pulse crops and sustainability: a framework to evaluate ... introduction of pulses into crop ......

64
1 CELEBRATE THE INTERNATIONAL YEAR OF PULSES 2016 | WWW.IYP2016.org | #LovePulses OFFICIAL UN SITE | HTTP://WWW.FAO.ORG/pulses-2016/ Pulse crops and sustainability: A framework to evaluate multiple benefits Prepared by Gabrielle Kissinger, Lexeme Consulting 7 April 2016

Upload: lamdat

Post on 22-Mar-2018

220 views

Category:

Documents


1 download

TRANSCRIPT

1

CELEBRATETHEINTERNATIONALYEAROFPULSES2016|WWW.IYP2016.org|#LovePulses

OFFICIALUNSITE|HTTP://WWW.FAO.ORG/pulses-2016/

Pulse crops and sustainability: A framework to evaluate multiple benefitsPrepared by Gabrielle Kissinger, Lexeme Consulting 7 April 2016

2

Table of Contents

EXECUTIVE SUMMARY ..................................................................................................... 3

1. INTRODUCTION ......................................................................................................... 11 1.1 PURPOSE ................................................................................................................. 11 1.2 PULSE PRODUCTION AND SUSTAINABILITY .................................................................. 12

2. METHODOLOGY ........................................................................................................ 22

3. CASE STUDIES ............................................................................................................ 22 3.1 SASKATCHEWAN ...................................................................................................... 22

3.1.1 Context ........................................................................................................... 23 3.1.2 Environmental ................................................................................................. 24 3.1.3 Social .............................................................................................................. 28 3.1.4 Economic ........................................................................................................ 29

3.2 SUB-SAHARAN AFRICA .............................................................................................. 33 3.2.1 Context ........................................................................................................... 33 3.2.2 Environmental ................................................................................................. 33 3.2.3 Social .............................................................................................................. 35 3.2.4 Economic ........................................................................................................ 39

4. A FRAMEWORK: EVALUATING MULTIPLE BENEFITS OF PULSE PRODUCTION ..... 45

5. APPLYING THE FRAMEWORK FOR DECISION SUPPORT ......................................... 53

6. REFERENCES .............................................................................................................. 60 ListofBoxes,FiguresandTablesBox1:EconomicchallengesforpulsesinIndiaBox2:Summaryofsystem1-LifeCycleandSocio-EconomicAnalysisofPulseCropProduction

andPulseGrainUseinWesternCanadaBox3:Summaryofsystem2-LifeCycleandSocio-EconomicAnalysisofPulseCropProduction

andPulseGrainUseinWesternCanadaFigure1:SummaryofpulsecropsustainabilityframeworkandapplicationstepsFigure2:HectaresseededwithpulsesbyvarietyinCanada(1981to2011)Figure3:ProjectedglobalfooddemandFigure4:AttributesofpulsecropsustainabilityatvariousscalesTable1:Economicreturnsoflentilsinrotations,basedondifferentsoilsinSaskatchewanTable2:Summaryofcriteriaandguidingquestionstoevaluatetheeconomic,socialand

environmentalbenefitsofpulseproductionTable3:ApplicationoftheframeworktofoodsectoractorsTable4:ApplicationoftheframeworktoproducersTable5:Applicationoftheframeworktogovernments

3

AcknowledgementsSpecialappreciationgoestoDenisTremorinandChristineNegrafortheiroversightofthisproject,andthesupportoftheGlobalPulseConfederation,EmergingAg,PulseCanada,andtheInternationalYearofPulses’ProductivityandSustainabilityThematicCommittee.Thisreportgreatlybenefittedfromtheinsightsand/orpeerreviewprovidedbySteveBeebe,JeffreyEhlers,NoelEllis,JillFindeis,AllisonFletcher,ReynaldLemke,LisetteMascarenhas,MarkOlson,JohnMcDermott,RajeevVarshney,TomWarkentin,andIrvWidders.

Executive Summary Thepotentialofpulses—beans,peas,chickpeas,lentils,andotherpulses—tohelpaddressfutureglobalfoodsecurity,nutritionandenvironmentalsustainabilityneedshasbeenacknowledgedthroughtheUNdeclarationofthe2016InternationalYearofPulses.However,thefullsetofbenefitsthatpulsecropscanofferhasnotbeensystematicallycharacterized.Thispaperspecificallyseekstodevelopaframeworktoevaluatetheeconomic,socialandenvironmentalbenefitsandpotentialtrade-offsofpulseproductionindifferentgeographic,agro-ecologicalandeconomiccontexts.Theframeworkdefinesthesustainabilityelementstobeevaluatedinanygivencontext,giventhediversityacrosscroppingsystemsandgeographiccontextsofsuitablepulsegrowingareas.Theframeworkwillalsoprovideameanstoevaluatethepotentialsustainabilitycontributionsofpulsesshouldtheybebroughtintoacroppingsystem,orintegratedintocroprotations.Theprimaryaudienceforthiswhitepaperisthefoodindustry,butgovernmentpolicymakers,researchersandotherstakeholderswillfindutilityinitaswell.Themethodologyfordevelopingtheframeworkwastoderiveinsightsfromageneralgloballiteraturereviewandtwogeographiccasestudies—diversecontextsofproductioninSub-SaharanAfricaandSaskatchewan,Canada.Keyinsightsandfindingsfromtheliteratureandcasestudiesacrossthethreepillarsofsustainability—environmental,socialandeconomic—aresummarizedbelow.Pleaserefertothefullreportforcitationsandreferences.Environmental: Nitrogenfixation:Pulsecropshaveauniqueroletoplayintheglobalnitrogencycle,aslegumesandpulsefixatmosphericnitrogeninsoils.Theintroductionofpulsesintocroprotationsactivelyhelpsfixnitrogeninthesoil,thusreducingfertilizerrequirementsofthepulsecropitself,aswellasthefollowingcrop.Thenitrogenremaininginthesoilalsoincreasesthegrainyieldinsubsequentcrops.Howtomaximizetheenvironmental

4

benefitsofpulsesaddedintocroprotationsisanever-evolvingscience,basedonmanyfactorsbestobservedatthecroppingsystemlevel.

• InSub-SaharanAfrica,alteringthetraditionalplantingmethodsofmaizeandbeanarefoundtoinfluencethenitrogenbalanceincroppingsystems.ResearchinCentralKenyaidentifiedthenitrogenbenefitsofcowpeaintercroppingwithmaizeandgroundnut.OtherresearchinthedrysavannahsofNigeriaandNigerfoundmodifiedstrip-croppingofcowpeaandsorghum,withtheadditionoflivestocktoboostmanurenutrients,preventedthenutrientlossescausedbytraditionalfarmingpractices.

• LifecycleassessmentfindingsinSaskatchewan,Canadaindicatethattheenvironmentalbenefitsofpulsecropsisstrong,primarilyduetotheirnitrogenfixationabilities,thereductioninnitrogenrequirementsofacerealcropsucceedingapulsecrop,andtheincreaseinquantityandnutritivequality(proteincontent)ofacerealcropfollowingapulsecrop.Theassessmentfoundthatevenwhenconsideringthepracticeofapplyingmoderateamountsofpesticidestothecrops,thisdidnotgeneratesufficientdifferencesinenvironmentaleffectstodiscounttheoverallpositiveenvironmentalresults.Relatedbenefitsofthereducedsyntheticnitrogenfertilizersrequirementsincroppingsystems,whenpulsesareaddedinrotations,includethereducedemissionsandenergyuseassociatedwiththeproduction,useanddisposaloffertilizers.

Conservationtillage:Changesintillagepracticeshavehadasignificanteffectonshiftingconventionalcereal-basedcroppingsystemstomorediversifiedcroprotationsthatutilizepulsesoroilseedsandthatresultinlesssoildisturbance.Whileincreaseduseofherbicideshasbeenutilizedtoaddressweedabundanceunderreducedorno-tillage,thisappearstobemoderatedafteraperiodoftransitiontoconservationtillage.

• Saskatchewan:Long-standingpatternsofmonoculturecerealcroppingresultedinpestanddiseaseoutbreaksanderosion,andfallowingledtoincreasedsoilsalinityandlossofsoilnitrogenandwater.Theconventionaltillagepracticesincerealmonocultureresultedinincreasedsoilerosion,despitethebenefitofincorporatingcropresiduesintothesoil.Thesefactorsspurredfarmerstoseekalternativecropstoincludeinrotations,usuallyreplacingsummerfallow.Thegreatestenvironmentalbenefitofaddingpulsecropsintocereal-fallowrotationswastheirnitrogenfixationcapability,whichreducedfertilizernitrogenrequirementsinthecurrentandsucceedingcrop,andimprovedthecapacityofthesoiltosupplynitrogen.

• Changesintillagerequiresadjustment,andfarmersinSaskatchewanimprovedtheirherbicideandmanagementpracticesovertime,leadingtoreducedratesinuse,andasignificantreductioninrepeatapplications.Erosionhasbeenfoundtoincreaseduringproductionoffieldpea,lentil,andchickpeaintheseareas,as

5

theyoftenproducelesscropresiduethancerealcrops,andthecropresidueismoreeasilydisintegratedbytillagethancerealresidue.Therefore,farmersareadvisedtominimizepulsecroppingonhighlyerodiblesoilsandminimizeoreliminatetillage,particularlyinthefall.

• FewconservationtillageassessmentsareavailableforSub-SaharanAfrica.

Productivityimprovementsoverareaexpansion:Addingmorecrops,suchaspulses,intorotationscanincreasetheefficiencyofaproductionsystem,reducingtheneedtoexpandtheproductionareatoachieveoverallyieldincrease.

• FindingwaystoboostproductivityinSub-SaharanAfrica,inordertomeetexpectedfoodandfeeddemandwillbecrucial.Demandforpulses(mostlybeansandcowpeas)inSub-SaharanAfricaisexpectedtoincrease155%from2015to2050.Yet,mostSub-Saharanpulseproductionoccursinrainfedareas,withlowuseofinputsandrelativelylowyields.Ghana’sexampleofincreasingtheproductionandyieldsofcowpeaatagreaterproportionthanhectaresplanted,indicatesefficiencyinproduction.Thesetrendsareattributedtotheimprovementsinthesupply,distributionanduptakeofimprovedvarietiesandbetterqualityseed,moredemandbyurbanconsumersandbettermarkets,andboththeprofitabilityandexistenceofincentivesforfarmerstoadoptproductivityenhancingoptions.

• Thoughpulseproductionareahasincreased23%since2013inSaskatchewanandWesternCanada,theoverallharvestareahasslightlydecreasedoverthesameperiod.

• Integrationoflegumesintolivestockproductionsystemscanbehighlybeneficial,withincreasednitrogensupplyandincreasedmeatproduction.

Climatechangemitigationandadaptation:PulsesincroprotationscanhelplowerGHGemissionsduetolowerfertilizerrequirements,particularlygiventhelargeamountofenergyusedinfertilizerproduction.

• Upto70%ofthenon-renewableenergyusedinWesternCanadiancroppingsystemsisduetotheuseoffertilizers,particularlynitrogen.AddingpulsesintorotationscommonlylowersGHGemissions.ResearchinSwiftCurrent,SKassessingnetGHGemissionsfromfourcroppingsystems(fallow-flax-wheat,fallow-wheat-wheat,continuouswheat,andlentil-wheat),foundthelentil-wheatsystemtoclearlyoutperformtheothers.Thiswasduetothelowerratesofnitrogenfertilizerrequiredbythewheatcropinthislentil-wheatrotationandtheincreasednitrogenavailability,whichenhancedplantbiomassaccumulation.Resultsindicatedthatspringwheatgrownusingimprovedpracticesof(a)fertilizingcropsbasedonsoiltests,(b)reducingsummer-fallowfrequenciesand(c)rotatingcerealswithlentilcanattainanetGHGbalanceregardlessofwateravailability.

6

• InSub-SaharanAfrica,climateadaptationismoreurgentthatmitigationmeasures.InmostoftheSub-Saharancountriesreviewed,projecteddeclinesinbeanproductionaresignificant,duetoexpectedchangesinrainfallpatternsandtemperature.TheIPCCestimatesthatcropfailureduetodroughtandwaterriskwillbethehighestinAfricaduetoclimatechangeimpacts.Thisindicatesthevulnerabilityofagricultureinthesecontexts,andneedforimprovedmanagementpractices,betteradaptabilityandstrengthofseedsystems,andtechnicalandinformationsupporttofarmersforimprovedpractices.

Social: Nutritionanddisease:Whilepercapitafoodconsumptionwillleveloffindevelopedcountries,significantincreasesindevelopingcountries,basedlargelyonincreasesinproteinintake,areexpectedto2024.Fairlyrecentchangesintheglobalhumandietfavouringmoreenergy-densefoodsrichintotalandsaturatedfatsareincreasingtheratesofobesity,diet-relateddiseasessuchasdiabetes,coronaryheartdiseaseandcancer.Helpingtobalancethattrend,pulsesandlegumesareanimportantcontributorofmicronutrient-richintake,alongwithfruitsandvegetables,ifconsumersmakehealthychoices.Pulseshavearoletoplayincombatingcardiovasculardisease,increasingguthealthandhealthynutrition.

• TheCanadianDiabetesAssociationClinicalPracticeGuidelinesrecommendthatalow-fatvegandiet(whichwouldincludepulsesandlegumes)improvesglycemiaandplasmalipidsmorethanconventionaldiets.Theroleofpulsesandlegumesindietarypatternsofpeoplewithdiabetescanbeimportanttoregulatebloodsugarlevelsandmoderatesymptoms,andisalsoimportantinthepreventionofcardiovasculardisease.

• InRwanda,whichhasthehighestpercapitalconsumptionofcommonbeansintheworld,large-scalehouseholdsurveyscarriedoutin2011indicatedthatalmost90%offarmhouseholdscultivatebeansaspartoftheircroppingsystem,andyet77%reportednotgrowingenoughbeansfortheirneeds.Otherhouseholdsurveyresearchindicatesthat,astheshareofimprovedbeanseedsplantedincreased,householddietarydiversityscoresincreased,showingaclearrelationshipbetweennutritionandimprovedseedvarietyadoption.InKenya,Ghana,EasternDRC,NigeriaandTanzania,between32–80%ofcowpeaand/orcommonbeancropsgoestowardsubsistenceproductionandconsumption,highlightingtheirimportanceforfoodsecurityandnutrition.

Nutritionandfoodsecurity:Grainlegumesaddedintothedietarefoundtocontributeimportantenergy,proteins,minerals,andBvitamins.Whenconsumedwithcereals,pulsescontributeproteins,mineralsandBvitamins,aswellastheessentialaminoacidlysine,whichincreasesthequalityofprotein.Whenaddedtorootandfruitstaples,theyraisetheproteincontent.Nitrogen-richandprotein-richplantfoodsarenecessaryto

7

supplydietaryprotein.Neweffortsareinvestigatingtheincreasedproductionanduseofpulseproteinfractionsinmanufacturedfoodproducts.

• InRwanda,adoptionofimprovedpulsecropvarietiesappeartohaveagreaterimpactonfoodsecuritythanonbeanfarmincome.Adoptionofimprovedbeanvarietiesinfluencesfoodconsumptioninotherwaysthanjustthroughfarmprofitability.ToaddressnutritionaldeficienciesinRwandathathaveresultedinoneofthehighestratesofchildstuntingintheworld,qualityseedof‘highiron’(‘bio-fortified’)beanvarietiesisbeingdeveloped.

• Thehealthaspectsofincludingpulsesindietsisanimportantcontributorofthesocialbenefitsofpulses,asamicronutrient-richfoodsource,helpsreduceinflammationinthegut,andhasbeneficialeffectonserumcholesterollevels,thusreducingcardiovasculardiseaserisk.NorthAmericanandCanadianconsumptionofpulsesappearstobefarbelowtheoptimallevel.

Gender:Genderaspectofpulseproductionrelatesprimarilytowomen’sinvolvementinpulseproductioncommercially,tofeedfamilies,andtobenefitfromincomederivedfrompulsesales.

• AcrossAfricancountriesforwhichgenderresearchrelatedtopulseproductionexists,pulsecultivationbywomenoccursatvariousandmultiplestagesinthesupplychain.However,genderequityforwomenismoreapparentwhenwomencanmakedecisionsonquantitiessoldandthoseretainedforhouseholdconsumption.Genderdifferencesinaccesstoland,technologiesandotherstrategicresourcesplayalargerole.

Anecdotalevidencefrominterviewsconductedinthisresearchsuggeststhereareintertwinedsocialandeconomicbenefitsofaddingpulsestocroprotations,asmanySaskatchewanfarmersusingrotationsconsistingofcereal-falloworcereal-canolawouldhavegonebankruptwithoutdiversifyingintolentilsandotherpulsecrops.Thus,theadditionofpulseshelpedkeepfarmingcommunitiesintactandproductive.Economic: Reducedrelianceonfossilfuelsandlowerfuelcosts:Whereconservationtillagepracticeshavebeenadopted,pulsesandoilseedshavecommonlybeenintegratedintocroprotations.Reducedandalteredtillagepractices(commonlyincludingpulseandoilseedcrops)reducerelianceonfossilfuelsandloweroverallfuelbills.Farmersarelikelytoseethelong-termeconomicbenefits(andavoidedcosts)oflesssoil,airandwaterdegradationbyadoptingno-tillpracticesandincludinglegumesintheiroperations.

8

• InSaskatchewan,whencomparedtoconventionaltillage,conservationtillageorno-tillagepracticesresultinconsistentyieldadvantages,lessincomevariabilityandsignificantresourcesavings.

Economicbenefitsofaddingpulsestocroprotations:Significantresearchanddevelopmenthasgoneintoimprovedpulseseedvarieties.Lessemphasishasbeenplacedonthetechnicalandfinancialsupporttohelpfarmersnavigatechangesinpracticesandtrade-offsassociatedwithaddingpulsecropsintorotations(ordifferentintercroppingmethodsinSub-SaharanAfrica).Furthermore,thoughinvestmentsinpulsecropbreedinghavebeenmadeinindifferentregions,theextentofinvestmentisstillrelativelysmallwhencomparedtothescaleofinvestmentsincorn,soybeanandwheat.Investmentinimprovedvarietieswillbekeytoimprovementsintheglobalpulseindustry.

• FindingsfromSub-SaharanAfricaindicatethateconomicimpactsofincludingpulsesinrotationsareinfluencedbyavarietyoffactors,particularlyfarmerperceptionandknowledge.Farmersaremorelikelytoadoptpulsesintheircroppingsystemswhentheyfindacroprotationsequencethatproduceshigherreturnoninvestmentoverthelongterm.Lowsalespricesofbeanscontributetolowadoptionratesofimprovedbeanvarieties,butotherresearchindicatesacomplexsetoffactors,includinglackofsupplysystemsandlackofmarketcoordination,limitedpost-harveststoragefacilities,highopportunitycostofland,competitionfromcropsthataremoreprofitable,andlimitedtechnicalandfinancialcapacityoffarmerstoorganizecooperatives.FindingsfromTanzaniaindicatethataccesstofinanceandcreditwasnotalimitingfactorinadoptingdisease-resistantpigeonpeaseed.Rather,informalseednetworks,on-farmvarietyselection,farmsizeandownershipofhouseholdtransportassetsplayedalargerroleinfarmersadoptingimprovedseed.

• InSaskatchewan,theeconomicbenefitsofaddinglentilandpeaintocroprotationshasbeensignificant,whilechickpeahasbeenlesssuccessfulthusfarduetodisease(ascochytablight),relativelylonggrowingseasonrequirement,andfluctuatingexportprices.Findingsindicatethatincludingoilseedandpulsecropsinrotationswithcerealgrainscontributedtohigherandmorestablenetfarmincomebetween1985-2002,inspiteofhigherinputcosts,acrossmostsoilzones.Whilethevolumeoflentilexportshasincreased67%between2009and2014,thevalueofthoseexportsincreased37%.Peaexportsshowadifferenttrendoverthesameperiod,withthevolumeofpeaexportsincreasing19%,whilethevalueoverthesametimeperiodincreased56%.Cropdiversityisahedgeagainstficklemarketsandchangesinprice.Farmersurveydatafrom2011indicatesthatpulseproducingfarmsgrowalargervarietyofcropsthanfarmsnotgrowingpulses(uptosevenormorefieldcroptypes).Estimatesfromthe2015SaskatchewanCropPlannerindicatethatlentilsmakeanimportantrelative

9

contributiontothefinancialreturnsofrotationsindifferentsoiltypes;returnsfromlentilarebetween38%and60%dependingonsoilzone.

Investmentsinpulsecropresearch:Investmentsinpulsecropresearchhaveledtoimportantenvironmental,socialandeconomicimpactsinbothcasestudies:

• TheSaskatchewanPulseGrowersassociationinstitutesamandatory,non‑refundable1%levytofundprogramsthatdevelopthepulseindustry,providesresearchandcapacityforgeneticimprovement,agronomy,healthandnutrition,andprocessingandutilization.In2014/2015,thelevycontributed97%oftheCD$10.1milliontheorganizationinvestedinresearchanddevelopment,andanotherCD$2.8millioninmarketpromotion,mostofwhichwasfocusedondomesticlentilmarkets.

• For2012,theCGIARResearchProgramonGrainLegumesestimatesthatthenetpresentvalueofgrossbenefitsofitslegumeresearchandextensionwasUS$4.5billion,equivalenttoUS$535millionperyear,withsignificantfoodsecuritybenefitsandenvironmentalbenefitsthroughbiologicalnitrogenfixation(afertilizercostsavingofUS$418million).FiftypercentoftheeconomicimpactsaccrueinSouthandSouth-EastAsiaandSub-SaharanAfrica.

