qsar-qmmm cryptographic mining on chern- simons

255
.QSAR-QMMM Cryptographic Mining on Chern- Simons Topologies for the generation of a Ligand Targeting SARS-COV-2 D614G Binding Sites. Ioannis Grigoriadis ( [email protected] ) Biogenea Pharmaceuticals Ltd Research article Keywords: COVID19, SARS-COV-2 SPIKE D614G, Chern-Simons Topological, AI-Quantum computing, Quantum-Inspired Evolutionary Algorithm Predictive Toxicology, QSAR quantum gates, Cheminfomratics artiヲcial intelligence, Phase Data Mining, Machine Learning Posted Date: May 12th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-128623/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Upload: others

Post on 14-Apr-2022

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: QSAR-QMMM Cryptographic Mining on Chern- Simons

.QSAR-QMMM Cryptographic Mining on Chern-Simons Topologies for the generation of a LigandTargeting SARS-COV-2 D614G Binding Sites.Ioannis Grigoriadis  ( [email protected] )

Biogenea Pharmaceuticals Ltd

Research article

Keywords: COVID19, SARS-COV-2 SPIKE D614G, Chern-Simons Topological, AI-Quantum computing,Quantum-Inspired Evolutionary Algorithm Predictive Toxicology, QSAR quantum gates, Cheminfomraticsarti�cial intelligence, Phase Data Mining, Machine Learning

Posted Date: May 12th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-128623/v2

License: This work is licensed under a Creative Commons Attribution 4.0 International License.  Read Full License

Page 2: QSAR-QMMM Cryptographic Mining on Chern- Simons

.QSAR-QMMM Cryptographic Mining

on Chern-Simons Topologies for the

generation of a Ligand Targeting SARS-

COV-2 D614G Binding Sites.

1) Department of BiogenetoligandorolQMMIDDD/QPRPICA/MACHNOT/ QIICDNNDCA ADMET/QIICDNNDCA

Stations. Biogenea Pharmaceuticals Ltd – Greece.

2) Aristotle University of Thessaloniki, School of Pharmacy.

3) Department of Personalized SynthocureTM Stations. Cell-Pharmacy Ltd – Greece.

Gigoriadis Ioannis123* email: [email protected] tel:+306936592686 ORCID iD: https://orcid.org/0000-0002-8443-1777

Keywords: COVID19, SARS-COV-2 SPIKE D614G, Chern-Simons Topological, AI-Quantum computing, Quantum-

Inspired Evolutionary Algorithm Predictive Toxicology, QSAR quantum gates, Cheminfomratics artificial intelligence,

Phase Data Mining, Machine Learning,

Abstract SARS coronavirus 2 (SARS-CoV-2) in the viral spike (S) encoding a SARS-COV-2 SPIKE D614G mutation protein predominate over time in locales revealing the dynamic aspects of its key viral processes where it is found, implying that this change enhances viral transmission. It has also been observed that retroviruses infected ACE2-expressing cells pseudotyped with SG614 that is presently affecting a growing number of countries markedly more efficiently than those with SD614. In this paper, we strongly combine topology geometric methods targeting at the atomistic level the protein apparatus of the SARS-COV-2 virus that are simple in machine learning anti-viral characteristics, to propose computer-aided rational drug design strategies efficient in computing docking usage, and powerful enough to achieve very high accuracy levels for this in-silico effort for the generation of the AI-Quantum designed molecule of GisitorviffirnaTM, Roccustyrna_gs1_TM, and Roccustyrna_fr1_TM ligands with Preferred IUPAC Names of (7aR)‐5‐amino‐N‐[(S)‐

{2‐[(S)‐[(E)‐(amino methylidene)amino](cyano)methyl]hydrazin‐1‐yl} (aziridin‐1‐yl)phosphoryl]‐ 1‐[(2E)‐2‐

[(fluoromethanimidoyl) imino]acetyl]‐7‐oxo‐1H,7H,7aH‐pyrazolo[4,3‐d]pyrimidine‐3‐carboxamide; N‐{[(2‐

amino‐6‐oxo‐6,9‐dihydro‐1H‐purin‐9‐yl)amino]({1‐[5‐({[cyano({1‐[(diamino methylidene)amino]

ethenyl})amino]oxy}methyl)‐3,4‐dihydroxyoxolan‐2‐yl]‐1H‐1,2,4‐triazol‐3‐yl}formamido)phosphoryl}‐6‐fluoro‐3,4‐dihydr

opyrazine‐2‐carboxamide;[3‐(2‐amino‐5‐sulfanylidene‐1,2,4‐triazolidin‐3‐yl)oxaziridin‐2‐yl]({3‐sulfanylidene‐1,2,4,6‐tetraaz

abicyclo[3.1.0]hexan‐6‐yl})phosphoroso1‐(3,4,5‐trifluorooxolan‐2‐yl)‐1H‐1,2,4‐triazole‐3‐carboxylate targeting the COVID-19-SARS-COV-2 SPIKE D614G mutation using Chern-Simons Topology Euclidean Geometric in a Lindenbaum-Tarski generated QSAR automating modeling and Artificial Intelligence-Driven Predictive Neural Networks.

