proton form factors

68
Egle TOMASI-GUSTAFSSON CEA DSM Dapnia JLab, May 2,20 08 1 Proton Form Factors Q Q 2 2 1 GeV 1 GeV 2 2 F2 F2 F1 F1 Over a period of time lasting at least 2000 years, Man has puzzled over and sought an understanding of the composition of matter…

Upload: cree

Post on 28-Jan-2016

22 views

Category:

Documents


0 download

DESCRIPTION

Proton Form Factors. Q 2 ≤ 1 GeV 2. F1. F2. Over a period of time lasting at least 2000 years, Man has puzzled over and sought an understanding of the composition of matter…. Electromagnetic Hadron Form Factors in Space and Time-like regions. Egle Tomasi-Gustafsson Saclay, France. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 1

Proton Form Factors

QQ22lele1 GeV1 GeV22

F2F2

F1F1

Over a period of time lasting at least 2000 years Man has puzzled over and sought

an understanding of the composition of matterhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 2

Electromagnetic Hadron Form Factors Electromagnetic Hadron Form Factors in Space and Time-like regions in Space and Time-like regions

Egle Tomasi-GustafssonSaclay France

JLab May 2 2008

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 3

PLANPLANExperimental view

ndash space-like (ep-scattering)ndash time-like (e+e- or pp annihilation)

Model Independent Statementsndash Symmetry properties of fundamental interactionsndash Kinematical constraints

Models and lsquoexactrsquo calculations Radiative corrections

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 4

Hadron Electromagnetic Form factorsHadron Electromagnetic Form factors

ndash Characterize the internal structure of a particle

( point-like)

ndash Elastic form factors contain information on the

hadron ground state

ndash In a P- and T-invariant theory the EM structure of a

particle of spin S is defined by 2S+1 form factors

ndash Neutron and proton form factors are different

ndash Deuteron 2 structure functions but 3 form factors

ndash Playground for theory and experiment

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 5

Space-like and time-like regionsSpace-like and time-like regions

bullFFs are analytical functionsbullIn framework of one photon exchange FFs are functions of the

momentum transfer squared of the virtual photon t = q2 = -Q2

ScatterinScatteringg

e- + h =gt e- + h e+ + e- =gt h + h

_

AnnihilationAnnihilation

_

Form factors are real in the space-like region complex in the time-like region

tlt0 tgt0

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 6

Crossing SymmetryCrossing Symmetry

Scattering and annihilation channels

- Described by the same amplitude

- function of two kinematical variables s and t

p2 rarr ndash p2

k2 rarr ndash k2

- which scan different kinematical regions

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 7

Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 8

Proton Form Factors Ratio

POLARIZATION ExpJlab E93-027 E99-007 SpokepersonsCh Perdrisat V Punjabi M Jones E Brash M Jones et al Phys Rev Lett 841398 (2000)O Gayou et al Phys Rev Lett 88092301 (2002)V Punjabi et al Phys Rev C 71 055202 (2005)

Linear deviation from dipole GEpGMp

Jlab Super RosenbluthIA Qattan et alPRL 94 142301 (2005)

Jlab E04-108019 NOW running

SLAC RosenbluthL Andivahis PRD505491 (1994)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 9

The Rosenbluth separation (1950)The Rosenbluth separation (1950)

bullElastic ep cross section (1 exchange)

bull point-like particle Mott

Linearity of the reduced cross section

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 10

The Rosenbluth separation The Rosenbluth separation

The dynamics is contained in FFs

Q2

The kinematics energies angles

The reaction mechanism

Holds for 1 exchange only

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 11

Rosenbluth separationRosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on and to the size and dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 12

The polarization induces a term in the cross section proportional to GE GM

Polarized beam and target or

polarized beam and recoil proton polarization

The polarization method (1967)The polarization method (1967)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 13

Neutron Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 14

Neutron Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 15

The reaction d(eersquon)p - Ax

Select quasi-elastic kinematics

Pol electron beam pol target orneutron polarimeter

Large dependence ofasymmetry on GEn

GI Gakh A P Rekalo E T-G Annals of Physics 319 150 (2005)

+ d n + p

DWF

GEn

GEp

FSI

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 16

The reaction d(eersquon)p - Ax

-The KHARKOV model - Impulse Approximation - Deuteron structure - Kinematics proton spectator - Polarization observables

GI Gakh A P Rekalo E T-G Annals of Physics 319 150 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 17

FSI

DWF

Does not depend on beam helicity

+ d n + pGEn

ET-G GI Gakh A P Rekalo M P Rekalo PRC70025202 (2004)

The reaction d(eersquon)p ndash AxAz

Generalization of the polarization method

Asymmetry ratio

A(01)T ndashLT SFs(WQ2)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 18

GEn from the deuteron

bullGEn gt GEp starting from 2 GeV2

E T-G and M P Rekalo Europhys Lett 55 188 (2001)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 19

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 20

STATUS on EM Form factors

Space-like region

1) standard dipole function for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF GEp

3) contradiction between polarized and unpolarized measurements

4) non vanishing electric neutron FF GEn

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 21

Nucleon models

bullSkyrme Models (Soliton)bullVector Dominance Models (G-K IJLhellip)bullPerturbative QCDbull(Relativistic) Constituent Quark ModelbullDi-quark modelsbullGPDbullhelliphellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 22

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 23

Time-like region

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 24

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2exchange- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 25

Time-Like Region

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419 (2005)

VDM IJLF IachelloPLB43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC66 045501(2002)

lsquoQCD inspiredrsquo

proton

neutron

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 26

STATUS on EM Form factors

Time-like region

1) No individual determination of GE and GM2) Assume GE=GM (valid only at threshold) VMD or

pQCD inspired parametrizations (for p and n)

3) TL nucleon FFs are twice larger than SL FFs 4) Recent data from Babar (radiative return)

bull interesting structures in the Q2 dependence of GM(=GE)

bull GMneGE

=03 GeV is the QCD scale parameter

A(p) = 563 GeV4 A(n) = 7715 GeV4

)](ln[ 2222

ss

AGM

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 27

Spin Observables

Analyzing power A

Double spin observables

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 28

Models in TL Region (polarization)

VDM IJL

Ext VDM

lsquoQCD inspiredrsquo

R

Ay Axx Ayy

Axz

Azz

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419(2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 29

Time-Like Region GE versus GM

GE=0

GE=GM

GE=GD

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Asym

| GM| 2

Cross section at 900

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 30

Perspectives in Time-Like region

Frascati

Panda

GE = GM

CEA DSM Dapnia

Facilty for Antiproton and Ion Research (GSI Darmstadt Germany)

- Proton linac (injector)- 2 synchrotons (30 GeV p)- A number of storage rings Parallel beams operation

Physics Polarization Staging Signals Timeline

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 32

Towards a unified description of Hadron Form factors

to clarify

- zero of GEp

- asymptotic properties

- reaction mechanism

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 33

Comparison BABAR-LEAR

q2 (GeV2)

Analytical Expression for R(q2)Dispersion Relations (S Pacetti)

Space-like Time-like

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 34

Phragmegraven-Lindeloumlf theorem

Asymptotic properties for analytical functions

E T-G and G Gakh Eur Phys J A 26 265 (2005)

=005 01

If f(z) a as z along a straight line and f(z) b as z along another straight line and f(z) is regular and bounded in the angle between then a=b and f(z) a uniformly in the angle

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 35

Phragmegraven-Lindeloumlf theorem

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Applies to NN and NNInteraction (Pomeranchuk theorem )t=0 not a QCD regime

Connection with QCD asymptoticsGM (TL)

GM (SL)

GE (SL)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 36

Reaction mechanism1-2 interference

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 2: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 2

Electromagnetic Hadron Form Factors Electromagnetic Hadron Form Factors in Space and Time-like regions in Space and Time-like regions

Egle Tomasi-GustafssonSaclay France

JLab May 2 2008

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 3

PLANPLANExperimental view

ndash space-like (ep-scattering)ndash time-like (e+e- or pp annihilation)

Model Independent Statementsndash Symmetry properties of fundamental interactionsndash Kinematical constraints

Models and lsquoexactrsquo calculations Radiative corrections

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 4

Hadron Electromagnetic Form factorsHadron Electromagnetic Form factors

ndash Characterize the internal structure of a particle

( point-like)

ndash Elastic form factors contain information on the

hadron ground state

ndash In a P- and T-invariant theory the EM structure of a

particle of spin S is defined by 2S+1 form factors

ndash Neutron and proton form factors are different

ndash Deuteron 2 structure functions but 3 form factors

ndash Playground for theory and experiment

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 5

Space-like and time-like regionsSpace-like and time-like regions

bullFFs are analytical functionsbullIn framework of one photon exchange FFs are functions of the

momentum transfer squared of the virtual photon t = q2 = -Q2

ScatterinScatteringg

e- + h =gt e- + h e+ + e- =gt h + h

_

AnnihilationAnnihilation

_

Form factors are real in the space-like region complex in the time-like region

tlt0 tgt0

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 6

Crossing SymmetryCrossing Symmetry

Scattering and annihilation channels

- Described by the same amplitude

- function of two kinematical variables s and t

p2 rarr ndash p2

k2 rarr ndash k2

- which scan different kinematical regions

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 7

Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 8

Proton Form Factors Ratio

POLARIZATION ExpJlab E93-027 E99-007 SpokepersonsCh Perdrisat V Punjabi M Jones E Brash M Jones et al Phys Rev Lett 841398 (2000)O Gayou et al Phys Rev Lett 88092301 (2002)V Punjabi et al Phys Rev C 71 055202 (2005)

Linear deviation from dipole GEpGMp

Jlab Super RosenbluthIA Qattan et alPRL 94 142301 (2005)

Jlab E04-108019 NOW running

SLAC RosenbluthL Andivahis PRD505491 (1994)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 9

The Rosenbluth separation (1950)The Rosenbluth separation (1950)

bullElastic ep cross section (1 exchange)

bull point-like particle Mott

Linearity of the reduced cross section

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 10

The Rosenbluth separation The Rosenbluth separation

The dynamics is contained in FFs

Q2

The kinematics energies angles

The reaction mechanism

Holds for 1 exchange only

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 11

Rosenbluth separationRosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on and to the size and dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 12

The polarization induces a term in the cross section proportional to GE GM

Polarized beam and target or

polarized beam and recoil proton polarization

The polarization method (1967)The polarization method (1967)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 13

Neutron Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 14

Neutron Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 15

The reaction d(eersquon)p - Ax

Select quasi-elastic kinematics

Pol electron beam pol target orneutron polarimeter

Large dependence ofasymmetry on GEn

GI Gakh A P Rekalo E T-G Annals of Physics 319 150 (2005)

+ d n + p

DWF

GEn

GEp

FSI

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 16

The reaction d(eersquon)p - Ax

-The KHARKOV model - Impulse Approximation - Deuteron structure - Kinematics proton spectator - Polarization observables

GI Gakh A P Rekalo E T-G Annals of Physics 319 150 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 17

FSI

DWF

Does not depend on beam helicity

+ d n + pGEn

ET-G GI Gakh A P Rekalo M P Rekalo PRC70025202 (2004)

The reaction d(eersquon)p ndash AxAz

Generalization of the polarization method

Asymmetry ratio

A(01)T ndashLT SFs(WQ2)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 18

GEn from the deuteron

bullGEn gt GEp starting from 2 GeV2

E T-G and M P Rekalo Europhys Lett 55 188 (2001)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 19

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 20

STATUS on EM Form factors

Space-like region

1) standard dipole function for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF GEp

3) contradiction between polarized and unpolarized measurements

4) non vanishing electric neutron FF GEn

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 21

Nucleon models

bullSkyrme Models (Soliton)bullVector Dominance Models (G-K IJLhellip)bullPerturbative QCDbull(Relativistic) Constituent Quark ModelbullDi-quark modelsbullGPDbullhelliphellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 22

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 23

Time-like region

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 24

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2exchange- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 25

Time-Like Region

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419 (2005)

VDM IJLF IachelloPLB43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC66 045501(2002)

lsquoQCD inspiredrsquo

proton

neutron

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 26

STATUS on EM Form factors

Time-like region

1) No individual determination of GE and GM2) Assume GE=GM (valid only at threshold) VMD or

pQCD inspired parametrizations (for p and n)

3) TL nucleon FFs are twice larger than SL FFs 4) Recent data from Babar (radiative return)

bull interesting structures in the Q2 dependence of GM(=GE)

bull GMneGE

=03 GeV is the QCD scale parameter

A(p) = 563 GeV4 A(n) = 7715 GeV4

)](ln[ 2222

ss

AGM

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 27

Spin Observables

Analyzing power A

Double spin observables

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 28

Models in TL Region (polarization)

VDM IJL

Ext VDM

lsquoQCD inspiredrsquo

R

Ay Axx Ayy

Axz

Azz

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419(2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 29

Time-Like Region GE versus GM

GE=0

GE=GM

GE=GD

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Asym

| GM| 2

Cross section at 900

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 30

Perspectives in Time-Like region

Frascati

Panda

GE = GM

CEA DSM Dapnia

Facilty for Antiproton and Ion Research (GSI Darmstadt Germany)

- Proton linac (injector)- 2 synchrotons (30 GeV p)- A number of storage rings Parallel beams operation

Physics Polarization Staging Signals Timeline

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 32

Towards a unified description of Hadron Form factors

to clarify

- zero of GEp

- asymptotic properties

- reaction mechanism

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 33

Comparison BABAR-LEAR

q2 (GeV2)

Analytical Expression for R(q2)Dispersion Relations (S Pacetti)

Space-like Time-like

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 34

Phragmegraven-Lindeloumlf theorem

Asymptotic properties for analytical functions

E T-G and G Gakh Eur Phys J A 26 265 (2005)

=005 01

If f(z) a as z along a straight line and f(z) b as z along another straight line and f(z) is regular and bounded in the angle between then a=b and f(z) a uniformly in the angle

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 35

Phragmegraven-Lindeloumlf theorem

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Applies to NN and NNInteraction (Pomeranchuk theorem )t=0 not a QCD regime

Connection with QCD asymptoticsGM (TL)

GM (SL)

GE (SL)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 36

Reaction mechanism1-2 interference

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 3: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 3

PLANPLANExperimental view

ndash space-like (ep-scattering)ndash time-like (e+e- or pp annihilation)

Model Independent Statementsndash Symmetry properties of fundamental interactionsndash Kinematical constraints