Exportversusdomesticmarkets:Trade-offsbetweensupplyingdomesticdemandandservingexportmarkets,orimportingpulses,hingeonavarietyoffactors,includingfoodsecurity,marketprices,post-harveststorageandprocessing,tariffsandimport/exportbarriers,marketefficiency,domesticfoodsecurity,andeffectivesectorpolicies.Forexample,Indiaaccountsfor26%ofglobalpulseproduction,yettheaverageproductivityofpulsesisbelowtheglobalaverage,andIndianproductionwillnotkeeppacewithdomesticdemand.GovernmentsubsidiesandpricecontrolsinIndia’sagriculturalsectorcreateddistortionsthataffecteddomesticproduction,andminimumsupportpricesforpulseshavenotdemonstratedthesameresultsasthoseforrice.Othercountrieshavehadsuccesspromotingexportcropsthatdonotcompetewithdomesticfoodproduction.Whitepeabeans(Navybeans)inEthiopiaandFrenchbeansinRwandaareexamplesofexportproductsthatdonotgenerallyreducedomesticconsumption,whichisascrucialforfoodsecurityasitisforrealizingeconomicbenefits.Addingpulsesintolivestockdietsalsohaseconomicbenefit,butappearsdependentonmarketpricingandlabouruseefficiencies.Pulse crop sustainability framework and application steps Groundedintheliteraturereviewandthetwocasestudies,thisreportproposesaframeworkforevaluatingthesustainabilityofpulsecropproductioninspecificcontexts.Applicationofthisframeworkissupportedbycriteriaandguidingquestions.

10

Figure1providesadiagrammaticoverviewoftheframeworkelements.Section4ofthisreportidentifiesthecriteriaandattributes,foreachofthethreesustainabilitypillars,tobemeasuredorevaluatedinanygivenproductionsystem,recognizingthehighlydiversegeographic,agro-ecologicalandeconomiccontextsaroundtheworldthataresuitableforgrowingpulses.Thecriteriaandattributesoftheframeworkcanbeusedasacomplementtoaproductionstandardorproductcertificationschemethatgrowerscouldapplyattheproductionlevel.Eachcriterionorkeyelementcontainsasetofquestionstoguideevaluationofthesustainabilityofinterventions,includingcommonlyobservedtrade-offs.Section5ofthereportappliestheframeworktohypotheticalactionsthatcouldbetakebythefoodindustry,producers,andgovernmentstoincreasepulsecropproductionandconsumption.Thecriteriachosen,andquestionstopursueshouldbeadaptedtolocalcircumstancesortotheappropriatescale,andareintendedasastartingpoint,ratherthanacompletesetoffiltersfortestingthesustainabilityofcroppingchanges.Thesehypotheticalapplicationsprovideinitialguidanceonly,andpresentsomeoverarchingdecision-supportandquestionsforfurtherinvestigation(e.g.qualitativeandquantitativewaystotestperformanceusingkeyenvironmental,socialandeconomicindicators).Areal-worldapplicationoftheframeworkwouldrequireadaptationtotheuniqueproductioncircumstancesandinterventions.Figure 1: Summary of pulse crop sustainability framework and application steps

11

1. Introduction Manyofthebenefitsofpulsesindiversifyingdietsandreplenishingsoilnutrientsarewelldocumentedandunderstood.Whathasreceivedlessattentionistheroleofpulsesincontributingtofuturefoodsecurityanddevelopmentgoals.Ourfoodsystemsfacethechallengeofneedingtoproduceenoughfoodtofeedatleast9billionpeopleby2050,withnearlyallthatadditionalfoodneededfordevelopingcountriesandduetopercapitaincreasesinmeatconsumption(FAO,2009;Foresight,2011).Butthatchallengemustbemetinthecontextofincreasingclimatechangeimpactsonfoodproduction;competitionforenergy,land,waterandmaterialresources;populationgrowthandmigration;povertyandfoodinsecurity;andecosystemdegradation.Climatechange,resourcedepletion,anddemographicshaveastrongimpactontheavailabilityandpriceofagriculturalcommodities(MSCI,2012).Growingurbanpopulationsareincreasinglypurchasingtheirfoodratherthangrowingit,withsubstantialproportionsofhouseholdexpendituregoingtowardsfood.InSouthAsiaandsub-SaharanAfrica,40–70%ofallhouseholdexpenditureisonfood(WorldBankandIMF,2013).Increasedurbanizationmeans96%ofthedevelopingworld’sadditional1.4billionpeopleby2030areexpectedtoliveinurbanareas.Further,theglobalmiddleclassispredictedtogrow172%between2010and2030,andwhileagribusinesseswillseektoservethisnewmiddleclassmarket,itwillbeatatimewhenresourcesarelikelytobescarcerandmoreprice-volatile(Kharas,2010).Thepotentialofpulses—beans,peas,chickpeas,lentils,andotherpulsecrops—tohelpaddressfutureglobalfoodsecurity,nutritionandenvironmentalsustainabilityneedshasbeenacknowledgedthroughtheUNdeclarationofthe2016InternationalYearofPulses.However,thefullsetofbenefitsthatpulsecropscanofferhasnotbeensystematicallycharacterized.Forbothlargeandsmallfarmers,pulsesrepresentimportanteconomicopportunitiestoboostincomeandreduceriskbydiversifingtheircropandincomestreamportfolio.Theenvironmentalbenefitsofaddingpulsestocroprotationsiswelldocumented,howeverthereislessdocumentationandevidenceofthesocialandeconomicbenefitsofpulseproduction.Pulsescouldhelpaddressfutureneedsforprotein,helpminimizesoildegradation,andsupportdiversificationinfoodproductionandconsumption.Thelivelihoodanddevelopmentimpactsofincreasedpulseproductionandconsumptionmustbebetterunderstoodbythefoodsector,bypulseproducers,andbygovernments,basedonempiricalevidenceandknownexamplesinbothdevelopedanddevelopingcountries.

1.1Purpose

Thispaperisproducedaspartofthe2016InternationalYearofPulses(IYP2016),whichbringanincreasingawarenessoftheroleofpulsesinfoodproductiontoarangeof

12

stakeholders,includinggovernments,thefoodsector,farmersandproducers,researchorganizations,developmentagencies,investorsanddonors.ThisresearchispartofabroadereffortinIYP2016todeepenanunderstandingofthepotentialofpulsestocontributetosustainabilityandtomotivateactiontomaximizethesustainableproductionandconsumptionofpulses.Thispaperspecificallyseekstodevelopaframeworktoevaluatetheeconomic,socialandenvironmentalbenefitsofpulseproductionindifferentgeographic,agro-ecologicalandeconomiccontexts.Thus,theframeworkwilldefinetheelementsofsustainabilitytobemeasuredorevaluatedinanygivencontext,recognizingthehighlydiversegeographic,agro-ecologicalandeconomiccontextsaroundtheworldthataresuitableforgrowingpulses.Theframeworkwillalsoprovideameanstoevaluatethepotentialsustainabilitycontributionsofpulsesshouldtheybebroughtintoacroppingsystem,orasameanstooptimizecroprotations.Therationaleforproducingthiswhitepaperisto:

• Definetheelementsofpulsecropsustainabilitythatcanbeappliedindiversecontextsaroundtheworld(basedontheircontributiontocroppingsystemsatthelocalscaleaswellastheircontributiontoglobal-scalesustainabilitygoals).

• Helpbuildtheevidencebaseoftheenvironmental,socialandeconomicbenefitsofpulseproduction.

Theintendedprimaryaudienceforthiswhitepaperisthefoodindustry,andsecondaryaudienceisgovernmentpolicymakersandprivatefoundations.

1.2Pulseproductionandsustainability1.2.1EnvironmentalbenefitsNitrogenfixationNitrogenisthenutrientmostcommonlydeficientinsoilsaroundtheworld,andisthereforethemostcommonlyappliedplantnutrient,oftenintheformofsyntheticfertilizer.Legumecrops,includingpulses,haveauniqueroletoplayintheglobalnitrogencycle,astheyfixatmosphericnitrogeninsoils.Pulsescreateasymbioticassociationwithrhizobia,asoilbacteria,enablingpulsestofixatmosphericnitrogengas,whichcanmakethemself-sufficientinnitrogen,andenablethemtogrowinalmostanysoilwithoutfertilizerinputs.Humanimpactsontheglobalnitrogencyclefromrapidlyincreasingfertilizeruseandfossilfuelcombustionstartinginthe20thcenturyhavehadstrongnegativeeffects,suchaspollutionintowaterwaysandincreasedN2Oemissions.From1960to2000,nitrogenfertilizeruseincreasedbyroughly800%,withhalfofthatbeingutilizedforwheat,rice,andmaizeproduction(Canfieldetal,2010).Syntheticfertilizersprovidedclosetohalfofallthenutrientsreceivedbycropsgloballyduringthemid-1990s,demonstratingbothalargedependencyonsyntheticfertilizers,butalso

13

inefficientmanagementofnitrogeninglobalagriculture(Smil,2002).TheIPCCestimatesthatnitrousoxideemissionscontainroughly300timestheglobalwarmingpotentialofcarbondioxide(CO2),andapplicationoffertilizerinagriculturalproductionisasignificantsourceofN2O.1Cerealcropssuchaswheat,riceandmaizetypicallyonlyutilize40%offertilizerapplied,leadingtosignificantwasteandenvironmentalimpactssuchaseutrophicationofcoastalwatersandcreationofhypoxiczones(Canfieldetal,2010).Asurveyofvariousfieldstudiesofnitrogenfertilizeruptakebyrice,cornandwheatshowstypicalnitrogenefficiencytobelessthan50%,withAsianriceaveragingaslittleas30%.Thestudyalsofoundnitrogenlossesalongthefoodchaintobesignificant,withsyntheticfertilizerscausingsignificantlymorenitrogenlossduetovolatilization,erosionandleachingintowater(Smil,2002).However,introductionofpulsesintocroprotationsactivelyhelpsfixnitrogeninthesoil,thusreducingthefertilizerrequirementsofthepulsecropitself,aswellasthefollowinggraincrop.Onelong-termstudy(2001–2013)onthenitrogenfixationofthepulsecropitselffoundfieldpea,lupinorfababeanderivedabout70%ofnitrogenrequirementsfromatmosphericnitrogen,whileanaverageof19kgofnitrogenwasfixedpertonneofpulseshootdrymatter.ThestudycoveredthegeographicrangeofsouthernandcentralNewSouthWales,MalleeandWimmerainVictoria,andthehigh-rainfallzoneofsouth-easternSouthAustralia(Peoplesetal,2015).Systematiccroprotationbasedonincorporatingpulses/legumesintomaize-basedsystemstoreducesyntheticfertilizeruse,andoptimizingthetimingandamountsoffertilizerappliedtocropsarerecognizedasthetwomostimportantinterventionstodecreasenitrogenapplication(Canfieldetal,2010).Biologicalnitrogenfixationisacrucialalternativesourceofnitrogen,andcanbeenhancedalongwithotherintegratednutrientmanagementstrategiessuchasanimalmanureandotherbiosolids,andrecyclingthenutrientscontainedincropresidues(Lal,2004).Thehigheravailablenitrogentosubsequentcerealcropsisgenerallyassumedtobenefityieldsofthosecerealcrops,howeverthisisnotaswelldocumentedasthenitrogenfixationbenefits.Findingsinsouth-easternAustraliaindicatestrongevidencethattheinclusionoflegumesincroppingsequencesresultsinhigheravailablesoilnitrogenforsubsequentcrops,withanadditional40to90kgN/hainthefirstyearand20to35kgN/haforthesecondyear,ascomparedtocontinuouscerealsequencesthatdonotincludepulses(Peoplesetal,2015).ApartfromtheeffectsofadditionalfixedNthatlegumecropsbringintosystems,therearealmostalwaysbeneficialyieldeffectsfromcroprotationswithlegumes.Thesepositiveeffectsonyieldareprobablyrelatedtodisruptionofthebuildupofdiseaseandpeststhatoccurswhenaparticularcropisgrownyearafteryear,althoughthisphenomenonisnotyetwellunderstood.IncreasesingrainyieldinsubsequentcerealcropshavebeendocumentedintheNorthernGreatPlainsofNorthAmerica,andwillbefurtherexploredintheSaskatchewancasestudyin

1Agricultureemissionsare19-29%ofallglobalGHGemissions.Nitrousoxideemissionsare39.3%oftotalagriculturalemissions(FAO,2015).

14

section3.1.EvidenceinaMediterraneanenvironmentdemonstratedthatvetch,fababeanandchickpeaallresultedinsignificantyieldsurplusesandprovidednitrogencredittothesubsequentunfertilizedwheatcrop,thoughvetchoutperformedtheother(betterresearched)pulses(Dalias,2015).ExperiencesinAustraliashowincreasedyieldandproteincontentincerealandoilseedcropsthatareplantedfollowingpulsecrops.Thewidevariationsintheamountofnitrogenfixationthatpulsescanprovidedependsontheamountofbiomassproducedbythepulsecrop(oftenvaryingwithwater,soilqualityandnon-Nnutrientavailability),whethertheharvestremovesasignificantamountofthebiomass,andtheeffectivenessofthelegume-rhizobiumsymbiosisinfixingnitrogen.Plantingalegumeintosoilsalreadyhavingmoderatetohighlevelsofsoilnitrogencanalsodepressbiologicalnitrogenfixation.Nuancesanddifferencesinsuccessivecerealcropsmustbenoted.FindingsinAustraliacomparinglegumeandfertilizernitrogenindicatethatrecoveryoflegumenitrogenbyafollowingcerealcroptendstobelowerthantop-dressedfertilizer(adifferenceof20%betweenhighandlowranges),butisnottoodissimilarfromfertilizerappliedatsowing.Thisisduetoslowerreleaseofmineralnitrogenfromlegumeandpulsecropresiduesastheydecompose.However,lossesofnitrogenfromthesystemarefoundtobeusuallylowerfromlegumesourcesthanfromfertilizer,indicatingthecontributionoflegumestothemaintenanceofthelong-termorganicfertilityofsoils(Peoplesetal,2015).Thesuccessiveplantingofdifferentcropsonthesameplotofland,throughcroprotations,helpssoilfertility,thetransferofnutrientsfromonecroptothenext,andhelpstocontrolweeds,pestsanddiseases.Croprotationshavebeenpracticedbyfarmersforthousandsofyears,2yetmaximizingtheenvironmental,socialandeconomicbenefitsofcroprotationsisanever-evolvingsciencethatmustaddressmanyfactorsatthecroppingsystemlevel.Thereplenishmentofnitrogenthroughtheuseofgreenmanure,insequencewithcereals,isacommonformofcroprotation.TheSakatchewancasestudybelowexploresfurtherinsightsoncroprotation.Includingpulsesincroppingsystemshashighrelevanceforimprovingtheoveralluseefficiencyofavailablenitrogenatthefarmsystemlevelratherthanatjustthecroplevel.Ratherthanemphasizingindividualelementsofacroppingsystem,afocusonoverallgrowingconditions,thecropmix,andthesequenceofcroprotationsiscentraltoachievingbothsustainabilityandproductivityobjectives,suchasincreasingnitrogenfixationthroughimprovedrhizobia-hostplantsymbiosis(vanKesselandHartley,2000).ConservationtillageChangesintillagepracticeshavebeenanimportantpartofshiftsfromconventionalcroppingsystems,basedongrainproduction,tomorediversifiedcroprotationsutilizingpulsesoroilseeds.Conventionalplow-basedfarmingdevelopedlargelyasameansfor

2ThecentresoforiginofagricultureinSouthandEastAsia,theMiddleEast,Sub-SaharanAfrica,andMiddleandSouthAmericaallincludedthedomesticationofalegume.

15

farmerstocontrolweedsinfield-cropsystems.Conventionaltillagepracticesleavesoilvulnerabletowaterandwinderosion,increasesagriculturalrunoff,degradessoilproductivityandreleasesGHGemissionsbothfromsoildisturbanceandfossilfueluse.ConventionaltillageintheUS,CanadaandAustralialedto“dustbowl”stormsduetowinderosion,andthelossofsoilandfarmlandspurredpolicymakersandfarmerstofindsolutions.No-till,ordirectseedingunderamulchlayerfromthepreviouscrop,isthemostimportanttechnologyinconservationagricultureandreversesthisprocessbyimplementingapackageofpractices,includinga)minimummechanicalsoildisturbance,b)permanentorganicsoilcover,c)diversificationofcropspeciesgrowninsequencesand/orassociations(FAO,2013).Importantly,implementingconservationtillagepracticeshasofteninvolvedintroductionofpulsesandoilseedsintograin-basedcroprotations3.Whileincreaseduseofherbicides,suchasglyphosate,havebeenutilizedtoaddressweedabundanceunderreducedorno-tillage,thisappearstobemoderatedafteraperiodoftransitiontoconservationtillage.VanKesselandHartley(2000)identifiedarangeofstudiesthatdemonstratethenitrogenfixationbenefitsofconservation-orno-tillage,withpulseandoilseedbeannodulationimprovingaftermultipleyearsofno-tillandnitrogenfixationratesincreasing(moderatedbychangesinrainfallpatterns)(VanKesselandHartley,2000).Formoreinsightonhowno-tillandconservationagriculturehasbeenadoptedinSaskatchewan,refertoSection3.ProductivityimprovementsoverareaexpansionAnimportantgoalinthesustainableuseoflandworldwideistoincreaseproductivityonavailablecroplands,whilerestrictingagriculturalexpansion,whichoftenoccursattheexpenseofforestsandwetlands.Ninebillionpeoplewillinhabittheplanetby2050.Toavoidcropexpansionandjustmeetprojected2050cropneedsbyincreasingproduction,itispredictedthatcropyieldswouldneedtoincreasebyanestimated32%morefrom2006to2050thantheydidfrom1962to2006duringtheheightofthe‘greenrevolution(Searchingeretal,2013).’However,reachingsuchincreasesinyieldsishighlyunlikely.Pulseshaveasignificantroletoplayin‘sustainableintensification,’yet,indevelopingcountries,productionincreaseshavecomeprimarilyfromexpansionofcroppingareas.Theyieldgrowthofpulsesbetween1980and2004indevelopedcountrieswas2%perannum,whileindevelopingcountries,itlanguishedatabout0.4%perannum(Nedumaranetal,2015).Ethiopia’sriseinchickpeaproductionoffersanexampleofproductivityimprovementsthatdidnotresultinareaexpansion(Ethiopia,2015b).Thislargeyieldgapbetweendevelopingcountriesanddevelopedcountriesisofconcern,andcannotbeaddressedbyimprovedpulsecropgeneticsalone,butratherrequiresarangeofinterventions,someofwhicharefurtherexploredintheAfricacase

3TheoilseedssoybeanandgroundnutarealsoN-fixinglegumes.Notethatsomeofthebrassicaceaelackrootsymbiosesandsowillhaveaverydifferentconsequencefromlegumesmostofwhichhavebothbacterialandfungalrootsymbionts.

16

studyinSection3.2.Addingmorecropsintorotationscanincreasetheefficiencyinaproductionsystem,minimizingthepressureforcroplandexpansiontoachieveyieldimprovements.However,inmanycontexts,regulationstorestrictexpansion,orencourageexpansionondegradedlands,arenecessarytosendtherightsignalstoproducers.ReducedgreenhousegasemissionsTheroleofpulsecropsinmitigatinggreenhousegasemissionsinagricultureproductioncanbesignificant,andthisisexploredfurtherintheSaskatchewancasestudybelow.TheprimaryreasonforthebenefitsfrompulsesinloweringGHGemissionsisduetolowerfertilizerrequirements,particularlygiventhelargeamountofenergyusedinfertilizerproduction.Upto70%ofthenon-renewableenergyusedinWesternCanadiancroppingsystemsisduetotheuseoffertilizers,particularlynitrogen,andtheinclusionofpulsesincroppingsystemsreducestheneedforfertilizerinputs.Pulsessupplytheirownnitrogenandcontributenitrogentosucceedingcrops(Lemkeetal,2007).ThisisexploredingreaterdetailinSection3.1.PulsesandlivestockfeeddiversificationIntegrationoflegumesintolivestockproductionsystemshasbeenshowntodelivermultiplebenefits,suchasincreasednitrogensupplywhilealsoincreasingmeatproduction.Globally,meatdemandisexpectedtoincreaseby200milliontonnesperannumby2050,withcorrespondingdemandforlivestockfeed(AlexandratosandBruinsma,2013).InthenorthernGreatPlainsoftheUSandCanada,fieldpeahasbeenpromotedasameanstoboostproteinandenergyincattlefeed.Fieldpeagrainhasbeenfoundtobehighlydigestibletocattle,butthestarchfermentationandruminalproteindegradationratesareslowerthanforothercommonfeeds.Fieldpeahasbeenshowntoincreasedrymatterintakebycowswhenincludedinthelivestockfeedration,andalsoproducesbenefitswhenusedasabindingagentforpelletingformulafeeds(Anderson,etal,2007).1.2.2SocialbenefitsNutritionWithoutaconcertedefforttoboosttheproductionofpulsesindevelopingcountries,consumptionofpulsesmaystagnateordecline,duetochangingconsumerpreferences,failuretopromoteproductionofpulses,andagreaterfocusonincreasingproductionandself-sufficiencyincereals(AlexandratosandBruinsma,2012).Historically,whenobserveddeclinesinprotein-richpulseswerenotaccompaniedbyincreasesintheconsumptionoflivestockproducts,theresulthasbeendeteriorationintheoverallqualityofdiets,evenifpercapitadietaryenergyincreased(ibid).

