qcd and hadronic interactions recontres de moriond-la thuille 12-19 march 2005

26
Pamela Ferrari 1 Pamela Ferrari 1 Recontres de Moriond ‘05 QCD and Hadronic interactions QCD and Hadronic interactions Recontres de Moriond-La Thuille 12-19 March 2005 Searches for Higgs in the MSSM Searches for Higgs in the MSSM CP-conserving and CP-violating scenarios CP-conserving and CP-violating scenarios at LEP at LEP P.Ferrari (CERN) on behalf of the LEP experiments -model introduction -model introduction -the CP-conserving MSSM -the CP-conserving MSSM -the CP-violating MSSM -the CP-violating MSSM -2HDM -2HDM

Upload: kapono

Post on 12-Jan-2016

21 views

Category:

Documents


1 download

DESCRIPTION

QCD and Hadronic interactions Recontres de Moriond-La Thuille 12-19 March 2005 Searches for Higgs in the MSSM CP-conserving and CP-violating scenarios at LEP P.Ferrari (CERN) on behalf of the LEP experiments. -model introduction -the CP-conserving MSSM -the CP-violating MSSM -2HDM. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: QCD and Hadronic interactions Recontres de Moriond-La Thuille 12-19 March 2005

Pamela Ferrari 1Pamela Ferrari 1 Recontres de Moriond ‘05

QCD and Hadronic interactionsQCD and Hadronic interactions

Recontres de Moriond-La Thuille 12-19 March 2005

Searches for Higgs in the MSSM Searches for Higgs in the MSSM

CP-conserving and CP-violating scenarios CP-conserving and CP-violating scenarios at LEPat LEP

P.Ferrari (CERN) on behalf of the LEP experiments

-model introduction-model introduction-the CP-conserving MSSM-the CP-conserving MSSM-the CP-violating MSSM-the CP-violating MSSM-2HDM-2HDM

Page 2: QCD and Hadronic interactions Recontres de Moriond-La Thuille 12-19 March 2005

Pamela Ferrari 2Pamela Ferrari 2 Recontres de Moriond ‘05

2 Higgs Doublet Models2 Higgs Doublet Models

Simplest extension of SM are 2HDMs

and no FCNC

Two complex scalar field doublets Φ1 and Φ2, 5 scalar Higgses:

- Real parts mix with α-> CP even scalars h0,H0

- Imaginary part -> CP odd scalar A0

- Two charged scalars H+-

Two production processes :

hZ=sin2(α)SMHZ

HZ=cos2(α)SMHZ

HA=cos2(α)SMHZ

=ratio of VEV of scalar fields

The type of 2HDM determined by the couplings of Φ1 , Φ2 to fermions:

- Only 1 couples to fermions 2HDM (I)

- 1 (2) couples to down (up) type fermions 2HDM(II)

1 ~ θcosm

w22

Z

2W

Z0e-

e+

Z*

h,H

A0e-

Z*

he+

Higgsstrahlung Pair-Production

Page 3: QCD and Hadronic interactions Recontres de Moriond-La Thuille 12-19 March 2005

Pamela Ferrari 3Pamela Ferrari 3 Recontres de Moriond ‘05

The MSSM The MSSM

2HDM(II) are interesting since by adding supesymmetry CP-conserving MSSM

CP-conserving MSSM is interesting since it provides framework for unification of Gauge interactions and stability of universe at EW scale

mh <140 GeV after radiative corrections

to explain matter-antimatter asymmetry in universe we need

CP-violation >> than in SM

Justifies introduction of CP-violation in MSSM: can be done viaradiative corrections (in particular from 3rd generation s-

quarks)

Page 4: QCD and Hadronic interactions Recontres de Moriond-La Thuille 12-19 March 2005

Pamela Ferrari 4Pamela Ferrari 4 Recontres de Moriond ‘05

CP-violation in MSSMCP-violation in MSSM

Mass eigenstates and CP-eigenstates do not coincide: H1,H2,H3 are mixtures of CP-even and CP-odd Higgs fields

Only CP eigenstates h,Hcan couple to Z

But H1 is the

propagating particle

Lightest Higgs boson might have escaped detection at LEP2: H1 might decouple almost completely from the Z

Search for both H1Z and H2Z production

Page 5: QCD and Hadronic interactions Recontres de Moriond-La Thuille 12-19 March 2005

