Orts, W.J. and Nobes, G.A.R. (2001). Starch, Fiber and CaCO3 Effect

on the Physical Properties of Foams Made By a Baking Process. Industrial

Crops and Products, 14, 201–212.

Gu, R., Sain, M.M. and Konar, S.K. (2013). A Feasibility Study of Polyurethane

Composite Foam with Added Hardwood Pulp. Industrial Crops and

Products, 42, 273–279.

Hasan, N. M. S., Sobuz, H. R., Sayed, M. S., and Islam, M. S., (2012). The Use of

Coconut Fibre in the Production Of Structural Lightweight Concrete. Journal

of Applied Sciences, 12, 831-839.

Hatakeyema, H., Tanamachi, N., Matsumura, H., Hirose, S. and Hatakeyama, T.

(2005). Bio-Based Polyurethane Composite Foams with Inorganic Fillers

Studied by Thermogravimetry. Thermochimica Acta, 431, 155-160.

Huda, M.S., Drzal, L.T, Mohanty, A.K. and Misra, M. (2008). Effect of Fiber

Surface-treatments on the Properties of Laminated Biocomposites from

Poly(lactic acid) (PLA) and Kenaf Fibers. Composites Science and

Technology, 68, 424-432.

Huda, M.S., Drzal, L.T., Mohanty, A.K. and Misra, M. (2006). Chopped Glass and

Recycled Newspaper as Reinforcement Fibers in Injection Moulded

Poly(Lactic Acid)(PLA) Composites: A Comparative Study. Composites

Science and Technology, 66, 1813–24.

Huneault, M.A. and Li, H. (2007). Morphology and Properties of Compatibilized

Polylactide/Thermoplastic Starch Blends, Polymer, 48, 270-280.

Kaisangsri, N., Kerdchoechuen, O. and Laohakunjit, N. (2012). Biodegradable

Foam Tray From Cassava Starch Blended With Natural Fiber And

Chitosan. Industrial Crops and Products, 37, 542– 546.

Kaplan, D. L. (1998). Biopolymers From Renewable Resources. Springer. New

York.

Karnani, R., Krishnan, M. and Narayan, R. (1997). Biofiber Reinforced

Polypropylene Composites. Polymer Engineering & Science, 37, 476–83.

Page 26: PROPERTIES OF MODIFIED CALCIUM CARBONATE/NATURAL …eprints.utm.my/id/eprint/60550/1/NurhasikinSanusiMFChE2016.pdf · terubahsuai dan semua jenis gentian semulajadi meningkat. Kesan

78

Kengkhetkit, N., Amornsakchai, T. (2012). Utilisation of Pineapple Leaf Waste for

Plastic Reinforcement: 1. a Novel Extraction Method for Short Pineapple

Leaf Fiber. Industrial Crops and Products,40,:55-61.

Klempner, D. and Sendijarevic, V. (2004). Polymer Foams and Foam Technology,

2nd Edition. Hanser Publisher.

Konar, S.K., Gu, R. and Sain, M. (2013). Preparation and Characterization of Baked

Nitrile Latex Foam Reinforced with Biomasses. Industrial Crops and

Products, 42, 261–267.

Kozlowski, R., Mieleniak, B., Helwig, M. and Przepiera, A. (1999). Flame Resistant

Lignocellulosic-Mineral Composite Particleboards. Polymer Degradation

and Stability, 64, 523–528.

Krause, B., Mettinkhof, R., van der Vegt, N.F.A. and Wessling, M. (2001).

Microcellular Foaming of Amorphous High-Tg Polymers Using Carbon

Dioxide. Macromolecules, 34, 874–884.

Landrock, A.H. (1995). Handbook of Plastic Foams: Types, Properties,

Manufacture and Applications. Noyes Publication, New Jersey.

Lawton, J.W., Shogren, R.L. and Tiefenbacher, K.F. (2004). Aspen Fiber Addition

Improves the Mechanical Properties of Baked Cornstarch Foams. Industrial

Crops and Products, 19, 41–48.

Lee, J.W.S. and Park, C.B. (2006). Use of Nitrogen as a Blowing Agent for the

Production of Fine-Celled High-Density Polyethylene Foams.

Macromolecular Materials and Engineering, 291, 1233–1244.

Wang, K. and Park, C.B. (2005). Challenge To Extrusion of Low Density

Microcellular Polycarbonate Foams Using Supercritical Carbon Dioxide.