17

Pulseshavedeclinedinconsumptionlevelsgloballyandinparticularamongdevelopingcountries,perhapsbestillustratedbyChina’ssignificantdecreaseinconsumption,from30gpercapitaperdayin1963,toonly3gpercapitaby2003(Kearney,2010).Overthelastdecade,developingcountries,particularlyinlargeAsianeconomies,haveseensteadypopulationgrowth,risingpercapitaincomesandcontinuousurbanization,whichhasbeenaccompaniedbyincreasedproteinintakerelativetothetraditionalstarches.TheOECD/FAOAgriculturalOutlookto2024indicatesstagnantgrowthinfoodconsumptionindevelopedcountries,butsignificantincreasesindevelopingcountries,reflectingthisincreaseinproteinintakeindevelopingcountries.Atthegloballevel,totalcaloricintakeisexpectedtorise,butwithregionaldifferences.Cerealswillremainthemostconsumedagriculturalproduct,withconsumptionexpectedtoincreasebyalmost390Mtby2024,mostofwhichiscoarsegrains.Thelargestexpectedgrowthincoarsegainconsumptionwillcomefromdemandforfeed,accountingfor70%ofthegrowthinconsumption.Globalmeatconsumptionisexpectedtogrow1.4%peryear,resultinginadditionalconsumptionof51Mtofmeatby2024(OECD-FAO,2015).IndiaprovidesacounterpointtoChina,aspulsesthereprovideanincreasingsourceofprotein,nowaccountingforalmost13%ofoverallproteinintake(OECD-FAO,2014).Pulsesareanimportantcontributiontoavegetariandiet,giventheirproteincontent.Indiaisthelargestpulseproducerandconsumer,andthecountrygrowsthelargestvarietiesofpulsesintheworld,accountingforabout32%oftheareaand26%ofworldproduction.Indianpulsecropsincludechickpea,pigeonpea,urdbean,mungbean,lentilandfieldpea,andproductionreachedarecordlevelof18.4Mtin2012-13,upfrom15Mtin2007-08.Pulsecropyieldshaveincreasedfrom0.63t/hain2007-08to0.79t/hain2012-13,andannualyieldgrowthisexpectedtooutpacegrowthinproductionarea,indicatingbetterproductionefficiency.However,theaverageproductivityofpulsesinIndiastillremainsbelowtheglobalaverage.ItisexpectedthatIndianproductionwillnotkeeppacewithdemandandimportsareanticipatedtogrowto5.1Mtby2023(OECD-FAO,2014).Fairlyrecentchangesintheglobalhumandietfavouringmoreenergy-densefoodsrichintotalandsaturatedfatsareincreasingratesofobesity,diet-relateddiseasessuchasdiabetes,coronaryheartdiseaseandcancer.Publichealthandnutritioneffortsseekingtopromotehealthierandmoresustainablefoodproductionandconsumption,mustensureasufficientsupplyofstaplesandofmicronutrient-richfoodswithoutencouragingexcessiveconsumptionofenergy-dense,nutrient-poorfoods.Pulsesandlegumesareanimportantcontributorofmicronutrient-richintake,alongwithfruitsandvegetables(Kearney,2010).Eighty-fourpercentoftheproteinincommonbeanisreadilyabsorbedafterconsumption,and94%oftheproteinfromcowpeaisavailable.Pulseshavearoletoplayincombatingcardiovasculardiseaseandincreasinghealthynutrition.Worldwide,cardiovasculardiseasesarenowtheleadingcauseofdeath,andintheUnitedStates,isattributedto1/3ofalldeaths.Whilethereisincreasingawarenessofthisrisk,andtheroleofbalanceddietstodecreasetherisk,lessthan1/3

18

ofAmericansconsumesthe3cupsoflegumesrecommendedperweekbytheDietaryGuidelinesforAmericans(Bazzanoetal,2011).Ameta-analysisoftenrandomizedcontrolledtrialsfrom5countriessoughttoquantifytheimpactthatconsumptionofnon-soylegumes(navy,pinto,kidney,garbanzoandlimabeansandpeassuchassplitgreenpeasorlentils)hasontotalcholesterol,high-densitylipoprotein(HDL),low-densitylipoprotein(LDL),verylow-densitylipoprotein(VLDL),andtriglycerides.Findingsindicatethenon-soylegumediethadasignificantbeneficialeffectonserumcholesterollevels,thusreducingcardiovasculardiseaserisk.BothtotalandLDLcholesteroldecreased,whileHDLcholesteroldidnotchangesignificantly,whennon-soylegumesweresupplemented.Further,findingsindicatethatthenon-soylegumedietallowedforhigherintakesofdietarytotalandsolublefiber(whichlowersriskofcoronaryheartdisease)andcontainedphytosterols,acomponentofplantcellmembranes,whichreducesbloodcholesterollevels(ibid).Theanti-inflammatoryeffectsofbeansandtheircontributiontotheintestinalmicrobiomeinthegutisincreasinglybeingunderstood,particularlyinamongchildreninMalawiwherefindingsindicatecowpeaandcommonbeancanreduceenvironmentalentericdysfunction(Manary,2015).NitrogenandproteininglobaldietsMoredietaryproteinwillbeneededtoeliminatedisparitiesindietsbetweendevelopedanddevelopingeconomies.However,thenitrogenbudgetinglobalfoodandfeeddemonstratestheimportanceofnitrogen-richandprotein-richplantfoods.About70%ofnitrogeninharvestedfoodcropsbecomeavailable(afterprocessingandlosses)forhumanconsumption,whereasmeatanddairyproductionuselargeamountsofnitrogen.Nearly7kgoffeednitrogenisneededtoproduce1kgofediblenitrogeninmeat,eggs,anddairyproducts.Thus,findingsolutionstomoreefficientproductionofanimalfoodsanddampingtheprojectedupwardtrendlineofanimalbasedfoodsiscrucialtosupplyadequatenutritiontotheworld’sgrowingpopulationwithoutanymassiveincreasesofnitrogeninputs(Smil,2002).InCanada,theUS,andEurope,researchers,ingredientcompaniesandfoodmanufacturersareinvestigatingincreasedproductionanduseofpulseproteinfractionsinmanufacturedfoodproducts,inordertoboostthenutritionalqualityoffoods,anddietaryfibreandstarch,whichcanbeusedforfoodfortificationandtextureenhancement.Intheseprocesses,partsarederivedfromthewholeseed,suchasasplitseed,hullorfibre,downtoisolatedstarchandproteinfactions.Theseproductsarepromotedasplant-based,sustainable,non-geneticallymodifiedandgluten-free.4CompaniessuchasIngredion,AGTFoods,Burcon,Cosucra,andNutri-Peaandothersarecreatingfractionproducts,andfindingwaystoincorporatethemintomanufacturedfoodproducts.Researchersnotethatwetfractionationuseslargeamountsofwaterandenergy,andthefunctionalityoftheproteiniscompromisedduringprocessing.Dry4MarkOlsen,AlbertaDeptofAgricultureandForestry,verbalcommunication.

19

fractionationisfoundtobemorewaterandenergyefficient,andretainsfunctionalityofthepulseprotein(SchutyserandvanderGoot,2015).Effortstomanufacturemeat-likeproteinproductsisimproving,witharecentsoy-basedmeatanalogueproductbeingproduced,withathicknessof30mm(Krintirasetal,2016).Effortsareunderwaytofurtheridentifyhowpeaproteinandothervegetablefiberscanbeusedforthispurpose.BalancinglivestockproductionandfoodsecuritythroughpulsesLivestockproductionbenefitswithoutfoodsecurityconflictsaredemonstratedviatheintegrationofherbaceouslegumesintothemaizeanduplandricesystemsinWestTimor,Indonesia.Aftersixyearsofparticipatoryresearch,findingsindicatesignificantbenefitsforlocalfarmers.Farmersusuallyrelyonlow-qualitynativeforages,sometimessupplemented,tofeedtheirlivestock.Highrainfalllevelsinthemonsoonseasonandclimatevariabilityprovidesrisksthatoftenresultinfeeddemandsoutstrippingsupplyandlowratesofproduction,withupto60%oftheweightgainedbylivestockduringthewetseasonlostduringthelatedryandearlywetseasons.Herbaceouslegumeswereaddedeitherinannualrotationwithacerealorafterwet-seasoncerealproductionhasbeencompleted,whenlandistraditionallyleftfallow.Ascowpea,peanut,andmungbeanarealreadyoccasionallyintercroppedwithmaizeinthewetseason,researcherschosetopromoteherbaceouslegumesasagreenmanureorinrotation,solegumeswouldnotfurthercompetewiththecerealcropsfornutrientsandtherebyproducelessforage.Researchoutcomesindicatethata)itispossibletoaddanadditionalcropintoatraditionalfarmingsystemwithoutaffectingexistingfoodsecurity,b)thatfeedingforagelegumestocattleduringthelatedryorearlywetseasonresultedinincreasesinlivestockweight,andc)thatnitrogenprovidedbylegumesimprovedmaizeproductioninsubsequentcrops.Criticaltothesuccessofintegratingherbaceouslegumesintoanannualcropcyclewastherecognitionthatwaterremaininginthesoilasthemainwet-seasoncerealcropmaturesisaresourcethatcanbeavailableforthesubsequentdry-seasonproductionofherbaceouslegumes,whichisaperiodinwhichfoodcropsarenottraditionallygrown(Nuliketal,2013).GenderGenderaspectsofpulseproductionareparticularlyimportantincontextswherewomencanbeinvolvedinvariousstagesofproductionandthroughoutthevaluechain.ThisisfurtherexploredintheAfricacasestudy,insection3.2.NorelevantfindingsrelatedtogenderwereidentifiedintheSaskatchewancasestudy.1.2.3EconomicbenefitsFarmersingrainandoilseedproductionhavefoundeconomicbenefitsfromlowerinputcostsandincreasedprofitsbyincludingapulsecropintheirrotation.Thesebenefits

20

accruemainlythroughenhancingtheefficiencyofnitrogenfertilizeruse,reducingtillageand,insomecasesreducingpesticideuse.Reducedandalteredtillagepracticesreducerelianceonfossilfuelsandlowersoverallfuelbills.No-tillsystemswithpulsesprovideabasisforsustainableagriculturalintensification,includingintegratedcropapproaches.Itisestimatedthatfarmerssavebetween30-40%oftime,labourandfossilfuelsusingno-till,comparedtoconventionaltillage(FAO,2001;Lorenzatti,2006).InArgentina,areviewoffarmerpracticesfoundthatwithoneliteroffuelitispossibletoproduce50kgofgrainunderconventionaltillage,whereasunderno-tillitispossibletoyield123kgofgrain(Lorenzatti,2006).Betternitrogenmanagementrequireslessfertilizerinputs.Therearevariations,ofcourse,intheeconomicreturnsexperiencedindifferentgeographiesandfarm-types,andtheseareexploredfurtherinthecasestudies.Farmerslikelyalsoseethelong-termeconomicbenefits(andavoidedcosts)oflesssoil,airandwaterdegradationbyadoptingno-tillpracticesandincludinglegumesintheiroperations.InSaskatchewan,Canada,includingoilseedandpulsecropsinrotationswithcerealgrainscontributedtohigherandmorestablenetfarmincome,inspiteofhigherinputcosts,acrossmostsoiltypes.ThecasestudyinSection3.1summarizeskeyfindingsregardingthesignificantbenefitstofarmersandtheprovincialeconomy.SignificantfindingsexistandhighpotentialforfurthereconomicbenefitsalsoexistsinAfrica,andthisisfurtherexploredinSection3.2.Beyondthecasestudygeographies,relevantinsightsshouldbenoted,particularlyrelatedtoIndia,whichisthelargestconsumerofpulsesglobally.Indiasoughttoincreasepulseproductionby2milliontonnesbytheendoftheEleventhFiveYearDevelopmentPlan(2011-12),throughimplementationoftheNationalFoodSecurityMissionforPulseCrops(NFSM).OnestudyassessingtheimpactoftheNFSM,basedoninterviewswithfarmersovertwodistrictsinthestateofMaharashtra,identifiedsignificanteconomicreturnsatthefarm-levelfromtheprogramme’simprovedtechnologies(improvedpulseseed,integratednutrientmanagementandintegratedpestmanagementpractices,resourceconservationtechnologies,andcapacitybuildingoffarmers).Farmersinadistrictparticipatingintheprogrammesawdoublethenetreturnsfrompulsescropcultivationin2008-09overthepreviousyearascomparedtothenon-NFSMdistrict.Further,theprofitfrompulsesexceedednetprofitmarginsofallothercropscultivatedinthedistrict,despitethisoccurringinrainfedconditions(Shah,2011).However,economicgainsfrompulseproductioncouldbefargreaterinIndia,andimporttariffs,minimumpricesupports,andgovernmentsupporthaslargelyunderservedtheneedsofIndiaproducingenoughpulsestomeetdomesticdemandanddiversifyfarmincomes(RefertoBox1).

21

AddingpulsestorotationsineconomicallydeprivedareasinIndiacouldbringmuchneedednourishmentandincometomillionsofpoorsmalllandholderssolelydependentonagriculturefortheirlivelihoods.About12millionhectaresthatareunderriceproductionduringtherainyseasoninIndiaremainfallowinthesubsequentpost-rainy(rabi)season.Effortstointroducepulses(primarilychickpea)intheserabiconditionscouldhavesignificanteconomicandpovertyalleviationbenefits(Joshietal,2002).Yetchallengesremain.TherehasbeenaprogressivedeclineinpercapitaavailabilityofpulsesinIndia,fallingfrom69gramsin1961to32gramsin2005.Therequirementwasestimatedtobe21.3milliontonnesby2012.TheEconomicSurvey2012-2013reportstheestimatedproductionofpulsesin2011-2012as17.09milliontonnes,indicatingawidegapindemandandsupply(Swaminathan,2013).Investmentsinpulsecropresearchisshowntohavesignificanteconomicbenefit.TheCGIARResearchProgramonGrainLegumes,aglobalalliancecoordinatingeffortsacrossfourCGIARcenters,estimatedin2012thatthenetpresentvalueofgrossbenefitsofitslegumeresearchandextensionisestimatedatUS$4.5billion,equivalenttoUS$535millionperyear.BasedonproposedactivitiestobeundertakenbythisCGIARprogram,between2014─2020,legumeresearchwasalsoprojectedtocontributetofoodsecuritythroughincreasedavailabilityoffood(over8milliontons),nutritionsecurityfrommore

Box 1: Economic challenges for pulses in India

Indiaisthelargestconsumerofpulses,butgovernmentsubsidiesandpricecontrolsintheagriculturalsectorcreateddistortionsthataffecteddomesticproduction.Governmentsubsidiesforfertilizerandwaterpromotedgrainsandoilseedsratherthanthemixofsupportnecessarytopromotepulses.Protectionistpoliciesinthe1970sand1980swerereversedinthe1990s,whengovernmentreformssoughttoremoveimportrestrictionsandlowertariffsonagriculturalproducts.However,withtheexceptionofBasmatiriceanddurumwheat,externaltradeinallmajorcropswasregulated,andimportsofmostcropsoccurredonlythroughgovernmentagencies.Pulsesweretreateddifferently,withimporttariffsonpulsesreducedgraduallyandabolishedby1996.Thehopethatdomesticpulsemarketliberalizationwouldincreaseimportsdidnotmaterialize.Rather,theshareoftotalpulseimportsintotalmerchandisetradedeclinedaftermarketliberalization(Agbola,2004).

Further,inIndia,minimumsupportpriceshavebeenestablishedasoneofthepolicyinstrumentsusedtoimprovetheeconomicviabilityoffarming,stablizecommodityprices,andenhancefoodsecuritybydiversificationintooilseeds,pulses,livestockandfish.However,minimumsupportpricesforpulseshavenotdemonstratedthesameresultsasthoseforrice.Pricesforpulseswereincreasedbetween2008-09,ataratehigherthanthatforfoodgrains,butthatdidnottranslateintolargerareasplantedunderpulses,andthisisattributedtotherisksassociatedwithpulsecultivation.Incomparison,paddycultivationdoesnotcarrysuchrisks,andfarmersareassuredofprocurementbygovernmentagencies,whereasthisisnotthecaseforpulses(OECD-FAO,2014).

22

availabilityofprotein,andenvironmentalbenefitsthroughbiologicalnitrogenfixation(afertilizercostsavingofUS$418million).TheCGIARestimatedthatover50%oftheprojectedeconomicbenefitsoflegumeresearchandextensionwouldaccrueinSouthandSouth-EastAsiaandSub-SaharanAfrica,wheremostoftheworld’spoorestcommunitiesarelocated(CGIAR,2012).Addingpulsesintolivestockdietsalsohaseconomicbenefit,butappearsdependentonmarketpricingandlabouruseefficiencies.FindingsinWesternChinaindicatethatlivestockforagesystemintensificationbyincorporatingaforagecropintograin-croppingsystemsincreasedaverageprofitswithoutincreasingdownsideriskssuchasnegativeprofit,cropfailure,orlivestockmortality.Foragevetchwastheleguminouspulsecrop,butforageoatsandgrainsoybeanwerealsoincorporated.Incontrast,replacingagraincropwithaforagecropingrain-croppingsystemshadanegativeeffectonprofits,downsiderisk,andlabour-useefficiency.Trade-offsbetweenlabour-useefficiencyandprofitwereobservedasforageintensificationincreasedlabourdemands,howevertheseeffectswerecontextspecific(Komareketal,2014).FindingsinWesternCanada,basedonalifecycleassessmentoftwoswinediets—oneusingsoybeanmealinawheat-basedfeed,andtheothersubstitutingthesoybeanportionwithdrypea—indicatesthedrypeadiettobeasubstantialeconomicimprovementoverthesoybeanmealdiet.Therateofreturnonassetsforaswinefarmsubstitutingthesoybeanportionoffeedwithdrypeainswinedietswas4.4%,animprovementof3.6%overthe0.9%estimatedwhentheswinefarmwasusingthesoybeandiet.Onlywhenhogpriceswerelowerandfeedcostsincreasedwerethebenefitsofincorporatingdrypeainthedietnotapparent(McWilliametal,2011).

2. Methodology Thisresearchwasguidedbyaneutralinvestigationapproachtounderstandingthekeyfeaturesofpulsecropproductionassociatedwiththethreepillarsofsustainability.Attentionwasgiventosocio-economicdevelopmentandenvironmentalbenefits,acrossbothdevelopedanddevelopingcountries,andrangingfromsmallholderfarmstolarge-scaleagricultureproductionsystems.Abroadliteraturereviewwasconducted,andinterviewsconductedwithpulseresearchersandmembersoftheIYPProductivityandSustainabilityCommittee.Insightsfromtheliteraturereview,twoin-depthcasestudies–Saskatchewan,CanadaandpulseproducingregionsofSub-SaharanAfrica—andinterviewsguidedtheformationofthesustainabilityframeworkbytheauthor.

3. Case studies

3.1 Saskatchewan

23

Saskatchewancovers651,900km2andcontains44%ofCanada'scultivatedfarmland.AccordingtotheSaskatchewanPulseGrowersassociation,theprovinceproducedmorethan95%ofCanada’slentilandchickpeacrop,andnearlytwothirdsofitspeacrop,80%ofwhichisexported.Canadaistheworld’slargestexporterofpulses,supplying33%oftheworldtradeinpulses,mostlyinsalestoIndia,China,Turkey,Bangladesh,andtheUnitedStates.Thishasbeenafairlyrecentdevelopmentoverthelasttwentyyears,withhectaresseededtopulsesincreasing1,000%,from193,000hain1981to2.1millionhaby2011(refertoFigure1).

3.1.1ContextPulsecropsgrowninSaskatchewanincludechickpeas,drybeans,drypeasandlentils.TheSaskatchewanPulseGrowers,createdaftergrowersin1983chosetoinstituteamandatory,non‑refundable1%levytofundprogramsthatwoulddevelopthepulseindustry,providesresearchandcapacityforgeneticimprovement,agronomy,healthandnutrition,andprocessingandutilization.Thelevyisappliedtogrosssalesatthefirstpointofsaleordistribution.TheSaskatchewanPulseGrowersallocatesabout60%ofitsannualbudgetintoresearchanddevelopment,benefitting15,000Saskatchewanpulsegrowers.In2014/2015,thelevycontributed97%oftheCD$10.1milliontheorganizationinvestedinresearchanddevelopment,andanother$2.8millioninmarketpromotion,mostofwhichwasfocusedondomesticlentilmarkets(SaskatchewanPulseGrowers,2015).Forthe2015-16cropyear,acrossCanada,productionofpulsesandspecialtycropsisestimatedat6.3Mt,5%lowerthan2014,asloweraverageyieldsmorethanoffsetthehigherareaseeded.Drypeaproductiondecreasedinthe2015-16periodby16%,to3.2Mtduetoloweryieldsandlowerharvestedarea,particularlyinSaskatchewan.Yellowandgreenpeatypesareexpectedtoaccountforabout2.5Mtand0.7Mt,withtheremainderbeingothervarieties.Supplyhasdecreasedbyonly12%,to3.7Mt,duetolargecarry-instocks.Exportsareforecastat2.95Mt,withIndia,BangladeshandChinaremainingCanada'stopthreemarketsfordrypea.Yieldsperhectarehavedecreasedoverlastthreegrowingseasons.Incontrast,lentilproductionincreasedby19%tonearly2.4Mt,asloweryieldspartlyoffsetrecordharvestedareaandlowerabandonment;thelargestgainsweremadeinredlentilproduction.Pricesareatrecordlevels,andIndia,TurkeyandEgyptarethetopexportmarketsforlentil.Productionof

Figure 2: Hectares seeded with pulses by variety in Canada (1981 to 2011)

Source:Bekkering,2014,basedonStatisticsCanada,CensusofAgriculture,1981to2011

24

drybeansfellby10%acrossCanada,thoughtheUSandtheEU-27willremainthemainexportmarkets.Thoughchickpeaproductionfellby31%to90kilotonnes,duetolowerareaandyieldestimates,carry-instockshelpoffsetthesupplydecrease,andexportsareexpectedtoincrease,withtheUSandPakistanbeingthelargestbuyers(AgricultureandAgri-FoodCanada,2015).

3.1.2EnvironmentalCereal-fallowrotationshavebeenthepredominantcroppingsysteminthesemiaridCanadianPrairies,howeverpatternsofmonoculturecerealcroppingresultedinpestanddiseaseoutbreaksanderosion,whichspurredfarmerstoseekalternatecropstoincludeinrotation.Fallowinghasresultedinincreasedsoilsalinityandlossofsoilnitrogenandwater.Pulsecropswereintroducedtoreplacesummerfallowinthepastfewdecades.Conventionaltillagehasledtoincreasedsoilerosion,despitethebenefitofincorporatingcropresiduesintothesoil.TheintroductionofpulsesintotheSaskatchewangraincroprotationswasfoundtohaveanumberofenvironmentalbenefitsbeyonderosioncontrol.Pulsesaremoredroughttolerantandefficientinwaterusethanmostgraincrops,andthereforecouldwithstandsummercroppinginthedrierBrownandDarkBrownsoilzones(Cutforthetal,2009).Farmerssoughtmorediversifiedandintensivecroppingsystems,increasinglyabandoningthepracticeofsummerfallow,andpreferringtocropthroughfourseasons.Thus,pulsecropswereaddedintopredominantlycerealandoilseedrotations,andmostoftenreplaceacerealcrop,suchaswheat,ratherthanreplaceanoilseedcrop,suchascanola.No-tillseedingpracticeseliminatestheneedtoplowbyplacingseeddirectlyintoundisturbedstubbleorsod.Thegreatestenvironmentalbenefitofaddingpulsecropsintocereal-fallowrotationswastheirnitrogenfixationcapability,whichreducedfertilizernitrogenrequirementsinthecurrentandsucceedingcrop,andcapacityofthesoiltosupplynitrogen.Thisovercamealimitationinconservationtillagesystemswhereminimalsoildisturbanceslowedcyclingorreleaseofnitrogenfromcropresidues(Brandt,2010).Achallengeinshiftingfromconventionaltillagetoconservationtillagepracticesisinmanagingweeds.ThepriceandabundanceofherbicidessuchasglyphosatehadamajorroletoplayinfarmeradoptionofconservationtillageinAustralian,LatinAmericanandNorthAmericanregionsthathaveexperienceddramaticchangesinfarmeruptakeofconservationtillagepractices.FarmersinSaskatchewanfacedweedcontrolchallengesfromdiversifiedrotationsastheherbicidetreatmentsforpulseandoilseedcropsweregenerallylesseffectivethanforcereals.Overtime,farmersimprovedtheirherbicideandmanagementpractices,leadingtoreducedratesinuse,andasignificantreductioninrepeatapplications(Brandt,2010).