Pamela Ferrari 5Pamela Ferrari 5 Recontres de Moriond ‘05

Experimental searchesExperimental searchesb-tagging HZ

(H bb) (Z qq ) (H bb,)( Z ) (H bb,qq) (Z ee (H )( Z qq), (H bb,)( Z )

Flavour independent HZ (H qq) Z (H2H1H1 ) Z dominant when kinematically allowed

b-tagging pair production H2H1 (H2 bb) (H1 bb ) (H2 )(H1 bb ) (H2 H1 H1 bbbb )((H1 bb )

Flavour independent H2H1 used only for 2HDM(II) scan (H2 qq) (H1 qq )

Additional constraints Z width, decay mode independent search for HZ, light Higgs from Yukawa

production

ALEPH, DELPHI, OPAL & L3 data @ 91 GeV<s< 209 GeVInterpreted in MSSMCPC and CPV and 2HDM(II)

Page 6: QCD and Hadronic interactions Recontres de Moriond-La Thuille 12-19 March 2005

Pamela Ferrari 6Pamela Ferrari 6 Recontres de Moriond ‘05

MSSM CPC benchmarksMSSM CPC benchmarks

- No mixing ( 2TeV) reversed sign motivated by (g-2)

- mh-max+ with reversed sign motivated by (g-2)

- constrained mh-max reversed sign for At and Xt motivated by Br(b->s)

- gluophobic gg->h suppressed

- small αeff h->bb, suppressed

7 parameters: (Carena et al. hep-ph/9912223)

mtop= 179.3 GeV ( 178.04.3 GeV CDF & D0)

MSUSY sfermion mass at EW scale

Higgs mixing parameter

M2 gaugino mass at EW scale

mg gluino mass

Xt= Stop mixing parameter

Ab=At= Xt +cottrilinear Higgs-squark coupling

Traditional scans:

- No mixing: in stop sector

- mh max: yields maximal bound on mh

TH

- Large : suppressed h-> bb

Regions where Hadron colliders might have problems in detecting the Higgs

Favoured by (g-2) and Br(b->s)

New scans: envisaged for final LEP combination but not yet done

Page 7: QCD and Hadronic interactions Recontres de Moriond-La Thuille 12-19 March 2005

Pamela Ferrari 7Pamela Ferrari 7 Recontres de Moriond ‘05

CPC mCPC mhh-max scan-max scan

2 calculations used:

FeynHiggs 2.0: 2-loop diagrammatic approach & OS scheme S.Heinemeyer et al. hep-ph/0212037

SUBHPOLE: 1-loop renormalization group, scheme M.Carena et al hep-ph/9912223

FeynHiggs is chosen:

more accurate, conservative results

MS

LHWG-Note/2004-01

mmh h

(GeV/c(GeV/c22

))

mmA A

(GeV/c(GeV/c22))tantan

ObObss

92.992.9 94.894.8 0.9-1.50.9-1.5

ExExpp

94.894.8 95.195.1 0.8-1.60.8-1.6

Expectedexclusion

Page 8: QCD and Hadronic interactions Recontres de Moriond-La Thuille 12-19 March 2005

Pamela Ferrari 8Pamela Ferrari 8 Recontres de Moriond ‘05

No-mixing & large No-mixing & large scans scans

Large No-mixing

0.37<1-CLb<0.65Nearly excluded

LHWG-Note/2004-01

mmh h

(GeV/c(GeV/c22

))

mmA A

(GeV/c(GeV/c22))tantan

ObObss

93.393.3 93.393.3 0.4-5.60.4-5.6

ExExpp

95.095.0 95.095.0 0.4-6.50.4-6.5For mFor mhh~80 GeV and~80 GeV andtantan<0.7, m<0.7, mAA<< threshold:threshold:A decays uncertainA decays uncertainhhbb smallbb small

No-mixing

Page 9: QCD and Hadronic interactions Recontres de Moriond-La Thuille 12-19 March 2005

Pamela Ferrari 9Pamela Ferrari 9 Recontres de Moriond ‘05

Did we miss the Higgs?Did we miss the Higgs?

No excess larger than 3

2 @ mh~98 GeV 2 @ mh~115 GeV.