Models and lsquoexactrsquo calculations Radiative corrections

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 4

Hadron Electromagnetic Form factorsHadron Electromagnetic Form factors

ndash Characterize the internal structure of a particle

( point-like)

ndash Elastic form factors contain information on the

hadron ground state

ndash In a P- and T-invariant theory the EM structure of a

particle of spin S is defined by 2S+1 form factors

ndash Neutron and proton form factors are different

ndash Deuteron 2 structure functions but 3 form factors

ndash Playground for theory and experiment

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 5

Space-like and time-like regionsSpace-like and time-like regions

bullFFs are analytical functionsbullIn framework of one photon exchange FFs are functions of the

momentum transfer squared of the virtual photon t = q2 = -Q2

ScatterinScatteringg

e- + h =gt e- + h e+ + e- =gt h + h

_

AnnihilationAnnihilation

_

Form factors are real in the space-like region complex in the time-like region

tlt0 tgt0

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 6

Crossing SymmetryCrossing Symmetry

Scattering and annihilation channels

- Described by the same amplitude

- function of two kinematical variables s and t

p2 rarr ndash p2

k2 rarr ndash k2

- which scan different kinematical regions

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 7

Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 8

Proton Form Factors Ratio

POLARIZATION ExpJlab E93-027 E99-007 SpokepersonsCh Perdrisat V Punjabi M Jones E Brash M Jones et al Phys Rev Lett 841398 (2000)O Gayou et al Phys Rev Lett 88092301 (2002)V Punjabi et al Phys Rev C 71 055202 (2005)

Linear deviation from dipole GEpGMp

Jlab Super RosenbluthIA Qattan et alPRL 94 142301 (2005)

Jlab E04-108019 NOW running

SLAC RosenbluthL Andivahis PRD505491 (1994)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 9

The Rosenbluth separation (1950)The Rosenbluth separation (1950)

bullElastic ep cross section (1 exchange)

bull point-like particle Mott

Linearity of the reduced cross section

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 10

The Rosenbluth separation The Rosenbluth separation

The dynamics is contained in FFs

Q2

The kinematics energies angles

The reaction mechanism

Holds for 1 exchange only

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 11

Rosenbluth separationRosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on and to the size and dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 12

The polarization induces a term in the cross section proportional to GE GM

Polarized beam and target or

polarized beam and recoil proton polarization

The polarization method (1967)The polarization method (1967)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 13

Neutron Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 14

Neutron Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 15

The reaction d(eersquon)p - Ax

Select quasi-elastic kinematics

Pol electron beam pol target orneutron polarimeter

Large dependence ofasymmetry on GEn

GI Gakh A P Rekalo E T-G Annals of Physics 319 150 (2005)

+ d n + p

DWF

GEn

GEp

FSI

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 16

The reaction d(eersquon)p - Ax

-The KHARKOV model - Impulse Approximation - Deuteron structure - Kinematics proton spectator - Polarization observables

GI Gakh A P Rekalo E T-G Annals of Physics 319 150 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 17

FSI

DWF

Does not depend on beam helicity

+ d n + pGEn

ET-G GI Gakh A P Rekalo M P Rekalo PRC70025202 (2004)

The reaction d(eersquon)p ndash AxAz

Generalization of the polarization method

Asymmetry ratio

A(01)T ndashLT SFs(WQ2)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 18

GEn from the deuteron

bullGEn gt GEp starting from 2 GeV2

E T-G and M P Rekalo Europhys Lett 55 188 (2001)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 19

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 20

STATUS on EM Form factors

Space-like region

1) standard dipole function for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF GEp

3) contradiction between polarized and unpolarized measurements

4) non vanishing electric neutron FF GEn

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 21

Nucleon models

bullSkyrme Models (Soliton)bullVector Dominance Models (G-K IJLhellip)bullPerturbative QCDbull(Relativistic) Constituent Quark ModelbullDi-quark modelsbullGPDbullhelliphellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 22

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 23

Time-like region

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 24

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2exchange- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 25

Time-Like Region

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419 (2005)

VDM IJLF IachelloPLB43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC66 045501(2002)

lsquoQCD inspiredrsquo

proton

neutron

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 26

STATUS on EM Form factors

Time-like region

1) No individual determination of GE and GM2) Assume GE=GM (valid only at threshold) VMD or

pQCD inspired parametrizations (for p and n)

3) TL nucleon FFs are twice larger than SL FFs 4) Recent data from Babar (radiative return)

bull interesting structures in the Q2 dependence of GM(=GE)

bull GMneGE

=03 GeV is the QCD scale parameter

A(p) = 563 GeV4 A(n) = 7715 GeV4

)](ln[ 2222

ss

AGM

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 27

Spin Observables

Analyzing power A

Double spin observables

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 28

Models in TL Region (polarization)

VDM IJL

Ext VDM

lsquoQCD inspiredrsquo

R

Ay Axx Ayy

Axz

Azz

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419(2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 29

Time-Like Region GE versus GM

GE=0

GE=GM

GE=GD

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Asym

| GM| 2

Cross section at 900

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 30

Perspectives in Time-Like region

Frascati

Panda

GE = GM

CEA DSM Dapnia

Facilty for Antiproton and Ion Research (GSI Darmstadt Germany)

- Proton linac (injector)- 2 synchrotons (30 GeV p)- A number of storage rings Parallel beams operation

Physics Polarization Staging Signals Timeline

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 32

Towards a unified description of Hadron Form factors

to clarify

- zero of GEp

- asymptotic properties

- reaction mechanism

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 33

Comparison BABAR-LEAR

q2 (GeV2)

Analytical Expression for R(q2)Dispersion Relations (S Pacetti)

Space-like Time-like

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 34

Phragmegraven-Lindeloumlf theorem

Asymptotic properties for analytical functions

E T-G and G Gakh Eur Phys J A 26 265 (2005)

=005 01

If f(z) a as z along a straight line and f(z) b as z along another straight line and f(z) is regular and bounded in the angle between then a=b and f(z) a uniformly in the angle

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 35

Phragmegraven-Lindeloumlf theorem

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Applies to NN and NNInteraction (Pomeranchuk theorem )t=0 not a QCD regime

Connection with QCD asymptoticsGM (TL)

GM (SL)

GE (SL)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 36

Reaction mechanism1-2 interference

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 4: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 4

Hadron Electromagnetic Form factorsHadron Electromagnetic Form factors

ndash Characterize the internal structure of a particle

( point-like)

ndash Elastic form factors contain information on the

hadron ground state

ndash In a P- and T-invariant theory the EM structure of a

particle of spin S is defined by 2S+1 form factors

ndash Neutron and proton form factors are different

ndash Deuteron 2 structure functions but 3 form factors

ndash Playground for theory and experiment

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 5

Space-like and time-like regionsSpace-like and time-like regions

bullFFs are analytical functionsbullIn framework of one photon exchange FFs are functions of the

momentum transfer squared of the virtual photon t = q2 = -Q2

ScatterinScatteringg

e- + h =gt e- + h e+ + e- =gt h + h

_

AnnihilationAnnihilation

_

Form factors are real in the space-like region complex in the time-like region

tlt0 tgt0

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 6

Crossing SymmetryCrossing Symmetry

Scattering and annihilation channels

- Described by the same amplitude

- function of two kinematical variables s and t

p2 rarr ndash p2

k2 rarr ndash k2

- which scan different kinematical regions

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 7

Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 8

Proton Form Factors Ratio

POLARIZATION ExpJlab E93-027 E99-007 SpokepersonsCh Perdrisat V Punjabi M Jones E Brash M Jones et al Phys Rev Lett 841398 (2000)O Gayou et al Phys Rev Lett 88092301 (2002)V Punjabi et al Phys Rev C 71 055202 (2005)

Linear deviation from dipole GEpGMp

Jlab Super RosenbluthIA Qattan et alPRL 94 142301 (2005)

Jlab E04-108019 NOW running

SLAC RosenbluthL Andivahis PRD505491 (1994)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 9

The Rosenbluth separation (1950)The Rosenbluth separation (1950)

bullElastic ep cross section (1 exchange)

bull point-like particle Mott

Linearity of the reduced cross section

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 10

The Rosenbluth separation The Rosenbluth separation

The dynamics is contained in FFs

Q2

The kinematics energies angles

The reaction mechanism

Holds for 1 exchange only

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 11

Rosenbluth separationRosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on and to the size and dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 12

The polarization induces a term in the cross section proportional to GE GM

Polarized beam and target or

polarized beam and recoil proton polarization

The polarization method (1967)The polarization method (1967)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 13

Neutron Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 14

Neutron Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 15

The reaction d(eersquon)p - Ax

Select quasi-elastic kinematics

Pol electron beam pol target orneutron polarimeter

Large dependence ofasymmetry on GEn

GI Gakh A P Rekalo E T-G Annals of Physics 319 150 (2005)

+ d n + p

DWF

GEn

GEp

FSI

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 16

The reaction d(eersquon)p - Ax

-The KHARKOV model - Impulse Approximation - Deuteron structure - Kinematics proton spectator - Polarization observables

GI Gakh A P Rekalo E T-G Annals of Physics 319 150 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 17

FSI

DWF

Does not depend on beam helicity

+ d n + pGEn

ET-G GI Gakh A P Rekalo M P Rekalo PRC70025202 (2004)

The reaction d(eersquon)p ndash AxAz

Generalization of the polarization method

Asymmetry ratio

A(01)T ndashLT SFs(WQ2)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 18

GEn from the deuteron

bullGEn gt GEp starting from 2 GeV2

E T-G and M P Rekalo Europhys Lett 55 188 (2001)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 19

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 20

STATUS on EM Form factors

Space-like region

1) standard dipole function for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF GEp

3) contradiction between polarized and unpolarized measurements

4) non vanishing electric neutron FF GEn

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 21

Nucleon models

bullSkyrme Models (Soliton)bullVector Dominance Models (G-K IJLhellip)bullPerturbative QCDbull(Relativistic) Constituent Quark ModelbullDi-quark modelsbullGPDbullhelliphellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 22

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 23

Time-like region

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 24

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2exchange- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 25

Time-Like Region

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419 (2005)

VDM IJLF IachelloPLB43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC66 045501(2002)

lsquoQCD inspiredrsquo

proton

neutron

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 26

STATUS on EM Form factors

Time-like region

1) No individual determination of GE and GM2) Assume GE=GM (valid only at threshold) VMD or

pQCD inspired parametrizations (for p and n)

3) TL nucleon FFs are twice larger than SL FFs 4) Recent data from Babar (radiative return)

bull interesting structures in the Q2 dependence of GM(=GE)

bull GMneGE

=03 GeV is the QCD scale parameter

A(p) = 563 GeV4 A(n) = 7715 GeV4

)](ln[ 2222

ss

AGM

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 27

Spin Observables

Analyzing power A

Double spin observables

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 28

Models in TL Region (polarization)

VDM IJL

Ext VDM

lsquoQCD inspiredrsquo

R

Ay Axx Ayy

Axz

Azz

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419(2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 29

Time-Like Region GE versus GM

GE=0

GE=GM

GE=GD

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Asym

| GM| 2

Cross section at 900

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 30

Perspectives in Time-Like region

Frascati

Panda

GE = GM

CEA DSM Dapnia

Facilty for Antiproton and Ion Research (GSI Darmstadt Germany)

- Proton linac (injector)- 2 synchrotons (30 GeV p)- A number of storage rings Parallel beams operation

Physics Polarization Staging Signals Timeline

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 32

Towards a unified description of Hadron Form factors

to clarify

- zero of GEp

- asymptotic properties

- reaction mechanism

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 33

Comparison BABAR-LEAR

q2 (GeV2)

Analytical Expression for R(q2)Dispersion Relations (S Pacetti)

Space-like Time-like

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 34

Phragmegraven-Lindeloumlf theorem

Asymptotic properties for analytical functions

E T-G and G Gakh Eur Phys J A 26 265 (2005)

=005 01

If f(z) a as z along a straight line and f(z) b as z along another straight line and f(z) is regular and bounded in the angle between then a=b and f(z) a uniformly in the angle

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 35

Phragmegraven-Lindeloumlf theorem

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Applies to NN and NNInteraction (Pomeranchuk theorem )t=0 not a QCD regime

Connection with QCD asymptoticsGM (TL)

GM (SL)

GE (SL)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 36

Reaction mechanism1-2 interference

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 5: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 5

Space-like and time-like regionsSpace-like and time-like regions

bullFFs are analytical functionsbullIn framework of one photon exchange FFs are functions of the

momentum transfer squared of the virtual photon t = q2 = -Q2

ScatterinScatteringg

e- + h =gt e- + h e+ + e- =gt h + h

_

AnnihilationAnnihilation

_

Form factors are real in the space-like region complex in the time-like region

tlt0 tgt0

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 6

Crossing SymmetryCrossing Symmetry

Scattering and annihilation channels

- Described by the same amplitude

- function of two kinematical variables s and t

p2 rarr ndash p2

k2 rarr ndash k2

- which scan different kinematical regions

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 7

Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 8

Proton Form Factors Ratio

POLARIZATION ExpJlab E93-027 E99-007 SpokepersonsCh Perdrisat V Punjabi M Jones E Brash M Jones et al Phys Rev Lett 841398 (2000)O Gayou et al Phys Rev Lett 88092301 (2002)V Punjabi et al Phys Rev C 71 055202 (2005)

Linear deviation from dipole GEpGMp

Jlab Super RosenbluthIA Qattan et alPRL 94 142301 (2005)

Jlab E04-108019 NOW running

SLAC RosenbluthL Andivahis PRD505491 (1994)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 9

The Rosenbluth separation (1950)The Rosenbluth separation (1950)

bullElastic ep cross section (1 exchange)

bull point-like particle Mott

Linearity of the reduced cross section

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 10

The Rosenbluth separation The Rosenbluth separation

The dynamics is contained in FFs

Q2

The kinematics energies angles

The reaction mechanism

Holds for 1 exchange only

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 11

Rosenbluth separationRosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on and to the size and dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 12

The polarization induces a term in the cross section proportional to GE GM

Polarized beam and target or

polarized beam and recoil proton polarization

The polarization method (1967)The polarization method (1967)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 13

Neutron Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 14

Neutron Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 15

The reaction d(eersquon)p - Ax

Select quasi-elastic kinematics

Pol electron beam pol target orneutron polarimeter

Large dependence ofasymmetry on GEn

GI Gakh A P Rekalo E T-G Annals of Physics 319 150 (2005)

+ d n + p

DWF

GEn

GEp

FSI

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 16

The reaction d(eersquon)p - Ax

-The KHARKOV model - Impulse Approximation - Deuteron structure - Kinematics proton spectator - Polarization observables

GI Gakh A P Rekalo E T-G Annals of Physics 319 150 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 17

FSI

DWF

Does not depend on beam helicity

+ d n + pGEn

ET-G GI Gakh A P Rekalo M P Rekalo PRC70025202 (2004)

The reaction d(eersquon)p ndash AxAz

Generalization of the polarization method

Asymmetry ratio

A(01)T ndashLT SFs(WQ2)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 18

GEn from the deuteron

bullGEn gt GEp starting from 2 GeV2

E T-G and M P Rekalo Europhys Lett 55 188 (2001)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 19

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 20

STATUS on EM Form factors

Space-like region

1) standard dipole function for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF GEp

3) contradiction between polarized and unpolarized measurements

4) non vanishing electric neutron FF GEn

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 21

Nucleon models

bullSkyrme Models (Soliton)bullVector Dominance Models (G-K IJLhellip)bullPerturbative QCDbull(Relativistic) Constituent Quark ModelbullDi-quark modelsbullGPDbullhelliphellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 22

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 23

Time-like region

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 24

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2exchange- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 25

Time-Like Region

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419 (2005)