25

Pulsecroppinginrotationwithcerealswithouteffectivetillageandcropresiduemanagementpresentserosionproblems,particularlyontheBrownandDarkBrownsoilsofSaskatchewan,inareaswherestrongwindsarecommon.Erosionhasbeenfoundtoincreaseduringproductionoffieldpea,lentil,andchickpeaintheseareas,astheyoftenproducelesscropresiduethancerealcrops,andthecropresidueismoreeasilydisintegratedbytillagethancerealresidue.Farmersareadvisedtominimizepulsecroppingonhighlyerodiblesoils;minimizeoreliminatetillage,particularlyinthefall,whilealsoapplyinglow-disturbancedirectseedingwhenpossible;maximizecarryoverofcropresiduefromoneyeartothenext;slowtractorspeeds;andavoidharvestingpulsestrawforfeedonlandpronetoerosion(McConkeyandPanchuk,2000).BasedonfarmersurveysacrossCanada,theproportionoffarmswithpulsesreportingno-tillseedingpracticesincreasedfrom6.7%usingno-tilland24.4%usingconservationtillagein1991to56.4%usingno-tilland24.6%usingconservationtillagein2011.Conventionaltillagehasdroppedinusefrom69%in1991to19%by2011,acrossCanada(StatisticsCanada,2011).Thiscoincidedwiththeincreaseinpulseproductionoverthesametimeperiod.Alifecycleandsocio-economicanalysisofpulsecropproductionandpulsegrainuseinWesternCanadaprovidesimportantinsights.Thegoaloftheresearchwastodeterminethedifferenceinenvironmentalandsocio-economiceffectsofincludingpulsecropsinrotationaswellasusingpulsecropsforhumanconsumption(system#1inBox2below),andasswinefeed(systems#2inBox3below).Environmentalbenefitswerefoundtobestrong,primarilyduetothenitrogenfixationabilitiesofpulsecrops,thereductioninnitrogenrequirementsofacerealcropsucceedingapulsecrop,andtheincreaseinquantityandnutritivequality(proteincontent)ofacerealcropfollowingapulsecrop.Evenwhenconsideringthepracticeofapplyingpesticidestothecrops,thisdidnotgeneratesufficientdifferencesinenvironmentaleffectstodiscounttheoverallpositiveenvironmentalresults(McWilliametal,2011).GreenhousegasemissionreductionThegreenhousegasemissionreductionbenefitsofaddingpulsesintorotationswithgrainisattributedtoarangeofinterventions,notjusttheaddednitrogenfixationcapacityofpulses.Researchwasconductedonawheatrotationsystem,utilizingthe25-year(1985–2009)fieldstudyconductedinSwiftCurrent,SaskatchewanbytheAgricultureandAgri-FoodCanadaResearchCentre.Findingsindicatethatanimprovedfarmingsystem,basedonfertilizingcropsbasedonsoiltests,reducingsummerfallowfrequenciesandrotatingcerealswithpulses(lentil,inthiscase)lowersthewheatcarbonfootprintconsiderably(anaverageof256kgCO2eqha-1peryear).Amongthefourcroppingsystemstested,whichincludedfallow-flax-wheat,fallow-wheat-wheat,continuouswheat,andlentil-wheat,thelentil-wheatsystemclearlyoutperformedtheothers.Thiswasduetothelowerratesofnitrogenfertilizerrequiredbythewheatcrop

26

inthislentil-wheatrotation,andtheincreasednitrogenavailability,whichenhancedplantbiomassaccumulation.Resultsindicatethatspringwheatgrownusingthissuiteofimprovedfarmingpracticescanattainanetcarbonbalanceregardlessofwateravailability(Ganetal,2014).Researchshowsthatcroprotationscontainingapulsecrophaveloweroverallgreenhousegasemissionsthanthosethatdonotincludeapulsecrop.Thisisbecauseupto70%ofthenon-renewableenergyusedinWesternCanadiancroppingsystemsisduetotheuseoffertilizers,particularlynitrogen.Pulsessupplytheirownnitrogen,reducingtheneedforaddednitrogenfertilizer.Researchonnitrousoxideemissionsspecificallyislimited,butshowsthatemissionstendtobelowerforpulsecropscomparedtofertilizedcerealcrops.Indicationsarethatthemoreoftenapulsecropisgrowninrotation,themoregreenhousegasemissionsarereduced.One17-yearstudyatSwiftCurrent,Saskatchewan,indicatesareductioninGHGemissionsof31%annuallywhenlentilswereincludedinrotationwithspringwheat.AsimilarstudyatIndianHead,Saskatchewanshowedan18%reductioninyearlyGHGemissionswhenpeaswereincludedinrotationwithspringwheat,winterwheat,andflax.Thesitewiththe

Box 2: Summary of system 1- Life Cycle and Socio-Economic Analysis of Pulse Crop Production and Pulse Grain Use in Western Canada System#1.Pulseincroprotations:Oilseed/cerealrotation:canola,wheataftercanola,wheatLentilrotation:canola,wheataftercanola,lentil,wheatDrypearotation:canola,wheataftercanola,drypea,wheat

Keyfindingsinthelentilanddrypearotationsmodeled,comparedtotheoilseed-cerealrotations:

HumanHealth:Reductionsinhumanhealthimpactsarenotedrelatedtoreducedcarcinogens,non-carcinogens,respiratoryinorganics,ionizingradiation,ozonelayerdepletionandrespiratoryorganics.Humanhealtheffectsarerelatedtotheamountsofinputsrequiredforproduction,hencedecreasedinputsequatestolessuseoffertilizers,fewerfieldoperationssuchasharvestingequipment,andlesstoxicemissionsreleasedtotheair.

Ecosystemquality:Reductionsineffectsonthequalityoftheecosystemsuchasaquaticecotoxicity,terrestrialecotoxicity,terrestrialacidification/nutrification,landoccupation,aquaticacidificationandaquaticeutrophicationduetofertilizeruseandmechanizedharvestingwerenoted,basedonreductionsintheamountofappliedchemicalsandfertilizers,whilewheatyieldsincreased.

GHGemissions:ReductionsofGHGemissionsby25%inthedrypearotationand22%inthelentilrotationarenoted,whilenon-renewableenergywasdecreased25%inthedrypearotationand21%inthelentilrotation.GHGemissionreductionsareattributedto

27

greatestmagnitudedifferenceincludedapulsecroponceeverytwoyears,whereasattheotherlocationsapulsecropwasincludedonlyonceeveryfouryears(Lemkeetal,2007).AsimilarstudyatIndianHead,Saskatchewanshowedan18%reductioninyearlygreenhousegasemissionswhenpeaswereincludedinrotationwithspringwheat,winterwheat,andflax(Lemkeetal,2007).Usingacarbonfootprintmethodofanalysis,areviewofavailableliteraturefoundthatdurumwheatprecededbyanitrogen-fixingpulsecropemittedtotalgreenhousegasesof673kgCO2eq,whichis24%lowerthanifthecropwasprecededbyacerealcrop.Inthissameanalysis,itwasdeterminedthatcanolaandwheathadsignificantlygreatercarbonfootprintthanpulsecrops(suchaschickpea,drypea,lentil)(Ganetal,2011).Incontrolledcircumstances,biologicalnitrogenfixationbylentilandpeawasdeterminednottobeadirectsourceofnitrogenemissions(Zhongetal,2009).Alifecycleanalysisfoundthatbyreducingtherequirementforsyntheticnitrogenfertilizers,pulsecropsinherentlyreducetheemissionsandenergyuseassociatedwiththeproduction,useanddisposaloffertilizers(McWilliametal,2011).

Box 3: Summary of system 2- Life Cycle and Socio-Economic Analysis of Pulse Crop Production and Pulse Grain Use in Western Canada

System#2.PulsesforSwineFeed:Replacingtheimported(fromtheUS)soybeanmealinswinefeedwithdrypea

Starterswinedietsexaminedinthestudyhada15%rateofdrypeainclusion,whereasthemorematuregrowerandfinisherswinedietscontained42.5%and30%inclusionratesofdrypeainthefeedmix.Feedproductionaccountedforthemajorityoftheenvironmentaleffectsassociatedwithswineproductioninallimpactcategories(50-100%).However,themajorityoftheGHGemissionsfromswineproductionwereassociatedwithanimalhusbandry(53-55%),notfeed.Additionalenvironmentalbenefitswouldoccurifwheatgrownafterapulsecropwasincludedintheswinediets.

Humanhealth:Findingsindicatethatreplacingsoybeanmealwithdrypearesultedinamarkeddecrease(-30%)inlifecyclerespiratoryorganics,althoughotherimpactcategorieswerecomparable.

Ecosystemquality:Findingsindicatecomparableeffectsonecosystemqualityinthecategoriesofaquaticecotoxicity,terrestrialecotoxicityandlandoccupation.However,thesoybeanmealdiethadgreaterterrestrialacidification/nutrification(17%),aquaticacidification(13%)impacts,whilethedrypeadiethadgreateraquaticeutrophication(63%)impacts.Decreasedfertilizerrequirementsinthedrypeadietresultedinaquaticandterrestrialacidification.

GHGemissions:ThetwoproductionsystemshadsimilarGHGemissions.Thedrypeadietdecreasednon-renewableenergyuseby11%,basedlargelyonthereductionofwheatinthediet.

Source:MacWilliametal,2011.

28

3.1.3SocialThesocialbenefitsofpulseproductioninSaskatchewanarenotwelldocumented,howeveranecdotalevidencesuggeststheshifttono-till,reductioninsummerfallow,andintroductionofnewcropssuchascanolainthe1970sandmorerecentlypulses,hasprovidedthemeanstokeepfarmersonthefarm,andkeepruralcommunitiesrelativelyintact.Atitspeakin1936,Saskatchewanhad142,000farms,by2011thatnumberhaddroppedtojustover37,000(Bitner,2010;StatisticsCanada,2011).Farmsizehasincreasedovertheyears,andSaskatchewanhasthelargestaveragefarmsizeinCanada,at1,668acres(675ha),andfarmsizesareincreasingatahigherratethaninotherregionsofCanada.Theaverageageoffarmoperatorsintheprovinceis54.2,whichisfairlyconsistentwiththenationalaverage.However,theruralpopulationisdecreasing,downto33%ofthepopulation,comparedto50%in1966and84%in1901(StatisticsCanada,2011).AnecdotalevidencefrominterviewssuggeststhatmanySaskatchewanfarmersgrowingcereal-fallowandcereal-canolawouldhavegonebankruptwithoutdiversifyingintolentilsandotherpulseproducts.Chickpeawaspursuedasapulsediversificationcrop,buttheascochytablightandlonggrowingseasonrequirementshavediminishedplantingsofthispulse.Thenextsectionprovidesmoreinsightintotheeconomicbenefits,asrecenteconomicreturnsfrompulseproductionshowsignificantbenefitstofarmersandtheprovincialeconomy,andthishasripplesocialeffectswithinruralcommunities.Thehealthaspectsofincludingpulsesindietsisanimportantindicatorofthesocialbenefitsofpulses,althoughNorthAmericanandCanadianconsumptionofpulsesappearstobefarbelowtheoptimallevel.Theroleofpulsesandlegumesindietarypatternsofpeoplewithdiabetescanbeimportanttoregulatebloodsugarlevelsandmoderatesymptoms.TheCanadianDiabetesAssociationClinicalPracticeGuidelinesrecommendthatalow-fatvegandiet(whichwouldincludepulseandlegumes)improvesglycemiaandplasmalipidsmorethantheconventionaldiets.Researchtestingdiabetespatientresponsetoacalorie-restrictedvegetariandietversusaconventionaldietdemonstratedasignificantdecreaseindiabetesmedicationuseinthevegetariancomparedtothoseonaconventionaldiet(a38%difference).Similarly,a“Mediterraneandiet”whichispredominantlyaplant-baseddiet(includingfruits,vegetables,legumes,nuts,seeds,cereals,wholegrains,amoderate-to-highconsumptionofoliveoil,andlowconsumptionoffishandmeat)isconfirmedtoimproveglycemiccontrolandcardiovascularriskfactors,includingsystolicbloodpressure.ThemetabolicadvantagesofaMediterraneandietimproveprimarypreventionofcardiovasculardiseaseinpeoplewithtype2diabetes(Dworatzeketal,2013).TheSaskatchewanPulseGrowersandPulseCanadaaresupportingresearchontheglycemicresponseofpulseflourandfractioningredients,inordertobetterunderstandhealthbenefitsandinformfuturedevelopmentofpulseingredientsandfoodproductmatrices(SaskatchewanPulseGrowers,2015).

29

3.1.4EconomicGrainproducersinSaskatchewanexperiencedaconvergenceoffactorsthatcontributedtotheuptakeofpulseproduction.Theenvironmentalaspectssuchasreducederosionandnitrogenfixationbenefitstothecurrentandsubsequentcrops,andsocialreasonssuchastheabilityoffarmerstostayintheagriculturesector,aredescribedabove.Buttheeconomicreasonsfordiversifyingintopulsecropsweresignificant.OneinfluencewasCanada’scommitmentin1994tocutgrainexportsubsidiesby21%involumeandby36%indollartermsoveraperiodofyearsaspartofitsagreementtotheGlobalAgreementinTradeandTariffs,andalsothe15%cutinsubsidiestograinundertheWesternGrainTransportationAct(DakersandFréchette,2001).Thishadadirecteffectongrainpricesandexportmarketdynamics.AnotherfactorwasthattheeconomicbenefitsofaddingpulsesincroppingsystemsinSaskatchewanwererecognizedovertime,asfarmersincreasinglyeliminatedsummerfallowperiods.Along-termcroprotationexperiment,firstestablishedin1967onBrownsoilsinSwiftCurrent,Saskatchewan,andrunninguptothe2002season,evaluatedtheeconomicperformanceofconventionaltillagemanagementpracticesinthissemiaridregion.Researchinvestigatedthemostoptimalcroppingfrequency,valueofapplyingnitrogenandphosphorousfertilizeratsoiltestrates,andtheadvantageofreplacingmonoculturewheatwithpulseoroilseedcropsgrowninmixedrotations.Findingsindicatedthatunderthemorefavorablegrowingconditionsbetween1985–2002(ascomparedtothepreviousstudycoveringthe1967–1984period),areaproducerscouldmaximizeeconomicreturnsbychoosingawheat-lentil(withnitrogenandphosphorousapplication)rotation,andeliminatingsummerfallowfromthecroppingsystem.Netreturnsfromthenextoptimummixesoffallow-wheatandcontinuouswheatrotationswere44%lessthanforthewheat-lentilrotation.Researchersfoundthatonlyifproducerswerehighlyriskaverse,didnotsubscribetoall-riskcropinsurance,orifthepriceforwheatwashighorpriceforlentillow,wouldthemonocroppedwheatsystemsbepreferredtowheat-lentil(Zentneretal,2007).Similarly,evidencefromareviewofempiricalstudiespriorto2002suggestedthatincludingoilseedandpulsecropsinrotationswithcerealgrainscontributedtohigherandmorestablenetfarmincome,inspiteofhigherinputcosts,acrossmostsoiltypes(Zentneretal,2002).Recenteconomicreturnsfrompulseproductionshowsignificantbenefitstofarmersandtheprovincialeconomy.Saskatchewan’sagri-foodexportsalesin2014wereCD$13.9billion,CD$2.7billionofwhichwerelentilsandpeas.Whilethevolumeoflentilexportshasincreased67%between2009and2014,thevalueofthoseexportsincreased37%.Peaexportsshowadifferenttrendoverthesameperiod,withthevolumeofpeaexportsincreasing19%,whilethevalueoverthesametimeperiodincreased56%(Saskatchewan,2015).Thecroptypesthatareputinrotationcanbeastrongdeterminantoneconomicreturns.McWilliametalreferenceonestudyintheBlacksoilzone,thenetreturnfor

30

drypeaafterbarleywas39%lowerthanthatforwheatafterdrypea.Whereasinanotherstudy,alegume-basedrotationofwinterwheatandvetchwasfoundtoproducea16%higherreturnoveracontinuouswinterbarleyrotation.However,McWilliametalcautionagainstsuchresults,particularlyforthenetreturns,asthemarketpricehasmoresignificanteffectthancosts,intermsofnetreturns,andmarketpricingcanbequitevariable.McWilliametalnotethatmanystudiesonincludingdrypeaorlentilinagrainorgrain-oilseedrotationsobservethecostsofproductionincreasing,butthatincreasedcostsareoffsetbyincreasedreturns,leadingtohighernetreturnstoproducers(McWilliametal,2011).Cropdiversityisahedgeagainstficklemarketsandchangesinprice.Farmersurveysin2011indicatethatfarmsgrowingpulsesproducealargervarietyofcropsthanfarmsnotgrowingpulses.Twenty-sixpercentofallpulse-producingfarmsreportfourfieldcroptypes,andoneintenfarmsgrowingpulsesgrowsevenormorefieldcroptypes,indicatingsignificanton-farmdiversity(Bekkering,2012).Anotheraspecttodiversificationincroptypesandpricingthatislikelysignificant:diversifyingthecroppingmixwithcropsthatdonothavecorrelatedpriceshelpsspreadmarketrisk.LentilhasthelowestcorrelationeffectsofcropscommonlyputinrotationinSaskatchewan.Byincludinglentilinrotationwithothercrops(refertothevaluesinTable1below)farmlevelrisksarereduced,asthepricesofthesecommoditiesarenotasstronglycorrelatedasgrainssuchaswheatandbarley.Drypeaalsohaslowercorrelationeffects,butnottothesamedegreeaslentil,andthereforemaynotofferthesameriskreductionaslentil(McWilliametal,2011).Lentilsinrotationaddconsiderablevaluetoeconomicreturnsincroppingsystemsovermultipleyears.TheSaskatchewanCropPlannerisavailabletofarmerstohelpestimatethepotentialincomeandcostsofproductionfordifferentcropsinthevarioussoilzonesintheprovince.ThePlannerfactorsincropprices,yields,inputssuchasfertilizer,othervariableandfixedcostssuchasmachineryandlabourcosts,landinvestmentcosts,andcropinsurancepremiums.Estimatesfromthe2015SaskatchewanCropPlannerindicatethatlentilsmakeanimportantrelativecontributiontothefinancialreturnsofrotationsindifferentsoiltypesfoundintheProvince(refertoTable1).Intheblacksoilzone,returnsovervariableexpensesfromlentilare38%oftotalreturnsfrombothrotationsover4years.TheBrownsoilzoneshowshighestreturns,withreturnsovervariableexpensesfromlentilexceeding60%oftotalreturnsfrombothrotationsover4years.ReturnsfromlentilovertotalrotationexpensesonaperacrebasisarealmostCD$100,comparedtodeficitsformostwheat,barley,oatandcorncrops,andmarginallybetterreturnsforredlentil,edibleyellow,ediblegreenpeas,soybeanandcanola(Saskatchewan,2015).TheserangesarelargelycorroboratedbythefindingsofMcWilliamsetal,whichappliedapartialequilibriumsimulationmodelbasedon2006pricestoassesstheeconomicdesirabilityofpulsecropsinrotations.Findingsindicatethatdrypeaandlentilrotationsarebettereconomicchoicesthantheoilseed-cerealrotation.Includingpulsesinrotationisfoundtobepositiveexceptwhenpulsepricesarelowandgrainandoilseedpricesarehigh(McWilliamsetal,2011).

31

Averagetotalexpensesforpulsecropsareroughlythesameasotherstubblecrops,withvariablecostsforpulsecropsbeingCD$180/acre,comparedtoCD$185/acreforallothercropsconsidered(tencropsincluded,rangingfromwheat,barley,oats,corn,soybean,flaxandcanola).Otherexpenses,includingmachinery,buildings,landaresimilarlycomparable,withpulsecrops(includinglargegreenlentil,redlentil,edibleyellow,ediblegreenpeas)costingCD$115/acrecomparedtoCD$116/acreforthetenothermajorcrops.Whenaddinglabourandmanagementintoproductioncosts,pulsesareslightlymoreeconomical,bringingtotalcoststoanaverageofCD$296/acreforpulsecrops,comparedtoanaverageof$302/acreforothercrops(Saskatchewan,2015).Areviewofempiricalstudiesfoundconsistentyieldadvantages,lessincomevariabilityandresourcesavingsinconservationtillageorno-tillagepracticeswhenincludingoilseedandpulsecropsintherotationwithcerealgrains,comparedtoconventionaltillage,andthereforetobehighlyprofitableintheBlackandGraysoilzonesoftheCanadianPrairies,duetosubstitutingherbicidesformoremechanizedtillage.IntheBrownsoilzoneandpartsoftheDarkBrownsoilzone,theshort-termeconomicbenefitsofusingconservationtillagepracticesaremoremarginalandlessprofitablethancomparableconventionaltillagepractices(Zentneretal,2002).