Recent interpretations:

M.Drees hep-ph/0502075G.L. Kane et al. hep-ph/0407001

Explain this kind of “excess” within

CP-conserving MSSM CP-violating MSSM 2HDM

LHWG-Note/2004-01

Page 10: QCD and Hadronic interactions Recontres de Moriond-La Thuille 12-19 March 2005

Pamela Ferrari 10Pamela Ferrari 10 Recontres de Moriond ‘05

Example of new scansExample of new scansOPAL Eur.Phys.J.C37:49-78,2004

Only OPAL data: exclusion will be larger for LEP combination

Large regions of the parameters space are excluded

Page 11: QCD and Hadronic interactions Recontres de Moriond-La Thuille 12-19 March 2005

Pamela Ferrari 11Pamela Ferrari 11 Recontres de Moriond ‘05

Phases of At ,Ab and mg introduce CP violation in the Higgs potential via

loop effects leading off-diagonal contributions to higgs mass matrix

CP-violating MSSMCP-violating MSSM

Theoretically: argAu ≠0 most general case, can be motivated by Baryogenesis. Size of CP violating effects proportional to:

2SUSY

2t

2

4t2

SP m32π)AIm(

vm

benchmark: large argAu ≠0, large , relatively small mSUSY

the CP violation increases with mt

~~

Page 12: QCD and Hadronic interactions Recontres de Moriond-La Thuille 12-19 March 2005

Pamela Ferrari 12Pamela Ferrari 12 Recontres de Moriond ‘05

CPX benchmarkCPX benchmark

tantan mmHH++( GeV)( GeV)

(GeV)(GeV) mmSUSY SUSY

(GeV)(GeV)MM2 2

(GeV)(GeV)|A|Aqq| (TeV)| (TeV) arg(Aarg(A

qq))mmg g

(TeV)(TeV)arg(marg(m

gg))

0.6–0.6–4040

4–1000 4–1000 20002000 500500 200200 11 9090oo 11 9090oo

Maximal CP violationMaximal CP violationEDM measurements of n and e fullfilled

Feynhiggs and CPH are a priori equivalent:

Feynhiggs has more advanced one-loop corrections CPH (CPV version of SUBHPOLE) is more precise at the two-loop

level

In each parameter space point the most conservative result is used

All implemented in HZHA with ISR and interference between identical final states from Higgstrahlung and boson fusion process

Carena et al., Phys.Lett B495 155(2000)

Page 13: QCD and Hadronic interactions Recontres de Moriond-La Thuille 12-19 March 2005

Pamela Ferrari 13Pamela Ferrari 13 Recontres de Moriond ‘05

CPX scanCPX scan

mmtt(GeV/(GeV/

cc22))ExpectedExpected

tantanObserveObserved tand tan

174.3174.3 >2.9>2.9 >3.0>3.0

179.3179.3 >2.6>2.6 >2.7>2.7

183.0183.0 >2.5>2.5 >2.5>2.5

No lower mH1,2

limit

mt dependent 95%CL on tan:

LHWG-Note/2004-01

mt=178.04.3 GeV CDF & D0

For heavy H2:

H1HSM

mH1> 115 GeV ~

Page 14: QCD and Hadronic interactions Recontres de Moriond-La Thuille 12-19 March 2005

Pamela Ferrari 14Pamela Ferrari 14 Recontres de Moriond ‘05

CPX scanCPX scanLHWG-Note/2004-01

Strong reduction of Strong reduction of exclusion increasing mexclusion increasing mtt CP- CP-violation:violation:

for example 4<tanfor example 4<tan<10, <10, where both Hwhere both H11Z & HZ & H22Z are Z are openopen

No excess larger than 3No excess larger than 3 foundfound

Page 15: QCD and Hadronic interactions Recontres de Moriond-La Thuille 12-19 March 2005

Pamela Ferrari 15Pamela Ferrari 15 Recontres de Moriond ‘05

Signal generated with HZHA

Free parameters: 1 < m1 < mhh< 130 GeV< 130 GeV 3 GeV <m3 GeV <mAA< 2 TeV< 2 TeVαα/2,/2, /4,0 /4,0 0.4< tan0.4< tan<40<40

mH and mH kinematically unaccessible

Excluded rectangular region for Excluded rectangular region for 1<m1<mhh<55 GeV when 3<m<55 GeV when 3<mAA<63 GeV<63 GeVBut for mBut for mAA> 63 values of m> 63 values of mh h down to down to 00are still allowed !are still allowed !