VDM IJLF IachelloPLB43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC66 045501(2002)

lsquoQCD inspiredrsquo

proton

neutron

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 26

STATUS on EM Form factors

Time-like region

1) No individual determination of GE and GM2) Assume GE=GM (valid only at threshold) VMD or

pQCD inspired parametrizations (for p and n)

3) TL nucleon FFs are twice larger than SL FFs 4) Recent data from Babar (radiative return)

bull interesting structures in the Q2 dependence of GM(=GE)

bull GMneGE

=03 GeV is the QCD scale parameter

A(p) = 563 GeV4 A(n) = 7715 GeV4

)](ln[ 2222

ss

AGM

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 27

Spin Observables

Analyzing power A

Double spin observables

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 28

Models in TL Region (polarization)

VDM IJL

Ext VDM

lsquoQCD inspiredrsquo

R

Ay Axx Ayy

Axz

Azz

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419(2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 29

Time-Like Region GE versus GM

GE=0

GE=GM

GE=GD

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Asym

| GM| 2

Cross section at 900

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 30

Perspectives in Time-Like region

Frascati

Panda

GE = GM

CEA DSM Dapnia

Facilty for Antiproton and Ion Research (GSI Darmstadt Germany)

- Proton linac (injector)- 2 synchrotons (30 GeV p)- A number of storage rings Parallel beams operation

Physics Polarization Staging Signals Timeline

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 32

Towards a unified description of Hadron Form factors

to clarify

- zero of GEp

- asymptotic properties

- reaction mechanism

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 33

Comparison BABAR-LEAR

q2 (GeV2)

Analytical Expression for R(q2)Dispersion Relations (S Pacetti)

Space-like Time-like

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 34

Phragmegraven-Lindeloumlf theorem

Asymptotic properties for analytical functions

E T-G and G Gakh Eur Phys J A 26 265 (2005)

=005 01

If f(z) a as z along a straight line and f(z) b as z along another straight line and f(z) is regular and bounded in the angle between then a=b and f(z) a uniformly in the angle

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 35

Phragmegraven-Lindeloumlf theorem

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Applies to NN and NNInteraction (Pomeranchuk theorem )t=0 not a QCD regime

Connection with QCD asymptoticsGM (TL)

GM (SL)

GE (SL)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 36

Reaction mechanism1-2 interference

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 6: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 6

Crossing SymmetryCrossing Symmetry

Scattering and annihilation channels

- Described by the same amplitude

- function of two kinematical variables s and t

p2 rarr ndash p2

k2 rarr ndash k2

- which scan different kinematical regions

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 7

Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 8

Proton Form Factors Ratio

POLARIZATION ExpJlab E93-027 E99-007 SpokepersonsCh Perdrisat V Punjabi M Jones E Brash M Jones et al Phys Rev Lett 841398 (2000)O Gayou et al Phys Rev Lett 88092301 (2002)V Punjabi et al Phys Rev C 71 055202 (2005)

Linear deviation from dipole GEpGMp

Jlab Super RosenbluthIA Qattan et alPRL 94 142301 (2005)

Jlab E04-108019 NOW running

SLAC RosenbluthL Andivahis PRD505491 (1994)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 9

The Rosenbluth separation (1950)The Rosenbluth separation (1950)

bullElastic ep cross section (1 exchange)

bull point-like particle Mott

Linearity of the reduced cross section

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 10

The Rosenbluth separation The Rosenbluth separation

The dynamics is contained in FFs

Q2

The kinematics energies angles

The reaction mechanism

Holds for 1 exchange only

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 11

Rosenbluth separationRosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on and to the size and dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 12

The polarization induces a term in the cross section proportional to GE GM

Polarized beam and target or

polarized beam and recoil proton polarization

The polarization method (1967)The polarization method (1967)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 13

Neutron Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 14

Neutron Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 15

The reaction d(eersquon)p - Ax

Select quasi-elastic kinematics

Pol electron beam pol target orneutron polarimeter

Large dependence ofasymmetry on GEn

GI Gakh A P Rekalo E T-G Annals of Physics 319 150 (2005)

+ d n + p

DWF

GEn

GEp

FSI

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 16

The reaction d(eersquon)p - Ax

-The KHARKOV model - Impulse Approximation - Deuteron structure - Kinematics proton spectator - Polarization observables

GI Gakh A P Rekalo E T-G Annals of Physics 319 150 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 17

FSI

DWF

Does not depend on beam helicity

+ d n + pGEn

ET-G GI Gakh A P Rekalo M P Rekalo PRC70025202 (2004)

The reaction d(eersquon)p ndash AxAz

Generalization of the polarization method

Asymmetry ratio

A(01)T ndashLT SFs(WQ2)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 18

GEn from the deuteron

bullGEn gt GEp starting from 2 GeV2

E T-G and M P Rekalo Europhys Lett 55 188 (2001)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 19

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 20

STATUS on EM Form factors

Space-like region

1) standard dipole function for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF GEp

3) contradiction between polarized and unpolarized measurements

4) non vanishing electric neutron FF GEn

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 21

Nucleon models

bullSkyrme Models (Soliton)bullVector Dominance Models (G-K IJLhellip)bullPerturbative QCDbull(Relativistic) Constituent Quark ModelbullDi-quark modelsbullGPDbullhelliphellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 22

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 23

Time-like region

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 24

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2exchange- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 25

Time-Like Region

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419 (2005)

VDM IJLF IachelloPLB43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC66 045501(2002)

lsquoQCD inspiredrsquo

proton

neutron

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 26

STATUS on EM Form factors

Time-like region

1) No individual determination of GE and GM2) Assume GE=GM (valid only at threshold) VMD or

pQCD inspired parametrizations (for p and n)

3) TL nucleon FFs are twice larger than SL FFs 4) Recent data from Babar (radiative return)

bull interesting structures in the Q2 dependence of GM(=GE)

bull GMneGE

=03 GeV is the QCD scale parameter

A(p) = 563 GeV4 A(n) = 7715 GeV4

)](ln[ 2222

ss

AGM

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 27

Spin Observables

Analyzing power A

Double spin observables

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 28

Models in TL Region (polarization)

VDM IJL

Ext VDM

lsquoQCD inspiredrsquo

R

Ay Axx Ayy

Axz

Azz

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419(2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 29

Time-Like Region GE versus GM

GE=0

GE=GM

GE=GD

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Asym

| GM| 2

Cross section at 900

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 30

Perspectives in Time-Like region

Frascati

Panda

GE = GM

CEA DSM Dapnia

Facilty for Antiproton and Ion Research (GSI Darmstadt Germany)

- Proton linac (injector)- 2 synchrotons (30 GeV p)- A number of storage rings Parallel beams operation

Physics Polarization Staging Signals Timeline

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 32

Towards a unified description of Hadron Form factors

to clarify

- zero of GEp

- asymptotic properties

- reaction mechanism

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 33

Comparison BABAR-LEAR

q2 (GeV2)

Analytical Expression for R(q2)Dispersion Relations (S Pacetti)

Space-like Time-like

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 34

Phragmegraven-Lindeloumlf theorem

Asymptotic properties for analytical functions

E T-G and G Gakh Eur Phys J A 26 265 (2005)

=005 01

If f(z) a as z along a straight line and f(z) b as z along another straight line and f(z) is regular and bounded in the angle between then a=b and f(z) a uniformly in the angle

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 35

Phragmegraven-Lindeloumlf theorem

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Applies to NN and NNInteraction (Pomeranchuk theorem )t=0 not a QCD regime

Connection with QCD asymptoticsGM (TL)

GM (SL)

GE (SL)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 36

Reaction mechanism1-2 interference

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 7: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 7

Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 8

Proton Form Factors Ratio

POLARIZATION ExpJlab E93-027 E99-007 SpokepersonsCh Perdrisat V Punjabi M Jones E Brash M Jones et al Phys Rev Lett 841398 (2000)O Gayou et al Phys Rev Lett 88092301 (2002)V Punjabi et al Phys Rev C 71 055202 (2005)

Linear deviation from dipole GEpGMp

Jlab Super RosenbluthIA Qattan et alPRL 94 142301 (2005)

Jlab E04-108019 NOW running

SLAC RosenbluthL Andivahis PRD505491 (1994)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 9

The Rosenbluth separation (1950)The Rosenbluth separation (1950)

bullElastic ep cross section (1 exchange)

bull point-like particle Mott

Linearity of the reduced cross section

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 10

The Rosenbluth separation The Rosenbluth separation

The dynamics is contained in FFs

Q2

The kinematics energies angles

The reaction mechanism

Holds for 1 exchange only

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 11

Rosenbluth separationRosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on and to the size and dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 12

The polarization induces a term in the cross section proportional to GE GM

Polarized beam and target or

polarized beam and recoil proton polarization

The polarization method (1967)The polarization method (1967)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 13

Neutron Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 14

Neutron Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 15

The reaction d(eersquon)p - Ax

Select quasi-elastic kinematics

Pol electron beam pol target orneutron polarimeter

Large dependence ofasymmetry on GEn

GI Gakh A P Rekalo E T-G Annals of Physics 319 150 (2005)

+ d n + p

DWF

GEn

GEp

FSI

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 16

The reaction d(eersquon)p - Ax

-The KHARKOV model - Impulse Approximation - Deuteron structure - Kinematics proton spectator - Polarization observables

GI Gakh A P Rekalo E T-G Annals of Physics 319 150 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 17

FSI

DWF

Does not depend on beam helicity

+ d n + pGEn

ET-G GI Gakh A P Rekalo M P Rekalo PRC70025202 (2004)

The reaction d(eersquon)p ndash AxAz

Generalization of the polarization method

Asymmetry ratio

A(01)T ndashLT SFs(WQ2)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 18

GEn from the deuteron

bullGEn gt GEp starting from 2 GeV2

E T-G and M P Rekalo Europhys Lett 55 188 (2001)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 19

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 20

STATUS on EM Form factors

Space-like region

1) standard dipole function for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF GEp

3) contradiction between polarized and unpolarized measurements

4) non vanishing electric neutron FF GEn

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 21

Nucleon models

bullSkyrme Models (Soliton)bullVector Dominance Models (G-K IJLhellip)bullPerturbative QCDbull(Relativistic) Constituent Quark ModelbullDi-quark modelsbullGPDbullhelliphellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 22

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 23

Time-like region

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 24

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2exchange- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 25

Time-Like Region

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419 (2005)

VDM IJLF IachelloPLB43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC66 045501(2002)

lsquoQCD inspiredrsquo

proton

neutron

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 26

STATUS on EM Form factors

Time-like region

1) No individual determination of GE and GM2) Assume GE=GM (valid only at threshold) VMD or

pQCD inspired parametrizations (for p and n)

3) TL nucleon FFs are twice larger than SL FFs 4) Recent data from Babar (radiative return)

bull interesting structures in the Q2 dependence of GM(=GE)

bull GMneGE

=03 GeV is the QCD scale parameter

A(p) = 563 GeV4 A(n) = 7715 GeV4

)](ln[ 2222

ss

AGM

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 27

Spin Observables

Analyzing power A

Double spin observables

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 28

Models in TL Region (polarization)

VDM IJL

Ext VDM

lsquoQCD inspiredrsquo

R

Ay Axx Ayy

Axz

Azz

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419(2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 29

Time-Like Region GE versus GM

GE=0

GE=GM

GE=GD

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Asym

| GM| 2

Cross section at 900

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 30

Perspectives in Time-Like region

Frascati

Panda

GE = GM

CEA DSM Dapnia

Facilty for Antiproton and Ion Research (GSI Darmstadt Germany)

- Proton linac (injector)- 2 synchrotons (30 GeV p)- A number of storage rings Parallel beams operation

Physics Polarization Staging Signals Timeline

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 32

Towards a unified description of Hadron Form factors

to clarify

- zero of GEp

- asymptotic properties

- reaction mechanism

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 33

Comparison BABAR-LEAR

q2 (GeV2)

Analytical Expression for R(q2)Dispersion Relations (S Pacetti)

Space-like Time-like

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 34

Phragmegraven-Lindeloumlf theorem

Asymptotic properties for analytical functions

E T-G and G Gakh Eur Phys J A 26 265 (2005)

=005 01

If f(z) a as z along a straight line and f(z) b as z along another straight line and f(z) is regular and bounded in the angle between then a=b and f(z) a uniformly in the angle

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 35

Phragmegraven-Lindeloumlf theorem

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Applies to NN and NNInteraction (Pomeranchuk theorem )t=0 not a QCD regime

Connection with QCD asymptoticsGM (TL)

GM (SL)

GE (SL)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 36

Reaction mechanism1-2 interference

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 8: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 8

Proton Form Factors Ratio

POLARIZATION ExpJlab E93-027 E99-007 SpokepersonsCh Perdrisat V Punjabi M Jones E Brash M Jones et al Phys Rev Lett 841398 (2000)O Gayou et al Phys Rev Lett 88092301 (2002)V Punjabi et al Phys Rev C 71 055202 (2005)

Linear deviation from dipole GEpGMp

Jlab Super RosenbluthIA Qattan et alPRL 94 142301 (2005)

Jlab E04-108019 NOW running

SLAC RosenbluthL Andivahis PRD505491 (1994)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 9

The Rosenbluth separation (1950)The Rosenbluth separation (1950)

bullElastic ep cross section (1 exchange)

bull point-like particle Mott

Linearity of the reduced cross section

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 10

The Rosenbluth separation The Rosenbluth separation

The dynamics is contained in FFs

Q2

The kinematics energies angles

The reaction mechanism

Holds for 1 exchange only

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 11

Rosenbluth separationRosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on and to the size and dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 12

The polarization induces a term in the cross section proportional to GE GM

Polarized beam and target or

polarized beam and recoil proton polarization

The polarization method (1967)The polarization method (1967)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 13

Neutron Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 14

Neutron Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 15

The reaction d(eersquon)p - Ax

Select quasi-elastic kinematics

Pol electron beam pol target orneutron polarimeter

Large dependence ofasymmetry on GEn

GI Gakh A P Rekalo E T-G Annals of Physics 319 150 (2005)

+ d n + p

DWF

GEn

GEp

FSI

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 16

The reaction d(eersquon)p - Ax

-The KHARKOV model - Impulse Approximation - Deuteron structure - Kinematics proton spectator - Polarization observables

GI Gakh A P Rekalo E T-G Annals of Physics 319 150 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 17

FSI

DWF

Does not depend on beam helicity

+ d n + pGEn

ET-G GI Gakh A P Rekalo M P Rekalo PRC70025202 (2004)

The reaction d(eersquon)p ndash AxAz

Generalization of the polarization method

Asymmetry ratio

A(01)T ndashLT SFs(WQ2)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 18

GEn from the deuteron

bullGEn gt GEp starting from 2 GeV2

E T-G and M P Rekalo Europhys Lett 55 188 (2001)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 19

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 20

STATUS on EM Form factors

Space-like region

1) standard dipole function for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF GEp

3) contradiction between polarized and unpolarized measurements

4) non vanishing electric neutron FF GEn

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 21

Nucleon models

bullSkyrme Models (Soliton)bullVector Dominance Models (G-K IJLhellip)bullPerturbative QCDbull(Relativistic) Constituent Quark ModelbullDi-quark modelsbullGPDbullhelliphellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 22

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 23

Time-like region

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 24

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2exchange- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 25