32

Table 1: Economic returns of lentils in rotations, based on different soils in Saskatchewan

BlackSoilZone Rotation 1 Rotation 2

Crop

ReturnoverTotalExpenses

($/ac)

ReturnoverVariable

Expenses($/ac) Crop

ReturnoverTotalExpenses

($/ac)

ReturnoverVariable

Expenses($/ac)Year1

Oats(onstubble) -27.60 87.79

SpringWheat(onstubble) 3.26 118.65

Year2

SpringWheat(onstubble) 3.26 118.65

LargeGreenLentil(on

stubble)96.35 211.74

Year3

LargeGreenLentil(on

stubble)96.35 211.74

CPSWheat(onstubble) -14.96 100.43

Year4

Canola(onstubble) 10.15 125.54

Canola(onstubble) 10.15 125.54

DarkBrownSoilZone

Rotation 1 Rotation 2

Crop

ReturnoverTotalExpenses

($/ac)

ReturnoverVariable

Expenses($/ac) Crop

ReturnoverTotalExpenses

($/ac)

ReturnoverVariable

Expenses($/ac)Year1

Chemfallow

SpringWheat(onstubble) 0.67 107.83

Year2

SpringWheat(onfallow) -67.96 104.03

LargeGreenLentil(on

stubble)199.12 306.28

Year3

LargeGreenLentil(on

stubble)199.12 306.28

Durum(onstubble) -6.02 101.14

Year4

Durum(onstubble) -6.02 101.14

Canola(onstubble) 18.43 125.59

BrownSoilZone

Rotation 1 Rotation 2

Crop

ReturnoverTotalExpenses

($/ac)

ReturnoverVariable

Expenses($/ac) Crop

ReturnoverTotalExpenses

($/ac)

ReturnoverVariable

Expenses($/ac)Year1

Chemfallow

SpringWheat(onstubble) -31.87 60.93

Year2

SpringWheat(onfallow) -63.65 83.21

LargeGreenLentil(onstubble)

184.33 277.13

Year3

LargeGreenLentil(onstubble)

184.33 277.13Durum

(onstubble) -19.18 73.62

Year4

Durum(onstubble) -19.18 73.62

Canola(onstubble) -25.42 67.38

Source:CropPlanningGuide,SaskatchewanMinistryofAgriculture,2015.

33

3.2 Sub-Saharan Africa

3.2.1ContextFooddemandisexpectedtoincreasedramaticallyinSub-SaharanAfrica.Around40%oftheglobaltotalpopulationgrowthbetween2010and2050willtakeplaceinsub-SaharanAfrica,withitspopulationprojectedtomorethandoublefrom814millionpeoplein2010to1.7billionby2050(Hilderinketal,2012).Thecorrespondingfooddemandsbythisgrowingpopulationisstriking(refertofigure2).YetindicationsarethatAfricawillnotproduceenoughstaplefoodssuchascerealtofeeditspopulation.Thelargesttradedeficitsgloballyin2023willoccurinAfricaandAsia,andindicationsarethatAfricanfoodproduction,particularlyofstaplessuchascereals,willnotkeeppacewithdemand(OECD/FAO,2014).DemandforpulsesinSub-SaharanAfricaareexpectedtoincreasefrom14.6millionMTin2015to22.7millionMTin2030and37.3millionMTby2050,withthemajoritybeingbeansandcowpeas(Robinson,etal,forthcoming).ThevastmajorityofpulsesaregrowninrainfedareasinSub-SaharanAfrica,with19.5millionhaofproductionbeinginrainfedconditionsin2015comparedtoonly339,000hairrigated,andthatratioislargelypredictedtoendureoutto2030and2050(ibid).

3.2.2EnvironmentalTheenvironmentalbenefitsofpulseproductioninAfricaarenotdocumentedtothesamedegreeasinSaskatchewan.Mostpulseproductionoccursinrainfedareas(97%oftotalcroplandisrainfed),withlowuseofinputsandrelativelylowyields.InEthiopia,whilepulsescovered12.4%ofthegraincropareain2014-15,theirrelianceonfertilizersisalmostnegligible.Onprivatesmallholdings,cerealcropsdemanded89%ofinorganicfertilizersapplied,whilefarmersonlyappliedroughly4%ofinorganicfertilizerstopulsecrops(Ethiopia,2015b).InGhana,smallholderscultivatingpulsesusebasictechnologieswithoutmechanization,mostlyuserecycledseedandapplyinsufficientfertilizersandagrochemicals.Inaddition,therearesignificantbioticyield-reducingpestsanddiseases,especiallyinthecaseofcowpea.NotethatinGhana,allfertilizersusedinthecountryareimported,mostlybyYaraanddistributedbyWienco.Usehasincreasedbyover500%since2000,accordingtoGhana’sMinistryofFoodandAgriculture,CropsServicesDirectorate(Rusikeetal,2013).

Figure 3: Projected global food demand

Source:Hilderink,etal,2012.

34

Similarly,ineasternDRC,allfertilizers,agrochemicalsandinoculantsareimported.Seedqualityispoor,despitedecadesofhigher-qualityseedproduction,distributionandassistancewithfarmerstoimproveuptake,withthecivilwarexertingsignificantnegativeeffect.Farmeraccesstocertifiedseedofimprovedvarietiesremainslowduetothelackofformalseedmultiplicationandmarketingsystems.Yieldsofcommonbeanhavefluctuatedoverthepastdecadewithnoupwardtrend(Rusikeetal,2013).Inthefuture,improvedmanagementpracticessuchasoptimalcroprotationsusingpulsecrops,couldbeanimportantmeanstopromoteappropriateapplicationandjudicioususeofsyntheticfertilizers,boostsoilfertilityandyieldsofsubsequentcrops.ThechallengeisforAfricanpulseproductiontonotonlymakehugegainsinrealized(on-farm)yields,buttoalsoadapttoachangingclimate,withincreasedwaterandtemperaturestress.Improvedaccesstoimprovedseedandagro-chemicalsandcomplementaryfarmpracticesareneededtocloseyieldgaps.Governmentpoliciesareneededtoreduceproductioncosts(e.g.throughsupportforsmall-scalemechanization),lowerproductionrisk(e.g.cropinsurance)andstabilizemarkets(e.g.commodityexchanges,pricesupports).TheAfricaAdaptationGapReportfindsthatwarmingprojectionsundermediumscenariosindicatethatextensiveareasofAfricawillexceed2°Cbythelasttwodecadesofthiscenturyrelativetothelate20thcenturymeanannualtemperature.Underahighwarmingscenario(over4°C),thatthresholdwouldbecrossedbymid-centuryacrossmuchofAfricaandreachbetween3°Cand6°Cbytheendofthecentury.Inthe2ºCwarmingscenario,allcropyieldsacrosssub-SaharanAfricawilldecreaseby10%bythe2050s,butiftemperaturesexceed3ºC,allpresent-daycroppingareasformaize,milletandsorghumwillbeunsuitableforthosecrops(UNEP,2015).Itisunclearhowfutureclimatestresswillimpactdiseaseoutbreaks.Fusariumwilt,afungalsoil-bornediseasethatinfestsallpigeonpeagrowingareasineastandsouthernAfrica,requireseitherimprovedseedvarietiesofseedsresistanttothisdisease,oruseofextendedrotationsorexpensivechemicals(Shiferawetal,2008).TheIntergovernmentalPanelonClimateChangeestimatesthatthenegativeimpactsofclimatechangeoncropyieldswillbemorecommonthanpositiveones,withchangesincropyieldsduetoclimatechange,withthebulkofyieldchangesexceeding5–25%after2030(IPCC,2014).DroughtmortalityandwaterriskwillbethehighestinAfricaduetoclimatechangeimpacts,andAfricancountriesareincreasinglyrecognizingtheneedtoaddressagriculturaladaptationpressures,andpromoteclimate-smartagriculture.InasimulationofhowSub-SaharanAfricanagriculturewouldadjusttoa5ºCincreaseuptheyear2090,projectionsindicate24%declinesinthemeanaverageyieldsformaizeanda71%declineinbeanproduction,indicatinghowvulnerableAfricanagricultureistosignificantchangesinrainfallpatternsandtemperature(Thorntonetal,2011).ChangesinmanagementpracticesandimprovingtheadaptabilityandstrengthofseedsystemswillbecrucialtobuildresilienceandadaptationinAfricanagriculturalsystems.

35

InAfrica,climateandenvironmentbenefitscanderivefrommultipleusesofpulsecrops.InTanzania,pigeonpeabiomasscanbeusedforfeedinglivestockorassourceoffirewood,therebyreducingfirewoodcollectionneedscarriedbywomenandchildrenandreducingdeforestationandlossofbiodiversity(Shiferawetal,2008).Alteringthetraditionalplantingmethodsofmaizeandbeanscaninfluencethenitrogenbalanceincroppingsystems.AstudyinCentralKenyawhichassessedtheeffectofsmallholdersshiftingfromasingleone-by-onerowsystemofalternatingmaizeandlegumes,toamodifiedtwo-by-tworowstaggeredarrangementfoundnitrogenbalanceswerenegativeinthemaize/beanandgroundnutscenarios,butneutralwithcowpeaastheintercrop,indicatingthenitrogenbenefitsofcowpeaintercropping(Mucheru-Muna,2010).Interventionsinthedrysavannah’sofNigeriaandNigeralsofoundmodifiedstrip-croppingofcowpeaandsorghum,withtheadditionoflivestocktoboostmanurenutrients,preventedthenutrientlossescausedbytheregion’straditionalfarmingsystems,andincreasedfarmerincomes(GatsbyCharitableFoundation,2014).Asustainabilitychallengeinglobalagriculturalproductionishowtoincreaseefficiencyonexistingagriculturallands,ratherthanextensivepracticeswhichpushproductionintoforestsandwetlands.InGhana,productionandyieldsofcowpeahaveincreasedwithgreaterproportionthanhectaresplanted,indicatingincreasedefficiencyinproduction.Thesetrendsarebeingdrivenbythedevelopment,release,availabilityandadoptionofqualityseedofimprovedvarieties;availabilityofmarketsandincreasingmarketdemandbyurbanconsumers;increasedprices,profitabilityandincentivesforfarmerstoadoptproductivityenhancingoptions,especiallytogrowandprotecttheircropsfrominsectpestattack.TheGhanaGrainsDevelopmentProjecthadconsiderableimpactoverthe1980sand1990s,helpingtoimproveyieldsthroughbettervarieties(19weredeveloped),agronomic,grainstorageandseedproductiontechnologies,betterseeddistribution,andextensionservices(Rusikeetal,2013).Giventhecurrentlowratesoffertilizeruse,climatechangemitigationcanbemaximizedwithsustainableintensification(e.g.,betterproductivityandreducingdeforestationpressure)andimprovedsoilcondition(e.g.,carbonsequestration).Improvementsinseedsandagronomicmanagementarefoundationaltocapturingtheseopportunities.

3.2.3SocialThesocialdimensionsofpulseproductioninAfricaincludesfoodsecurityandlivelihoods,householdbenefits,diversifieddietsandnutrition,andgenderaspects.NutritionandfoodsecurityNutritioniscloselylinkedtoincomeinSub-SaharanAfrica,andinmanyruralareas,alargeportionoffamilyincomecanbedirectedtowardsfood.Foodsecurity,livelihoods,householdbenefitsandnutritionareoftenquiteinterlinked.InSub-SaharanAfricathe

36

cowpeaisthemostconsumedpulse,followedbychickpeaandpigeonpea,onapercapitabasis,butthereareregionalvariations.Rwandahasthehighestpercapitaconsumptionofcommonbeansintheworld,alongwithBurundi,UgandaandEasternDemocraticRepublicofCongo(Rusikeetal,2013).InRwanda,beansprovide32%ofcaloricintakeand65%ofproteinintakeintheaveragediet,whileproteinfromanimalsourcesonlyaccountsfor4%(Asare-Marfoetal,2011).Rwandansconsumeroughly29kgofbeansperyear,morethandoublethatofneighboringUganda(SPIA,2014).Otherdataindicatesthat80%ofthepopulationconsumesbeansdaily,makingRwandaoneofthehighestbeanconsumersintheworld(Bertietal,2011).Resultsfromalarge-scalehouseholdsurvey5in2011indicatesthat87.9%offarmhouseholdsinRwandacultivatebeansaspartoftheircroppingsystem,andyetofthe708householdssurveyed,77%reportednotgrowingenoughbeansfortheirneeds,andoftenranoutafewmonthsafterharvest(ibid).Otherhouseholdsurveyresearchindicatesthatastheshareofimprovedbeanseedsplantedincreased,householddietarydiversityscoresincreased,showingaclearrelationshipbetweennutritionandimprovedseedadoption(LarochelleandAlwang,2014).InEthiopia,pulsesareculturallyessentialtothediet,basedonreligiouspracticesoffasting,whichdependonalternativesourcesofproteinwhenalmosthalfthepopulationdoesnotconsumemeat.Aschickpeahasanaverageof22%protein,theyareamoresustainablealternativetomeat.Thus,USAID/FeedtheFutureandPepsiCoareworkingwiththeUnitedNationsWorldFoodProgramme(WFP)onapilotprograminEthiopiatoimprovetheproductionofchickpeasbybuildingthecapacityoflocalfarmers,establishingdripirrigationsystems,andsupportinglocalmillers,processors,andpackers.CalledEnterpriseEthioPEA,thiseffortsupportstheEthiopiangovernment'sagriculturesectordevelopmentplansandaimstodramaticallyincreasechickpeaproductionbyimprovingyields,productionandavailability.WhileEthiopiaisAfrica'slargestproducerofchickpeas,thereremainshighpotentialtoincreaseyieldsandimprovequality.Theprojectintendstoenablenearly10,000Ethiopianfarmerstoseeatwo-foldincreaseinchickpeayieldwithimprovedpracticesandirrigation,andtodevelopalocallysourced,nutrient-rich,ready-to-usesupplementaryfoodtoaddressmalnutrition.TheprojectalsoseekstoscaleupandstrengthentheEthiopianchickpeasupplychain,forbothdomesticandexportmarkets.InTanzania,nutritionalaspectsofdrylandlegumessuchaspigeonpea,chickpea,andgroundnut,arenotedfortheircontributiontohelpovercomenutritionaldeficienciesduetodietslackingproteinsandoils,particularlyamongpoorfamiliesunabletoaffordmoreexpensiveanimal-basedfoods.Pigeonpeasprovideavitalsourceofproteinforpoorfamiliesandprovidecashformarginalfarmersinsemi-aridTanzania(Shiferawetal,2008).

5708householdsinRwanda’sNorthernandSouthernProvinces,and743womenand674children.

37

InKenya,theshareofsubsistenceproductionandconsumptionrangesfrom60-70%forbeansandcowpeas,ascomparedtoonly20%forcommercialgrainlegumessuchassoybean.InKenya,cowpeaisimportantforfoodsecuritybothasamajorleafvegetable(itcontainsmoremineralsandnutrientsthanmostothervegetables)andasagrain,andissoldinbothformstourbanmarkets.Similarly,inGhana,cowpeaisvaluedforfoodsecurityandacashcrop,with32%ofcowpeaproducedforsubsistenceproductionandconsumption.Thecowpeadrygrainisadailystapleforthemajorityofthepopulationandthegreenleavesofcowpeaareeatenasvegetables.Thedriedhaulmsareusedaslivestockfeed.InEasternDRC,commonbeanisthesecondmostimportantstaplefoodaftercassava,and50-80%ofcommonbeanproductioniscultivatedbysmallholders,usuallyintercroppedwithcassavaandmaize.InRwanda,commonbeanisthefirstmajorcropprioritizedon35%ofplots,andisthemostimportantlegumeforhouseholdconsumptionandforearningcashincome.Infact,itisoneofthemostimportantcashcropsformanyruralhouseholds.InNigeria,56%ofcowpeaproducedissubsistenceproductionandconsumption(Rusikeetal,2013).FoodsecurityanddiversityGrainlegumesaddedintothedietarefoundtocontributeimportantenergy,proteins,minerals,andBvitamins.Whenconsumedwithcereals,pulsescontributeproteins,mineralsandBvitamins,aswellastheessentialaminoacidlysine,whichincreasesthequalityofprotein.Whenaddedtorootandfruitstaples,theyraisetheproteincontent.Whenenergyandproteinarebothdeficient,leguminousoilseedscanplayanimportantroleinimprovingdiets.Legumeleavesarealsoimportant,astheyprovidesourcesofB-caroteneandvitaminC,aswellasmorefolicacid,calciumandirontoameal(deJager,2013).Thediversityintypesofproductionsystemswillinfluenceyieldratesorfarmeradoptionoftechnologies,suchasimprovedvarietiesorrotations.InRwanda,intercroppingreducesproductivity,whereasinUganda,nostatisticallysignificantyieldimpactisseenwithintercropping.InUganda,beansarefrequentlygrownwithbananas,whereasinRwanda,beansaremorelikelytobeintercroppedwithcropssuchasmaize,tomatoes,eggplants,andpeas(Larochelleetal,2014).Despitethevariationinwhetherfarmersfullyadoptedoronlypartiallyadoptedimprovedbeanvarieties,roughly22%ofRwandanhouseholdswouldbefoodinsecureintheabsenceofimprovedbeanscomparedtoonly13%afteradoptingimprovedvarieties(LarochelleandAlwang,2014).Theresearchfindingsindicatethattheimpactofimprovedseedvarietiesonfoodsecurityarebelievedbemorepronouncedthanthoseonbeanfarmincome.Thisisbecauseadoptionofimprovedvarietiesinfluencesfoodconsumptioninotherwaysthanjustthroughfarmprofitability.Authorsnotethat,frequently,improvedvarietieshaveshorterproductioncycles,whichcanfreeuplabourandallowhouseholdmemberstobeengagedinadditionalincome-generatingactivities.

38

Further,higherproductivitycanalsoallowhouseholdstofocusonothercrops,increasingdiversityinagriculturalproductionfoodconsumption(ibid).Researchapplyingeconometricapproachestoestimateprofitabilityatthehouseholdlevelandatthemarketlevel,accountingforthedifferencefromthecounterfactual,wasusedtoestimatetheimpactofimprovedbeanvarietiesreleasedsince1998onfoodsecurityinRwandaandUganda.Researchfindingsarethatfoodinsecuritywouldhavebeen16%higherinRwandawithouttheintroductionofimprovedbeanvarieties.Foodinsecuritywouldhavebeenanegligible2%higherinUganda(Larochelleetal,2014).Improvementsinbeanvarietiesonbothcountrieshaveoccurredthroughgeneticenhancementsorseedselectionprocesses.TheInternationalCenterforTropicalAgriculture(CIAT),ResearchAgricultureBureau(RAB)inRwandaandUgandaNationalAgriculturalResearchOrganization(NARO)haveworkedtocreate46improvedvarietiesinRwandaandasignificantnumberinUganda.InRwanda,CIAT-improvedvarietiesaccountedfor15%oftheareaplantedtobeansby2003(LarochelleandAlwang,2014).Povertywouldhavebeenabout0.4%and0.1%higherinRwandaandUgandarespectively,intheabsenceofvarietalimprovementstothisvitalsubsistencecrop(SPIA,2014).InUganda,theadoptionofimprovedbeanvarietiesbytheNationalAgriculturalResearchOrganization(NARO)andpartnersovertenyearswasfoundtobelessthan15%ofhouseholds,primarilyduetolimitedaccesstoseedofimprovedvarieties(Kalyebara,2005).Incontrast,Kenyahasseenmuchhigherratesoffarmeradoptionofimprovedseed,with80-90%ofthefarmersgrowingcommonbeaninKenyausingimprovedvarietiesdevelopedundertheGrainLegumeProjectimplementedinthe1980s(Rusikeetal,2013).Bio-fortifiedseedandfoodsecurityBio-fortifiedseedhasbeenlargelypromotedinRwandatoimprovenutritionandyields.Bio-fortificationinvolveseitherbreedingcropstoincreasetheirnutritionalvalue,whichcaninvolvegeneticengineering,orthroughconventionalselectivebreeding.Thebio-fortifiedbeanseedsdevelopedinRwandaarenon-GMOproducts,asthevarietieswereselectedfromnaturalvariationinthebeancollections.Asaresultoffoodinsecurity,householdsarealsovulnerabletomalnutrition,resultinginRwanda’sveryhighrate(43%)ofstuntingamongchildrenundertheageoffive.AcornerstoneofRwanda’sAgricultureSectorStrategicPlan(PSTAIII)isinterventionstoimprovenutritionandhouseholdvulnerability,andoneofthesixstrategicprioritiesisaprogrammetosupportbio-fortifiedfood,focusingonbeansfortifiediniron,vitaminArichmaize,orangesweetpotato,andfortifiedcassavaandrice.Theproductionandconsumptionofbio-fortifiedseedsistobeexpanded(Rwanda,2013).ThePSTAIIIseekstoincreaseproductionofbeansfrom452,828MTin2013to749,381MTby2017-2018.ThePSTAIIIalsoidentifiestheneedtomaintainaNationalStrategicFoodReserve,prioritizingmaizeandbean.

39

FivedistrictsofRwanda’sSouthernProvincethatwerestruckwithcassavabrownstreakwereprioritizedbythegovernmentforinterventionsbyHarvestPlusandpartnerstodeliver165,000metrictonesofqualityseedof‘highiron’beanvarietiestothesefarmers.By2014,about800,000ofRwanda’stwomillionbeanfarmerswereusingironenrichedbiofortifiedbeanvarieties,whichalsohavehigheryieldsthanlocalvarieties(HarvestPlus,2014).RwandanAfro-popstarsreleasedasonginlate2014,withsupportfromHarvestPlus,toextolthevirtuesofplantingandeatingiron-fortifiedbeans,fornutritionalhealth(See:https://www.youtube.com/watch?v=fo6449Rd3I0).GenderGenderaspectsofpulseproductionrelatesprimarilytowomen’sinvolvementinpulseproductioncommercially,tofeedfamilies,andtobenefitfromincomederivedfrompulsesales.InKenya,cowpeaisgrownprimarilybywomen.WhilewomendonottakepartinthevaluechainbeyondproductioninKenyaandRwanda,inGhanacowpeasarecultivatedbybothmenandwomen,butdominatedbywomeninpost-harvestprocessingandmarketing.CommonbeanisgrownbymostfarmersthroughoutRwanda,althoughtraditionallycommonbeaniscultivatedbywomen.InNigeria,cowpeaiscultivatedbywomenandmen,andgenderequityforwomenismoreapparentwhenwomencanmakedecisionsonquantitiessoldandthoseretainedforhouseholdconsumption(Rusikeetal,2013).AgenderframeworkdevelopedforpulsegrowingdistrictsofEthiopiaindicatesfivegender-relatedpillarsforimprovingpulseproductivity/managementandnutrition,includingknowledge,skillsandtrainingacquisition,participationinproductionanddecision-making,accesstoandcontroloverresources,andpolicydevelopment.Researchersidentifiedtheimportanceofconsideringgenderdifferencesinaccesstoland,technologiesandotherstrategicresourcesinpulsecropproductivity/managementandrelatedinterventions(Henryetal,2016).