Page 3: QSAR-QMMM Cryptographic Mining on Chern- Simons

Scheme1. 3D Docking Interactions of the combination of (7aR)-5-amino-N-[(S)-{2-[(S)-[(E)- (aminomethylidene) amino](cyano)methyl]hydrazin-1-yl}(aziridin-1-yl)phosphoryl]-1-[(2E)-2-[(fluoromethanimidoyl)imino]acetyl]-7-oxo-1H,7H,7aH-pyrazolo[4,3-d]pyrimidine-3-carboxamide;N-{[(2-amino-6-oxo-6,9-dihydro-1H-purin-9-yl)amino]({1-[5-({[cyano({1-[(diaminomethylidene)amino]ethenyl})amino]oxy}methyl)-3,4-dihydroxyoxolan-2-yl]-1H-1,2,4-triazol-3-yl}formamido)phosphoryl}-6-fluoro-3,4-dihydropyrazine-2-carboxamide;[3-(2-amino-5-sulfanylidene-1,2,4-triazolidin-3-yl)oxaziridin-2-yl]({3-sulfanylidene-1,2,4,6-tetraazabicyclo[3.1.0]hexan-6-yl})phosphoroso1-(3,4,5-trifluorooxolan-2-yl)-1H-1,2,4-triazole-3-carboxylate fragments 2D structure inside the PDB: 6WZU protein targets of the crystal structures of Papain-Like Protease of SARS CoV-2 , P3221 space group. Introduction (1,2,3) The COVID-19 disease which emerged in China at the end of 2019 was declared in March 2020 a pandemic by the

World Health Organization (WHO) and is accountable for a large number of fatal cases. (2,4,5) On January 202, the WHO committee declared a global health emergency (3,4-6) based on the rate of the increasing spread of the infection (4,5-7) with a reproductive number (RN) in the range 2.0-6.5, 4 higher than SARS and MERS, (8) with more than 85,000 casualties and fatality rate of about 4%. (1-4) Collaborative efforts for Genomic characterization by using a simple DNA cryptography genetic code according to the main dogma of biology has been published that takes plaintext for communicating information through a process of DNA→RNA→Amino Acid coding. Researchers in 2010 published a Cryptographic DNA-mobile based Code for Secure Networks scheme in which binary plaintext is translated to text via a substitution wrapping code, introns are inserted into DNA hierarchal text structure on the general processes of gene expression by the transcription complex and a binary key is passed to the receiver over a secure channel to provide the details of the intron insertion. We cannot imagine a world without cryptography anymore. Whether it is to protect our banking information, e-mail, or phone calls, cryptography is a vital part of our digital infrastructure. Modern-day

Page 4: QSAR-QMMM Cryptographic Mining on Chern- Simons

cryptography is usually split up into two phases. In the key exchange phase, an algorithm such as Elliptic Curve Diffie-Hellman key exchange (ECDH) or RSA is used to establish a shared secret key that can be used in an asymmetric encryption algorithm in the second phase. These algorithms have been and continue to be well-studied, and have proven themselves to be secure if instantiated with proper parameters and implemented securely. Nowadays most people favor using cryptographic keys over sticks and more intricate cryptographic algorithms than wrapping at an angle. This opens up the door to new types of cryptographic attacks. Attack avenues can roughly be divided into two categories: attacks on the theoretic algorithm by trying to recover the key or message by using public information provided on the algorithm, and attacks on the implementation of the algorithm, which look at the soft- or hardware-specific properties. (5,6,7-9) Evolution, phylogeny, high contagion rates, molecular epidemiology, of SARS coronavirus, and epidemiology from scientists worldwide are underway to understand the rapid spread of the novel coronavirus (CoVs), and to develop effective coding interactions of personalized interventions for control and prevention of various devastating diseases. (1-10) Coronaviruses are positive-single stranded, and through transcription and ultimately translations enveloped large RNA viruses that infect humans and a wide range of animals. ((4,6,7,8,9,10) In Latin, Corona means ―crow based on their shapes. As a comprehensive compendium and megadiverse country, Brazil accounts for 10–20% of known living species of available biogeochemical information in the world. However, a major part of the biological and chemical biodiversity in Brazil’s natural products remains unexplored (17). (2– 13,14,15,16,17) Molecular structures as a protein code (ciphe-rprotein) were determined in heterodox interpretations (22) by solving the time-independent (21-22) Schrödinger equation: QM methods, vertex prizes, and edge costs including ab initio

Page 5: QSAR-QMMM Cryptographic Mining on Chern- Simons

Density Field Theories (DFT) (23) has become quite a standard approach as a computational scheme and semi-empirical in

place (24) of the quantum processor and energy under simulated sampling error among other observables. Density Field Theories (DFT) is continuously increasing (25) as well as to reposition drugs and phytical extracts about bonding may represent the similarities (26) and dissimilarities (27) between drugs and repurposed viral proteins respectively. (28) However, the Schrödinger equation s in Markovian and (27) non-Markovian scenarios cannot actually be solved for any but

a one- data-driven (29) electron system method (the hydrogen atom), to construct a family of particular solutions of (28) equation (30) and approximations need to be made. According to QM, (2-19,23) and during the construction of stochastic Schrödinger (29) equations, an electron bound that converges quickly and reliably by acknowledging the conditional Bohmian wavefunction to an atom cannot possess any (2-17,21,22,23, 24,25,26,2728) arbitrary energy to produce the desired distribution or occupy any position in space using statistical and machine (23,24-37,38) learning concepts. The