Time-Like Region

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419 (2005)

VDM IJLF IachelloPLB43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC66 045501(2002)

lsquoQCD inspiredrsquo

proton

neutron

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 26

STATUS on EM Form factors

Time-like region

1) No individual determination of GE and GM2) Assume GE=GM (valid only at threshold) VMD or

pQCD inspired parametrizations (for p and n)

3) TL nucleon FFs are twice larger than SL FFs 4) Recent data from Babar (radiative return)

bull interesting structures in the Q2 dependence of GM(=GE)

bull GMneGE

=03 GeV is the QCD scale parameter

A(p) = 563 GeV4 A(n) = 7715 GeV4

)](ln[ 2222

ss

AGM

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 27

Spin Observables

Analyzing power A

Double spin observables

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 28

Models in TL Region (polarization)

VDM IJL

Ext VDM

lsquoQCD inspiredrsquo

R

Ay Axx Ayy

Axz

Azz

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419(2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 29

Time-Like Region GE versus GM

GE=0

GE=GM

GE=GD

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Asym

| GM| 2

Cross section at 900

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 30

Perspectives in Time-Like region

Frascati

Panda

GE = GM

CEA DSM Dapnia

Facilty for Antiproton and Ion Research (GSI Darmstadt Germany)

- Proton linac (injector)- 2 synchrotons (30 GeV p)- A number of storage rings Parallel beams operation

Physics Polarization Staging Signals Timeline

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 32

Towards a unified description of Hadron Form factors

to clarify

- zero of GEp

- asymptotic properties

- reaction mechanism

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 33

Comparison BABAR-LEAR

q2 (GeV2)

Analytical Expression for R(q2)Dispersion Relations (S Pacetti)

Space-like Time-like

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 34

Phragmegraven-Lindeloumlf theorem

Asymptotic properties for analytical functions

E T-G and G Gakh Eur Phys J A 26 265 (2005)

=005 01

If f(z) a as z along a straight line and f(z) b as z along another straight line and f(z) is regular and bounded in the angle between then a=b and f(z) a uniformly in the angle

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 35

Phragmegraven-Lindeloumlf theorem

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Applies to NN and NNInteraction (Pomeranchuk theorem )t=0 not a QCD regime

Connection with QCD asymptoticsGM (TL)

GM (SL)

GE (SL)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 36

Reaction mechanism1-2 interference

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 9: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 9

The Rosenbluth separation (1950)The Rosenbluth separation (1950)

bullElastic ep cross section (1 exchange)

bull point-like particle Mott

Linearity of the reduced cross section

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 10

The Rosenbluth separation The Rosenbluth separation

The dynamics is contained in FFs

Q2

The kinematics energies angles

The reaction mechanism

Holds for 1 exchange only

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 11

Rosenbluth separationRosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on and to the size and dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 12

The polarization induces a term in the cross section proportional to GE GM

Polarized beam and target or

polarized beam and recoil proton polarization

The polarization method (1967)The polarization method (1967)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 13

Neutron Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 14

Neutron Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 15

The reaction d(eersquon)p - Ax

Select quasi-elastic kinematics

Pol electron beam pol target orneutron polarimeter

Large dependence ofasymmetry on GEn

GI Gakh A P Rekalo E T-G Annals of Physics 319 150 (2005)

+ d n + p

DWF

GEn

GEp

FSI

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 16

The reaction d(eersquon)p - Ax

-The KHARKOV model - Impulse Approximation - Deuteron structure - Kinematics proton spectator - Polarization observables

GI Gakh A P Rekalo E T-G Annals of Physics 319 150 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 17

FSI

DWF

Does not depend on beam helicity

+ d n + pGEn

ET-G GI Gakh A P Rekalo M P Rekalo PRC70025202 (2004)

The reaction d(eersquon)p ndash AxAz

Generalization of the polarization method

Asymmetry ratio

A(01)T ndashLT SFs(WQ2)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 18

GEn from the deuteron

bullGEn gt GEp starting from 2 GeV2

E T-G and M P Rekalo Europhys Lett 55 188 (2001)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 19

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 20

STATUS on EM Form factors

Space-like region

1) standard dipole function for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF GEp

3) contradiction between polarized and unpolarized measurements

4) non vanishing electric neutron FF GEn

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 21

Nucleon models

bullSkyrme Models (Soliton)bullVector Dominance Models (G-K IJLhellip)bullPerturbative QCDbull(Relativistic) Constituent Quark ModelbullDi-quark modelsbullGPDbullhelliphellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 22

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 23

Time-like region

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 24

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2exchange- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 25

Time-Like Region

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419 (2005)

VDM IJLF IachelloPLB43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC66 045501(2002)

lsquoQCD inspiredrsquo

proton

neutron

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 26

STATUS on EM Form factors

Time-like region

1) No individual determination of GE and GM2) Assume GE=GM (valid only at threshold) VMD or

pQCD inspired parametrizations (for p and n)

3) TL nucleon FFs are twice larger than SL FFs 4) Recent data from Babar (radiative return)

bull interesting structures in the Q2 dependence of GM(=GE)

bull GMneGE

=03 GeV is the QCD scale parameter

A(p) = 563 GeV4 A(n) = 7715 GeV4

)](ln[ 2222

ss

AGM

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 27

Spin Observables

Analyzing power A

Double spin observables

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 28

Models in TL Region (polarization)

VDM IJL

Ext VDM

lsquoQCD inspiredrsquo

R

Ay Axx Ayy

Axz

Azz

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419(2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 29

Time-Like Region GE versus GM

GE=0

GE=GM

GE=GD

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Asym

| GM| 2

Cross section at 900

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 30

Perspectives in Time-Like region

Frascati

Panda

GE = GM

CEA DSM Dapnia

Facilty for Antiproton and Ion Research (GSI Darmstadt Germany)

- Proton linac (injector)- 2 synchrotons (30 GeV p)- A number of storage rings Parallel beams operation

Physics Polarization Staging Signals Timeline

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 32

Towards a unified description of Hadron Form factors

to clarify

- zero of GEp

- asymptotic properties

- reaction mechanism

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 33

Comparison BABAR-LEAR

q2 (GeV2)

Analytical Expression for R(q2)Dispersion Relations (S Pacetti)

Space-like Time-like

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 34

Phragmegraven-Lindeloumlf theorem

Asymptotic properties for analytical functions

E T-G and G Gakh Eur Phys J A 26 265 (2005)

=005 01

If f(z) a as z along a straight line and f(z) b as z along another straight line and f(z) is regular and bounded in the angle between then a=b and f(z) a uniformly in the angle

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 35

Phragmegraven-Lindeloumlf theorem

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Applies to NN and NNInteraction (Pomeranchuk theorem )t=0 not a QCD regime

Connection with QCD asymptoticsGM (TL)

GM (SL)

GE (SL)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 36

Reaction mechanism1-2 interference

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 10: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 10

The Rosenbluth separation The Rosenbluth separation

The dynamics is contained in FFs

Q2

The kinematics energies angles

The reaction mechanism

Holds for 1 exchange only

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 11

Rosenbluth separationRosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on and to the size and dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 12

The polarization induces a term in the cross section proportional to GE GM

Polarized beam and target or

polarized beam and recoil proton polarization

The polarization method (1967)The polarization method (1967)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 13

Neutron Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 14

Neutron Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 15

The reaction d(eersquon)p - Ax

Select quasi-elastic kinematics

Pol electron beam pol target orneutron polarimeter

Large dependence ofasymmetry on GEn

GI Gakh A P Rekalo E T-G Annals of Physics 319 150 (2005)

+ d n + p

DWF

GEn

GEp

FSI

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 16

The reaction d(eersquon)p - Ax

-The KHARKOV model - Impulse Approximation - Deuteron structure - Kinematics proton spectator - Polarization observables

GI Gakh A P Rekalo E T-G Annals of Physics 319 150 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 17

FSI

DWF

Does not depend on beam helicity

+ d n + pGEn

ET-G GI Gakh A P Rekalo M P Rekalo PRC70025202 (2004)

The reaction d(eersquon)p ndash AxAz

Generalization of the polarization method

Asymmetry ratio

A(01)T ndashLT SFs(WQ2)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 18

GEn from the deuteron

bullGEn gt GEp starting from 2 GeV2

E T-G and M P Rekalo Europhys Lett 55 188 (2001)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 19

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 20

STATUS on EM Form factors

Space-like region

1) standard dipole function for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF GEp

3) contradiction between polarized and unpolarized measurements

4) non vanishing electric neutron FF GEn

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 21

Nucleon models

bullSkyrme Models (Soliton)bullVector Dominance Models (G-K IJLhellip)bullPerturbative QCDbull(Relativistic) Constituent Quark ModelbullDi-quark modelsbullGPDbullhelliphellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 22

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 23

Time-like region

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 24

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2exchange- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 25

Time-Like Region

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419 (2005)

VDM IJLF IachelloPLB43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC66 045501(2002)

lsquoQCD inspiredrsquo

proton

neutron

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 26

STATUS on EM Form factors

Time-like region

1) No individual determination of GE and GM2) Assume GE=GM (valid only at threshold) VMD or

pQCD inspired parametrizations (for p and n)

3) TL nucleon FFs are twice larger than SL FFs 4) Recent data from Babar (radiative return)

bull interesting structures in the Q2 dependence of GM(=GE)

bull GMneGE

=03 GeV is the QCD scale parameter

A(p) = 563 GeV4 A(n) = 7715 GeV4

)](ln[ 2222

ss

AGM

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 27

Spin Observables

Analyzing power A

Double spin observables

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 28

Models in TL Region (polarization)

VDM IJL

Ext VDM

lsquoQCD inspiredrsquo

R

Ay Axx Ayy

Axz

Azz

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419(2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 29

Time-Like Region GE versus GM

GE=0

GE=GM

GE=GD

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Asym

| GM| 2

Cross section at 900

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 30

Perspectives in Time-Like region

Frascati

Panda

GE = GM

CEA DSM Dapnia

Facilty for Antiproton and Ion Research (GSI Darmstadt Germany)

- Proton linac (injector)- 2 synchrotons (30 GeV p)- A number of storage rings Parallel beams operation

Physics Polarization Staging Signals Timeline

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 32

Towards a unified description of Hadron Form factors

to clarify

- zero of GEp

- asymptotic properties

- reaction mechanism

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 33

Comparison BABAR-LEAR

q2 (GeV2)

Analytical Expression for R(q2)Dispersion Relations (S Pacetti)

Space-like Time-like

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 34

Phragmegraven-Lindeloumlf theorem

Asymptotic properties for analytical functions

E T-G and G Gakh Eur Phys J A 26 265 (2005)

=005 01

If f(z) a as z along a straight line and f(z) b as z along another straight line and f(z) is regular and bounded in the angle between then a=b and f(z) a uniformly in the angle

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 35

Phragmegraven-Lindeloumlf theorem

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Applies to NN and NNInteraction (Pomeranchuk theorem )t=0 not a QCD regime

Connection with QCD asymptoticsGM (TL)

GM (SL)

GE (SL)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 36

Reaction mechanism1-2 interference

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 11: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 11

Rosenbluth separationRosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on and to the size and dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 12

The polarization induces a term in the cross section proportional to GE GM

Polarized beam and target or

polarized beam and recoil proton polarization

The polarization method (1967)The polarization method (1967)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 13

Neutron Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 14

Neutron Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 15

The reaction d(eersquon)p - Ax

Select quasi-elastic kinematics

Pol electron beam pol target orneutron polarimeter

Large dependence ofasymmetry on GEn

GI Gakh A P Rekalo E T-G Annals of Physics 319 150 (2005)

+ d n + p

DWF

GEn

GEp

FSI

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 16

The reaction d(eersquon)p - Ax

-The KHARKOV model - Impulse Approximation - Deuteron structure - Kinematics proton spectator - Polarization observables

GI Gakh A P Rekalo E T-G Annals of Physics 319 150 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 17

FSI

DWF

Does not depend on beam helicity

+ d n + pGEn

ET-G GI Gakh A P Rekalo M P Rekalo PRC70025202 (2004)

The reaction d(eersquon)p ndash AxAz

Generalization of the polarization method

Asymmetry ratio

A(01)T ndashLT SFs(WQ2)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 18

GEn from the deuteron

bullGEn gt GEp starting from 2 GeV2

E T-G and M P Rekalo Europhys Lett 55 188 (2001)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 19

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 20

STATUS on EM Form factors

Space-like region

1) standard dipole function for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF GEp

3) contradiction between polarized and unpolarized measurements

4) non vanishing electric neutron FF GEn

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 21

Nucleon models

bullSkyrme Models (Soliton)bullVector Dominance Models (G-K IJLhellip)bullPerturbative QCDbull(Relativistic) Constituent Quark ModelbullDi-quark modelsbullGPDbullhelliphellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 22

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 23

Time-like region

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 24

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2exchange- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 25

Time-Like Region

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419 (2005)

VDM IJLF IachelloPLB43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC66 045501(2002)

lsquoQCD inspiredrsquo

proton

neutron

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 26

STATUS on EM Form factors

Time-like region

1) No individual determination of GE and GM2) Assume GE=GM (valid only at threshold) VMD or

pQCD inspired parametrizations (for p and n)

3) TL nucleon FFs are twice larger than SL FFs 4) Recent data from Babar (radiative return)

bull interesting structures in the Q2 dependence of GM(=GE)

bull GMneGE

=03 GeV is the QCD scale parameter

A(p) = 563 GeV4 A(n) = 7715 GeV4

)](ln[ 2222

ss

AGM

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 27

Spin Observables

Analyzing power A

Double spin observables

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 28

Models in TL Region (polarization)

VDM IJL

Ext VDM

lsquoQCD inspiredrsquo

R

Ay Axx Ayy

Axz

Azz

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419(2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 29

Time-Like Region GE versus GM

GE=0

GE=GM

GE=GD

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Asym

| GM| 2

Cross section at 900

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 30

Perspectives in Time-Like region

Frascati

Panda

GE = GM

CEA DSM Dapnia

Facilty for Antiproton and Ion Research (GSI Darmstadt Germany)

- Proton linac (injector)- 2 synchrotons (30 GeV p)- A number of storage rings Parallel beams operation

Physics Polarization Staging Signals Timeline

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 32

Towards a unified description of Hadron Form factors

to clarify

- zero of GEp

- asymptotic properties

- reaction mechanism

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 33

Comparison BABAR-LEAR

q2 (GeV2)

Analytical Expression for R(q2)Dispersion Relations (S Pacetti)

Space-like Time-like

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 34

Phragmegraven-Lindeloumlf theorem

Asymptotic properties for analytical functions

E T-G and G Gakh Eur Phys J A 26 265 (2005)

=005 01

If f(z) a as z along a straight line and f(z) b as z along another straight line and f(z) is regular and bounded in the angle between then a=b and f(z) a uniformly in the angle

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 35

Phragmegraven-Lindeloumlf theorem

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Applies to NN and NNInteraction (Pomeranchuk theorem )t=0 not a QCD regime

Connection with QCD asymptoticsGM (TL)

GM (SL)

GE (SL)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 36

Reaction mechanism1-2 interference

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 12: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 12