3.2.4EconomicAgricultureistheeconomicmainstayofSub-Saharancountries,employingabout60%oftheworkforceandprovidinganaverageof30%oftheregion’sgrossdomesticproduct.EconomicbenefitsofaddingpulsesintorotationTheeconomicimpactsofincludingpulsesinrotationsareinfluencedbyavarietyoffactors,includingfarmerperceptionandknowledge.InUganda,theeconomicbenefitsofproducingpulsesisfoundtobeovershadowedbyfarmerperceptionsofmarketabilityofcertainproducts,unfamiliaritywithpulses,concernoverhighlabourcoststoproducepulses,orotherreasons.FindingsfromEasternUgandaindicatethatdespitepigeonpeaandmucuna(VelvetBean)beingprofitablewhengrowningoodsoilsandgroundnuthavingthepooresteconomicperformanceofcropsgrowninrotationwithmillet,farmerevaluationsindicatedastrongerpreferenceforgrowinggroundnut,whiletherewas

40

disinterestingrowingpigeonpeaandmucuna.Thisisthoughttobeduetounfamiliarityofpigeonpeaasafoodormarketcropandconcernsoverhigherlabourcostsingrowingmucuna,whichisoftengrownasagreenmanure/covercrop(Ebanyatetal,2010).InCentralKenya,theimportanceofimprovedmethodsofintercroppinghadsignificanteffectsoneconomicperformanceofbothgrainandlegumecrops.OnestudyoversevengrowingseasonsinCentralKenyawithsmallholdersassessedtheeffectofshiftingfromasingleone-by-onerows,alternatingmaizeandlegumes,toamodifiedtwo-by-tworowstaggeredarrangement.Legumeproductionwasalreadyoccurringinthissystem,sofarmerswerealreadyfamiliarwiththecrops.Thismodifiedintercroppingarrangementdidnotincreasetheamountoflegumeplanted,butdidshifttheintercroppingpatternswithmaize,commonbeans,cowpeaandgroundnut.Findingswerethatsmallholdersproducingmaizewereabletoincreasenetprofitabilityby40%onfertilesoilsbyapplyingthemodifiedstaggeredarrangementwithbeans.Onthelessfertilesoils,groundnutandcowpeawerebetteradapted,andthestaggeredarrangementsystemincreasednetbenefitby12–37%(Mucheru-Muna,2010).FarmersurveyresultsinEthiopiaindicatethatsmallholdersgrowvariouscropsfortheirownconsumptionand/oreconomicbenefits,andpulsescontributesignificantlyforthe7.9millionfarmersproducingthem,mostofwhomaresmallholders.Fababean,chickpeas,fieldpeas,andredharicotbeanscomprisethelargestproduction,andwhiteharicotbeanandlentilisalsogrown.Fababeanaccountsforthelargestproduction,at8.3millionquintals,whilechickpeaisthenextmostproducedpulse,at4.6millionquintals.PulsesgrowninEthiopia’s2014-15Meherseasoncovered12.41%ofthegraincroparea(Ethiopia,2015a).InNigeria,farmersrankcowpeaveryhighforcashfarmincomesandallocateitasignificantproportionoftheircultivatedarea.Farmerssellcowpeatobuystaplecereals,butalsoconsumecowpeathemselves.Inaddition,farmersrearinglivestockusecowpeahaulmsashaytofeedanimals.CowpeaprocessingisalsodominatedbyhouseholdenterprisesandSMEs,contributingtohouseholdincome(Rusikeetal,2013)Findingacroprotationsequencethatproducesthehighestreturnoninvestmentcanbeanimportantindicatorofwhetherfarmerpracticeschangetoincludepulsesoverthelongterm.InBenin,betterlaborproductivitywasmaximizedwhenlegumeswereintercroppedwithtraditionalsmallholderyamproductionoccurringinshiftingcultivationsystems.Thus,netrevenueandreturnoninvestmentwereachievedinyam-basedsystemswithlegumes,withsignificantreturnsoninvestment(Malikietal,2012).Whilemaize/cowpea,sorghum/cowpea,andmaize/sorghum/cowpeacropcombinationshadthehighestgrossmarginsperhectareinthefadamasofSouthernGuineaSavanna,NigerState,Nigeria,thereturnoninvestmentwasfoundtobehighestwithspinach,okraandsorghum/cowpea(Lawaletal,2010).

41

EconomicbenefitsfromimprovedseedTheeconomicimpactsofCGIAR-supportedimprovedbeanvarietiesinRwandaandUgandawasassessedthroughtheCGIAR-supportedproject‘DiffusionandImpactofImprovedCropVarietiesinSub-SaharanAfrica’(DIIVA).Economicimpactswereestimatedbasedonthechangeinfarmprofitamongadopterscomparedtonon-adoptersforimprovedversustraditionalvarieties,takingintoaccountadditionalrevenuesandproductioncosts,includingseedsandincreasedlaborrequirements.FindingsestimatethatRwandanhouseholdswhichplantedimprovedvarietiesincreasedtheirproductionby42kg/yr,therebyincreasinghouseholdrevenuebyUS$74.Similarly,Ugandanhouseholdssawproductionincreasesof40kg/yrtherebyincreasinghouseholdrevenuebyUS$63(SPIA,2014).Theaverageyieldgainoverlocalvarietiesfromadoptingimprovedbeanvarietieswasfoundto53%inRwandaand60%inUganda(ibid).LarochelleandAlwangreferencea2003studythatfoundtheRwandanyieldgainsoverlocalvarietiestobe900kg/ha,whichisalsoattributedtotheshiftfrombushtoclimbingbeansintheNorthernregionofRwanda.EstimatesidentifiedthiscontributedanannualadditionalvalueofUS$8.7milliontotheeconomy,fromtheadditionalproductionof28,888tons(LarochelleandAlwang,2014).AnotheranalysisinUganda,completedadecadeearlier,estimatingthenetpresentvalueoftotalbenefitstoUgandafrompublicinvestmentsinbeanresearchanddevelopmentestimatedittobeUS$19milliondollarsperyear,withaninternalrateofreturnontheinvestmentof41%(Kalyebara,2005).Insemi-aridTanzania,averageestimatedyieldgainsfromgrowingfusarium-resistantpigeonpeavarietieswasabout67%,withfarm-levelbenefitsresultingin80%highernetincomeperhacomparedtousingnon-diseaseresistantseeds(Shiferawetal,2008).Theaveragemarketedsurplusofadoptingfarmersin2003wasabout716kg/yr,whilethosegrowinglocalvarietiessoldonly349kgofpigeonpeas.Thisincreaseinyieldandreductioninvariablecostswasalsofoundtobenefitthegovernmentthroughincreasedtaxrevenuesreceivedfromproducersandconsumers,basedonatotaleconomicsurplusofUS$6.1million,withaninternalrateofreturnof32.2%.Pigeonpeaaccountedforabout50%ofthecashincomesofthesamplefarmersduringtheyear,demonstratingthekeyroleofthiscropassourceofcash.Adoptionofnewvarietiesmayalsogenerateothernon-quantifiedbenefits,thoughthesewerenotquantifiedbytheresearchers(ibid).TheCGIARestimatedthepovertyimpactsofimprovedvarietiesinRwandaandUgandain2011byaggregatinghouseholdleveldatatothemarketlevelandestimatingthedifferencesbetweenthecounterfactualandactualincomedistributions.Whilethemagnitudeofpovertyimpactsfromimprovedvarietieswerefoundtoberelativelysmall(between0.4and0.1%),thestudyfoundthatsomehouseholdsinbothcountrieswereabletoescapepovertybyadoptingimprovedbeanvarieties(Larochelleetal,2014).Itisnotedthatthemethodsusedtoestimatepovertyimpactsarelimited,asonlythegrowingyearof2011wasconsidered,andadistinctionwasmadeinwhichreleasedatestoinclude,suchthatthemeasuredadoptionratedroppedbyhalf,thusreducingpotentialimpactsofcropvarietaltechnology(ibid).

42

TheMalawiSeedIndustryDevelopmentProject,focusedonprovidinghigh-qualitygroundnut,pigeonpeaandbeanseeds,wascarriedoutwiththeInternationalCropsResearchInstitutefortheSemi-AridTropics(ICRISAT)andMalawigovernment,withsupportfromIrishAid,todiversifypredominantlymaizeandtobacco-basedproductionsystemsandaddressfoodinsecurityfeltbyfarmersandboostfarmincome.Since2008,directengagementalongtheseedvaluechainhassoughttodevelopthecapacityoflocalseedcompaniesandseedsavingbyfarmers,improvethepolicyenvironmentfortheseedtradeandcommercialdistributionnetworkforimprovedseeds,andengagewithfarmerassociationsthatreachsmallholdersandcontractfarmers.ThesuccessoftheprojectinboostinglegumeproductionandtherebyimprovingfoodsecurityandfarmincomehasresultedinlegumesnowbeingakeyfeatureoftheNationalExportStrategyandMalawi’sPresidentialInitiativeonPovertyandHungerReduction,whichhasaspecialcomponentonlegumes(Sichalatal,2013).Theresultsdirectlyreachedatleast2.2millionhouseholdsinprovidinglegumeseed.Theprojectedimpactofseedprovisionincludescoverageof128,000haofland,representingroughly33%ofcroppedareaundergroundnutandpigeonpeainMalawi.ResultsalsoincludedestimatedrevenueincreasesofUS$54millionfromseedandgrainsalesintothecasheconomy,andUS$30millionworthofgrainfromlegumesconsumedon-farm,accordingtoagovernmentspokesperson(ICRISAT,2014).Public-privatepartnershipshavebeeninstrumentaltolinkmarketdevelopmentandpolicycoherenceforimprovedseeduptake.ICRISAT’sMalawiSeedIndustryDevelopmentProjectcreatedapartnershipwiththeMalawiGovernment’sFarmInputsSubsidyProgramme(FISP),topromotecropdiversificationandincreaseuseofcertifiedseedamongfarmers.Duringthe2010-2011farmseason,theFISPprovidedsmallholderfarmerswithvouchersfor2kgofcertifiedimprovedlegumeseedsfromparticipatingmerchants,andreached395,000farmersafterfouryears(Sichaletal,2013).From2000,Nigeriahasexperiencedincreasedplantedareaandproductivityofcowpeaduetoimprovedseedvarieties,distributionofinsecticides,storagesystemsincludingthePurdueImprovedCowpeaStorage(PICS)bags,andstrongmarketsandprices.Effortstopromoteimprovedandnewvarieties,andseveralrelateddevelopmentprojectsfocusingonimprovedcrop-livestockintegration,includingPurdue,BMZ,AGRAandGatsbyprojects,hadsuccess.However,cowpeaproductionstilldoesnotmeetdemand,andNigeriaimportscowpeaduringsignificanttimesoftheyear(Rusikeetal,2013).TheAllianceforaGreenRevolutioninAfrica(AGRA),andtheAllianceforCommodityTradeinEasternandSouthernAfrica(ACTESA),arefacilitatingpositivechangesintheregulatoryregimesofindividualcountriesandregions.ThisworkenablesglobalinitiativesseekingsustainedandinclusiveagriculturalgrowththroughbetteralignmentbetweengovernmentandprivatesectorinterestsliketheNewAllianceforFoodSecurityandNutritionandGrowAfricatobesuccessful.Further,ACTESAhasbeenworkingtodevelopseedsectorpolicythatisharmonizedacrosstheregion.

43

BarrierstotechnologyandimprovedseeduptakeAnecdotalevidenceinRwandapointstothevalueofprovidingfarmersinRwandawithlowcostmicrobialinoculantstoboostnitrogenfixation.OneAcreFund,workingwithwithN2Africa,foundthisinterventioncutfertilizerusebyfarmersinhalfwhilemaintainingyields(whichwouldcarrysignificantenvironmentalbenefitsaswell).TheinoculantsonlycostamodestUSD$1perfarmerandresultedinadoublingoffarmerprofitsandreducedrelianceonchemicalfertilizer.OneAcreFundisbuildingonthisRwandanexampletoexpandthisprogrambothwithinRwandaandinothercountriesinEastAfrica(Guerena,2015).ObservationsfromtheCGIARDIIVAprojectpointstoevidencefromUgandathatshowedthatpoorerbean-producinghouseholdsarelesslikelytoadoptthenewbeanvarieties,whichtheCGIARsuggestscouldbeovercomethatifpoorerproducerscangainaccesstobetterbeantechnologies.ThisassertionmaybebasedontheexperienceinRwandaofmoreavailableagriculturalextensionservicesinmostregionsofthecountry,whichfavorsthespreadofnewvarieties(SPIA,2014).However,LarochelleetalalsonotethatlowsalespricesofbeansinRwandaalsoattenuatethepovertyimpactoftechnologyandimprovedbeanvarietyadoption(Larochelleetal,2014).FurtherconstraintsonRwandanbeanproductionincludethelackofsupplysystemsandlackofcoordinationinthemarkets(suchasmarketinformationforfarmersandlackofstandardmeasures),limitedpost-harveststoragefacilities,thehighopportunitycostofland,competitionfromcropsthataremoreprofitable,andthelimitedtechnicalandfinancialcapacityoffarmerstoorganizecooperatives(Rusikeetal,2013).Despitethesignificanteconomicbenefitofincreasedincomefromfusarium-resistantpigeonpeavarietiesgrowninsemi-aridTanzania(incomeincreasesof80%),manyfarmersinthegrowingareasdidnotadoptthedisease-resistantvarietiesmainlyduetoinadequatelocalsupplyofseedandaccesstoagronomicinformation.Asseedrequirementsforpigeonpeaaresmallandfarmersreportedbeingabletobuytherequiredseed,accesstofinanceandcreditwasnotalimitingfactorinpursuingdisease-resistantpigeonpeaseed.Findingsindicatedthatparticipationininformalseednetworks,on-farmvarietyselection,farmsizeandownershipofhouseholdtransportassetsincreasedthelikelihoodoffarmerstopursueimprovedseed(Shiferawetal,2008).ExportdimensionsInMalawi,MozambiqueandZimbabwe,cowpeavaluechainsaredominatedbyasubsistenceproductionandconsumptionpathway.InGhana,excessdemandforcowpea,groundnutandsoybeaninGhanadrivescrossbordertradeflowsalongexportcorridorsfromfoodshedsinTogo(Northernpart),BurkinaFaso(PouytengaandBobo-Dioulasso),Benin,NigerandCoteD’Ivoire(Korhogo).Becausemostofthecowpeasenteringcommercialtradearedirectlyconsumedbyhouseholdsasafoodstaple,thebulkofcowpeasaremovedfromthesurplusproducingareastoconsumptioncentersby

44

tradersviatruck.Thereisnoformalindustrialprocessingofcowpeaandlargetradersdonotbuycowpeaunlesstheyareprocuringforlargescaleprocessorswhentheygetcontractstosupplycowpea-maizeblendedflourtotheWorldFoodProgram‘PurchaseforProgress’whichdistributesitthroughschoolandrefugeefeedingprograms(Rusikeetal,2013).UgandahasbeenaconsistentnetexporterofdrybeanstoeasternandsouthernAfrica,andyetadoptedratesofimprovedseedislowerthaninRwanda.Incontrast,Rwandahasonlyrecentlyenteredthebeanexportmarketin2005,andcontinuestoimportdrybeansasneededtomeetdomesticdemand,fluctuatingbetweenbeinganetimporterandanetexporterofbeans(Larochelleetal,2014).TanzaniaisoneofthemajorgrowersandexportersofpigeonpeaineasternAfrica,exporting30,000–40,000tons/yeartoIndia(Shiferawetal,2008).Promotingexportcropsthatdonotcompetewithdomesticfoodproductionisascrucialforfoodsecurityasitisforrealizingeconomicbenefits.Rwanda’sPSTAIIIprioritizesFrenchbeanforimprovedproductionforexportmarkets(Rwanda,2013),whichmaybestrategicallybeneficial,asproductionofFrenchbeanislesslikelytocompetewithfoodcropsfordomesticuse,andalsomaycommandhigherprices.HoweverRwandamayneedtoimportmorepreferredpulsecropstomeetdomesticdemand.FarmersinRwandaarenotedforhavinghigherunitproductioncostscomparedtogrowersinDRCandUganda,makingRwandancowpeauncompetitivepricewisewithgrowersinneighboringcountries(Rusikeetal,2013).Rwandamayneedtokeepdomesticcowpeaproductionservingdomesticdemand,orenticefarmerstomoveintoexportcropsthatcanbesoldatmarginswellaboveRwanda’simportneeds.Therisk,however,isdecreasedfoodsecurityifmarketdynamicsorpriceschange.Afour-yearprojectseekingtocreatenewbusinessmodelsforsustainabletraderelationshipsinwhitepeabeanproductioninEthiopiademonstratedthefeasibilityofbuildingproductionandeconomicreturnsforanexportcrop,withoutimpactinglocalfoodproduction.WhitepeabeansarenotwidelyconsumedlocallyinEthiopia,astheyarenotpartofthetraditionaldiet.Beanproductionisashort-durationcrop,well-suitedtothelowrainfallconditionsintheregions,andprovidesmuch-neededcashduringtheleanertimeoftheyear,betweenSeptemberandMarch.Farmersreceivedtrainingonimprovedpractices,includinguseofimprovedseed,plantingrowsatspecificdensities,timelyweeding,harvestingandin-fielddrying,threshingoncanvasandnotontheground,andcleaningseed.Farmerswerealsoabletoaccessmicro-financeforbuyingimprovedseed,withpaybackprovisionsattheendofthegrowingseason.Resultswerestrong:farmingfamiliesearnedabouttwiceasmuchsellingwhitepeabeansforexportthantheywouldhaveobtainedfromsorghum,thesecondmostcommonlygrowncropintheregion.Atotalof4,746familyfarms(and24,000familymembers)increasedtheirprofitbyUS$164-$227perhousehold,andmorethandoubledyields.Theincomefrombeansrepresentedasignificantportionofhouseholdincome(15–20%)andprovidedfamilieswithameansofbuyingcheaperfoodinthelocalmarket.Theirincomefrom

45

beansincreasedfromUS$160to$230onanaveragehalf-hectareplot.Bytheendofthefouryears,theprojectsupplied15,000farmerswithimprovedseed,productivityincreasedfrom0.7MT/hato1.4MT/ha,diseasepressureswerereduced,andeffortswithUKretailersforsupplychaindevelopmentandexportmarketaccesswerematured.However,theimpactandoutcomesofthesupplychainandmarketaccessinterventionsoftheprojectwereweakenedbydrought,personnelchangeswithintheUKpurchasingcompany,economicrecession,andchangestotheEthiopianbeansupplychainwiththecreationofanewcommodityexchange,whichblockeddirecttradingrelationships(Ferrisetal,2012).

4. A framework: evaluating multiple benefits of pulse production Theframeworkbelowisintendedtodefinetheelementsofsustainabilitytobemeasuredorevaluatedinanygivencontext,giventhediversitybetweencroppingareasandgeographiccontextsofsuitablepulsegrowingareas.Itisalsointendedtoprovideameanstoevaluatethepotentialsustainabilitycontributionsofpulsesshouldtheybebroughtintoacroppingsystem,orasameanstoincreasecroprotations.Thedevelopmentoftheframeworkisbasedontheliteraturereviewandtwocasestudiesinthisreport.Itisnotintendedtoreplaceaproductionstandardorproductcertificationscheme6thatproducerscouldapplyattheproductionlevel,butwouldcertainlycomplementandaddtosuchperformancemeasures.Eachcriterionorkeyelementcontainsasetofquestionstoguideevaluationofthesustainabilityofinterventions,includingcommontrade-offsthathavebeenobserved.Thequestionsshouldbeadaptedtolocalcircumstancesortotheappropriatescale,andareintendedasastartingpoint,ratherthanacompletesetoffilterstotestinterventionsagainst.Thisframeworkseekstoidentifythescalesatwhichsustainabilityattributesofapulsecrop,oraddingpulsesintorotations,canbeunderstoodandevaluated.Theenvironmental,socialandeconomicbenefits(andrisksortrade-offs)ofpulseproductionoccuratvariousscales(refertoFigure3).Ofcourse,sustainabilityattributescanoccuratmultiplescales,suchasincreasedincomebenefittingfarmersandregional/nationaleconomies,ornitrogenfixationincreasingcerealcropyieldsandreducingafarmer’srelianceonfertilizerwhichalsocarriesglobalbenefitsthroughreducedN2Oemissions.Effortstoincreasepulseproductionwillbewellservedifaccompaniedbymeasurestoevaluateenvironmental,socialandeconomicbenefitsatallrelevantscales.

6ExamplesincludetheSAN’sSustainableAgricultureStandard,GLOBALG.A.P.andothers.

46

Figure 4: Attributes of pulse crop sustainability at various scales

Source: Author generated

47

Table 2: Summary of criteria and guiding questions to evaluate the economic, social and environmental benefits of pulse production

Environment Criterion or key

attribute Question to guide evaluation of impact/benefit Sources/case study elements + Trade-offs

Ability of pulse crop to offset fertilizer

needs within cropping system

• Choiceofthepulsecrop–basedonnitrogenfixation

rates,marketdemand,farmerfamiliarity,etc.

• Doesthecropsequenceintherotationensure

maximumtransferofnitrogentosubsequentcrop?

• Afterpulsesareaddedtotherotation,cantimingand

amountsoffertilizerbefurtheroptimized?

• Othernutrientmanagementstrategiesinplace?

• Arerhizobiuminnoculantssufficienttoensure

maximumnodulation?

• Canthetreatmentofcropresiduesbeoptimizedfor

nitrogenbenefits?

• Choiceofpulsecrophaseconomicandsocial

dimensions

• Theglobaleffectsofoveruseofsynthetic

fertilizersisofhighconcern(Canfieldetal,2010)

• Nitrogenforsubsequentfieldcropwell

documentedinSaskatchewanandsouth-eastern

Australia

Ability of pulse crop to offset or reduce

herbicide and pesticide use

• Canmanagementpracticesbemoderatedtooptimize

useofherbicides(notingthatatransitionperiodmay

benecessary)?

• Shiftsintillagerequirestransitiontime,herbicide

usemayincreasebeforethendecreasingover

time(hasbeenobservedinSaskatchewan(Brandt,

2010))

Diversify the cropping sequence

• Willtheadditionofapulsecropminimize

competitionwithothercropsformoistureand

nutrients?