Lindenbaum-Tarski algebra logical spaces and Bohmian wavefunction-based vectorial re-presentations on eigenvalue statements were used in this project when analyzing pharmacological data and have been previously introduced as a 3D logical subspace allowing a well-defined position for each fragmented pharmacophore. This shows that the application to quantum computing as orthogonal applied for the design of small molecules through the example of three coupled harmonic

oscillators in Markovian and (30) non-Markovian schemes may allow pure mechanical computations both for re-generating Lipinski rules and inferences to bridge the gap between practical in vitro testing implementations and theoretical docking scalability predictions. (25,27,28) Since it has been shown that Path selection into a nonlinear Riemann-Hilbert simple problem of any metal formula φ for quantum repeater networks towards the determination of the exact interpolating function of h(λ) can be geometrically represented by Chern-Simons logical spaces and subspaces I decided to cryptographically

implement supersymmetric solutions and Borel Singularities for N=2 allowing a quantum repeater based vectorial Supersymmetric representation in this drug design project. (20,26,27,28,29,30,31) In general, the notions of Lindenbaum matrix and Lindenbaum-Tarski algebra and its relative development to the product topology continuing to shape the field of algebraic logic introducing topology on a set to define the (31) cartesian product of topological spaces as a subbase which

has paved the way until this day, to further algebraization of topology products, which had been begun by George Boole in the 19th century, as well as to an innovative language of logic, in a symmetric model theory containing no other constants but only one connective →. Philosophical interpretations of QM as a core part of contemporary physics were conditioned by ideals of what an explanatory theory should be. (Minkowski-type, wave-edge, etc), (20,27,32-33) as well as probabilistic

transformations on algebraic multi-metrics (Triangle area, Bond-angle, etc) and associated axiomatic formulations (AQFT) treat observables rather than of the von Neumann formulation and the Dirac formulation states as foundational according to the interaction information theory (QIT). (20,33,34,35) In this project, we show an original strategy and demonstrate the utility and the mechanics of this (32) formalism as an application within the quantum computing context of perturbed asymptotically through the example of two coupled anti-de Sitter black harmonic black-hole oscillators and brane

spacetimes. We expect this Lindenbaum-Tarski driven Chern-Simons representation to generate a valid QSAR modeling, and a lead compound design formalism, in our molecular modeling and simulations in order to produce orthogonal coordinates as applied for the design of a novel multi-chemo-structure against the crystal structure of COVID-19 protein targets. (29,35,36) A meta server and a Kappa-Symmetry C algebra of local observables were incorporated for the docking

of FDA-approved small molecules, peptide-mimetic, and humanized antibodies against potential targets of COVID-19 via a generalized procedure of Quantization of classical fields which were fused together with QSAR automating modeling to lead the commutation and anticommutation relations. (37,39,41,42) Dynamic niching and flexible heuristic genetic algorithmic states for automatic molecule re-coring and fragmentation were applied to fragment and re-core a database of 20,000+ molecules for use with the group contribution model Universal Quasichemical Functional Group Activity

Coefficients (UNIFAC) against the structure and functions of SARS-CoV-2 as linear functional on the algebra of free energy docking observables. (37,38,40) Hybrid quantum repeater via a robust creation of entanglement between remote memory qubits was implemented for predicting drug targets and for multi-target and multi-site-based virtual screening against COVID-19. The basic idea developed in Levine (2004) incorporates critical components of what is to be expected

from a ―realǁ signature. (41,42) Flexible Topology Euclidean Geometric was used to fragment molecules automatically in this molecular modeling and drug designing project on several parameters while keeping the definition of the groups as simple as possible. Artificial Intelligence-Driven Predictive Neural Networks and Quantum- Inspired frameworks of parallel-Docking interactions were employed for supercritical entanglements introducing an advanced quantum mechanical inverse docking algorithm providing further insight to confirm the practicality of docking energy predictions for wild type

and selected mutations for Nsp3 (papain-like, PLpro domain), Nsp5 Nsp15 (NendoU), (Mpro, 3CLpro), Nsp12 (RdRp), N

Page 6: QSAR-QMMM Cryptographic Mining on Chern- Simons

protein and Spike in understanding the key element functions of SARS-CoV-2 protein pathways and in designing possible

novel antiviral agents, from both a quantum algebraic and a cheminformatic perspective. In this protocol, there are tools from conventional cryptography that are used along with the principles of the regulation of computer-aided drug discovery This paper concentrates on the quantum mechanics-driven drug discovery of the protocol.