The polarization induces a term in the cross section proportional to GE GM

Polarized beam and target or

polarized beam and recoil proton polarization

The polarization method (1967)The polarization method (1967)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 13

Neutron Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 14

Neutron Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 15

The reaction d(eersquon)p - Ax

Select quasi-elastic kinematics

Pol electron beam pol target orneutron polarimeter

Large dependence ofasymmetry on GEn

GI Gakh A P Rekalo E T-G Annals of Physics 319 150 (2005)

+ d n + p

DWF

GEn

GEp

FSI

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 16

The reaction d(eersquon)p - Ax

-The KHARKOV model - Impulse Approximation - Deuteron structure - Kinematics proton spectator - Polarization observables

GI Gakh A P Rekalo E T-G Annals of Physics 319 150 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 17

FSI

DWF

Does not depend on beam helicity

+ d n + pGEn

ET-G GI Gakh A P Rekalo M P Rekalo PRC70025202 (2004)

The reaction d(eersquon)p ndash AxAz

Generalization of the polarization method

Asymmetry ratio

A(01)T ndashLT SFs(WQ2)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 18

GEn from the deuteron

bullGEn gt GEp starting from 2 GeV2

E T-G and M P Rekalo Europhys Lett 55 188 (2001)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 19

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 20

STATUS on EM Form factors

Space-like region

1) standard dipole function for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF GEp

3) contradiction between polarized and unpolarized measurements

4) non vanishing electric neutron FF GEn

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 21

Nucleon models

bullSkyrme Models (Soliton)bullVector Dominance Models (G-K IJLhellip)bullPerturbative QCDbull(Relativistic) Constituent Quark ModelbullDi-quark modelsbullGPDbullhelliphellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 22

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 23

Time-like region

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 24

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2exchange- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 25

Time-Like Region

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419 (2005)

VDM IJLF IachelloPLB43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC66 045501(2002)

lsquoQCD inspiredrsquo

proton

neutron

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 26

STATUS on EM Form factors

Time-like region

1) No individual determination of GE and GM2) Assume GE=GM (valid only at threshold) VMD or

pQCD inspired parametrizations (for p and n)

3) TL nucleon FFs are twice larger than SL FFs 4) Recent data from Babar (radiative return)

bull interesting structures in the Q2 dependence of GM(=GE)

bull GMneGE

=03 GeV is the QCD scale parameter

A(p) = 563 GeV4 A(n) = 7715 GeV4

)](ln[ 2222

ss

AGM

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 27

Spin Observables

Analyzing power A

Double spin observables

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 28

Models in TL Region (polarization)

VDM IJL

Ext VDM

lsquoQCD inspiredrsquo

R

Ay Axx Ayy

Axz

Azz

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419(2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 29

Time-Like Region GE versus GM

GE=0

GE=GM

GE=GD

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Asym

| GM| 2

Cross section at 900

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 30

Perspectives in Time-Like region

Frascati

Panda

GE = GM

CEA DSM Dapnia

Facilty for Antiproton and Ion Research (GSI Darmstadt Germany)

- Proton linac (injector)- 2 synchrotons (30 GeV p)- A number of storage rings Parallel beams operation

Physics Polarization Staging Signals Timeline

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 32

Towards a unified description of Hadron Form factors

to clarify

- zero of GEp

- asymptotic properties

- reaction mechanism

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 33

Comparison BABAR-LEAR

q2 (GeV2)

Analytical Expression for R(q2)Dispersion Relations (S Pacetti)

Space-like Time-like

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 34

Phragmegraven-Lindeloumlf theorem

Asymptotic properties for analytical functions

E T-G and G Gakh Eur Phys J A 26 265 (2005)

=005 01

If f(z) a as z along a straight line and f(z) b as z along another straight line and f(z) is regular and bounded in the angle between then a=b and f(z) a uniformly in the angle

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 35

Phragmegraven-Lindeloumlf theorem

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Applies to NN and NNInteraction (Pomeranchuk theorem )t=0 not a QCD regime

Connection with QCD asymptoticsGM (TL)

GM (SL)

GE (SL)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 36

Reaction mechanism1-2 interference

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 13: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 13

Neutron Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 14

Neutron Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 15

The reaction d(eersquon)p - Ax

Select quasi-elastic kinematics

Pol electron beam pol target orneutron polarimeter

Large dependence ofasymmetry on GEn

GI Gakh A P Rekalo E T-G Annals of Physics 319 150 (2005)

+ d n + p

DWF

GEn

GEp

FSI

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 16

The reaction d(eersquon)p - Ax

-The KHARKOV model - Impulse Approximation - Deuteron structure - Kinematics proton spectator - Polarization observables

GI Gakh A P Rekalo E T-G Annals of Physics 319 150 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 17

FSI

DWF

Does not depend on beam helicity

+ d n + pGEn

ET-G GI Gakh A P Rekalo M P Rekalo PRC70025202 (2004)

The reaction d(eersquon)p ndash AxAz

Generalization of the polarization method

Asymmetry ratio

A(01)T ndashLT SFs(WQ2)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 18

GEn from the deuteron

bullGEn gt GEp starting from 2 GeV2

E T-G and M P Rekalo Europhys Lett 55 188 (2001)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 19

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 20

STATUS on EM Form factors

Space-like region

1) standard dipole function for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF GEp

3) contradiction between polarized and unpolarized measurements

4) non vanishing electric neutron FF GEn

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 21

Nucleon models

bullSkyrme Models (Soliton)bullVector Dominance Models (G-K IJLhellip)bullPerturbative QCDbull(Relativistic) Constituent Quark ModelbullDi-quark modelsbullGPDbullhelliphellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 22

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 23

Time-like region

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 24

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2exchange- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 25

Time-Like Region

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419 (2005)

VDM IJLF IachelloPLB43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC66 045501(2002)

lsquoQCD inspiredrsquo

proton

neutron

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 26

STATUS on EM Form factors

Time-like region

1) No individual determination of GE and GM2) Assume GE=GM (valid only at threshold) VMD or

pQCD inspired parametrizations (for p and n)

3) TL nucleon FFs are twice larger than SL FFs 4) Recent data from Babar (radiative return)

bull interesting structures in the Q2 dependence of GM(=GE)

bull GMneGE

=03 GeV is the QCD scale parameter

A(p) = 563 GeV4 A(n) = 7715 GeV4

)](ln[ 2222

ss

AGM

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 27

Spin Observables

Analyzing power A

Double spin observables

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 28

Models in TL Region (polarization)

VDM IJL

Ext VDM

lsquoQCD inspiredrsquo

R

Ay Axx Ayy

Axz

Azz

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419(2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 29

Time-Like Region GE versus GM

GE=0

GE=GM

GE=GD

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Asym

| GM| 2

Cross section at 900

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 30

Perspectives in Time-Like region

Frascati

Panda

GE = GM

CEA DSM Dapnia

Facilty for Antiproton and Ion Research (GSI Darmstadt Germany)

- Proton linac (injector)- 2 synchrotons (30 GeV p)- A number of storage rings Parallel beams operation

Physics Polarization Staging Signals Timeline

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 32

Towards a unified description of Hadron Form factors

to clarify

- zero of GEp

- asymptotic properties

- reaction mechanism

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 33

Comparison BABAR-LEAR

q2 (GeV2)

Analytical Expression for R(q2)Dispersion Relations (S Pacetti)

Space-like Time-like

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 34

Phragmegraven-Lindeloumlf theorem

Asymptotic properties for analytical functions

E T-G and G Gakh Eur Phys J A 26 265 (2005)

=005 01

If f(z) a as z along a straight line and f(z) b as z along another straight line and f(z) is regular and bounded in the angle between then a=b and f(z) a uniformly in the angle

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 35

Phragmegraven-Lindeloumlf theorem

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Applies to NN and NNInteraction (Pomeranchuk theorem )t=0 not a QCD regime

Connection with QCD asymptoticsGM (TL)

GM (SL)

GE (SL)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 36

Reaction mechanism1-2 interference

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 14: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 14

Neutron Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 15

The reaction d(eersquon)p - Ax

Select quasi-elastic kinematics

Pol electron beam pol target orneutron polarimeter

Large dependence ofasymmetry on GEn

GI Gakh A P Rekalo E T-G Annals of Physics 319 150 (2005)

+ d n + p

DWF

GEn

GEp

FSI

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 16

The reaction d(eersquon)p - Ax

-The KHARKOV model - Impulse Approximation - Deuteron structure - Kinematics proton spectator - Polarization observables

GI Gakh A P Rekalo E T-G Annals of Physics 319 150 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 17

FSI

DWF

Does not depend on beam helicity

+ d n + pGEn

ET-G GI Gakh A P Rekalo M P Rekalo PRC70025202 (2004)

The reaction d(eersquon)p ndash AxAz

Generalization of the polarization method

Asymmetry ratio

A(01)T ndashLT SFs(WQ2)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 18

GEn from the deuteron

bullGEn gt GEp starting from 2 GeV2

E T-G and M P Rekalo Europhys Lett 55 188 (2001)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 19

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 20

STATUS on EM Form factors

Space-like region

1) standard dipole function for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF GEp

3) contradiction between polarized and unpolarized measurements

4) non vanishing electric neutron FF GEn

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 21

Nucleon models

bullSkyrme Models (Soliton)bullVector Dominance Models (G-K IJLhellip)bullPerturbative QCDbull(Relativistic) Constituent Quark ModelbullDi-quark modelsbullGPDbullhelliphellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 22

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 23

Time-like region

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 24

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2exchange- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 25

Time-Like Region

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419 (2005)

VDM IJLF IachelloPLB43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC66 045501(2002)

lsquoQCD inspiredrsquo

proton

neutron

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 26

STATUS on EM Form factors

Time-like region

1) No individual determination of GE and GM2) Assume GE=GM (valid only at threshold) VMD or

pQCD inspired parametrizations (for p and n)

3) TL nucleon FFs are twice larger than SL FFs 4) Recent data from Babar (radiative return)

bull interesting structures in the Q2 dependence of GM(=GE)

bull GMneGE

=03 GeV is the QCD scale parameter

A(p) = 563 GeV4 A(n) = 7715 GeV4

)](ln[ 2222

ss

AGM

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 27

Spin Observables

Analyzing power A

Double spin observables

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 28

Models in TL Region (polarization)

VDM IJL

Ext VDM

lsquoQCD inspiredrsquo

R

Ay Axx Ayy

Axz

Azz

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419(2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 29

Time-Like Region GE versus GM

GE=0

GE=GM

GE=GD

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Asym

| GM| 2

Cross section at 900

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 30

Perspectives in Time-Like region

Frascati

Panda

GE = GM

CEA DSM Dapnia

Facilty for Antiproton and Ion Research (GSI Darmstadt Germany)

- Proton linac (injector)- 2 synchrotons (30 GeV p)- A number of storage rings Parallel beams operation

Physics Polarization Staging Signals Timeline

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 32

Towards a unified description of Hadron Form factors

to clarify

- zero of GEp

- asymptotic properties

- reaction mechanism

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 33

Comparison BABAR-LEAR

q2 (GeV2)

Analytical Expression for R(q2)Dispersion Relations (S Pacetti)

Space-like Time-like

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 34

Phragmegraven-Lindeloumlf theorem

Asymptotic properties for analytical functions

E T-G and G Gakh Eur Phys J A 26 265 (2005)

=005 01

If f(z) a as z along a straight line and f(z) b as z along another straight line and f(z) is regular and bounded in the angle between then a=b and f(z) a uniformly in the angle

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 35

Phragmegraven-Lindeloumlf theorem

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Applies to NN and NNInteraction (Pomeranchuk theorem )t=0 not a QCD regime

Connection with QCD asymptoticsGM (TL)

GM (SL)

GE (SL)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 36

Reaction mechanism1-2 interference

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 15: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 15

The reaction d(eersquon)p - Ax

Select quasi-elastic kinematics

Pol electron beam pol target orneutron polarimeter

Large dependence ofasymmetry on GEn

GI Gakh A P Rekalo E T-G Annals of Physics 319 150 (2005)

+ d n + p

DWF

GEn

GEp

FSI

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 16

The reaction d(eersquon)p - Ax

-The KHARKOV model - Impulse Approximation - Deuteron structure - Kinematics proton spectator - Polarization observables

GI Gakh A P Rekalo E T-G Annals of Physics 319 150 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 17

FSI

DWF

Does not depend on beam helicity

+ d n + pGEn

ET-G GI Gakh A P Rekalo M P Rekalo PRC70025202 (2004)

The reaction d(eersquon)p ndash AxAz

Generalization of the polarization method

Asymmetry ratio

A(01)T ndashLT SFs(WQ2)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 18

GEn from the deuteron

bullGEn gt GEp starting from 2 GeV2

E T-G and M P Rekalo Europhys Lett 55 188 (2001)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 19

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 20

STATUS on EM Form factors

Space-like region

1) standard dipole function for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF GEp

3) contradiction between polarized and unpolarized measurements

4) non vanishing electric neutron FF GEn

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 21

Nucleon models

bullSkyrme Models (Soliton)bullVector Dominance Models (G-K IJLhellip)bullPerturbative QCDbull(Relativistic) Constituent Quark ModelbullDi-quark modelsbullGPDbullhelliphellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 22

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 23

Time-like region

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 24

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2exchange- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 25

Time-Like Region

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419 (2005)

VDM IJLF IachelloPLB43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC66 045501(2002)

lsquoQCD inspiredrsquo

proton

neutron

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 26

STATUS on EM Form factors

Time-like region

1) No individual determination of GE and GM2) Assume GE=GM (valid only at threshold) VMD or

pQCD inspired parametrizations (for p and n)

3) TL nucleon FFs are twice larger than SL FFs 4) Recent data from Babar (radiative return)

bull interesting structures in the Q2 dependence of GM(=GE)

bull GMneGE

=03 GeV is the QCD scale parameter

A(p) = 563 GeV4 A(n) = 7715 GeV4

)](ln[ 2222

ss

AGM

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 27

Spin Observables

Analyzing power A

Double spin observables

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 28

Models in TL Region (polarization)

VDM IJL

Ext VDM

lsquoQCD inspiredrsquo

R

Ay Axx Ayy

Axz

Azz

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419(2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 29

Time-Like Region GE versus GM

GE=0

GE=GM

GE=GD

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Asym

| GM| 2

Cross section at 900

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 30

Perspectives in Time-Like region

Frascati

Panda

GE = GM

CEA DSM Dapnia

Facilty for Antiproton and Ion Research (GSI Darmstadt Germany)

- Proton linac (injector)- 2 synchrotons (30 GeV p)- A number of storage rings Parallel beams operation

Physics Polarization Staging Signals Timeline

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 32

Towards a unified description of Hadron Form factors

to clarify

- zero of GEp

- asymptotic properties

- reaction mechanism

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 33

Comparison BABAR-LEAR

q2 (GeV2)

Analytical Expression for R(q2)Dispersion Relations (S Pacetti)

Space-like Time-like

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 34

Phragmegraven-Lindeloumlf theorem

Asymptotic properties for analytical functions

E T-G and G Gakh Eur Phys J A 26 265 (2005)