Industrial and Engineering Chemistry Research, 44, 92–99.

Lee, S.T. (2000). Foam Extrusion: Principles and Practice. Technomic Publishing

Company.

Lee, S.T. and Ramesh, N.S. (1996). Gas Loss during Foam Sheet Formation.

Advances in Polymer Technology, 15, 297–305.

Lee, S.T., Kareko, L. and Jun, J. (2008). Study of Thermoplastic PLA Foam

Extrusion, Journal of Cellular Plastics, 44, 293–305.

Lee, S.T., Park, C.B. and Ramesh, N.S. (2006). Polymeric Foams; Science and

Technology. Taylor and Francis (CRC Press), Boca Raton, Florida.

Page 27: PROPERTIES OF MODIFIED CALCIUM CARBONATE/NATURAL …eprints.utm.my/id/eprint/60550/1/NurhasikinSanusiMFChE2016.pdf · terubahsuai dan semua jenis gentian semulajadi meningkat. Kesan

79

Lee, S.Y., Eskridge, K.M., Koh, W.Y. and Henna, M.A. (2009). Evaluation of

Ingredient Effects on Extruded Starch-Based Foams Using a Supersaturated

Split-Plot Design. Industrial Crops and Products, 29, 427–436.

Li, Q. and Matuana, L.M. (2003). Foam Extrusion of High Density

Polyethylene/Wood-Flour Composites using Chemical Foaming Agents.

Journal of Applied Polymer Science, 88, 3139–3150.

Li, X. G., Lv, Y., Ma, B. G., Wang, W. Q., and Jian S. W. (2013). Decomposition

Kinetic Characteristics of Calcium Carbonate Containing Organic Acids by

TGA. Arabian Journal of Chemistry.

Luo, Z, Wang, Y., Jiang, L., and Xu, X. (2014). Effect of Nano-CaCO3-LDPE

Packaging on Quality and Browning of Fresh-Cut Yam. Food Science and

Technology, 1-7.

Maged, A., O., Ayman, A., and Ulrich, W. S. (2004). Influence of Excessive Filler

Coating on the Tensile Properties of LDPE–Calcium Carbonate Composites.

Polymer, 45, 1177–1183.

Maio, L.D., Coccorullo, I., Montesano, S. and Incarnato, L. (2008). Chain Extension

and Foaming of Recycled PET in Extrusion Equipment. Macromolecular

Symposia, 228, 185–200.

Marcilla, A., Garcia-Quesada, J.C., Beltran, M.I. and Ruiz-Femenia, R. (2008).

Study of the Formulations and Process Conditions in the Crosslinking of

Polyethylene Foams at Atmospheric Pressure. Journal of Applied Polymer

Science, 107, 2028-2037.

Marisa C. G. R., Antonio H. M. F. T. S., Fernanda M. B. C.,and Ana Lucia N. S.

(2005). Study of Composites Based on Polypropylene and Calcium

Carbonate by Experimental Design. Polymer Testing, 24, 1049–1053.

Matuana, L.M., Faruk, O. and Diaz, C.A. (2009). Cell Morphology of Extrusion

Foamed Poly(lactic acid) using Endothermic Chemical Foaming Agent.

Bioresource Technology, 100, 5947-5954.

Mills, N.J. (2007). Polymer Foams Handbook: Engineering and Biomechanics

Applications and Design Guide. Butterworth-Heinemann Publisher.

Mohamed, A., Bhardwaj, H., Hamama, A. and Webber, C. (1995). Chemical

Composition of Kenaf (Hibiscus cannabinus L.) Seed Oil. Industrial Crops

and Products, 4, 157–65.

Page 28: PROPERTIES OF MODIFIED CALCIUM CARBONATE/NATURAL …eprints.utm.my/id/eprint/60550/1/NurhasikinSanusiMFChE2016.pdf · terubahsuai dan semua jenis gentian semulajadi meningkat. Kesan

80

Mohanty, A., Misra, M. and Hinrichsen, G. (2000). Biofibres, Biodegradable

Polymers and Biocomposites: An Overview. Macromolecular Material

Engineering, 276–277, 1-24.

Munawar, S.S., Umemura, K., and Kawai, S. (2007). Characterization of the

Morphological, Physical, and Mechanical Properties of Seven Non-Wood

Plant Fibre Bundles. Journal of Wood Science, 53, 108–113.