Materials and Methods Preparation of the protein structures

The National Center (NCBI) database for Biotechnology Information was used to retrieve the S glycoprotein proteins of

SARS-CoV-2. For the N protein, we aligned the clustered 31 conformations (1,2,35) from the 1731 full-length SARS-CoV-

2 sequences and stored as a FASTA format file for analysis with Glu174 and Glu166 present in the opened RBD down

conformation out of a total of 40 states COVID19 in the NMR-derived COVID19 associated protein structure (PDB codes,

6xs6,1xak,2g9t, 3fqq, 2ghv,6yb7) (1,3,4) to select a small subset representative of the protein flexibility downloaded from

NCBI (30 April 202, txid2697049, NC_045512.2 with minimum length = 29,000 bp) as a coordinate reference and aligned

using the MAFFT tool. (2-5,6) The BioEdit v7.2.3 sequence alignment editor was deployed to identify the conserved

binding sites and short linear peptide region among the aligned sequences through multiple-sequence alignment (MSA) with

ClustalW. The conserved alignment was visually generated, inspected and curated by preserving all nucleotides using

Genbank NC_045512.2 as a coordinate reference in genomes such as the ball python genome, and further proceeded with

the RSFIEDLLFNKV, e.g. KNFIDLLLAGF short linear motifs as identified between the Wuhan isolate beyond the limit of

serious detection of the reptile shingle back for spike protein nidovirus 1 model construction by utilizing again the

NC_045512.2 and annotated (ORFs) Open Reading Frames plus additional ORFs. We then provided to the DockThor-VS

online docking platforms the protein structures in PDB format files of the SARS-CoV-2 (PDB codes,

6xs6,1xak,2g9t,3fqq,2ghv,6yb7) (1,3-10) as potential therapeutic drug targets (5-11,12) for the design of our new druggable

scaffold named Roccustyrna. (13,14,15) For this main purpose, we initially selected the Nsp3, Nsp5 non-structural proteins

(PLpro domain), Nsp15 (endoribonuclease), Nsp12 (RdRp) (5-16,17) and the structural proteins Spike and nucleocapsid

protein (N protein). (9,10-21)) We then clustered the opened conformation states (31 alligned out of 40 conserved states)

(9,17,22) using the Conformer Cluster web server tool (6,14,16) according to the position of the residues (5,7,8) Arg102,

Glu166 and Tyr109 using the weighted sum of the centroid distances as the single linkage method. (7,8-12,22) Finally, the

nearest to the pair group centroid structure per cluster was selected as the representative conformation of each group to be

available at BiogenetoligandorolTM. In this article, we effectively use a AI-decision tree and an optimum quantum walk

number of small chemical active chemical features from a collection of hundreds of them utilizing neural network and

jointly docking free energy cumulative features and ranking method with input toxicity values taking both network decision

tree parameters into account. In this work, we prepared the protein structures using the Protein Preparation Wizard from the

BiogenetoligandorolTM (BiogenetoligandorolTM, SynthocureTM, Thessaloniki, Biogenea Pharmaceuticals Ltd-GR, 2020).

(8,13,17,22) hydrogen-bond optimization and Protonation assignment were applied by using the PROPKA and the

ProtAssign publicly available software at the reported experimental pH (2-11,17) considering when available the presence of

the bound small molecule (8-12,15,19) .

Screening NuBEE Phyto-library and COVID2019 targets.

Virtual screening of the final proposed model and high throughput molecular docking based on existing literature were

implemented to a collection of 9591 drugs including 2037 chemical structures of FDA-approved small molecule drugs and (2,3-

14,17) over 6000 herbals and phytical extracts from the NuBBEDB updated database to get an insight into the potential inhibitors

and to uncover chemical and biological druggable information from Brazilian biodiversity (4-6,17). Drugs selected for the

docking studies with an ideal number of non-hydrogen and metal atoms not related with macromolecules, organic and inorganic

active fragments (e.g, Pt, Fe, Hg, etc.) below 5 or above 10, phytical elements and drugs having Molecular Weight > 120, and

already approved drugs that are consisted of original pharmacophoric elements of approved drugs into specific subcategories of

Page 7: QSAR-QMMM Cryptographic Mining on Chern- Simons

prototropic tautomer, separate enantiomer, and protomer fingerprint alternatives. (7,8,17,18) Parallel Virtual screening

technique for molecular docking was deployed at the center of the X: 228.75, Y: 190.82, and Z: 304.15. on its .pdbqt

converted libraries of small molecules for the motif binding target sites using standard Web technologies such as CSS,

HTML and JavaScript (AJAX) including graphics, text-based, and spectral files. (9,13-17) When more than one form of the

screened drugs and phytical elements for the cross-validation (e.g, more than one protomer, more than one enantiomer, etc.)

were screened, as suitable druggable candidates for recoring and fragmentating the forms with the highest GP and Docking

Energy values were considered in the ranking. (14,16,17) Finally, drugs and selected NuBBEDB phytical extracts were

docked according to the descending GP docking and binding energy values and only the screened hit candidates generating

the highest binding energy values were considered for fragmenting and re-merging into the Roccustyrna small molecule

using the BiogenetligandorolTM cluster of algorithms from the below.