=005 01

If f(z) a as z along a straight line and f(z) b as z along another straight line and f(z) is regular and bounded in the angle between then a=b and f(z) a uniformly in the angle

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 35

Phragmegraven-Lindeloumlf theorem

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Applies to NN and NNInteraction (Pomeranchuk theorem )t=0 not a QCD regime

Connection with QCD asymptoticsGM (TL)

GM (SL)

GE (SL)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 36

Reaction mechanism1-2 interference

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 16: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 16

The reaction d(eersquon)p - Ax

-The KHARKOV model - Impulse Approximation - Deuteron structure - Kinematics proton spectator - Polarization observables

GI Gakh A P Rekalo E T-G Annals of Physics 319 150 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 17

FSI

DWF

Does not depend on beam helicity

+ d n + pGEn

ET-G GI Gakh A P Rekalo M P Rekalo PRC70025202 (2004)

The reaction d(eersquon)p ndash AxAz

Generalization of the polarization method

Asymmetry ratio

A(01)T ndashLT SFs(WQ2)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 18

GEn from the deuteron

bullGEn gt GEp starting from 2 GeV2

E T-G and M P Rekalo Europhys Lett 55 188 (2001)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 19

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 20

STATUS on EM Form factors

Space-like region

1) standard dipole function for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF GEp

3) contradiction between polarized and unpolarized measurements

4) non vanishing electric neutron FF GEn

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 21

Nucleon models

bullSkyrme Models (Soliton)bullVector Dominance Models (G-K IJLhellip)bullPerturbative QCDbull(Relativistic) Constituent Quark ModelbullDi-quark modelsbullGPDbullhelliphellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 22

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 23

Time-like region

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 24

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2exchange- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 25

Time-Like Region

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419 (2005)

VDM IJLF IachelloPLB43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC66 045501(2002)

lsquoQCD inspiredrsquo

proton

neutron

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 26

STATUS on EM Form factors

Time-like region

1) No individual determination of GE and GM2) Assume GE=GM (valid only at threshold) VMD or

pQCD inspired parametrizations (for p and n)

3) TL nucleon FFs are twice larger than SL FFs 4) Recent data from Babar (radiative return)

bull interesting structures in the Q2 dependence of GM(=GE)

bull GMneGE

=03 GeV is the QCD scale parameter

A(p) = 563 GeV4 A(n) = 7715 GeV4

)](ln[ 2222

ss

AGM

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 27

Spin Observables

Analyzing power A

Double spin observables

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 28

Models in TL Region (polarization)

VDM IJL

Ext VDM

lsquoQCD inspiredrsquo

R

Ay Axx Ayy

Axz

Azz

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419(2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 29

Time-Like Region GE versus GM

GE=0

GE=GM

GE=GD

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Asym

| GM| 2

Cross section at 900

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 30

Perspectives in Time-Like region

Frascati

Panda

GE = GM

CEA DSM Dapnia

Facilty for Antiproton and Ion Research (GSI Darmstadt Germany)

- Proton linac (injector)- 2 synchrotons (30 GeV p)- A number of storage rings Parallel beams operation

Physics Polarization Staging Signals Timeline

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 32

Towards a unified description of Hadron Form factors

to clarify

- zero of GEp

- asymptotic properties

- reaction mechanism

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 33

Comparison BABAR-LEAR

q2 (GeV2)

Analytical Expression for R(q2)Dispersion Relations (S Pacetti)

Space-like Time-like

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 34

Phragmegraven-Lindeloumlf theorem

Asymptotic properties for analytical functions

E T-G and G Gakh Eur Phys J A 26 265 (2005)

=005 01

If f(z) a as z along a straight line and f(z) b as z along another straight line and f(z) is regular and bounded in the angle between then a=b and f(z) a uniformly in the angle

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 35

Phragmegraven-Lindeloumlf theorem

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Applies to NN and NNInteraction (Pomeranchuk theorem )t=0 not a QCD regime

Connection with QCD asymptoticsGM (TL)

GM (SL)

GE (SL)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 36

Reaction mechanism1-2 interference

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 17: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 17

FSI

DWF

Does not depend on beam helicity

+ d n + pGEn

ET-G GI Gakh A P Rekalo M P Rekalo PRC70025202 (2004)

The reaction d(eersquon)p ndash AxAz

Generalization of the polarization method

Asymmetry ratio

A(01)T ndashLT SFs(WQ2)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 18

GEn from the deuteron

bullGEn gt GEp starting from 2 GeV2

E T-G and M P Rekalo Europhys Lett 55 188 (2001)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 19

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 20

STATUS on EM Form factors

Space-like region

1) standard dipole function for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF GEp

3) contradiction between polarized and unpolarized measurements

4) non vanishing electric neutron FF GEn

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 21

Nucleon models

bullSkyrme Models (Soliton)bullVector Dominance Models (G-K IJLhellip)bullPerturbative QCDbull(Relativistic) Constituent Quark ModelbullDi-quark modelsbullGPDbullhelliphellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 22

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 23

Time-like region

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 24

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2exchange- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 25

Time-Like Region

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419 (2005)

VDM IJLF IachelloPLB43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC66 045501(2002)

lsquoQCD inspiredrsquo

proton

neutron

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 26

STATUS on EM Form factors

Time-like region

1) No individual determination of GE and GM2) Assume GE=GM (valid only at threshold) VMD or

pQCD inspired parametrizations (for p and n)

3) TL nucleon FFs are twice larger than SL FFs 4) Recent data from Babar (radiative return)

bull interesting structures in the Q2 dependence of GM(=GE)

bull GMneGE

=03 GeV is the QCD scale parameter

A(p) = 563 GeV4 A(n) = 7715 GeV4

)](ln[ 2222

ss

AGM

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 27

Spin Observables

Analyzing power A

Double spin observables

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 28

Models in TL Region (polarization)

VDM IJL

Ext VDM

lsquoQCD inspiredrsquo

R

Ay Axx Ayy

Axz

Azz

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419(2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 29

Time-Like Region GE versus GM

GE=0

GE=GM

GE=GD

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Asym

| GM| 2

Cross section at 900

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 30

Perspectives in Time-Like region

Frascati

Panda

GE = GM

CEA DSM Dapnia

Facilty for Antiproton and Ion Research (GSI Darmstadt Germany)

- Proton linac (injector)- 2 synchrotons (30 GeV p)- A number of storage rings Parallel beams operation

Physics Polarization Staging Signals Timeline

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 32

Towards a unified description of Hadron Form factors

to clarify

- zero of GEp

- asymptotic properties

- reaction mechanism

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 33

Comparison BABAR-LEAR

q2 (GeV2)

Analytical Expression for R(q2)Dispersion Relations (S Pacetti)

Space-like Time-like

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 34

Phragmegraven-Lindeloumlf theorem

Asymptotic properties for analytical functions

E T-G and G Gakh Eur Phys J A 26 265 (2005)

=005 01

If f(z) a as z along a straight line and f(z) b as z along another straight line and f(z) is regular and bounded in the angle between then a=b and f(z) a uniformly in the angle

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 35

Phragmegraven-Lindeloumlf theorem

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Applies to NN and NNInteraction (Pomeranchuk theorem )t=0 not a QCD regime

Connection with QCD asymptoticsGM (TL)

GM (SL)

GE (SL)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 36

Reaction mechanism1-2 interference

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 18: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 18

GEn from the deuteron

bullGEn gt GEp starting from 2 GeV2

E T-G and M P Rekalo Europhys Lett 55 188 (2001)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 19

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 20

STATUS on EM Form factors

Space-like region

1) standard dipole function for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF GEp

3) contradiction between polarized and unpolarized measurements

4) non vanishing electric neutron FF GEn

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 21

Nucleon models

bullSkyrme Models (Soliton)bullVector Dominance Models (G-K IJLhellip)bullPerturbative QCDbull(Relativistic) Constituent Quark ModelbullDi-quark modelsbullGPDbullhelliphellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 22

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 23

Time-like region

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 24

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2exchange- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 25

Time-Like Region

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419 (2005)

VDM IJLF IachelloPLB43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC66 045501(2002)

lsquoQCD inspiredrsquo

proton

neutron

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 26

STATUS on EM Form factors

Time-like region

1) No individual determination of GE and GM2) Assume GE=GM (valid only at threshold) VMD or

pQCD inspired parametrizations (for p and n)

3) TL nucleon FFs are twice larger than SL FFs 4) Recent data from Babar (radiative return)

bull interesting structures in the Q2 dependence of GM(=GE)

bull GMneGE

=03 GeV is the QCD scale parameter

A(p) = 563 GeV4 A(n) = 7715 GeV4

)](ln[ 2222

ss

AGM

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 27

Spin Observables

Analyzing power A

Double spin observables

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 28

Models in TL Region (polarization)

VDM IJL

Ext VDM

lsquoQCD inspiredrsquo

R

Ay Axx Ayy

Axz

Azz

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419(2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 29

Time-Like Region GE versus GM

GE=0

GE=GM

GE=GD

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Asym

| GM| 2

Cross section at 900

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 30

Perspectives in Time-Like region

Frascati

Panda

GE = GM

CEA DSM Dapnia

Facilty for Antiproton and Ion Research (GSI Darmstadt Germany)

- Proton linac (injector)- 2 synchrotons (30 GeV p)- A number of storage rings Parallel beams operation

Physics Polarization Staging Signals Timeline

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 32

Towards a unified description of Hadron Form factors

to clarify

- zero of GEp

- asymptotic properties

- reaction mechanism

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 33

Comparison BABAR-LEAR

q2 (GeV2)

Analytical Expression for R(q2)Dispersion Relations (S Pacetti)

Space-like Time-like

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 34

Phragmegraven-Lindeloumlf theorem

Asymptotic properties for analytical functions

E T-G and G Gakh Eur Phys J A 26 265 (2005)

=005 01

If f(z) a as z along a straight line and f(z) b as z along another straight line and f(z) is regular and bounded in the angle between then a=b and f(z) a uniformly in the angle

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 35

Phragmegraven-Lindeloumlf theorem

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Applies to NN and NNInteraction (Pomeranchuk theorem )t=0 not a QCD regime

Connection with QCD asymptoticsGM (TL)

GM (SL)

GE (SL)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 36

Reaction mechanism1-2 interference

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 19: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 19

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 20

STATUS on EM Form factors

Space-like region

1) standard dipole function for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF GEp

3) contradiction between polarized and unpolarized measurements

4) non vanishing electric neutron FF GEn

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 21

Nucleon models

bullSkyrme Models (Soliton)bullVector Dominance Models (G-K IJLhellip)bullPerturbative QCDbull(Relativistic) Constituent Quark ModelbullDi-quark modelsbullGPDbullhelliphellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 22

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 23

Time-like region

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 24

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2exchange- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 25

Time-Like Region

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419 (2005)

VDM IJLF IachelloPLB43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC66 045501(2002)

lsquoQCD inspiredrsquo

proton

neutron

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 26

STATUS on EM Form factors

Time-like region

1) No individual determination of GE and GM2) Assume GE=GM (valid only at threshold) VMD or

pQCD inspired parametrizations (for p and n)

3) TL nucleon FFs are twice larger than SL FFs 4) Recent data from Babar (radiative return)

bull interesting structures in the Q2 dependence of GM(=GE)

bull GMneGE

=03 GeV is the QCD scale parameter

A(p) = 563 GeV4 A(n) = 7715 GeV4

)](ln[ 2222

ss

AGM

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 27

Spin Observables

Analyzing power A

Double spin observables

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 28

Models in TL Region (polarization)

VDM IJL

Ext VDM

lsquoQCD inspiredrsquo

R

Ay Axx Ayy

Axz

Azz

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419(2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 29

Time-Like Region GE versus GM

GE=0

GE=GM

GE=GD

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Asym

| GM| 2

Cross section at 900

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 30

Perspectives in Time-Like region

Frascati

Panda

GE = GM

CEA DSM Dapnia

Facilty for Antiproton and Ion Research (GSI Darmstadt Germany)

- Proton linac (injector)- 2 synchrotons (30 GeV p)- A number of storage rings Parallel beams operation

Physics Polarization Staging Signals Timeline

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 32

Towards a unified description of Hadron Form factors

to clarify

- zero of GEp

- asymptotic properties

- reaction mechanism

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 33

Comparison BABAR-LEAR

q2 (GeV2)

Analytical Expression for R(q2)Dispersion Relations (S Pacetti)

Space-like Time-like

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 34

Phragmegraven-Lindeloumlf theorem

Asymptotic properties for analytical functions

E T-G and G Gakh Eur Phys J A 26 265 (2005)

=005 01

If f(z) a as z along a straight line and f(z) b as z along another straight line and f(z) is regular and bounded in the angle between then a=b and f(z) a uniformly in the angle

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 35

Phragmegraven-Lindeloumlf theorem

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Applies to NN and NNInteraction (Pomeranchuk theorem )t=0 not a QCD regime

Connection with QCD asymptoticsGM (TL)

GM (SL)

GE (SL)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 36

Reaction mechanism1-2 interference

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 20: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 20

STATUS on EM Form factors

Space-like region

1) standard dipole function for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF GEp

3) contradiction between polarized and unpolarized measurements

4) non vanishing electric neutron FF GEn

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 21

Nucleon models

bullSkyrme Models (Soliton)bullVector Dominance Models (G-K IJLhellip)bullPerturbative QCDbull(Relativistic) Constituent Quark ModelbullDi-quark modelsbullGPDbullhelliphellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 22

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 23

Time-like region

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 24

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2exchange- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 25

Time-Like Region

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419 (2005)

VDM IJLF IachelloPLB43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC66 045501(2002)

lsquoQCD inspiredrsquo

proton

neutron

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 26

STATUS on EM Form factors

Time-like region

1) No individual determination of GE and GM2) Assume GE=GM (valid only at threshold) VMD or

pQCD inspired parametrizations (for p and n)

3) TL nucleon FFs are twice larger than SL FFs 4) Recent data from Babar (radiative return)

bull interesting structures in the Q2 dependence of GM(=GE)

bull GMneGE

=03 GeV is the QCD scale parameter

A(p) = 563 GeV4 A(n) = 7715 GeV4

)](ln[ 2222

ss

AGM

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 27

Spin Observables

Analyzing power A

Double spin observables

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 28

Models in TL Region (polarization)

VDM IJL

Ext VDM

lsquoQCD inspiredrsquo

R

Ay Axx Ayy

Axz

Azz

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419(2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 29

Time-Like Region GE versus GM

GE=0

GE=GM

GE=GD

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Asym

| GM| 2

Cross section at 900

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 30

Perspectives in Time-Like region

Frascati

Panda

GE = GM

CEA DSM Dapnia

Facilty for Antiproton and Ion Research (GSI Darmstadt Germany)

- Proton linac (injector)- 2 synchrotons (30 GeV p)- A number of storage rings Parallel beams operation

Physics Polarization Staging Signals Timeline

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 32

Towards a unified description of Hadron Form factors

to clarify

- zero of GEp

- asymptotic properties

- reaction mechanism

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 33

Comparison BABAR-LEAR

q2 (GeV2)

Analytical Expression for R(q2)Dispersion Relations (S Pacetti)

