provably good sampling and meshing of surfaces

48
Provably Good Sampling and Meshing of Surfaces Jean-Daniel Boissonnat, Steve Oudot

Upload: dmitry-anisimov

Post on 25-Jan-2015

343 views

Category:

Education


0 download

DESCRIPTION

My presentation of the article "Provably Good Sampling and Meshing of Surfaces" of J.-D. Boissonnat and S. Oudot. All Rights for text are Reserved by authors of this paper. Date of presentation: May 2012 For preparing my slides I take pictures and some other information from the internet and I try to use only legal one. But if I did not notice something and you have Rights for any kind of this information and do not want to see it in the presentation please let me know and I will remove it from the slides as fast as possible or remove the slides themselves. Thanks for your collaboration.

TRANSCRIPT

Page 1: Provably Good Sampling and Meshing of Surfaces

Provably Good Sampling and Meshing of Surfaces

Jean-Daniel Boissonnat, Steve Oudot

Page 2: Provably Good Sampling and Meshing of Surfaces

Provably Good Sampling and Meshing of Surfaces

Not  a  smooth  surface  

Jean-Daniel Boissonnat, Steve Oudot

Page 3: Provably Good Sampling and Meshing of Surfaces

Smooth  surface  

Provably Good Sampling and Meshing of Surfaces

Jean-Daniel Boissonnat, Steve Oudot

Page 4: Provably Good Sampling and Meshing of Surfaces

Provably Good Sampling and Meshing of  Surfaces  

Well  distributed  sample  points  

Smooth  surface  

Jean-Daniel Boissonnat, Steve Oudot

Page 5: Provably Good Sampling and Meshing of Surfaces

Provably Good Sampling and  Meshing  of  Surfaces  

Good  triangula9on  

Jean-Daniel Boissonnat, Steve Oudot

Well  distributed  sample  points  

Smooth  surface  

Page 6: Provably Good Sampling and Meshing of Surfaces

Provably Good Sampling and  Meshing  of  Surfaces  

25   All  angles  are  greater  than  25  degrees  

Jean-Daniel Boissonnat, Steve Oudot

Good  triangula9on:  

Well  distributed  sample  points  

Smooth  surface  

Page 7: Provably Good Sampling and Meshing of Surfaces

Provably Good Sampling and  Meshing  of  Surfaces  

25  

All  triangles  are  equilateral  

Jean-Daniel Boissonnat, Steve Oudot

Good  triangula9on:  

Well  distributed  sample  points  

Smooth  surface  

All  angles  are  greater  than  25  degrees  

Page 8: Provably Good Sampling and Meshing of Surfaces

Provably  Good  Sampling and  Meshing  of  Surfaces  

25  

The  best  approximates  

Jean-Daniel Boissonnat, Steve Oudot

All  triangles  are  equilateral  

All  angles  are  greater  than  25  degrees  

Smooth  surface  

Good  triangula9on:  

Well  distributed  sample  points  

Page 9: Provably Good Sampling and Meshing of Surfaces

Provably  Good  Sampling and  Meshing  of  Surfaces  

25  

The  best  approximates  

All  triangles  are  equilateral  

All  angles  are  greater  than  25  degrees  

Smooth  surface  

Jean-­‐Daniel  Boissonnat,  Steve  Oudot  

Good  triangula9on:  

Well  distributed  sample  points  

Page 10: Provably Good Sampling and Meshing of Surfaces

Presented  by  Anisimov  Dmitry  

1.  Take  a  smooth  surface  Compact,  orientable,  at  least  C2  –  con9nuous  closed  surface.  

Completely  suitable  Not  completely  suitable  

Page 11: Provably Good Sampling and Meshing of Surfaces

2.  Sample  this  surface  •  Medial  axis            of  the  surface  

2d  medial  axis  3d  medial  axis  

M S

Presented  by  Anisimov  Dmitry  

Page 12: Provably Good Sampling and Meshing of Surfaces

2.  Sample  this  surface  •  Distance  to  the  medial  axis              that  is  

2d  medial  axis  3d  medial  axis  

dM

dM

dMM

Presented  by  Anisimov  Dmitry  

Page 13: Provably Good Sampling and Meshing of Surfaces

2.  Sample  this  surface  •  Minimum  distance  to  the  medial  axis              that  is  

dMinf = inf dM (x), x ∈ S{ }

dMinfM

Presented  by  Anisimov  Dmitry  

Page 14: Provably Good Sampling and Meshing of Surfaces

2.  Sample  this  surface  •  Some  user-­‐defined  func9on  σ : S→ R

Ø  Posi9ve  that  is          

Ø  1-­‐Lipschitz  that  is    σ (x)−σ (y) ≤ x − y

σ > 0

Presented  by  Anisimov  Dmitry  

Page 15: Provably Good Sampling and Meshing of Surfaces

2.  Sample  this  surface  •  Ball          of  center          and  radius          that  is  B(c, r)cB r

B(c, r)