Materials and Methods

Preparation of the protein structures

The National Center (NCBI) database for Biotechnology Information was used to retrieve the S glycoprotein proteins of

SARS-CoV-2. For the N protein, we aligned the clustered 31 conformations (1,2,35) from the 1731 full-length SARS-

CoV-2 sequences and stored as a FASTA format file for analysis with Glu174 and Glu166 present in the opened RBD

down conformation out of a total of 40 states COVID19 in the NMR-derived COVID19 associated protein structure (PDB

codes, 6xs6,1xak,2g9t, 3fqq, 2ghv,6yb7) (1,3,4) to select a small subset representative of the protein flexibility

downloaded from NCBI (30 April 202, txid2697049, NC_045512.2 with minimum length = 29,000 bp) as a coordinate

reference and aligned using the MAFFT tool. (2-5,6) The BioEdit v7.2.3 sequence alignment editor was deployed to

identify the conserved binding sites and short linear peptide region among the aligned sequences through multiple-

sequence alignment (MSA) with ClustalW. The conserved alignment was visually generated, inspected, and curated by

preserving all nucleotides using Genbank NC_045512.2 as a coordinate reference in genomes such as the ball python

genome, and further proceeded with the RSFIEDLLFNKV, e.g. KNFIDLLLAGF short linear motifs as identified between

the Wuhan isolate beyond the limit of serious detection of the reptile shingle back for spike protein nidovirus 1 model

construction by utilizing again the NC_045512.2 and annotated (ORFs) Open Reading Frames plus additional ORFs. We

then provided to the DockThor-VS online docking platforms the protein structures in PDB format files of the SARS-CoV-

2 (PDB codes, 6xs6,1xak,2g9t,3fqq,2ghv,6yb7) (1,3-10) as potential therapeutic drug targets (5-11,12) for the design of

our new druggable scaffold named Roccustyrna. (13,14,15) For this main purpose, we initially selected the Nsp3, Nsp5

non-structural proteins (PLpro domain), Nsp15 (endoribonuclease), Nsp12 (RdRp) (5-16,17), and the structural proteins

Spike and nucleocapsid protein (N protein). (9,10-21)) We then clustered the opened conformation states (31 aligned out

of 40 conserved states) (9,17,22) using the Conformer Cluster web server tool (6,14,16) according to the position of the

residues (5,7,8) Arg102, Glu166, and Tyr109 using the weighted sum of the centroid distances as the single linkage

method. (7,8-12,22) Finally, the nearest to the pair group centroid structure per cluster was selected as the representative

conformation of each group to be available at BiogenetoligandorolTM. In this article, we effectively use an AI-decision

tree and an optimum quantum walk number of small chemical active chemical features from a collection of hundreds of

them utilizing neural networks and jointly docking free energy cumulative features and ranking method with input toxicity

values taking both network decision tree parameters into account. In this work, we prepared the protein structures using

Page 8: QSAR-QMMM Cryptographic Mining on Chern- Simons

the Protein Preparation Wizard from the BiogenetoligandorolTM (BiogenetoligandorolTM, SynthocureTM, Thessaloniki,

Biogenea Pharmaceuticals Ltd-GR, 2020). (8,13,17,22) hydrogen-bond optimization and Protonation assignment were

applied by using the PROPKA and the ProtAssign publicly available software at the reported experimental pH (2-11,17)

considering when available the presence of the bound small molecule (8-12,15,19) .

Screening NuBEE Phyto-library and COVID2019 targets.

Virtual screening of the final proposed model and high throughput molecular docking based on existing literature were

implemented to a collection of 9591 drugs including 2037 chemical structures of FDA-approved small molecule drugs and

(2,3-14,17) over 6000 herbals and physical extracts from the NuBBEDB updated database to get an insight into the

potential inhibitors and to uncover chemical and biological druggable information from Brazilian biodiversity (4-6,17).

Drugs selected for the docking studies with an ideal number of non-hydrogen and metal atoms not related with

macromolecules, organic and inorganic active fragments (e.g, Pt, Fe, Hg, etc.) below 5 or above 10, physical elements and

drugs having Molecular Weight > 120, and already approved drugs that are consisted of original pharmacophoric elements

of approved drugs into specific subcategories of the prototropic tautomer, separate enantiomer, and protomer fingerprint

alternatives. (7,8,17,18) Parallel Virtual screening technique for molecular docking was deployed at the center of the X:

228.75, Y:190.82, and Z: 304.15. on its .pdbqt converted libraries of small molecules for the motif binding target sites

using standard Web technologies such as CSS, HTML, and JavaScript (AJAX) including graphics, text-based, and

spectral files. (9,13-17) When more than one form of the screened drugs and physical elements for the cross-validation

(e.g, more than one protomer, more than one enantiomer, etc.) were screened, as suitable druggable candidates for re-

coring and fragmenting the forms with the highest GP and Docking Energy values were considered in the ranking.

(14,16,17) Finally, drugs and selected NuBBEDB physical extracts were docked according to the descending GP docking

and binding energy values and only the screened hit candidates generating the highest binding energy values were

considered for fragmenting and re-merging into the Roccustyrna small molecule using the BiogenetligandorolTM cluster

of algorithms from the below.

Page 9: QSAR-QMMM Cryptographic Mining on Chern- Simons
Page 10: QSAR-QMMM Cryptographic Mining on Chern- Simons

Scheme2. 3D Docking interactions of the selected NuBEE phytical elements inside

the PDB:6XS6, SARS-CoV-2 Spike SARS-COV-2 SPIKE D614G variant, minus

RBD.