Space-like Time-like

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 34

Phragmegraven-Lindeloumlf theorem

Asymptotic properties for analytical functions

E T-G and G Gakh Eur Phys J A 26 265 (2005)

=005 01

If f(z) a as z along a straight line and f(z) b as z along another straight line and f(z) is regular and bounded in the angle between then a=b and f(z) a uniformly in the angle

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 35

Phragmegraven-Lindeloumlf theorem

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Applies to NN and NNInteraction (Pomeranchuk theorem )t=0 not a QCD regime

Connection with QCD asymptoticsGM (TL)

GM (SL)

GE (SL)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 36

Reaction mechanism1-2 interference

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 21: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 21

Nucleon models

bullSkyrme Models (Soliton)bullVector Dominance Models (G-K IJLhellip)bullPerturbative QCDbull(Relativistic) Constituent Quark ModelbullDi-quark modelsbullGPDbullhelliphellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 22

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 23

Time-like region

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 24

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2exchange- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 25

Time-Like Region

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419 (2005)

VDM IJLF IachelloPLB43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC66 045501(2002)

lsquoQCD inspiredrsquo

proton

neutron

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 26

STATUS on EM Form factors

Time-like region

1) No individual determination of GE and GM2) Assume GE=GM (valid only at threshold) VMD or

pQCD inspired parametrizations (for p and n)

3) TL nucleon FFs are twice larger than SL FFs 4) Recent data from Babar (radiative return)

bull interesting structures in the Q2 dependence of GM(=GE)

bull GMneGE

=03 GeV is the QCD scale parameter

A(p) = 563 GeV4 A(n) = 7715 GeV4

)](ln[ 2222

ss

AGM

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 27

Spin Observables

Analyzing power A

Double spin observables

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 28

Models in TL Region (polarization)

VDM IJL

Ext VDM

lsquoQCD inspiredrsquo

R

Ay Axx Ayy

Axz

Azz

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419(2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 29

Time-Like Region GE versus GM

GE=0

GE=GM

GE=GD

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Asym

| GM| 2

Cross section at 900

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 30

Perspectives in Time-Like region

Frascati

Panda

GE = GM

CEA DSM Dapnia

Facilty for Antiproton and Ion Research (GSI Darmstadt Germany)

- Proton linac (injector)- 2 synchrotons (30 GeV p)- A number of storage rings Parallel beams operation

Physics Polarization Staging Signals Timeline

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 32

Towards a unified description of Hadron Form factors

to clarify

- zero of GEp

- asymptotic properties

- reaction mechanism

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 33

Comparison BABAR-LEAR

q2 (GeV2)

Analytical Expression for R(q2)Dispersion Relations (S Pacetti)

Space-like Time-like

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 34

Phragmegraven-Lindeloumlf theorem

Asymptotic properties for analytical functions

E T-G and G Gakh Eur Phys J A 26 265 (2005)

=005 01

If f(z) a as z along a straight line and f(z) b as z along another straight line and f(z) is regular and bounded in the angle between then a=b and f(z) a uniformly in the angle

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 35

Phragmegraven-Lindeloumlf theorem

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Applies to NN and NNInteraction (Pomeranchuk theorem )t=0 not a QCD regime

Connection with QCD asymptoticsGM (TL)

GM (SL)

GE (SL)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 36

Reaction mechanism1-2 interference

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 22: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 22

The nucleon form factors

VDM IJLF IachelloPLB 43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC 66 045501 2002)

HohlerNPB 114 505 (1976)

BostedPRC 51 409 (1995)

Electric Magneticne

utro

npr

oton

E T-G F Lacroix Ch Duterte GI Gakh EPJA 24 419 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 23

Time-like region

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 24

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2exchange- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 25

Time-Like Region

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419 (2005)

VDM IJLF IachelloPLB43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC66 045501(2002)

lsquoQCD inspiredrsquo

proton

neutron

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 26

STATUS on EM Form factors

Time-like region

1) No individual determination of GE and GM2) Assume GE=GM (valid only at threshold) VMD or

pQCD inspired parametrizations (for p and n)

3) TL nucleon FFs are twice larger than SL FFs 4) Recent data from Babar (radiative return)

bull interesting structures in the Q2 dependence of GM(=GE)

bull GMneGE

=03 GeV is the QCD scale parameter

A(p) = 563 GeV4 A(n) = 7715 GeV4

)](ln[ 2222

ss

AGM

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 27

Spin Observables

Analyzing power A

Double spin observables

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 28

Models in TL Region (polarization)

VDM IJL

Ext VDM

lsquoQCD inspiredrsquo

R

Ay Axx Ayy

Axz

Azz

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419(2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 29

Time-Like Region GE versus GM

GE=0

GE=GM

GE=GD

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Asym

| GM| 2

Cross section at 900

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 30

Perspectives in Time-Like region

Frascati

Panda

GE = GM

CEA DSM Dapnia

Facilty for Antiproton and Ion Research (GSI Darmstadt Germany)

- Proton linac (injector)- 2 synchrotons (30 GeV p)- A number of storage rings Parallel beams operation

Physics Polarization Staging Signals Timeline

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 32

Towards a unified description of Hadron Form factors

to clarify

- zero of GEp

- asymptotic properties

- reaction mechanism

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 33

Comparison BABAR-LEAR

q2 (GeV2)

Analytical Expression for R(q2)Dispersion Relations (S Pacetti)

Space-like Time-like

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 34

Phragmegraven-Lindeloumlf theorem

Asymptotic properties for analytical functions

E T-G and G Gakh Eur Phys J A 26 265 (2005)

=005 01

If f(z) a as z along a straight line and f(z) b as z along another straight line and f(z) is regular and bounded in the angle between then a=b and f(z) a uniformly in the angle

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 35

Phragmegraven-Lindeloumlf theorem

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Applies to NN and NNInteraction (Pomeranchuk theorem )t=0 not a QCD regime

Connection with QCD asymptoticsGM (TL)

GM (SL)

GE (SL)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 36

Reaction mechanism1-2 interference

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 23: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 23

Time-like region

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 24

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2exchange- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 25

Time-Like Region

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419 (2005)

VDM IJLF IachelloPLB43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC66 045501(2002)

lsquoQCD inspiredrsquo

proton

neutron

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 26

STATUS on EM Form factors

Time-like region

1) No individual determination of GE and GM2) Assume GE=GM (valid only at threshold) VMD or

pQCD inspired parametrizations (for p and n)

3) TL nucleon FFs are twice larger than SL FFs 4) Recent data from Babar (radiative return)

bull interesting structures in the Q2 dependence of GM(=GE)

bull GMneGE

=03 GeV is the QCD scale parameter

A(p) = 563 GeV4 A(n) = 7715 GeV4

)](ln[ 2222

ss

AGM

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 27

Spin Observables

Analyzing power A

Double spin observables

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 28

Models in TL Region (polarization)

VDM IJL

Ext VDM

lsquoQCD inspiredrsquo

R

Ay Axx Ayy

Axz

Azz

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419(2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 29

Time-Like Region GE versus GM

GE=0

GE=GM

GE=GD

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Asym

| GM| 2

Cross section at 900

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 30

Perspectives in Time-Like region

Frascati

Panda

GE = GM

CEA DSM Dapnia

Facilty for Antiproton and Ion Research (GSI Darmstadt Germany)

- Proton linac (injector)- 2 synchrotons (30 GeV p)- A number of storage rings Parallel beams operation

Physics Polarization Staging Signals Timeline

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 32

Towards a unified description of Hadron Form factors

to clarify

- zero of GEp

- asymptotic properties

- reaction mechanism

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 33

Comparison BABAR-LEAR

q2 (GeV2)

Analytical Expression for R(q2)Dispersion Relations (S Pacetti)

Space-like Time-like

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 34

Phragmegraven-Lindeloumlf theorem

Asymptotic properties for analytical functions

E T-G and G Gakh Eur Phys J A 26 265 (2005)

=005 01

If f(z) a as z along a straight line and f(z) b as z along another straight line and f(z) is regular and bounded in the angle between then a=b and f(z) a uniformly in the angle

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 35

Phragmegraven-Lindeloumlf theorem

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Applies to NN and NNInteraction (Pomeranchuk theorem )t=0 not a QCD regime

Connection with QCD asymptoticsGM (TL)

GM (SL)

GE (SL)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 36

Reaction mechanism1-2 interference

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 24: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 24

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2exchange- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 25

Time-Like Region

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419 (2005)

VDM IJLF IachelloPLB43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC66 045501(2002)

lsquoQCD inspiredrsquo

proton

neutron

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 26

STATUS on EM Form factors

Time-like region

1) No individual determination of GE and GM2) Assume GE=GM (valid only at threshold) VMD or

pQCD inspired parametrizations (for p and n)

3) TL nucleon FFs are twice larger than SL FFs 4) Recent data from Babar (radiative return)

bull interesting structures in the Q2 dependence of GM(=GE)

bull GMneGE

=03 GeV is the QCD scale parameter

A(p) = 563 GeV4 A(n) = 7715 GeV4

)](ln[ 2222

ss

AGM

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 27

Spin Observables

Analyzing power A

Double spin observables

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 28

Models in TL Region (polarization)

VDM IJL

Ext VDM

lsquoQCD inspiredrsquo

R

Ay Axx Ayy

Axz

Azz

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419(2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 29

Time-Like Region GE versus GM

GE=0

GE=GM

GE=GD

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Asym

| GM| 2

Cross section at 900

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 30

Perspectives in Time-Like region

Frascati

Panda

GE = GM

CEA DSM Dapnia

Facilty for Antiproton and Ion Research (GSI Darmstadt Germany)

- Proton linac (injector)- 2 synchrotons (30 GeV p)- A number of storage rings Parallel beams operation

Physics Polarization Staging Signals Timeline

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 32

Towards a unified description of Hadron Form factors

to clarify

- zero of GEp

- asymptotic properties

- reaction mechanism

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 33

Comparison BABAR-LEAR

q2 (GeV2)

Analytical Expression for R(q2)Dispersion Relations (S Pacetti)

Space-like Time-like

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 34

Phragmegraven-Lindeloumlf theorem

Asymptotic properties for analytical functions

E T-G and G Gakh Eur Phys J A 26 265 (2005)

=005 01

If f(z) a as z along a straight line and f(z) b as z along another straight line and f(z) is regular and bounded in the angle between then a=b and f(z) a uniformly in the angle

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 35

Phragmegraven-Lindeloumlf theorem

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Applies to NN and NNInteraction (Pomeranchuk theorem )t=0 not a QCD regime

Connection with QCD asymptoticsGM (TL)

GM (SL)

GE (SL)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 36

Reaction mechanism1-2 interference

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 25: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 25

Time-Like Region

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419 (2005)

VDM IJLF IachelloPLB43 191 (1973)

Extended VDM (G-K 92) ELLomon PRC66 045501(2002)

lsquoQCD inspiredrsquo

proton

neutron

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 26

STATUS on EM Form factors

Time-like region

1) No individual determination of GE and GM2) Assume GE=GM (valid only at threshold) VMD or

pQCD inspired parametrizations (for p and n)

3) TL nucleon FFs are twice larger than SL FFs 4) Recent data from Babar (radiative return)

bull interesting structures in the Q2 dependence of GM(=GE)

bull GMneGE

=03 GeV is the QCD scale parameter

A(p) = 563 GeV4 A(n) = 7715 GeV4

)](ln[ 2222

ss

AGM

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 27

Spin Observables

Analyzing power A

Double spin observables

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 28

Models in TL Region (polarization)

VDM IJL

Ext VDM

lsquoQCD inspiredrsquo

R

Ay Axx Ayy

Axz

Azz

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419(2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 29

Time-Like Region GE versus GM

GE=0

GE=GM

GE=GD

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Asym

| GM| 2

Cross section at 900

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 30

Perspectives in Time-Like region

Frascati

Panda

GE = GM

CEA DSM Dapnia

Facilty for Antiproton and Ion Research (GSI Darmstadt Germany)

- Proton linac (injector)- 2 synchrotons (30 GeV p)- A number of storage rings Parallel beams operation

Physics Polarization Staging Signals Timeline

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 32

Towards a unified description of Hadron Form factors

to clarify

- zero of GEp

- asymptotic properties

- reaction mechanism

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 33

Comparison BABAR-LEAR

q2 (GeV2)

Analytical Expression for R(q2)Dispersion Relations (S Pacetti)

Space-like Time-like

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 34

Phragmegraven-Lindeloumlf theorem

Asymptotic properties for analytical functions

E T-G and G Gakh Eur Phys J A 26 265 (2005)

=005 01

If f(z) a as z along a straight line and f(z) b as z along another straight line and f(z) is regular and bounded in the angle between then a=b and f(z) a uniformly in the angle

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 35

Phragmegraven-Lindeloumlf theorem

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Applies to NN and NNInteraction (Pomeranchuk theorem )t=0 not a QCD regime

Connection with QCD asymptoticsGM (TL)

GM (SL)

GE (SL)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 36

Reaction mechanism1-2 interference

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 26: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 26

STATUS on EM Form factors

Time-like region

1) No individual determination of GE and GM2) Assume GE=GM (valid only at threshold) VMD or

pQCD inspired parametrizations (for p and n)

3) TL nucleon FFs are twice larger than SL FFs 4) Recent data from Babar (radiative return)

bull interesting structures in the Q2 dependence of GM(=GE)

bull GMneGE

=03 GeV is the QCD scale parameter

A(p) = 563 GeV4 A(n) = 7715 GeV4

)](ln[ 2222

ss

AGM

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 27

Spin Observables

Analyzing power A

Double spin observables

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 28

Models in TL Region (polarization)

VDM IJL

Ext VDM

lsquoQCD inspiredrsquo

R

Ay Axx Ayy

Axz

Azz

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419(2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 29

Time-Like Region GE versus GM

GE=0

GE=GM

GE=GD

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Asym

| GM| 2

Cross section at 900

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 30

Perspectives in Time-Like region

Frascati

Panda

GE = GM

CEA DSM Dapnia

Facilty for Antiproton and Ion Research (GSI Darmstadt Germany)

- Proton linac (injector)- 2 synchrotons (30 GeV p)- A number of storage rings Parallel beams operation

Physics Polarization Staging Signals Timeline

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 32

Towards a unified description of Hadron Form factors

to clarify

- zero of GEp

- asymptotic properties

- reaction mechanism

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 33

Comparison BABAR-LEAR

q2 (GeV2)

Analytical Expression for R(q2)Dispersion Relations (S Pacetti)

Space-like Time-like

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 34

Phragmegraven-Lindeloumlf theorem

Asymptotic properties for analytical functions

E T-G and G Gakh Eur Phys J A 26 265 (2005)

=005 01

If f(z) a as z along a straight line and f(z) b as z along another straight line and f(z) is regular and bounded in the angle between then a=b and f(z) a uniformly in the angle

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 35

Phragmegraven-Lindeloumlf theorem

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Applies to NN and NNInteraction (Pomeranchuk theorem )t=0 not a QCD regime

Connection with QCD asymptoticsGM (TL)

GM (SL)

GE (SL)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 36

Reaction mechanism1-2 interference

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 27: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 27