Presented  by  Anisimov  Dmitry  

Page 16: Provably Good Sampling and Meshing of Surfaces

2.  Sample  this  surface  •  Ball          of  center          and  radius          that  is  B(c, r)cB r

B(c, r)

Presented  by  Anisimov  Dmitry  

Page 17: Provably Good Sampling and Meshing of Surfaces

2.  Sample  this  surface  •  Construc9on  of  the  ini9al  point  sample    E

Pick  up  at  least  one  point  x  on  each  connected  component  of  S and  insert  it  in     !E

Presented  by  Anisimov  Dmitry  

Page 18: Provably Good Sampling and Meshing of Surfaces

2.  Sample  this  surface  •  Construc9on  of  the  ini9al  point  sample    E

Consider  a  ball  Bx  centered  at  x  of  radius  less

min 16dist(x, !E \ {x}),dM (x),

16σ (x)

"#$

%&'

Presented  by  Anisimov  Dmitry  

Page 19: Provably Good Sampling and Meshing of Surfaces

2.  Sample  this  surface  •  Construc9on  of  the  ini9al  point  sample    E

Repeatedly  shoot  rays  inside  Bx  and  pick  up    three  points  (ux, vx, wx) of S Bx

Insert  (ux, vx, wx) in  E

Presented  by  Anisimov  Dmitry  

Page 20: Provably Good Sampling and Meshing of Surfaces

2.  Sample  this  surface  •  Construc9on  of  the  ini9al  point  sample    E

Connec9ng  these  points  we  get  a  persistent facet  

All  persistent facets are  Delaunay  facets  restricted  to  S    

Presented  by  Anisimov  Dmitry  

Page 21: Provably Good Sampling and Meshing of Surfaces

2.  Sample  this  surface  •  Construc9on  of  the  ini9al  point  sample    E

All persistent facets remain  restricted  Delaunay  facets  throughout  the  course  of  algorithm  

Presented  by  Anisimov  Dmitry  

Page 22: Provably Good Sampling and Meshing of Surfaces

2.  Sample  this  surface  •  Construc9on  of  the  ini9al  point  sample    E

All persistent facets remain  restricted  Delaunay  facets  throughout  the  course  of  algorithm  

Presented  by  Anisimov  Dmitry  

Page 23: Provably Good Sampling and Meshing of Surfaces

2.  Sample  this  surface  •  Construc9on  of  the  ini9al  point  sample    E

All persistent facets remain  restricted  Delaunay  facets  throughout  the  course  of  algorithm  

Presented  by  Anisimov  Dmitry  

Page 24: Provably Good Sampling and Meshing of Surfaces

2.  Sample  this  surface  •  Construc9on  of  the  ini9al  point  sample    E

All persistent facets remain  restricted  Delaunay  facets  throughout  the  course  of  algorithm  

Presented  by  Anisimov  Dmitry  

Page 25: Provably Good Sampling and Meshing of Surfaces

2.  Sample  this  surface  •  Construc9on  of  the  ini9al  point  sample    E

All persistent facets remain  restricted  Delaunay  facets  throughout  the  course  of  algorithm  

Presented  by  Anisimov  Dmitry  

Page 26: Provably Good Sampling and Meshing of Surfaces

2.  Sample  this  surface  •  Construc9on  of  the  ini9al  point  sample    E

All persistent facets remain  restricted  Delaunay  facets  throughout  the  course  of  algorithm  

Presented  by  Anisimov  Dmitry  

Page 27: Provably Good Sampling and Meshing of Surfaces

3.  Triangulate  this  surface  •  Compute  the  3-­‐dimensional  Delaunay  triangula9on  of  E    

Del(E)

Presented  by  Anisimov  Dmitry  

Page 28: Provably Good Sampling and Meshing of Surfaces

3.  Triangulate  this  surface  •  Compute  the  set  of  all  edges  of  the  Voronoi  diagram  of  E  

V(E)

Presented  by  Anisimov  Dmitry  

Page 29: Provably Good Sampling and Meshing of Surfaces

3.  Triangulate  this  surface  •  Compute  Delaunay  triangula9on  of  E  restricted  to  S

DelS(E)

Presented  by  Anisimov  Dmitry  

Page 30: Provably Good Sampling and Meshing of Surfaces

3.  Triangulate  this  surface  •  Compute  Delaunay  triangula9on  of  E  restricted  to  S

DelS(E)

Not  constrained  

Presented  by  Anisimov  Dmitry  

Page 31: Provably Good Sampling and Meshing of Surfaces

3.  Triangulate  this  surface  •  Surface  Delaunay  ball  BD  of  restricted  Delaunay  facet  f

DelS(E)

Presented  by  Anisimov  Dmitry  

Page 32: Provably Good Sampling and Meshing of Surfaces

3.  Triangulate  this  surface  •  Surface  Delaunay  ball  BD  of  restricted  Delaunay  facet  f

DelS(E)

Any  ball  centered  at  some  point  of  where  f* is  Voronoi  edge  dual  to  f