Page 11: QSAR-QMMM Cryptographic Mining on Chern- Simons

The whole set of molecules able to interact with the SARS-CoV PLpro enzyme were extracted after extensive machine learning

similarity studies, retrieving only those small-molecule ligands with absolute IC50 values. (2-17,34) This druggable .sdf set

consisted of 11 PLpro approved inhibitors. Depending on the cross-docking energy activities and fitness scoring analysis

threshold, out of 11 compounds, 300 small molecule compounds with proven anti-viral properties were characterized as Actives

and 153 molecules were categorized as Inactives. Physarum-prize-collective for molecular docking algorithm, Schrodinger-

inspired Neural Matrix Factorization, and a drug repositioning scoring analysis were implemented to a hybrid collection of the

Natural Products of the Chemistry Institute of UNESP, Araraquara/SP, and NuBBEDB physical extracts (9-17,35). (10-17,36)

Protein-molecule complexes, (4,5,7,8-17) followed by structural relaxation were generated

through (8,13-117) flexible-ligand rigid-receptor molecular docking (7,9,13,16-17) in these local energy minimization to optimize

protein-ligand interactions capping the C- and N-terminal for each active druggable fragment with i-GEMDOCK (3-14,17)

through cycles in all keeping conserved amino-acids within 4 Å of all the docked ligands of each cation arrangement as

consideration for each relaxed chemical structure free of local energy and geometry minimizations. (1,2,5-17,34,35) Virtual

screening experiments generated with KNIME pipelined DockThor Virtual Screening tool for the NuBBEDB and e-Drug3D

dataset and for the ChEMBL database, at the reference pH (6.6 to 7.4) for all SARS-CoV-2 drug targets including the contig maps

(a set of overlapping DNA segments) as were assembled with the use of CLC Genomics

software, version 4.6.1 (CLC Bio) publicly and are available so far. (BetaCoV/Wuhan/IVDC-HB-01/2020|EPI_ISL_402119),

(e.g, N-terminal S1 subunit, PLpro, NendoU, (residue 14–685) in Spike Mpro, RdRp, and complete genome sequences of the

three novel coronaviruses were submitted to GISAID (BetaCoV/Wuhan/IVDC-HB-01/2019, accession ID: EPI_ISL_402119;

BetaCoV/Wuhan/IVDC-HB-04/2020, accession ID: EPI_ISL_402120_BetaCoV/Wuhan/IVDC-HB-05/2019, accession ID:

EPI_ISL_402121) and a C-terminal S2 region N protein) were prepared

for GEMDOCK docking experiments using the wild isogenic type of the transcriptomic variants and 10 best matching physical

and chemical small molecule compounds (Table1) after exhaustive virtual screening analysis was obtained accordingly,

Colchicine, Raltegravir, Hexacosanol, Benzoxazolinon, Carboxy-Pentaric acid, Ursane, Antheraxanthin, RA-XIII, Crotonate and

Byrsonima Coccolobifolia against the SARS-COV-2 protein targets of the (pdb:1xak), (pdb:6xs6) and (pdb:6lu7). (6,7-17,36) For

each target, all crucial amino-acids involved virtually in this project of the cut-out parallel docking system when linked together

with hydrogens were then collected and the hit candidates who energetically favored within 8 Å of any docked molecule onto the

hydrophobic side chain were then used to build a reduced phase docking system to be in contact with water where the [P@] (=O)

(O[P@@] (=O) (O) NC (=O) CC[C@H] (N) C (=O) N[C@H] (C (=O)N[C@H](C (=O)O)

CCSC)CCC(=O)N)(O)OC1=N[C@H]2N=CN=C2C(=O)N1[P@@](=O(NC(=O)c1nc (F)cnc1(NC(=O)c1nn(c2oc(c(O)c2O)

CON(C([N]=C(N) N)C)CN)cn1)Nn1c2nc([nH]c(=O)c2nc1)N.C\1(=C/2\ON2[P@](=O)(N2N3N[C (=N[C@H]23)=S)OC(=O)

c2nn(c3oc(c(F)c3F)F)

cn2)/N(N)N=[C](=S)N1.[P@@](=O)(N1CC1)(NC(=O)c1nn(c2c1[nH]c(nc2=O)N)C(=O)/C=N/C(=N)F)N/N=C(/N=C/N)\CN

subscript. In the first smiles term in the spaces of targeted sequences referred to the difference of the free energy calculated using

the protein-ligand (PL), protein (P), and ligand (L) sequence of amino acid conformations bonded evaluations for

dispersion/repulsion, hydrogen bonding, electrostatics, and desolvation to the central atom of each screened compound.

(10,17,37) (Figure1). The GQM (X) refers to the energy of the cluster of the physical small molecule known as the R group from

the docked complex, in the free unbound state the fourth term corresponds to the change in conformational entropy, which were

generated and the second and third unbound states of ligand side-chain conformations are calculated through local energy

minimization as ∆GQMconf (X) = GQMo (X) − GQM (X), (X = L, P) (equation1) where GQMo (X) is the energy of the isolated

active fragments in the conformation of the docked PL on both protein and molecule complex Inhibitors and conformations when

applied Bioactivity-guided Fractionations for the cluster of the selected compounds of the Colchicine, Raltegravir, Hexacosanol,

Page 12: QSAR-QMMM Cryptographic Mining on Chern- Simons

Benzoxazolinon, Carboxy-Pentaric acid, Ursane, Antheraxanthin, RA-XIII, Crotonate and Byrsonima coccolobifolia Leaves and

Stems to be fragmented, re-cored and accordingly merged into the combination of GisitorviffirnaTM, Roccustyrna_gs1_TM, and

Roccustyrna_fr1_TM small hyperactive druggable scaffolds (3,4,17,36). The acknowledgment of the binding of the selected 8

physical compounds to their full-genome evolutionary novel coronavirus (2019-nCoV) protein targets was accomplished using

Molinspiration (http://www.molinspiration.com/cgi-bin/properties) and DrugBank (1,11,12,13,15,17,34).

