proprietÀ meccaniche dei materiali

33
PROPRIETÀ MECCANICHE DEI MATERIALI 1. Comportamento elastico 2. Comportamento plastico 3. Comportamento a fatica 4. Comportamento a frattura 5. Durezza Il comportamento meccanico di un materiale rappresenta la risposta ad una forza o ad un carico applicato

Upload: others

Post on 16-Oct-2021

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PROPRIETÀ MECCANICHE DEI MATERIALI

PROPRIETÀ MECCANICHE DEI MATERIALI

1. Comportamento elastico

2. Comportamento plastico

3. Comportamento a fatica

4. Comportamento a frattura

5. Durezza

Il comportamento meccanico di un materiale rappresenta la risposta ad una forza o ad un carico applicato

Page 2: PROPRIETÀ MECCANICHE DEI MATERIALI

SFORZO E DEFORMAZIONENelle prove di sforzo-deformazione il carico puo’ essere statico o variare nel tempo, inoltre puo’ essere applicato in tensione (trazione), compressione, taglio e torsione.

trazione

compressione

taglio

torsione

Page 3: PROPRIETÀ MECCANICHE DEI MATERIALI

Prova di trazioneConsiste nel deformare fino a rottura un provino applicando, lungo il suo asse principale, un carico di trazione gradualmente crescente.

I valori del carico (sforzo) e allungamentomisurati durante la prova di trazione sono riportati in un grafico il cui andamento dipende dalle dimensioni del provino: se si raddoppia la sezione, la forza necessaria a produrre lo stesso allungamento e’ doppia

Page 4: PROPRIETÀ MECCANICHE DEI MATERIALI

Per rendere indipendente la prova dai parametri geometrici , il carico e l’allungamento sono normalizzati , ottendo così i parametri :

sforzo nominale:

dove F (newton, N) è applicata perpendicolarmente alla sezione, ed A0 (m2) è l’area iniziale della sezione.L’unità di misura dello sforzo nominale (spesso chiamato semplicemente sforzo) è il pascal (Pa), e spesso è espresso in megapascal (MPa) (1 MPa = 106 N/m2)

deformazione nominale:

dove l0 è la lunghezza iniziale e l i è la lunghezza istantanea e ∆l rappresenta l’allungamento.La deformazione nominale (spesso chiamata semplicemente deformazione ) è adimensionale, anche se talvolta viene data l’indicazione di metro/metro ed espressa in percentuale.

00

0

l

l

l

ll i ∆=−=ε

0A

F=σ

Page 5: PROPRIETÀ MECCANICHE DEI MATERIALI

sforzo nominale:

MPaPam

N

A

F301030

104

120 626

0

=⋅=⋅

== −σ

NF 120=

2620 1044 mmmA −⋅==

Page 6: PROPRIETÀ MECCANICHE DEI MATERIALI

deformazione nominale:

( )0058,0

0,52

3,0

0,52

0,523,52

00

0 ==−=∆=−=cm

cm

l

l

l

ll iε

cml i 3,52= cml 0,520 =

( ) %58,01000058,0100% =⋅=⋅= εε

Page 7: PROPRIETÀ MECCANICHE DEI MATERIALI

l0

Page 8: PROPRIETÀ MECCANICHE DEI MATERIALI

Da una prova di trazione si ricavano le seguenti informazioni:

• Modulo di elasticità• Modulo di Poisson• Carico di snervamento• Carico di rottura• L’allungamento percentuale a rottura• La strizione percentuale a rottura

Page 9: PROPRIETÀ MECCANICHE DEI MATERIALI

Prova di compressioneConsiste nel deformare un provino applicando, lungo il suo asse principale, un carico di compressione gradualmente crescente.

Lo sforzo (nominale) e la deformazione (nominale) sono definite come per la trazione, ma per convenzione la forza di compressione è considerata negativa.Inoltre, poichè la provetta si contrae e la lunghezza finale è minore di quella iniziale, le deformazioni di compressione sono negative.

Page 10: PROPRIETÀ MECCANICHE DEI MATERIALI

Prova di taglioConsiste nel deformare un provino applicando, una forza di taglio.

Lo sforzo (nominale) di taglio è dato da:

Dove F è la forza applicata parallelamente alle facce superiori ed inferiori della provetta, ognuna con superficie A0.

La deformazione (nominale) di taglio (ϒ) è data dalla tangente dell’angolo di

deformazione θ.

Le unità di misura di sforzo e deformazione di taglio uguali a quelle delle corrispondenti grandezze nelle prove di trazione.

θ

Page 11: PROPRIETÀ MECCANICHE DEI MATERIALI

Prova di torsioneE’ una variante della prova di taglio.