• Diversifyingcroppingsequencescanbemaximized

todeliversocialandeconomicoutcomes,beyond

environmentalones.

48

• Doestheadditionofthepulsecropresultina

reductionoftillageandsoildisturbance?

Productivity improvements rather than area expansion

• Canyieldincreasesberealizedwithoutspatial

expansion,intheshort-andlong-term?

• Ethiopia’sriseinchickpeaproduction(Ethiopia,

2015b)

• Ghanacowpeaproduction(Rusikeetal,2013).

Applications to improve livestock

pasture

• Aretherelivestockfeedapplicationstoimprove

pasture?

• Howtomaximizenitrogenbenefitstosoil?

• Willitimprovenutritionalvalueforlivestock?

• Balancinglivestockproductionandfoodsecurity

throughpulses:Nuliketal(2013);Anderson,etal

(2007)

Ability of pulse crop to reduce GHG

emissions

• Reducedtillage(soilcarbonemissions)

• Reducedfertilizeruse(reducedenergyinputand

reducedN2Oemissions)andincreasedyields

• Canalteredrotationsorintercroppingsequencesand

timingmaximizenitrogenbenefits?

• Ifpulsefractionsarebeingconsideredin

manufacturedfoods,doesthepulsefractionensure

lowerGHGemissions?

• Indicationsarethatthemoreoftenapulsecropis

growninrotation,themoreGHGemissionsare

reduced(Lemkeetal,2007).

• Notethatpeaproteinfractionproductionwas

modeledtohavea60%decreaseinGHG

emissionsanda52%decreaseinnon-renewable

energywhencomparedtosoyproteinisolate

production.However,peastarchdoesnotcarry

suchbenefits;ratherGHGemissionsincrease.

Reduced non-renewable energy

use

• Reducedtillagerequireslessmechanizedequipment

useandfuel

• LCAanalysis:McWilliametal(2011)

• NotethattheLCAanalysisidentifiesdrypea

ethanoltonotbecomparabletowheatethanol,

souseinbiofuelsislimited

Water use efficiency and management

• Canthepulsecroptakeadvantageofresidual

moistureandnotcompetewithfoodcropsforwater

andnutrients?

• Nuliketal(2013):growingpulsesforforageinthe

shoulderseason,whenlandisfallowed

Improved soil management

• Minimizedpulsecroppingonhighlyerodiblesoils;

minimizeoreliminatetillage

• Isdependentonascertaininglocalconditions;

pulseshavebeenshowntoperformwellinpoor

soils,andcanimprovesoilsifmanagedwell

49

Social Criterion or key

attribute Question to guide evaluation of impact/benefit Sources/case study elements + Trade-off’s

Food security • Whatfurtherpracticeandyieldsimprovementsbe

madewithexistingpulsevarieties?

• Cantheintroductionofpulsesintocroppingsystems

benefitexistingfoodcrops?

• Ifintroducingapulsecropforexport,howtoensureit

doesnotnegativelyimpactlocalfoodsecurity?

• Howcanvaluechainsbesupportedanddeveloped

forasolidbalancebetweenimprovedmarketaccess

andincreasedon-farmpulseconsumption?

• InRwanda,householddietarydiversityscores

increasedasimprovedseedratesincreased

(LarochelleandAlwang,2014).

• Malawi(ICRISAT,2014)

The addition of pulses in the diet

boosts nutrition

• Pulsesprovidegreatestbenefittodietswhen

combinedwithotherfoods.Howtoeducate

consumersonthebestcombinations?

• Howtopromotepulsesasatastyandsustainable

alternativetomeat?

• deJager,(2013);Rusikeetal(2013)

• Pulsesregulatesbloodsugarlevels,improves

glycemiaandplasmalipids.Wheneatenwith

cereals,addsproteins,mineralsandBvitamins,

andessentialaminoacidlysine.Legumeleaves

canalsobeeaten.

The addition of pulses in the diet

reduces likelihood of disease

• Whatarethebestways(media,targets,message)to

promoteawarenessofthehealthbenefitsofpulses?

• Dworatzeketal(2013)andCanadianDiabetes

Association

• Reducesbloodcholesterollevelsand

cardiovasculardiseaserisk,lowersbloodpressure

Protein content of a cereal crop increases

• Whatarethespecificconditionsthatcanmaximize

theboostingofproteincontentofthesubsequent

(likelycereal)crop?

• Saskatchewanlife-cycleanalysis(McWilliametal,

2011)

50

following a pulse crop

• Thisfactorisnotindependentfromwatersupply

inthecaseofSaskatchewanlentiladdedto

rotations(Ganetal,2014)

Multiple uses of crop residues

• Cancropresiduesbeusedforalternativeuses,

withoutdecreasingnecessarybiomasstorestoresoils

andmaintainnitrogenbalance?

• Shiferawetal(2008)

Reducing pressures of increased meat

production

• Howtopromoteconsumerawarenessofhealthy

alternativestomeat,andincreaseuseoffractions?

• Addingpulsestolivestockdietsimprovespastures

andqualityoflivestock

• ImprovedforageandpastureintheUSGreat

Plains(Anderson,etal,2007)andIndonesia(Nulik

etal,2013)

Boosting nutritional content of

manufactured foods

• Canpulsefactionsbeeffectivelyincorporatedinto

processedfoods?

• Howcanthefoodindustrydevelopmarketlegume

productsgiventhehigherrawinputpricesoflegumes

vscereals?

• Importanttoensurepulseproductionforfractions

andexportmarketsdoesnotrisklocalfood

security

Increase global and regional production

of crops with climate adaptation capability

• Howcanaddingpulsesintorotationsnotcompete

withothercropsforwaterandnutrients,while

maximizingclimateadaptability?

• Canlocally-adaptedpulsevarietiesandvarietiesbred

foradaptabilitybepromoted?

Women’s role in production,

processing and sales

• Womenhaveameaningfulroleinthevaluechain,as

wellasmanagingprofitstofeedfamiliesand/or

supportincome-generatingactivities.Howcantheir

engagementbesupportedandpromoted?

• Insomecountries,women’sroleinpulsevalue

chainsdirectlyimpactsfoodsecurity,household

incomeandlivelihooddimensions

51

Getting the enabling environment right for

pulses

• Howtocreatetheresearch,technicalandextension

supporttoimproveproductionpractices?

• Howtopromotepartnershipstolinkfarmerstoviable

marketsandpromotetrade,withoutriskingfood

securityorincreasingdependencyonimports?

• Public-Private-Partnershipstomakethepolicyand

privatesectorconnection

• Arepulsesprioritizedinagriculturesectorplans?How

canbenefitsfrompulsesbeunderstoodbypolicy

makers?

• RwandaprioritizespulsesinAgsectorplan

• DespiteitssignificancetotheIndiandiet,

productionsupport,marketpricecontrolsand

importtariffshavenotbeenmaximizedfor

environmentalandsocietalbenefits

• Harmonizedseedsectorpolicy:Alliancefora

GreenRevolutioninAfrica(AGRA)+Alliancefor

CommodityTradeinEasternandSouthernAfrica

(ACTESA)

Economic Criterion or key

attribute Question to guide evaluation of impact/benefit Sources/case study elements + Trade-off’s

Lower fuel costs • Howcanuseofmechanizedequipmentbedecreased

orminimized?

• Argentinano-till(Lorenzatti,2006)

• Saskatchewan(McWilliametal,2011)

Labour productivity • Whatisthemostefficientwaytointroducepulses

intotheexistingrotationcycle,tomaximizelabour

use?

• Howcanchangesinlabourrequirementsmaximize

benefitstofarmers(e.g.timetocultivateothercrops,

providingreliablesourcesofincome)

• Argentina(Lorenzatti,2006)

• Rwanda(LarochelleandAlwang,2014).

• Benin(Malikietal,2012).

Increased income from added rotation

+ financial

• Howtoacropmixandrotationsequencewiththe

highestreturnoninvestment?

• Inregionswherepulsesareunfamiliarorknownrisks

arehigh,howcanfarmersreceiveassistance

(improvedpractices,improvedseed,low-interest

• Increasedinputcostsoffsetbyincreasedprofits

(Zenteretal,2002;McWilliametal,2011)

• FarmersdoubledincomeinIndiafromimproved

managementpractices(Shah,2011)

52

contribution of pulse crop

loanstooffsetrisk)toincreaselikelihoodof

incorporatingpulsesintotheirrotations?

• Variabilityinmarketpricingandpulsecroptype

canstronglyinfluenceprofitability(McWilliamet

al,2011)

• Pulsesincreaseincomeexceptwhenpulseprices

arelowandgrainandoilseedpricesarehigh(ibid)

Increased income from higher yield on

subsequent crop

• Howtodecreaseriskofnutrientcompetitionor

suppression,andmaximizethenitrogenbenefitsfrom

thepulsecroptothesubsequentcrop?

• GrainsinAustralia,USandCanada;yamsinGhana

• Therearedifferencesinyieldpossibilities

dependingonwhetherpulsesareintercroppedor

addedtorotations

Lower costs due to conservation tillage

or no-tillage practices

• Ifchangesintillagefrequency,lowerfueland/or

labourcostsarepresent.

• Herbicidesusemayincreaseasmechanizedtillage

isreduced.

• Maydependonsoiltypesandlocalizedconditions

Avoided costs of less soil, air and water

degradation

• Howcanlong-termbenefitsofpulseproductionbe

bestunderstoodineconomicterms?Avoidedcostsof

soilandecosystemdegradationcanbesignificant.

• Hardtoestimatethese.

• Life-cycleanalyseshelpframescopeandscale

(McWilliametal,2011)

Investments in crop research have high

rates of return

• Howcanresearchofimprovedpracticesandseed

bestbedisseminatedformaximumpublicandprivate

benefit?

• 1%levyonSaskatchewanpulsesalesand

investmentsmadebySaskatchewanPulse

Growers

• CGIAR(SPIA,2014)

Livestock forage system

intensification

• Howcanlivestockforagesystemintensificationoccur

withleastdownsiderisk?

• Dependentonmarketpricingandlabouruse

efficiencies

53

5. Applying the framework for decision support Theframeworkdefineselementsofsustainabilitythatcanguideevaluationoftheeconomic,socialandenvironmentalbenefitsand/ortrade-offsofpulseproduction,oraddingpulsesintocroprotations.Inordertobetterunderstandhowtheframeworkcanbeapplied,thissectiondefinesitsapplicationwithinthecontextofhypotheticaldecisioncases.Thesearereal-worlddecisionpointsthatthefoodsector,pulseproducers,orgovernments,arelikelytoengageinthepulseproductioncontext.Thesehypotheticalactionsteps(columns1and2inTable3)areadaptedfromNegra’s(2015)distillationofkeymessagesfromthescientificliteratureofrelevancetokeyaudiencegroups,whichisacomplementaryknowledgeproducttothisone,alsocommissionedundertheauspicesoftheInternationalYearofPulses.Thisapplicationoftheframeworktothehypotheticalactionstepsbelowisintendedasinitialguidanceonly,andpresentssomeoverarchingdecision-supportandquestionsforfurtherinvestigationrelatedtoqualitativeandquantitativeanswerstotestperformancealongkeyenvironmental,socialandeconomicindicators.Thesemustbedesignedtosuittheuniquecircumstancesinwhateverproductionregionisbeingevaluated,andsuitedtowhatevermanagementobjectivesmightalreadybeinplace(e.g.adherencetoaproductionstandard,adherencetonationallaws,etc.).Again,theframeworkisnotintendedtoreplaceaproductionstandardorproductcertificationscheme,butwilladddimensionsthatareuniquetothepulseproductioncontext.Theoverviewofframeworkelementsthatapplytoeachactionareainthetablesbelowarenotacomprehensivelistingofallthatwouldapply,butratherindicativeofthegeneralareastocover.Thisapplicationhelpsdefinehowsustainabilityattributesmustbetestedatthethreescales—productionlevel,regionallevelandgloballevel.Thisisintendedasarudimentarystartingpoint,andapplyingthisinrealcontextswouldrequireamuchfineranddetailedassessment,withdecision-supportguidanceforallcriteria/attributesnecessaryformeasuringperformanceagainst,andhowthosecriteria/attributesshouldapplyineachofthethreescales.Effectiveevaluationofperformanceandhowtobalancetrade-offscanonlybemadethroughmoredetailedassessment.

54

Table3:Applicationoftheframeworktofoodsectoractors(pulsemanufacturers,suppliersandtraders)

Potentialaction

Examplesofsub-

activities

Frameworkelementsthatapply

Scalestomeasureperformanceorimpact

Increa

seuseofp

ulsesinprod

uctlines

§ Boostcustomerdemandthroughawarenessraisinganddiversificationinproductlines

§ Increasetheuseofpulseflourblendedintomanufacturedfoods(fractions)

§ Increasemanufacturers’understandingofhowtousepulses.

Ø Environmental:Allenvironmentalcriteriaandattributesintheframeworkshouldbeevaluatedtoidentifywhichonesarerelevant,andatwhatlevelsinthesupplychaintheycanbetrackedorinfluenced(sourcingdirectlyfromaregionwillincreaselikelihoodofinfluencingproducersdirectly)

Ø Social:Same–almostallframeworkcriteriaandattributesshouldapply.Workwithsuppliersandproducerstoobtainperformancemeasures.

Ø Economic:Same–almostallframeworkcriteriaandattributesshouldapply.Workwithsuppliersandproducerstoobtainperformancemeasures.

Ø Production:Dopracticesintheproducingregionminimizeenvironmentalandsocialcosts,whilepromotingenvironmental(e.g.goodnutrientmanagementstrategies)andsocialbenefits(e.g.foodsecurity)?Isaproductionstandardinplaceorbestpracticesbeingapplied?

Ø Regional:Whatelementsofregionalvalueneedcanbeaccountedfor,suchaswateruseefficiencyandmanagement?Arefoodsecuritybenefitsandeconomictrade-offsminimizedattheregionalscale?

Ø Global:Doestheactionpromoteuseofnitrogen-richandprotein-richplantfoods,whiledisplacingordiversifyingfromnitrogen-depletingandprotein-richanimalfoods?Netreductioninnon-renewableenergyuseandGHGemissionsattheproductionlevel,andemissionsminimizedthroughoutthesupplychain?

55

Potentialaction

Examplesofsub-

activities

Frameworkelementsthatapply

Scalestomeasureperformanceorimpact

Sourcesu

staina

blyprod

uced

,highqu

ality

,traceab

lepulses § (company-level)

Developsustainablesourcingcriteria.

§ Buildmonitoringintobusinessoperations(e.g.,HACCP)

§ (sector-level)Agreeoncrediblesustainabilityindicators/standardsandverificationmechanismsthroughplatformsforcooperativemarketaction.

Ø Environmental:Docroprotationsmaximizenitrogenandnutrientmanagementoptionsformaximumyieldandmaximumlong-termsoilhealth?Areproductionstandardsorbestmanagementpracticesinplace?Whatcriteriainadditiontothestandardshouldbemeasured(e.g.fueluse,diversificationofthecroppingsequence,integrationoflivestock,etc.)?

Ø Social:Ifaproductionstandardisinplace,whatsocialcriteriaapply?Whatadditionalsocialcriteriacanbeattained(e.g.measuresfornutritionandfoodsecurity,genderequityinthesupplychain,consumerawarenessoftherangeofsustainabilitybenefits,etc.)

Ø Economic:Islabourproductivitymaximized,farmerincomeincreased,fuelandassociatedcostsdecreased?

Ø Production:Istheprovenanceknownandtraceabilityclear?Canenvironmental,socialandeconomicbenefitsbemeasuredattheproductionscale?Areeconomicbenefitsmaximizedattheproducerlevelfrombestmanagementpractices(technicalassistanceprovidedandpremiumspaidtofarmers)

Ø Regional:Canenvironmental,socialandeconomicbenefitsandtrade-offsbemeasuredinthesupplychain?Arewateruseefficiencyandmanagement,andnutrientmanagementoptimized?Adequateinvestmentsmadeinpost-harveststorageandmarketefficiency?

Ø Global:Increasedconsumerawarenessoftheenvironmentalandsocialbenefitsofpulseconsumption,includingcertifiedproducts?Netreductioninnon-renewableenergyuseandGHGemissions?Increasedplant-basedproteinavailability?

56

Table4:Applicationoftheframeworktopulseproducers(bothsmallandlarge-scale)

Potentialaction

Examplesofsub-

activities

Frameworkelementsthatapply

Scalestomeasureperformanceorimpact

Integratepu

lsesintofarm

ingsystem

s

§ Identify,acquire,anduseappropriatepulsevarieties,productionpractices,andmechanicaloptionstooptimizesystemproductivity.

Ø Environmental:Canthecropsequenceintherotationensuremaximumtransferofnitrogentosubsequentcrops?Howcanthetreatmentofcropresiduesbeoptimizedfornitrogenbenefits?Canyieldincreasesberealizedwithoutspatialexpansion?Canthepulsecroptakeadvantageofresidualmoistureandnotcompetewithfoodcropsforwaterandnutrients?

Ø Social:Wouldpulsescontributetoincreasedfoodsecurity?Howtobestpromotetheproteincontributionsofthepulsecroptothesubsequentcerealcrop?Howtooptimizecropresidueuse(trade-off:useforlivestockmaymeanlessreturntosoils)?Howcangenderbenefitsbemaximized(womenhavemeaningfulroleinsupplychainandmanagementofprofits)?

Ø Economic:Howcanchangesinproductioncostsbeunderstood(pulseproductionmaycarryhighercosts,butthenetreturnoninvestmentaftertheharvestissoldmaybehigherthanforcerealcrops)?Isthereincreasedincomefromintroductionofthepulsecropinrotation?Howcanlabourproductivitybemaximized?Cantheriskofnutrientcompetitionorsuppressionbetweencropsbeminimized,inordertomaximizethenitrogenbenefitsfromthepulsecroptothesubsequentcrop?

Ø Production:Canherbicideandfertilizerusebeoptimizedandoverallusedecreased?

Ø Regional:Arethesocialandeconomicimpactsofaddingpulseswellunderstood,andpositivebenefitsmaximized?Efficientwateruseandmanagement?Canlocally-adaptedpulsevarietiesandvarietiesbredforadaptabilitybepromoted?

Ø Global:Doestheincreaseinpulseproductionprovidemoreplant-basedproteinandimprovednetnitrogenmanagement?Netreductioninnon-renewableenergyuseandGHGemissions?

57

Potentialaction

Examplesofsub-

activities

Frameworkelementsthatapply

Scalestomeasureperformanceorimpact

Adop

tand

repo

rtonsustaina

bleprod

uctio

npractic

es/certification •Learnandapply

recommendedpracticestooptimizefarmsystemandlandscapesustainability.

•Understandbuyers’reportingexpectations;buildmonitoringintofarmoperations.

•Helptodevelopsustainabilitystandardsandfeasiblereportingprocesses;advocateforpricepremiumsorpreferredmarketaccessforverifiedsustainableproducts.

Ø Environmental:Areproductionstandardsandcertificationinplace?Somecertificationsystemspromotetheincreaseduseoffallowareas,whereasincreasingpulsecropsinrotationsusuallymeanslessfallow;arethesetrade-offsqualitativelyunderstood,andwilltherebenetbenefitstosoilhealthbyintroducingpulses?Whatothernuancesofpulseproductionmaynotbebestevaluatedbythestandard(e.g.GHGemissions,tillageandcropsequencing)?Whataspectsofsustainabilitybeyondtheproductionunitshouldbebroughtintokeyperformanceindicators(KPIs)?

Ø Social:Doesthestandardincludeasocialcomponent?Basedontheframework,adoptthosethatfitthecontext.

Ø Economic:Somestandardsconsidereconomictrade-offs(suchaspesticideuseversuscroplossesorcostofmitigation).Whataretheeconomicattributesinthepulseframeworkthatthestandardomits?

Ø Production:Methodstooptimizefertilizerandnutrientmanagement,minimizationofherbicideuseandphasedapproachespeciallyiftillagepracticesarealtered.Socialaspectsaddressedincludingfairdistributionofprofits(insupplychain),gender,labouruseefficiency,decreaseddependenceonnon-renewablefuels(relatestotillage),optionsforlivestockintegrationandforestintensification.Canavoidedcostsduetolesssoil,airandwaterdegradationbequantified?

Ø Regional:Avoidedcostsduetolesssoil,airandwaterdegradationhaveregionalimplications.Isregionalfoodsecurityimproved?Wateruseefficiencyandnutrientmanagementwillhaveregionalimplications.

Ø Global:Improvedpracticesresultsinlonger-termsoilintegrity(aglobalresource)andimprovednitrogenbalance.

58

Table5:Applicationoftheframeworktogovernments(policymakersinpulseproducing(orsuitable)jurisdictions)

Potentialaction

Examplesofsub-

activities

Frameworkelementsthatapply

Scalestomeasureperformanceorimpact

Investin

R&Dan

dextensionservices

§ Fundresearchonproductivity,sustainability,andriskreduction.

§ Providetrainingandresourcestopromotesustainablepulseproductionacrossdiversefarmingsystems.

Ø Environmental:Canmulti-yearresearchonsoils(nutrientsandmanagement),nitrogen,cropsequencing,tillagepractices,crop-livestockintegration,andyieldimprovementwithoutcropexpansionbesupported?Giventhefocusoninvestmentalreadyinplantgeneticsandyieldimprovement,howcanunderfundedareassuchasextensionservices,andnewinnovationsinpublic-privatepartnershipsbepromoted?

Ø Social:HowcaninvestmentsinR&Dhelpdevelopindicatorsandmeasuresofthesocialbenefitsofpulses?Howcanextensionserviceshelpruralproducersevaluatebenefitsandtrade-offsofcropresidueuse(affectssoils,livestock,etc.)promotegenderequity(orbetterunderstandgenderinequity)?

Ø Economic:Howcanproducermarketpricesupport,importorexporttariffs,andothermeasuresmaximizedomesticandinternationalfoodsecurityandeconomicreturnssimultaneously,withoutundueriskifvolatilityinmarketpricesoccurs?

Ø Production:Practicesatproductionlevelsimproveifalreadyproducingpulsesandifintegratingpulsesintorotations,haveresearchandsupporttooptimizepulsecropandvarietieswithoutimpactingotherkeycropyields;farmersaresupportedintransitionsincropresiduemanagementandtillagepractices;moreisdocumentedandanalyticsaresuppliedtofarmerstohelptroubleshoottrade-offsandrecognizehowtomaximizelabouruseefficiency,lowerfuelandinputcosts,andmaximizesustainableyields.