Pharmacophoric-ODEs fragmenting, merging and recording: Biogenetoligandorol AI-heuristic algorithm.

The patterns of this Biogenetoligandorol fragmentation scheme are sorted into the working inputs of the Galilean transformation

by examining the ―extendedǁ Galilean transformation based on a set of heuristically determined descriptors moving with relative

acceleration to a rigid system to a nonrotating geometric observer having an arbitrary time-dependent acceleration (20,21,27,28).

(25,29) These descriptors as an applied nonconcurrent to both translate and rotatecan be, for example, the number of atoms

describing the pattern of a force system which can both translate and rotate and be determined by the substitution as a polynomial

in ip (r, t) = eiJ{r,t) (p (r', t). (equation2) V'ip = (V'ip + iV 'f) eif, (equation3) ρ¯sQFI≈∑i=01Re (ρi12) 2 (1ρi11+1ρi22) +

(ρi11−ρi22) 2ρi11+ρi22, (equation4) ρ1ij=〈υi 〈1 ρs (equation5) υj〉 1〉 (equation6) ρ0ij=〈υi 〈0 ρs (0) υj〉 0〉 0〉1〉

(equation7) H1=γB0⋅Sˆ1Re (ρi12) ρi12ρs (0) ρ¯s (equation8) S〉=12 (〉− 01〉) 30%ρs (equation9) ρ¯s=H⊗m (equation10)

V'2ip = {V'2ip + 2iV'f-V' (p+ (pV'2f+ W ←S (I ⊗H) (equation11) M1; <p (V'f) (equation12) eφf,i>= 〈Φ|MT (I3−NT) −2 (ρ

⊗I2) |Φ〉 (f) + if<p) (equation13) eif,and the Schrödinger equation becomes n 2 2 m (V,z (p + 2 iV'f-V' (p+ i (pV f - M =

{M0,M1} (equation14) (V 'fY <p) = ifi I3 ←E (m2) (equation15) (*m2-dimensional identity*) ((<p + if (p) -g. (V ' (p + i (pv' f))

through the example of two coupled Chern-Simons Topology driven anti-de Sitter harmonic black-hole oscillators and brane

spacetimes where p+2 are the the number of bonds predicted or the number of double bonds. (20,25) The complete

pharmacophoric fragmentation scheme was analyzed to compare similar series of chemical patterns that are contained in the

chemical phase structures as exctraced from within the selected 10 hit compounds of the Colchicine, Raltegravir, Hexacosanol,

Benzoxazolinon, Carboxy-Pentaric acid, Ursane, Antheraxanthin, RA-XIII, Crotonate and Byrsonima coccolobifolia. (Table1),

(20,35) Whenever searching for a specific pattern, if the group has such a parent pattern, the parent pattern is searched first

eliminate the terms in V' (p,which gives f = — %-r'+ g (t) (equation16). Then one can choose n g{t) such as to eliminate the

purely time-dependent terms, and one finally arrives at, = (2mV '2 (p + mf; ■ r' (p = ih (p,ipir, t) =— ea h J (pir',t) (equation17).

(20,25,26) of the strong equivalence principle in quantum theory. After that, the child pharmacophoric pattern is searched in an

inertial repeated merged system S asip = % (ml5 r, t) + ip2im2, r, t (equation18). (25,26,37) Then assume that one fragmented

pharrmacophore can describe the same superposition in an accelerating to a larger ligand-receptor system S' that obeys (20), with

§ = £ (r) (equation19), £ (0) = £ (7) (equation20), so that the system S' performs a closed quantum circuit and coincides with the

chemical structure system the S at times t = 0 and t=T, such that r ‗ iT) = r (7) (equation21). (25-34,37) To avoid q { h q;}qreg q

(3) ;creg c (3) ;reset q (0) ;reset q (1) ;reset q (2) ;h q (0) ;u2 (pi/2,pi/2) q (1) ; incomplete (1Z) -2- { ((2S,3S,5R) -5-

(2-amino-6-oxo- 6,9-dihydro- 3H-purin-9-yl) -3-hydroxyoxolan-2-yl) methylidene}-2-cyano- 1-({ ((2S,4R,5R) -2 group

assignments, through two hydrogen-bonding interactions whenever a part into the S2 subsite of the structure relative to the

complex between the 2- ({[fluoro ({[ (2E) -5-oxabicyclo[2.1.0]pentan-2-ylidene] cyano-lambda6-sulfanyl})

methyl]phosphorylidene}amino) -4,6-dihydro-1H-purin-6-onecyano-1- ({ ((2S,4R,5R) -2-methyl- 2- (methylamino) -

1,6-diazabicyclo with heptan-4-yl) oxy}imino) -1lambda5,2 lambda5-azaphosphiridin-1-ylium chemical groups of the cyclohexyl

methyl is already recored and fragmented, the subsequent carbonyl oxygen matches have to be adjacent to the from the main-

interacting chain amide of the residue Glu166 amino acid already occupied the space normally by the canonical S4- cyano-1- ({