Lo sforzo è funzione della torsione T applicata, la deformazione dell’angolo di torsione φ

Page 12: PROPRIETÀ MECCANICHE DEI MATERIALI

DEFORMAZIONE ELASTICAUn materiale sottoposto a trazione subisce una deformazione.

Se cessata la forza applicata il materiale ritorna alle dimensioni originali si dice che il materiale presenta un comportamento elastico.

l0

∆l

Page 13: PROPRIETÀ MECCANICHE DEI MATERIALI

Comportamento sforzo-deformazioneIl grado di deformazione di una struttura dipende dall’entità dello sforzo applicato.Per la maggior parte dei metalli sottoposti a sforzi di trazione a carichi relativamente bassi, sforzo e deformazione sono proporzionali e la deformazione è detta elastica

DEFORMAZIONE ELASTICA

Legge di Hooke

εσ E=

Modulo di Young o elastico

Page 14: PROPRIETÀ MECCANICHE DEI MATERIALI
Page 15: PROPRIETÀ MECCANICHE DEI MATERIALI

Comportamento sforzo-deformazione

DEFORMAZIONE ELASTICA

εσ E=

Modulo di Young o elastico ���� pendenza della retta

“E” rappresenta la rigidezza del materiale, ovvero la resistenza che il materiale oppone alla deformazione elastica.

Maggiore è il modulo, più è rigido è il materiale, minore è la deformazione elastica che risulta dall’applicazione di un determinato carico.

Page 16: PROPRIETÀ MECCANICHE DEI MATERIALI

σ (MPa) ε0 0

100 0.002

150 0.003

200 0.004

250 0.005

300 0.006

350 0.007

y = 50000x

0

50

100

150

200

250

300

350

400

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

σσ σσ(M

Pa)

εεεε

GPaMPaE

xy

5050000

50000

50000

====

εσ

Page 17: PROPRIETÀ MECCANICHE DEI MATERIALI

Comportamento sforzo-deformazioneDEFORMAZIONE ELASTICA

Per alcuni materiali (ghisa, calcestruzzo, alcuni polimeri) il tratto elastico iniziale della curva non è lineare.

In questi casi per caratterizzare il comportamento elastico del materiale si usano:

•il modulo tangente (pendenza

della tangente alla curva ad uno

specifico livello di sforzo)

•il modulo secante (pendenza

della retta secante passante per

l’origine e per un punto della

curva)

Page 18: PROPRIETÀ MECCANICHE DEI MATERIALI

Comportamento sforzo-deformazioneDEFORMAZIONE ELASTICA

A livello atomico, la deformazione elastica macroscopica si manifesta come piccole variazioni della distanza interatomica e dello stiramento dei legami interatomici.

Pertanto il modulo elastico è la misura delle forze di legame interatomiche

I valori del modulo elastico dei materiali ceramici sono circa gli stessi di quelli metallici, mentre per i materiali polimerici sono più bassi. Inoltre diminuiscono all’aumentare della temperatura

Page 19: PROPRIETÀ MECCANICHE DEI MATERIALI

ANELASTICITÀ

Per molti materiali la deformazione elastica non è istantanea, ma dipende dal tempo:

�dopo l’applicazione del carico, la deformazione continua per un certo tempo

�dopo la rimozione del carico, il completo recupero della deformazione richiede del tempo

Tale fenomeno è detto appunto anelasticità ed è dovuto a processi microscopici ed atomici.

Per i metalli la componente anelastica è generalmente molto piccola, quindi trascurabile.

Per alcuni materiali polimerici invece è significativa e si parla di comportamento viscoelastico.

Page 20: PROPRIETÀ MECCANICHE DEI MATERIALI

PROPRIETA’ ELASTICHE DEI MATERIALI

Quando si applica uno sforzo di trazione ad un provino (nella direzione z), si osserva un allungamento ∆lz, nella direzione di applicazione dello sforzo, valutabile da una deformazione:

Come conseguenza si verifica una contrazione laterale nelle direzioni x ed y (perpendicolari alla direzione dello sforzo) con deformazioni laterali di compressione

z

zz l

l

0

∆=ε

x

xx l

l

0

∆=εy

yy l

l

0

∆=ε

Page 21: PROPRIETÀ MECCANICHE DEI MATERIALI

Se lo sforzo è uniassiale ed il materiale isotropo:

Il rapporto tra la deformazione laterale e quella assiale è un parametro detto rapporto di Poisson:

Page 22: PROPRIETÀ MECCANICHE DEI MATERIALI
Page 23: PROPRIETÀ MECCANICHE DEI MATERIALI

DEFORMAZIONE PLASTICAUn materiale sottoposto a trazione subisce una deformazione.