Ø Regional:Livelihood,community,nutrition,foodsecuritybenefitsmaybehardtoquantify,yetsignificant.

Ø Global:Avoidedcostsoflesssoil,airandwaterdegradationmaybehardtoestimate,butshouldbepartofmeasuringR&Dimpacts.

59

Potentialaction

Examplesofsub-

activities

Frameworkelementsthatapply

Scalestomeasureperformanceorimpact

Investin

plann

ingan

dinfrastructureand

develop

supp

ortiv

epo

licies

§ Establish/modernizetransport,storage,andprocessingfacilities.

§ Buildlandusemonitoringsystemsandlocalandregionalcapacityforspatialplanningandcontributedatatoglobalstatistics.

§ Reviseagriculture,food,andclimatechangepolicies(e.g.,MRLs,landtenure,cerealsubsidies,purchasingprograms)andfacilitatefinancingtopromotesustainablepulseproduction.

Ø Environmental:Multipleenvironmentalbenefitsrealized,suchasdecreasednon-renewablefueluseandGHGemissionminimization.Productionincreasesarethroughyieldimprovementsandincreasedcroprotationsonasustainablebasis,notareaexpansion,andaccesstomarketsandinformationisfacilitated.

Ø Social:Qualityoffoodisenhancedthroughbetterpost-harveststorage,improvedaccesstomarkets.Howtosupportdomesticfoodsecurity,whilepromotingexportmarketaccess?Public-privatepartnershipstomaximizepublicvalueandprivatesectorinvestment?

Ø Economic:Productionincreasesduetoinvestments,soincreasedprofitsatallscalesofsupplychain?Post-harvestlossisminimizedandqualityofproductbroughttomarketisimproved,exportsareincreasedwithoutriskingdomesticfoodsecurity.

Ø Production:Farmershavebettertoolstoadapttoclimate/market/economiccircumstancesthroughimprovedinformationandcanmoreeasilyaccessmarkets.Accesstofiscalincentivesbasedonsustainablepractices.

Ø Regional:Improvedefficiencyinmarkets,enabledbysupportivepolicies,positivelyaffectsincomelevels.Foodsecurityandnutritionimprovementsatfarmandregional/nationalscalesshouldbeenabled.Checkforappropriatelyspreadingvaluecapturethroughsupplychain,policiessupportgenderequity.Appropriatewaterandsoilmanagementtosupportproductionincreases.

Ø Global:NetGHGemissionreduction,macro-scalediversificationinplant-basedproteins.

60

6. References

Agbola,F.,2004.AgriculturalPolicyReforminIndia:ImplicationsforPulseTrade,PricesandProduction,1970-1999.AustralasianAgribusinessJournal.AgribusinessPerspectivesPapers,Paper63.

AgricultureandAgri-FoodCanada,2015.Canada:outlookforprincipalfieldcrops,December18,2015.Availableat:http://www.agr.gc.ca/eng/industry-markets-and-trade/statistics-and-market-information/by-product-sector/crops/crops-market-information-canadian-industry/canada-outlook-for-principal-field-crops/canada-outlook-for-principal-field-crops-december-18-2015/?id=1451402098198#a4

Alexandratos,N.,J.Bruinsma.2012.Worldagriculturetowards2030/2050:the2012Revision.ESAWorkingpaperNo.12-03.Rome,FAO.

Anderson,V.,G.Lardy,B.Ilse,2007.Fieldpeagrainforbeefcattle.NorthDakotaStateUniversityExtensionServiceandNorthDakotaAgriculturalExperimentationStation.

Asare-Marfo,D.,E.Birol,L.Katsvairo,J.Manirere,F.Maniriho,andD.Roy,2011.FarmerChoiceofBeanVarietiesinRwanda:LessonslearntforHarvestPlusDeliveryandMarketingStrategies.HarvestPlus.

Bazzano,L.,A.Thompson,M.Tees,C.Nguyen,D.Winham,2011.Non-SoyLegumeConsumptionLowersCholesterolLevels:AMeta-AnalysisofRandomizedControlledTrials.NutrMetabCardiovascDis.2011Feb;21(2):94–103.

Bekkering,E.,2012.PulsesinCanada.StatisticsCanadaInformationBulletin,availableat:http://www.statcan.gc.ca/pub/96-325-x/2014001/article/14041-eng.htm#n3

Berti,P.R.,J.K.Kung’u ,P.Tugirimana,K.Siekmans,M.Moursi,A.Lubowa,2011.FinalTechnicalReportfromHealthBridgetoHarvestPlus. Re:HarvestPlusChallengeProgram–PhaseIIAgreement#8213.FoodandNutritionSurvey,Rwanda:2010-2011.HealthBridge.Availableat:http://healthbridge.ca/Final%20technical%20report_Food_nutrition_survey_HealthBridge.pdf

Bitner,R.,2010.ABriefHistoryofAgricultureinSaskatchewan.SaskatchewanWesternDevelopmentMuseum.Informationbulletin.

Brandt,S.,2010.SystemsApproachtoAgronomicInnovation(Chapter).InLandscapesTransformed:TheHistoryofConservationTillageandDirectSeeding;WayneLindwallandBernieSonntag,editors.KnowledgeImpactinSociety.

Canfield,D.,A.Glazer,P.Falkowski,2010.TheEvolutionandFutureofEarth’sNitrogenCycle.Science;8October2010,Vol.330.

ConsultativeGrouponInternationalAgriculturalResearch(CGIAR),2012.ResearchProgramonGrainLegumes.Finalproposal,15August2012.

Cutforth,H.W.,Angadi,S.V.,McConkey,B.G.,Entz,M.H.,Ulrich,D.,Volkmar,K.M.,Miller,P.R.andBrandt,S.A.,2009.ComparingplantwaterrelationsforwheatwithalternativepulseandoilseedcropsgrowninthesemiaridCanadianprairie.CanadianJournalofPlantScience.89:826-835.

DaliasP.,2015.GrainlegumeeffectsonsoilnitrogenmineralizationpotentialandwheatproductivityinaMediterraneanenvironment.ArchivesofAgronomyandSoilScience,61(4):461-473.

61

Dakers,S.,Fréchette,J-D.,2001.ThegrainindustryinCanada.ParliamentaryResearchBranch.PRB98-2E.Availableat:http://publications.gc.ca/collections/Collection-R/LoPBdP/BP/prb982-e.htm

DeJager,I.,2013.Literaturestudy:Nutritionalbenefitsoflegumeconsumptionathouseholdlevelinruralareasofsub-SaharanAfrica.www.N2Africa.org

Dworatzek,P.,K.Arcudi,R.Gougeon,N.Husein,J.Sievenpiper,S.Williams,2013.NutritionTherapy:ClinicalPracticeGuidelines.CanadianJournalofDiabetes,vol.37.

EbanyatP.,N.deRidder,A.deJager,R.J.Delve,M.A.Bekunda,K.Giller,2010.Impactsofheterogeneityinsoilfertilityonlegume-fingermilletproductivity,farmers'targetingandeconomicbenefits.NutrientCyclinginAgroecosystems,87:209–231.

Ethiopia,2015a.Agriculturalsamplesurvey2014/2015,Volume1:Areaandproductionofmajorcrops.EthiopiaCentralStatisticsAgency.StatisticalBulletin568.

Ethiopia,2015b.Keyfindingsofthe2014/2015Agriculturalsamplesurveys.EthiopiaCentralStatisticsAgency.CountrySummary.

Ferris,S.,Paschall,M.,D.Seville,L.Dadi,G.Kumssa,2012.DriedbeansinEthiopia:increasingfoodsecuritythroughtrade.IIEDandSustainableFoodLab.

FoodandAgricultureOrganizationoftheUnitedNations(FAO),2015.FoodandAgricultureOrganizationoftheUnitedNations,FAOSTATdatabase.Availableat:http://faostat3.fao.org/faostat-gateway/go/to/home/

FAO,2013.ConservationAgriculture.AgricultureandConsumerProtectionDepartment.Availableat:http://www.fao.org/ag/ca/

FoodandAgricultureOrganizationoftheUnitedNations,2009.HowtoFeedtheWordin2050.DiscussionpaperpreparedforExpertForum.

FoodandAgricultureOrganizationoftheUnitedNations,2001.TheEconomicsofConservationAgriculture.FoodandAgricultureOrganizationoftheUnitedNations,Rome.

Foresight,2011.TheFutureofFoodandFarming(2011)FinalProjectReport.TheGovernmentOfficeforScience,London,UK.

Gan,Y.,C.Liang,Q.Chai,R.Lemke,C.Campbell,R.Zentner,2014.Improvingfarmingpracticesreducesthecarbonfootprintofspringwheatproduction.NatureCommunications.DOI:10.1038/ncomms6012.

Gan,Y.,C.Liang,C.Hamel,H.Cutforth,H.Wang,2011.Strategiesforreducingthecarbonfootprintoffieldcropsforsemiaridareas:Areview.AgronomySust.Developm.(2011)31:643–656.

GatsbyCharitableFoundation,2014.ImprovingfarmingsystemsinWestAfrica.Availableat:http://www.gatsby.org.uk/uploads/africa/reports/pdf/gatsby-cowpea-summary.pdf

Guerena,D.,2015.Q&AwithDavidGuerenaofOneAcreFund.Blogpost.Availableat:http://agrilinks.org/blog/qa-david-guerena-one-acre-fund

HarvestPlus,2014.HarvestPlusAnnualReport2014.Henry,C.,P.Idemudia,G.Tsegaye,N.Regassa,2016.AGenderFrameworkforEnsuring

SensitivitytoWomen’sRoleinPulseProductioninSouthernEthiopia.JournalofAgriculturalScience;Vol.8,No.1.

Hilderink,H.etal.,2012.Foodsecurityinsub-SaharanAfrica:Anexplorativestudy.TheHague/Bilthoven:PBLNetherlandsEnvironmentalAssessmentAgency.

ICRISAT,2014.IrishPresidentvisitsICRISAT-Malawi:Strengtheningpartnershipsinseedtechnology.ICRISATHappenings:In-housenewsletter.Availableat:http://www.icrisat.org/newsroom/latest-news/happenings/happenings1649.htm#1

IntergovernmentalPanelonClimateChange(IPCC),2014.IPCCWGIIAR5SummaryforPolicymakers,31March2014.

62

Joshi,P.,P.Birthal,V.Bourai,2002.SocioeconomicconstraintsandopportunitiesinrainfedrabicroppinginricefallowareasofIndia.SubmittedtoInternationalCropsResearchInstitutefortheSemi-AridTropics.NationalCentreforAgriculturalEconomicsandPolicyResearch,NewDelhi,India.

Kalyebara,M.R.,2005.AggregateimpactimprovedbeanvarietiesinUganda.AfricanCropScienceConferenceProceedings,Vol.7.pp.967-970.

Kearney,J.,2010.Foodconsumptiontrendsanddrivers.Phil.Trans.R.Soc.B(2010)365,2793–2807.

Kharas,H.,2010.OECDDevelopmentCentreWorkingPaperNo.285:TheEmergingMiddleClassinDevelopingCountries.

Komarek,A,L.Bell,J.Whish,M.Robertson,W.Bellotti,2014.Whole-farmeconomic,riskandresource-usetrade-offsassociatedwithintegratingforagesintocrop–livestocksystemsinwesternChina.AgriculturalSystems.

Krintiras,G.A.,J,GadeaDiaz,A.J.vanderGoot,A.I.Stankiewicz,G.D.Stefanidis,2016.OntheuseoftheCouetteCelltechnologyforlargescaleproductionoftexturedsoy-basedmeatreplacers.JournalofFoodEngineering,Volume169,January2016.

Lal,R.2004.CarbonEmissionsfromFarmOperations.EnvironmentInternational.30:981-990.Larochelle,C.,J,Alwang,G.W.Norton,E.Katungi,R.A.Labarta,forthcoming.Ex-postimpactof

adoptingimprovedbeanvarietiesonpovertyandfoodsecurityinRwandaandUganda.ISPCSecretariat,Rome.

Larochelle,C.,J.Alwang,2014.ImpactsofImprovedBeanVarietiesonFoodSecurityinRwanda.SelectedPaperpreparedforpresentationattheAgricultural&AppliedEconomicsAssociation’s2014AAEAAnnualMeeting,Minneapolis,MN,July27-29,2014.

Lawal,A.,O.Omotesho,M.Adewumi,2010.LandusepatternandsustainabilityoffoodcropproductioninthefadamaofSouthernGuineaSavannaofNigeria.AfricanJournalofAgriculturalResearchVol.5(3),pp.178-187,4February,2010.

Lemke,R.L.,Zhong,Z.,Campbell,C.A.andZentner,R.2007.CanPulsecropsplayaroleinmitigatinggreenhousegasesfromNorthAmericanagriculture.Agron.J.99:1719–1725.

LorenzattiS.,2006.FactibilidaddeimplementacióndeuncertificadodeagriculturasustentablecomoherramientadediferenciacióndelprocesoproductivodeSiembraDirecta.UniversidaddeBuenosAires.

MacWilliam,S.,M.Wismer,S.Kulshreshtha,2011.LifeCycleandSocio-EconomicAnalysisofPulseCropProductionandPulseGrainUseinWesternCanada.SaskatchewanResearchCouncil.

Malhi,S.S.,Lemke,R.L.,Kutcher,R.,andBrandt,S.2012.Effectsofbroad-leafcropfrequencyinvariousrotationsonsoilorganicCandN,andinorganicNinaDarkBrownsoil.AgriculturalSciences.3:854-864.

Maliki,R.,B.Sinsin,A.Floquet,2012.Evaluatingyam-basedcroppingsystemsusingherbaceousleguminousplantsinthesavannahtransitionalagroecologicalzoneofBenin.JournalofSustainableAgriculture,36:440–460.

Manary,M.,2015.Commonbeansandcowpeasforguthealthinsub-SaharanAfrica(presentation).FeedtheFutureInnovationLabforCollaborativeResearchonGrainLegumes.LegumeInnovationLabandUSAID.

McConkey,B.,K.Panchuk,2000.SecuringLowErosionRisksafterPulsesandOilseeds.On-linebulletin,availableat:http://www.agriculture.gov.sk.ca/Default.aspx?DN=2c5c774d-c3e2-4968-bddf-5627745ff460.SaskatchewanAgricultureandFood.

MSCIESGResearch,2012.IndustryReport:FoodProducts.

63

Mucheru-Muna,M.,P.Pypers,D.Mugendi,J.Kung’u,J.Mugwe,R.Merckx,B.Vanlauwe,2010.Astaggeredmaize–legumeintercroparrangementrobustlyincreasescropyieldsandeconomicreturnsinthehighlandsofCentralKenya.FieldCropsResearch,Vol115(2),132–139.

Nedumaran,S.,P.Abinaya,P.Jyosthnaa,B.Shraavya,P.Rao,C.Bantilan,2015.GrainLegumesProduction,ConsumptionandTradeTrendsinDevelopingCountries.WorkingPaperSeriesNo.60.ICRISAT,Patancheru,Telangana,India.

Negra,C.2015(inpublication).Literaturereview:Contributionofpulsecropstoagriculturalsustainability-KeyMessagesforIYPAudiences.GlobalPulseConfederation.

Nulik,J.,N.Dalgliesh,K.Cox,S.Gabb(eds),2013.IntegratingherbaceouslegumesintocropandlivestocksystemsineasternIndonesia.ACIARMonographNo.154.AustralianCentreforInternationalAgriculturalResearch,Canberra.

OECD-FAO,2015.OECD-FAOAgriculturalOutlook2015-2024.OECD/FAO,2014.OECD-FAOAgriculturalOutlook2014-2023.Peoples,M.,T.Swan,L.Goward,J.Hunt,G.Li,R.Harris,D.Ferrier,C.Browne,S.Craig,H.van

Rees,J.Mwendwa,T.Pratt,F.Turner,T.Potter,A.Glover,J.Midwood,2015.LegumeeffectsonsoilNdynamics-comparisonsofcropresponsetolegumeandfertiliserN.GrainsResearchandDevelopmentCorporation,GovernmentofAustralia.Availableat:http://grdc.com.au/Research-and-Development/GRDC-Update-Papers/2015/02/Legume-effects-on-soil-N-dynamics--comparisons-of-crop-response-to-legume-and-fertiliser-N#sthash.9ncTiq1C.dpuf

Power,J.F.,1987.Legumes:Theirpotentialroleinagriculturalproduction.AmericanJournalofAlternativeAgriculture,Vol2(02),69-73.

Robinson,S.,D.Mason-D’Croz,S.Islam,T.Sulser,A.Gueneau,G.Pitois,andM.Rosegrant.(forthcoming).“TheInternationalModelforPolicyAnalysisofAgriculturalCommoditiesandTrade(IMPACT);Modeldescriptionforversion3.x”.InternationalFoodPolicyResearchInstitute,WashingtonDC.

Rusike,J.,G.vandenBrand,S.Boahen,K.Dashiell,S.Kantengwa,J.Ongoma,D.M.Mongane,G.Kasongo,Z.B.Jamagani,R.Aidoo,R.Abaidoo,2013.ValuechainanalysesofgrainlegumesinN2Africa:Kenya,Rwanda,easternDRC,Ghana,Nigeria,Mozambique,MalawiandZimbabwe.www.N2Africa.org

Rwanda,2013.StrategicPlanfortheTransformationofAgricultureinRwanda,PhaseIII.MinistryofAgricultureandAnimalResources.Availableat:http://www.minecofin.gov.rw/fileadmin/templates/documents/sector_strategic_plan/PSTA_III_Draft.pdf

Saskatchewan,2015.SaskatchewanAgricultureExports2014.SaskatchewanMinistryofAgriculture.

SaskatchewanMinistryofAgriculture,2015.CropPlanningGuide.FarmBusinessManagementServices.

SaskatchewanPulseGrowers,2015.Over+Above:Leadingthewayforpulses.2014-2015AnnualReport.Availableat:http://proof.saskpulse.com/files/annual/report/151210_Final_Annual_Report_Low_Res.pdf

Schutyser,M.,A.vanderGoot,2015.Thepotentialofdryfractionationprocessesforsustainableplantproteinproduction.TrendsinFoodScience&Technology(ImpactFactor:4.65).04/2011;22(4):154-164.

Searchinger,T.,C.Hanson,J.Ranganathan,B.Lipinski,R.Waite,R.Winterbottom,A.Dinshaw,R.Heimlich,2013.CreatingaSustainableFoodFuture:AMenuofSolutionstoSustainablyFeedMorethan9BillionPeopleby2050.WorldResourcesReport2013-14:Interim

64

Findings.WorldResourcesInstitute,theWorldBank,UnitedNationsEnvironmentProgramme(UNEP),UnitedNationsDevelopmentProgramme(UNDP),Washington,DC.

Shah,D.,2011.PossibilitiesandconstraintsinincreasingpulseproductioninMaharashtraandtheimpactofNationalFoodSecurityMissiononpulses.Agro-EconomicResearchCentreReport,GokhaleInstituteofPoliticsandEconomics.

Shiferaw,B.,T.Kebede,L.You,2008.TechnologyadoptionunderseedaccessconstraintsandtheeconomicimpactsofimprovedpigeonpeavarietiesinTanzania.AgriculturalEconomics39(2008)309–323.

Sichal,F.,S.McLean,B.Botha,2013.Seedsforchange:acertifiedseedprojectinMalawiisboostinglocalincomesandsupportingemergingnationalagriculturalpolicy.Casestudy.TheHunger·Nutrition·ClimateJusticeConference,Dublin,Ireland,April2013.

Siddique,K.H.M.,C.Johansen,J.D.KumarRao,M.Ali,2008.Legumesinsustainablecroppingsystems.ProceedingsoftheFourthInternationalFoodLegumesResearchConference(IFLRC-IV),October18–22,2005,NewDelhi,India.

Smil,V.2002.NitrogenandFoodProduction:ProteinforHumanDiets.AMBIO.31(2)126-131.StandingPanelonImpactAssessment(SPIA),2014.ImpactofBeanResearchinRwandaand

Uganda.CGIARIndependentScienceandPartnershipCouncil,BriefNo.46.StatisticsCanada,2011.CensusofAgriculture.Availableat:

http://www.statcan.gc.ca/eng/ca2011/indexStevenson,F.C.,C.vanKessel,1996.Thenitrogenandnon-nitrogenrotationbenefitsofpeato

succeedingcrops.CanJ.PlantSci.76:735-745.Swaminathan,M.S.,R.V.Bhavani,2013.Foodproduction&availability-Essentialprerequisites

forsustainablefoodsecurity.IndianJMedRes.2013Sep;138(3):383–391.ThorntonPK,JonesPG,EricksenPJ,ChallinorAJ(2011)Agricultureandfoodsystemsinsub-

SaharanAfricaina4°C+world.PhilosTransAMathPhysEngSci369:117–36.doi:10.1098/rsta.2010.0246

UnitedNationsEnvironmentProgramme,2015.Africa’sAdaptationGap2.vanKessel,C.,C.Hartley,2000.Agriculturalmanagementofgrainlegumes:hasitledtoan

increaseinnitrogenfixation?FieldCropsResearch65,165-181.WorldBankandtheInternationalMonetaryFund,2013.GlobalMonitoringReport2013:Rural-

UrbanDynamicsandtheMillenniumDevelopmentGoals.Zentner,R.P.,C.A.Campbell,F.Selles,R.Lemke,B.G.McConkey,M.R.Fernandez,C.Hamel,Y.T.

Gan,2007.EconomicsofspringwheatproductionsystemsusingconventionaltillagemanagementintheBrownsoilzone–Revisited.CanadianJournalofPlantScience,87:27-40.

Zentner,R.P.,D.Walla,C.Nagy,E.Smith,D.Young,P.Miller,ACampbell,B.McConkey,S.Brandt,G.Lafond,A.Johnston,D.Derksen,2002.EconomicsofCropDiversificationandSoilTillageOpportunitiesintheCanadianPrairies.AmericanSocietyofAgronomy:Agron.J.94:216–230.

Zhong,Z.,R.Lemke,L.Nelson,2009.Nitrousoxideemissionsassociatedwithnitrogenfixationbygrainlegumes.SoilBiol.Biochem.41:2283–2291.