Naguib, H.E., Park, C.B. and Reichelt, N. (2004). Fundamental Foaming

Mechanisms Governing the Volume Expansion of Extruded Polypropylene

Foams. Journal of Applied Polymer Science, 91, 2661–2668.

Naguib, H.E., Park, C.B. and Song, S.W. (2005). Effect of Supercritical Gas on

Crystallization of Linear and Branched Polypropylene Resins with Foaming

Additives. Industrial and Engineering Chemistry Research, 44, 6685–6691.

Nampoothiri, K.M., Nair, N.R. and John, R.P. (2010). An Overview of the Recent

Developments in Polylactide (PLA) Research. Bioresource Technology, 101,

8493–8501.

Nishino, T., Hirao, K., Kotera, M., Nakamae, K. and Inagaki, H. (2003). Kenaf

Reinforced Biodegradable Composite. Composites Science and Technology,

63, 1281–1286.

Ochi, S. (2008). Mechanical Properties of Kenaf Fibers and Kenaf/PLA Composites.

Mechanics of Materials, 40, 446–452.

Ojeda, T., Dalmolin, E., Forte, M., Jacques, R., Bento, F., and Camargo, F. (2009).

Abiotic and Biotic Degradation of Oxo-Biodegradable Polyethylenes.

Polymer Degradation and Stability, 94, 965-970.

Oliveira, N.S., Dorgan, J., Coutinho, J.A.P., Ferreira, A., Daridon, J.L. and

Marrucho, I.M. (2006). Gas Solubility of Carbon Dioxide in Polylactic Acid

at High Pressures. Journal of Polymer Science Part B: Polymer Physics, 44,

1010–1019.

Panyasart, K., Chaiyuta, N., Amornsakchai, T., and Santawitee, O.(2014). Effect of

Surface Treatment on the Properties of Pineapple Leaf Fibers Reinforced

Polyamide 6 Composites. Energy Procedia, 56, 406 – 413.

Park, C.B. and Cheung, L.K. (1997). A Study of Cell Nucleation in the Extrusion of

Polypropylene Foams. Polymer Engineering and Science, 37, 1–10.

Page 29: PROPERTIES OF MODIFIED CALCIUM CARBONATE/NATURAL …eprints.utm.my/id/eprint/60550/1/NurhasikinSanusiMFChE2016.pdf · terubahsuai dan semua jenis gentian semulajadi meningkat. Kesan

81

Park, C.B., Baldwin, D.F. and Suh, N.P. (1995). Effect of the Pressure Drop Rate on

Cell Nucleation in Continuous Processing Of Microcellular Polymers.

Polymer Engineering and Science, 35, 432–440.

Popescu, M. A., Isopescu, R., Matei, C., Fagarasan, G. and Plesu, V. (2014).

Thermal Decomposition of Calcium Carbonate Polymorphs Precipitated in

the Presence of Ammonia and Alkylamines. Advanced Powder Technology,

25, 500-507.

Pothan, L.A., Oommen, Z. and Thomas, S. (2003). Dynamic Mechanical Analysis of

Banana Fiber Reinforced Polyester Composites. Composites Science and

Technology, 63, 283–293.

Preechawong, D., Peesan, M., Supaphol, P. and Rujiravanit, S. (2005). Preparation

and Characterization Of Starch/Poly(L-Lactic Acid) Hybrid Foams.

Carbohydrate Polymers, 59, 329–337.

Ramaswamy, H. S., Ahuja B. M., and Krishnamoorthy, S. (1983). Behaviour of

Concrete Reinforced with Jute, Coir and Bamboo Fibres. International

Journal of Cement Composites and Lightweight Concrete, 5, 3–13.

Rothon, R. (2006). Filler and Filler Modifier Markets and Trends, High

Performance Fillers. The 2nd International Conference on Fillers for

Polymers, Germany.

Rouison, D., Sain, M. and Couturier, M. (2004). Resin Transfer Molding of Natural

Fiber Reinforced Composites: Cure Simulation. Composites Science and

Technology, 64, 629–644.

Rowell, R.M., Sanadi, A., Jacobson, R. and Caulfield, D. (1999). Properties of

Kenaf/Polypropylene Composites. Kenaf Properties, Processing and

Products. Department of Agricultural & Biological Engineering, Mississippi

State University, 381-392.

Ruiz-Herrero, J.L., Rodriguez-Perez, M.A. and de Saja, J.A. (2005). Effective

Diffusion Coefficient for the Gas Contained in Closed Cell Polyethylene-

Based Foams Subjected to Compressive Creep Tests. Polymer, 46, 3105–

3110.