S f *

Presented  by  Anisimov  Dmitry  

Page 33: Provably Good Sampling and Meshing of Surfaces

3.  Triangulate  this  surface  •  Bad  surface  Delaunay  ball  BD which  is  stored  in  L

DelS(E)

c

It  is  ball  B(c, r) such  that  r > σ(c)

r

Presented  by  Anisimov  Dmitry  

Page 34: Provably Good Sampling and Meshing of Surfaces

3.  Triangulate  this  surface  •  Surface  Delaunay  patch

DelS(E)

The  intersec9on  of  a  surface  Delaunay  ball  with  S

Presented  by  Anisimov  Dmitry  

Page 35: Provably Good Sampling and Meshing of Surfaces

3.  Triangulate  this  surface  •  Loose  ε-sample

dM c

Presented  by  Anisimov  Dmitry  

Page 36: Provably Good Sampling and Meshing of Surfaces

3.  Triangulate  this  surface  •  E  is  a  loose  ε-­‐sample  of  S  if:

dM c

1.    ∀c ∈ SV (E),E B(c,εdM (c)) ≠∅2.  DelS(E) has  ver9ces  on  all  the  connected  components  of  S

Presented  by  Anisimov  Dmitry  

Page 37: Provably Good Sampling and Meshing of Surfaces

3.  Triangulate  this  surface  •  DelS(E) has  ver9ces  on  all  the  connected  components  of  S

V(E)

Presented  by  Anisimov  Dmitry  

Page 38: Provably Good Sampling and Meshing of Surfaces

3.  Triangulate  this  surface  •  Algorithm While  L  is  not  empty  

•  Take  an  element  B(c,r) from  L •  Insert  c  into  E  and  update  Del(E) •  Update  DelS(E) by  tes9ng  all  the  Voronoi  edges  that  have  changed  or  appeared:  

Ø  Delete  from  DelS(E) the  Delaunay  facets  whose  dual  Voronoi  edges  no  longer  intersect S Ø  Add  to  DelS(E) the  new  Delaunay  facets  whose  dual  Voronoi  edges  intersect  S

•  Update  L  by  Ø  Dele9ng  all  the  elements  of  L  which  are  no  longer  bad  surface  Delaunay  balls  Ø  Adding  all  the  new  surface  Delaunay  balls  that  are  bad  

Presented  by  Anisimov  Dmitry  

Page 39: Provably Good Sampling and Meshing of Surfaces

3.  Triangulate  this  surface  •  Termina9on  and  output  of  the  Algorithm

Ø  The  Algorithm  terminates  

Presented  by  Anisimov  Dmitry  

Page 40: Provably Good Sampling and Meshing of Surfaces

3.  Triangulate  this  surface  •  Termina9on  and  output  of  the  Algorithm

Ø  The  Algorithm  outputs  E  and  DelS(E)

E  is  a  loose  ε-­‐sample  of  S

DelS(E)  is  homeomorphic  to  the  input  surface  S  and  approximates  it  in  terms  of  its  Hausdorff  distance,  normals,  curvature,  and  area.  

Presented  by  Anisimov  Dmitry  

Page 41: Provably Good Sampling and Meshing of Surfaces

3.  Triangulate  this  surface  •  Output  of  the  Algorithm

Presented  by  Anisimov  Dmitry  

Page 42: Provably Good Sampling and Meshing of Surfaces

Magic  Epsilon  •  To  find  ε  you  must  solve  this  simple  inequality:

2ε1−8ε

+ arcsin ε1−ε

≥π4

•  Or  just  take  this:

ε  =  0.091    

Presented  by  Anisimov  Dmitry  

Page 43: Provably Good Sampling and Meshing of Surfaces

Applica9ons  

Smooth  surface  

Presented  by  Anisimov  Dmitry  

Page 44: Provably Good Sampling and Meshing of Surfaces

Applica9ons  

Not  smooth  surface  

Presented  by  Anisimov  Dmitry  

Page 45: Provably Good Sampling and Meshing of Surfaces

Applica9ons  

Bad  triangula9on   Good  triangula9on  

Presented  by  Anisimov  Dmitry  

Page 46: Provably Good Sampling and Meshing of Surfaces

References  J.-­‐D.  Boissonnat  and  S.  Oudot.  “Provably  Good  Sampling  and  Meshing  of  Surfaces.”  Graphical  Models  67  (2005),  405-­‐51.  

Presented  by  Anisimov  Dmitry  

Page 47: Provably Good Sampling and Meshing of Surfaces

References  M.  Botsch,  L.  Kobbelt,  M.  Pauly,  P.  Alliez,  and  B.  Levy.  “Polygon  Mesh  Processing.”  Chapter  6,  Sec9on  6.5.1  (2010),  92-­‐96.  

Presented  by  Anisimov  Dmitry  

Page 48: Provably Good Sampling and Meshing of Surfaces

What  steps?  

Did  I  forget  something?  

Presented  by  Anisimov  Dmitry