Se cessata la forza applicata il materiale NON ritorna alle dimensioni originali si dice che il materiale presenta un comportamento plastico

l0

∆l

Page 24: PROPRIETÀ MECCANICHE DEI MATERIALI

DEFORMAZIONE PLASTICALa deformazione rimane elastica solo per sforzi inferiori ad un valore di soglia, al di sopra del quale la deformazione è permanente e non recuperabile (snervamento e deformazione plastica)

La transizione dal comportamento elastico a quello plastico avviene gradualmente per la maggior parte dei metalli e, all’insorgere della deformazione plastica, appare una curvatura e la deformazione cresce più rapidamente al crescere dello sforzo.

Limite di proporzionalità o punto di snervamento

Se P non è determinabile, può essere valutato tracciando una retta parallela al tratto elastico e passante per una fissata deformazione (in genere 0.002). Lo sforzo corrispondente all’intersezione fra curva e retta è detto carico di snervamento(in MPa).

Tipica curva di trazione sforzo – deformazione

per un metallo.

Page 25: PROPRIETÀ MECCANICHE DEI MATERIALI

Per i materiali con comportamento elastico non lineare (anelastici) il metodo descritto non è applicabile e la pratica corrente prevede la definizione di carico di snervamento come lo sforzo richiesto per produrre una certa deformazione (es. 0.005)

Dal punto di vista atomico, la deformazione plastica corrisponde alla rottura dei legami tra atomi vicini, al loro movimento e alla creazione di nuovi legami. Rimosso lo sforzo gli atomi non ritornano nelle posizioni iniziali.

Page 26: PROPRIETÀ MECCANICHE DEI MATERIALI

CARICO DI ROTTURADopo lo snervamento, lo sforzo necessario per continuare la deformazione

plastica nei metalli cresce fino a raggiungere un valore massimo (M) e poi

decresce fino alla frattura (F). Lo sforzo corrispondente al punto M è detto carico di rottura a trazione e rappresenta lo sforzo massimo che può essere sostenuto da una struttura sollecitata a trazione. Se questo sforzo e raggiunto e mantenuto si ha la rottura.

I carichi di rottura variano fra 50 MPa (Alluminio) e 3000 MPa (acciai ad alta resistenza)

Page 27: PROPRIETÀ MECCANICHE DEI MATERIALI

CARICO DI ROTTURA

Superato il carico di rottura si osserva sul provino un restringimento localizzato della sezione.

A causa di tale restringimento lo sforzo nominale diminuisce fino al raggiungimento della effettiva rottura del provino

Page 28: PROPRIETÀ MECCANICHE DEI MATERIALI
Page 29: PROPRIETÀ MECCANICHE DEI MATERIALI

DUTTILITA’

Rappresenta la misura della deformazione plastica che un materiale può subire senza rompersi.

Un materiale con scarsa o inesistente deformazione plastica è detto fragile, altrimenti è duttile.

ALLUNGAMENTO PERCENTUALE

Fornisce un valore della duttilità del materiale: più elevata è la duttilità, maggiore è il valore dell’allungamento percentuale.

Page 30: PROPRIETÀ MECCANICHE DEI MATERIALI

STRIZIONE PERCENTUALE

È anch’essa una misura della duttilità del materiale.La strizione % diminuisce se sono presenti difetti, porosità, inclusioni

dove:A0 = sezione inizialeA = Sezione finale a rottura

Page 31: PROPRIETÀ MECCANICHE DEI MATERIALI

COMPORTAMENTO A ROTTURARottura fragileAvviene in assenza o dopo una piccola deformazione plastica.Il cedimento nella perdita di coesione fra gli atomi porta al distacco frontale del materiale.Tipica dei ceramici e di alcuni metalli.

Page 32: PROPRIETÀ MECCANICHE DEI MATERIALI

COMPORTAMENTO A ROTTURARottura duttileAvviene dopo una deformazione plastica.Il cedimento che mette fine al comportamento elastico è causato dallo scorrimento dei piani cristallini.Tipica dei metalli.

Page 33: PROPRIETÀ MECCANICHE DEI MATERIALI

RECUPERO ELASTICO DOPO LA DEFORMAZIONE PLASTICAQuando il carico viene rilasciato durante una prova di trazione, una frazione della deformazione totale (deformazione elastica) viene recuperata.

Durante il ciclo di scarico, la curva è una retta, dal punto di scarico (D), parallela al tratto elastico.

L’entità della deformazione elastica, recuperata in fase di scarico, corrisponde all’entità di recupero.

Se il carico è nuovamente applicato, la curva di carico coinciderà perfettamente con la curva di scarico e le condizioni di snervamento ricominceranno in corrispondenza del punto in cui era iniziato lo scarico.

σs0 = snervamento iniziale

σs1 = snervamento dopo aver rilasciato il carico e ricaricato il provino