No tanNo tan exclusion independent of exclusion independent of mmhh/m/mAA

OPAL general 2HDM(II) OPAL general 2HDM(II) scanscan

2HDM(II) have no constraint derived from SUSY: h h bb is not dominant decay,e.g for bb is not dominant decay,e.g for αα=0 BR(h=0 BR(hbb/bb/)=0 )=0 flavour-indep. searches flavour-indep. searches large regions of the parameter space cannot be exlcuded by LEPlarge regions of the parameter space cannot be exlcuded by LEP

light Higgs not ruled outlight Higgs not ruled out

hep-ex/0408097

Page 16: QCD and Hadronic interactions Recontres de Moriond-La Thuille 12-19 March 2005

Pamela Ferrari 16Pamela Ferrari 16 Recontres de Moriond ‘05

ConclusionsConclusions

At LEP we have searched for Higgses in several extensions of SM:CP-conserving MSSMCP-conserving MSSMCP-violating MSSMCP-violating MSSM2HDM2HDM

No evidence of the presence of a signal has been found

Still there is room for the presence of a light Higgs:In CP-violating MSSM In CP-violating MSSM

In 2HDMsIn 2HDMs

Some theoretical papers interpreting small data-background discrepancy (about 2 ) in the context of specific CPC MSSM scenarios ( require quite some tuning) as well as CPV MSSM and 2HMD.

Page 17: QCD and Hadronic interactions Recontres de Moriond-La Thuille 12-19 March 2005

Pamela Ferrari 17Pamela Ferrari 17 Recontres de Moriond ‘05

Back-upBack-up

Page 18: QCD and Hadronic interactions Recontres de Moriond-La Thuille 12-19 March 2005

Pamela Ferrari 18Pamela Ferrari 18 Recontres de Moriond ‘05

SM vs MSSM excessSM vs MSSM excess

The excesses at mh=98 & 115 GeV Observed in

MSSM are the same that where observed in the

SM searches:

mh~98 GeV 2.3 excess 1-CLb= 2% from all hZ channels

Not Compatible with a SM signal.

mh~115 GeV 1.7 excess 1-CLb= 9% from ALEPH hZ 4-jet channel Compatible with a SM signal.

1-CLb gioves the Probability of a local fluctuation of background.Probability that a fluctuation appears anywhere within a certain mass range is given by:

resolution mass

range mass ΔCL1 b

Page 19: QCD and Hadronic interactions Recontres de Moriond-La Thuille 12-19 March 2005

Pamela Ferrari 19Pamela Ferrari 19 Recontres de Moriond ‘05

mmhh max scans max scans

mt=174.3,179,183 GeV

Page 20: QCD and Hadronic interactions Recontres de Moriond-La Thuille 12-19 March 2005

Pamela Ferrari 20Pamela Ferrari 20 Recontres de Moriond ‘05

No-mixing No-mixing

Page 21: QCD and Hadronic interactions Recontres de Moriond-La Thuille 12-19 March 2005

Pamela Ferrari 21Pamela Ferrari 21 Recontres de Moriond ‘05

Useful searches for CPV Useful searches for CPV MSSMMSSM

Page 22: QCD and Hadronic interactions Recontres de Moriond-La Thuille 12-19 March 2005

Pamela Ferrari 22Pamela Ferrari 22 Recontres de Moriond ‘05

CPH vs FEYNHIGGSCPH vs FEYNHIGGS

The largest discrepancy occurs for large tanwhere Feynhiggs predicts a higher x-section for Higgstrahlung

Data/background discrepancy in intemediate tan region:due to excess at mh~98 GeV which is the mH2

mass in this

region

Page 23: QCD and Hadronic interactions Recontres de Moriond-La Thuille 12-19 March 2005

Pamela Ferrari 23Pamela Ferrari 23 Recontres de Moriond ‘05

CPX-phasesCPX-phases

Exclusion decreases

With increasingargAt,b (CP-

Violation)

Page 24: QCD and Hadronic interactions Recontres de Moriond-La Thuille 12-19 March 2005

Pamela Ferrari 24Pamela Ferrari 24 Recontres de Moriond ‘05

2HDM scan 2HDM scan

Page 25: QCD and Hadronic interactions Recontres de Moriond-La Thuille 12-19 March 2005

Pamela Ferrari 25Pamela Ferrari 25 Recontres de Moriond ‘05

2HDM scan tan2HDM scan tan exclusion exclusion

No tan exclusion independent from mh and mA

Page 26: QCD and Hadronic interactions Recontres de Moriond-La Thuille 12-19 March 2005

Pamela Ferrari 26Pamela Ferrari 26 Recontres de Moriond ‘05