Satyanarayana, K. G., Sukumaran, K., Mukherjee, P. S., Pavithran, C., and Pillai, S.

G. K. (1990). Natural Fibre–Polymer Composites. Cement and Concrete

Composites, 12, 117–136.

Scott, G. (2000). Green Polymers. Polymer Degradation and Stability, 68, 1-7.

Page 30: PROPERTIES OF MODIFIED CALCIUM CARBONATE/NATURAL …eprints.utm.my/id/eprint/60550/1/NurhasikinSanusiMFChE2016.pdf · terubahsuai dan semua jenis gentian semulajadi meningkat. Kesan

82

Shogren, R.L., Lawton, J.W., Doane, W.M. and Tiefenbacher, K. (1998). Structure

and Morphology of Baked Starch Foams. Polymer, 39, 6649–6655.

Siripurapu, S., Gay, Y.J., Royer, J.R., DeSimone, J.M., Spontak, R.J. and Khan,

S.A. (2002). Generation of Microcellular Foams of PVDF and Its Blends

Using Supercritical Carbon Dioxide in a Continuous Process. Polymer, 43,

5511–5520.

Soykeabkaew, N., Supaphol, P. and Rujiravanit, R. (2004). Preparation and

Characterization of Jute- and Flax-Reinforced Starch-Based Composite

Foams. Carbohydrate Polymers, 58, 53–63.

Suwanprateeb, J. (2000). Calcium Carbonate Filled Polyethylene: Correlation of

Hardness And Yield Stress. Composites: Part A, 31, 353–359.

Tharanathan, R.N. (2003). Review: Biodegradable Films and Composite Coatings:

Past, Present and Future. Trends in Food Science & Technology, 14, 71–78.

Tolinski, M. (2009). Additives for Polymers. Getting the Most Out of Polypropylene,

Polyethylene, and TPO. Elsevier.

Trznadel, M. (1995). Biodegradable Polymer Materials. International Polymer

Science and Technology, 22, 58-65.

Vaikhanksi,L. and Nut, S.R. (2003). Synthesis of Composite Foam from

Thermoplastic Microspheres and 3D Long Fibers. Composites: Part A,

34, 755–763.

Velasco, J.I., Antunes, M., Ayyad, O., Lopez-Cuesta, J.M., Gaudon, P., Saiz-

Arroyo, C., Rodriguez-Perez, M.A. and de Saja, J.A. (2007). Foaming

Behaviour and Cellular Structure of LDPE/Hectorite Nanocomposites.

Polymer, 48, 2098-2108.

Vossen, P. (2015). Changing pH in Soil. University of California.

Waldman, F.A. (1982). The Processing of Microcellular Foam, S.M. Thesis,

Department of Mechanical Engineering, Massachusetts Institute of

Technology, Cambridge.

Wambua, P., Ivens, J. and Verpoest, I. (2003). Natural Fibers: Can They Replace

Glass in Fiber Reinforced Plastics? Composites Science and Technology, 63,

1259-1264.

Page 31: PROPERTIES OF MODIFIED CALCIUM CARBONATE/NATURAL …eprints.utm.my/id/eprint/60550/1/NurhasikinSanusiMFChE2016.pdf · terubahsuai dan semua jenis gentian semulajadi meningkat. Kesan

83

Waterman, N.A., Trubshaw, R. and Pye, A.M. (1978). Filled Thermoplastic

Materials Part I: Fillers and Compounding. Materials in Engineering

Applications.

Whittington, L.R. (1978). Whittington’s Dictionary of Plastics, 2nd Edition. The

Society of Plastics Engineers, Technomic Publishing, Westport.

Xu, Z.M., Jiang, X.L., Liu, T., Hu, G.H., Zhao, L., Zhu, Z.N. and Yuan, W.K.

(2007). Foaming Of Polypropylene with Supercritical Carbon Dioxide. The

Journal of Supercritical Fluids, 41, 299–310.

Yu, C., Wang, Y., Wu, B. and Li, W. (2011). A Direct Method for Evaluating

Polymer Foamability. Polymer Testing, 30, 118–123.

Yusof, Y., Yahya, S. A., and Adam, A. (2015). Novel Technology for Sustainable

Pineapple Leaf Fibers Productions. Procedia CIRP, 26, 756 – 760.