Spin Observables

Analyzing power A

Double spin observables

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 28

Models in TL Region (polarization)

VDM IJL

Ext VDM

lsquoQCD inspiredrsquo

R

Ay Axx Ayy

Axz

Azz

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419(2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 29

Time-Like Region GE versus GM

GE=0

GE=GM

GE=GD

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Asym

| GM| 2

Cross section at 900

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 30

Perspectives in Time-Like region

Frascati

Panda

GE = GM

CEA DSM Dapnia

Facilty for Antiproton and Ion Research (GSI Darmstadt Germany)

- Proton linac (injector)- 2 synchrotons (30 GeV p)- A number of storage rings Parallel beams operation

Physics Polarization Staging Signals Timeline

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 32

Towards a unified description of Hadron Form factors

to clarify

- zero of GEp

- asymptotic properties

- reaction mechanism

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 33

Comparison BABAR-LEAR

q2 (GeV2)

Analytical Expression for R(q2)Dispersion Relations (S Pacetti)

Space-like Time-like

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 34

Phragmegraven-Lindeloumlf theorem

Asymptotic properties for analytical functions

E T-G and G Gakh Eur Phys J A 26 265 (2005)

=005 01

If f(z) a as z along a straight line and f(z) b as z along another straight line and f(z) is regular and bounded in the angle between then a=b and f(z) a uniformly in the angle

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 35

Phragmegraven-Lindeloumlf theorem

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Applies to NN and NNInteraction (Pomeranchuk theorem )t=0 not a QCD regime

Connection with QCD asymptoticsGM (TL)

GM (SL)

GE (SL)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 36

Reaction mechanism1-2 interference

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 28: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 28

Models in TL Region (polarization)

VDM IJL

Ext VDM

lsquoQCD inspiredrsquo

R

Ay Axx Ayy

Axz

Azz

E T-G F Lacroix C Duterte GI Gakh EPJA 24 419(2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 29

Time-Like Region GE versus GM

GE=0

GE=GM

GE=GD

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Asym

| GM| 2

Cross section at 900

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 30

Perspectives in Time-Like region

Frascati

Panda

GE = GM

CEA DSM Dapnia

Facilty for Antiproton and Ion Research (GSI Darmstadt Germany)

- Proton linac (injector)- 2 synchrotons (30 GeV p)- A number of storage rings Parallel beams operation

Physics Polarization Staging Signals Timeline

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 32

Towards a unified description of Hadron Form factors

to clarify

- zero of GEp

- asymptotic properties

- reaction mechanism

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 33

Comparison BABAR-LEAR

q2 (GeV2)

Analytical Expression for R(q2)Dispersion Relations (S Pacetti)

Space-like Time-like

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 34

Phragmegraven-Lindeloumlf theorem

Asymptotic properties for analytical functions

E T-G and G Gakh Eur Phys J A 26 265 (2005)

=005 01

If f(z) a as z along a straight line and f(z) b as z along another straight line and f(z) is regular and bounded in the angle between then a=b and f(z) a uniformly in the angle

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 35

Phragmegraven-Lindeloumlf theorem

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Applies to NN and NNInteraction (Pomeranchuk theorem )t=0 not a QCD regime

Connection with QCD asymptoticsGM (TL)

GM (SL)

GE (SL)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 36

Reaction mechanism1-2 interference

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 29: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 29

Time-Like Region GE versus GM

GE=0

GE=GM

GE=GD

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Asym

| GM| 2

Cross section at 900

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 30

Perspectives in Time-Like region

Frascati

Panda

GE = GM

CEA DSM Dapnia

Facilty for Antiproton and Ion Research (GSI Darmstadt Germany)

- Proton linac (injector)- 2 synchrotons (30 GeV p)- A number of storage rings Parallel beams operation

Physics Polarization Staging Signals Timeline

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 32

Towards a unified description of Hadron Form factors

to clarify

- zero of GEp

- asymptotic properties

- reaction mechanism

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 33

Comparison BABAR-LEAR

q2 (GeV2)

Analytical Expression for R(q2)Dispersion Relations (S Pacetti)

Space-like Time-like

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 34

Phragmegraven-Lindeloumlf theorem

Asymptotic properties for analytical functions

E T-G and G Gakh Eur Phys J A 26 265 (2005)

=005 01

If f(z) a as z along a straight line and f(z) b as z along another straight line and f(z) is regular and bounded in the angle between then a=b and f(z) a uniformly in the angle

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 35

Phragmegraven-Lindeloumlf theorem

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Applies to NN and NNInteraction (Pomeranchuk theorem )t=0 not a QCD regime

Connection with QCD asymptoticsGM (TL)

GM (SL)

GE (SL)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 36

Reaction mechanism1-2 interference

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 30: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 30

Perspectives in Time-Like region

Frascati

Panda

GE = GM

CEA DSM Dapnia

Facilty for Antiproton and Ion Research (GSI Darmstadt Germany)

- Proton linac (injector)- 2 synchrotons (30 GeV p)- A number of storage rings Parallel beams operation

Physics Polarization Staging Signals Timeline

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 32

Towards a unified description of Hadron Form factors

to clarify

- zero of GEp

- asymptotic properties

- reaction mechanism

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 33

Comparison BABAR-LEAR

q2 (GeV2)

Analytical Expression for R(q2)Dispersion Relations (S Pacetti)

Space-like Time-like

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 34

Phragmegraven-Lindeloumlf theorem

Asymptotic properties for analytical functions

E T-G and G Gakh Eur Phys J A 26 265 (2005)

=005 01

If f(z) a as z along a straight line and f(z) b as z along another straight line and f(z) is regular and bounded in the angle between then a=b and f(z) a uniformly in the angle

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 35

Phragmegraven-Lindeloumlf theorem

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Applies to NN and NNInteraction (Pomeranchuk theorem )t=0 not a QCD regime

Connection with QCD asymptoticsGM (TL)

GM (SL)

GE (SL)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 36

Reaction mechanism1-2 interference

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 31: Proton Form Factors

CEA DSM Dapnia

Facilty for Antiproton and Ion Research (GSI Darmstadt Germany)

- Proton linac (injector)- 2 synchrotons (30 GeV p)- A number of storage rings Parallel beams operation

Physics Polarization Staging Signals Timeline

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 32

Towards a unified description of Hadron Form factors

to clarify

- zero of GEp

- asymptotic properties

- reaction mechanism

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 33

Comparison BABAR-LEAR

q2 (GeV2)

Analytical Expression for R(q2)Dispersion Relations (S Pacetti)

Space-like Time-like

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 34

Phragmegraven-Lindeloumlf theorem

Asymptotic properties for analytical functions

E T-G and G Gakh Eur Phys J A 26 265 (2005)

=005 01

If f(z) a as z along a straight line and f(z) b as z along another straight line and f(z) is regular and bounded in the angle between then a=b and f(z) a uniformly in the angle

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 35

Phragmegraven-Lindeloumlf theorem

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Applies to NN and NNInteraction (Pomeranchuk theorem )t=0 not a QCD regime

Connection with QCD asymptoticsGM (TL)

GM (SL)

GE (SL)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 36

Reaction mechanism1-2 interference

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 32: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 32

Towards a unified description of Hadron Form factors

to clarify

- zero of GEp

- asymptotic properties

- reaction mechanism

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 33

Comparison BABAR-LEAR

q2 (GeV2)

Analytical Expression for R(q2)Dispersion Relations (S Pacetti)

Space-like Time-like

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 34

Phragmegraven-Lindeloumlf theorem

Asymptotic properties for analytical functions

E T-G and G Gakh Eur Phys J A 26 265 (2005)

=005 01

If f(z) a as z along a straight line and f(z) b as z along another straight line and f(z) is regular and bounded in the angle between then a=b and f(z) a uniformly in the angle

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 35

Phragmegraven-Lindeloumlf theorem

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Applies to NN and NNInteraction (Pomeranchuk theorem )t=0 not a QCD regime

Connection with QCD asymptoticsGM (TL)

GM (SL)

GE (SL)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 36

Reaction mechanism1-2 interference

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 33: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 33

Comparison BABAR-LEAR

q2 (GeV2)

Analytical Expression for R(q2)Dispersion Relations (S Pacetti)

Space-like Time-like

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 34

Phragmegraven-Lindeloumlf theorem

Asymptotic properties for analytical functions

E T-G and G Gakh Eur Phys J A 26 265 (2005)

=005 01

If f(z) a as z along a straight line and f(z) b as z along another straight line and f(z) is regular and bounded in the angle between then a=b and f(z) a uniformly in the angle

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 35

Phragmegraven-Lindeloumlf theorem

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Applies to NN and NNInteraction (Pomeranchuk theorem )t=0 not a QCD regime

Connection with QCD asymptoticsGM (TL)

GM (SL)

GE (SL)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 36

Reaction mechanism1-2 interference

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 34: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 34

Phragmegraven-Lindeloumlf theorem

Asymptotic properties for analytical functions

E T-G and G Gakh Eur Phys J A 26 265 (2005)

=005 01

If f(z) a as z along a straight line and f(z) b as z along another straight line and f(z) is regular and bounded in the angle between then a=b and f(z) a uniformly in the angle

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 35

Phragmegraven-Lindeloumlf theorem

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Applies to NN and NNInteraction (Pomeranchuk theorem )t=0 not a QCD regime

Connection with QCD asymptoticsGM (TL)

GM (SL)

GE (SL)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 36

Reaction mechanism1-2 interference

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 35: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 35

Phragmegraven-Lindeloumlf theorem

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Applies to NN and NNInteraction (Pomeranchuk theorem )t=0 not a QCD regime

Connection with QCD asymptoticsGM (TL)

GM (SL)

GE (SL)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 36

Reaction mechanism1-2 interference

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 36: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 36

Reaction mechanism1-2 interference

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 37: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 37

Two-photon exchange

Different results with different experimental methods

- Both methods based on the same formalism

- Experiments repeated

New mechanism

bull1-2 ~ =e24=1137

bull1970rsquos Gunion Levhellip

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 38: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 38

eeplusmn plusmn + p+ prarr rarr eeplusmnplusmn + p+ p

1 exchange

bull Two EM form factorsbull Real (in SL region)bull Functions of one variable (t)bull Describe e+ and e- scattering

2 exchange

bull Three structure functionsbull Complexebull Functions of TWO variables (st)bull Different for e+ and e- scattering

4 spin frac12 fermions rarrrarr 16 amplitudes in the general caseT-invariance of EM interaction identity of initial and final states helicity conservation unitarity

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 39: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 39

Model independent considerations for eeplusmnplusmn N scattering

Determination of EM form factors in presence of 2 exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 40: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 40

Model independent considerations for eeplusmnplusmn N scattering

If no positron beamhellip

Either three T-odd polarization observableshellip

bullAy unpolarized leptons transversally polarized target (or Py outgoing nucleon polarization with unpolarized leptons unpolarized target )bullDepolarization tensor (Dab) dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptonsor five T-even polarization observableshellip

among dsd Pxe) Pz(e) Dxx Dyy Dzz DxzM P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 41: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 41

1g

1-2 interference

21

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 42: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 42

The 1-2 interference destroys the linearity

of the Rosenbluth plot

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 43: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 43

11-2-2 interference (e-d) interference (e-d)

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 44: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 44

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 45: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 45

From the data

deviation from linearity

ltlt 1

Parametrization of 2-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 46: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 46

Two-Photon exchange

bullThe 2 amplitude is expected to be mostly imaginary

bullIn this case the 1-2 interference is more important in time-like region as the Born amplitude is complex

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 47: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 47

TL unpolarized cross section

bullInduces four new termsbullOdd function of bullDoes not contribute at =90deg

2contribution

e+ +e- p + p

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 48: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 48

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relationsSymmetry relations

E T-G G Gakh NPA (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 49: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 49

bullDifferential cross section at complementary angles

Symmetry relations

The DIFFERENCE enhances the 2 contribution

The SUM cancels the 2 contribution

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 50: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 50

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 51: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 51

Angular distribution

Mpp=1877-19Mpp=1877-19

Mpp=24-3Mpp=24-3

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 52: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 52

Mpp=1877-19Mpp=1877-19

A=001A=001plusmnplusmn002002

Mpp=24-3Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 53: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 53

Radiative Corrections to the dataRadiative Corrections to the data

Slope negative if

- RC can reach 40 on - Declared error ~1- Same correction for GE and GM

- Have a large -dependence- Affect the slope

The slope is negative starting from 2-3 GeV2

el=meas RC

slope

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 54: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 54

Reduced cross section and RCReduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh PRC 72 015209 (2005)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 55: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 55

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 56: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 56

Radiative Corrections (SF method)

Polarization data

JLab data

SLAC data

Yu Bystricky EAKuraev E T-G Phys Rev C75 015207 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 57: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 57

Instead of Conclusionshellip

bullFundamental measurement the electric and the magnetic distributions of the proton are different in SL region What about TL Separation of GE and GM

via angular dependence of differential cross section

bull Clarify reaction mechanism 2- exchange by model independent symmetry requirements

bull Unified description in TL and SL region zero of GEp

bull Asymptotic properties QCD and analyticity

Model independent propertiesModel independent properties Lessons from QED Lessons from QED

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 58: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 58

The work presentedhere was initiated in a collaboration with Prof M P REKALO

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 59: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 59

Experimental correlationExperimental correlation

el=meas RC

Q2 gt 2 GeV2 Q2 lt 2 GeV2

RC()

only published values

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 60: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 60

Experimental correlationExperimental correlation

Q2 lt 2 GeV2

Correlation (ltRCbull)

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 61: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 61

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 62: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 62

Two Photon Exchange

No exact calculation for ep scattering

( inelastic intermediate states)

but

electron-muon scattering

constitutes an upper limit

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 63: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 63

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized and

polarized ep scatteringndash Does not contain the enhancement factor L ndash The relevant contribution to K is ~ 1

EAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 64: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 64

QED versus QCD

Imaginary part of the 2Imaginary part of the 2 amplitude amplitude

electronproton

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 65: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 65

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 66: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 66

Structure Function method

bullSF method applied to QED processes calculation of radiative corrections with precision of 01

bullTakes into account the dynamics of the process

bullFormulated in terms of parton densities (leptons antileptons photons)

bullMany applications to different processes

E A Kuraev and VS Fadin Sov J of Nucl Phys 41 466 (1985)

Electron SF probability to lsquofindrsquo electron in the initial electron with energy fraction x and virtuality up to Q2

Lipatov equations (1975)

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 67: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 67

Unpolarized Cross sectionUnpolarized Cross section

Born +dipole FFs(=unpolarized experiment+MoampTsai)

SF (with dipole FFs)SF+2 exchange

Q2=3 GeV2

Q2=5 GeV2 SF change the slope

Q2=1 GeV2

2 exchange very small

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)

Page 68: Proton Form Factors

Egle TOMASI-GUSTAFSSONCEA DSM DapniaJLab May 22008 68

Polarization ratioPolarization ratio

Born SFSF+2 exchange

=60deg

2 destroys linearity

2 exchange very small

=80deg

=20deg

Yu Bystricky EAKuraev E T-G Phys Rev C 75 015207 (2007)