((2S,4R,5R) -2-methyl-2-2- ({[fluoro ({[ (2E) -5- oxabicyclo[2.1.0] pentan- 2-ylidene]cyano-lambda6-sulfanyl})

Page 13: QSAR-QMMM Cryptographic Mining on Chern- Simons

methyl]phosphorylidene}amino)-4,6-dihydro-1H-purin-6-one (methylamino) -1,6-diazabicyclo (3.2.0) heptan-4-yl) (1S,2R,3S)

-2- ({[ (1S,2S,4S,5R) -4-ethenyl-4- sulfonylbicyclo[3.2.0]heptan-2-yl] oxy}amino) -3- 2- ({[fluoro ({[ (2E) -5-oxabicyclo

[2.1.0]pentan-2-ylidene]cyano-lambda6-sulfanyl}) methyl]phosphorylidene}amino) -4,6-dihydro-1H-purin-6-one[ (2R,5R) -5-

(2-methyl-6-methylidene-6,9-dihydro-3H-purin-9-yl) -3-methylideneoxolan-2-yl]phosphirane-1-carbonitrile-

oxy}imino)-1lambda5, 2lambda5-azaphosphiridin-1-ylium binding site of the PDB:6LU7 main protease. (26,31-39) As a first

step, our Chern-Simons oriented fragmentation algorithm performs a quick fragmentation scheme search for extracting different

chemical groups formed by the nucleophilic attack of the catalytic domains of the target proteases onto the α-carbon of my new

Roccustyrna small molecule by applying the heuristic quantum phases for group prioritization when performing parent-child

group prioritization as described above. (29,32-39) This topology geometric for pharmacophoric search and design indicating the

canonical binding pockets moieties of a new small-sized prototype that goes sequentially through a sorted fragmentation scheme,

adding groups that are found in its active conformation phases and do not overlap with the 2- ({[fluoro ({[ (2E)

-5-oxabicyclo[2.1.0]pentan-2-ylidene] cyano-lambda6- sulfanyl}) methyl]phosphorylidene}amino) -4,6-dihydro-1H-

purin-6-onecyano-1- ({ ((2S,4R,5R) -2-methyl-2- (methylamino) -1,6-diazabicyclo (3.2.0) heptan-4-yl)oxy}imino) -

1lambda5,2lambda5- azaphosphiridin-1-ylium chemical groups that were already screened. In case it

successfully estimates a valid fragmentation, scheme this is taken as the phase solution relating to how one clustered

pharmacophoric element occupies the space normally filled by the protease‗s substrate‗s interacting main chain; would describe

the same phase in an alternative XYZ coordinate smile system. (33,35-42) This Lindenbaum-Tarski algebraic algorithm was

implemented as a recursive algorithm that leads to enhancement of my novel small molecule‗s catalytic activity against the 3C

protease–like domains I and II and performs a complete decision tree search of all possible combinations of fragmentation,

merging, and pharmacophoric re-coring systems targeting in the in SARS-CoV Mpro. (12,13,28-39)

": { " ], "…", p" [ 1, 1, "zpa

{ ], [ "…" ], 1, "zpa r" "xpa

"col [ ], [ 1, "Swa "xpa r" ], r"

"tim s": "…", [ 1, p", r" ], [ ],

[ "inp "Swa ], [ [ e_pa

[ utA2 "…", "Swa "Swa p", "Swa [ "Z^¼

Page 14: QSAR-QMMM Cryptographic Mining on Chern- Simons

rame

", p", p", 1, p" "Z^- ", "Y^- ter"

"Cou 1, "…", 1, 1, 1, ], "Z^½ ¼", ¼", :

ntin 1, 1, 1, [ ", "Z^½

0.24

g8" 1, "…", 1, 1, "Swa "H", ", "X^- 6133

], 1, 1, 1, p" "H", "•", 1, ¼", 1250

[ "…", 1, ], 1, 1, 1, "•",

0014

"inp 1, "Swa [ 1, 1, 1, 1, "H", 217,

"Cha utB2 "…", p" 1, 1, 1, 1, 1, 1,

"cir nce8 " "Swa ], 1, 1, 1, 1, 1,

cuit

Page 15: QSAR-QMMM Cryptographic Mining on Chern- Simons

1, r" ", "H" 1, Fǫ , ,

], ], 1, Fǫ Fǫ , Fǫ Fǫ

"zpa [ "H", [ 1, , , Fǫ Fǫ , ,

r" 1, Fǫ ], ,

], "Z^½ "ypa "Z^! 1, Fǫ Fǫ , [ Fǫ Fǫ

[ ", r" ₁₂₈", 1, , , Fǫ , ,

],

1,

,

"Z^⅛ "Z^¼ [ "Z^! 1, Fǫ Fǫ , , Fǫ Fǫ

", ", 1, ], , Fǫ ], ,

₆₄",

"Z^!

1,

[

,

[

"Z^¼ "X^¼ ₆₄", "Z^!

1, Fǫ , , Fǫ

",

",

1,

,

,

₃₂",

"Z^! , Fǫ Fǫ , ,

"Z^½ "X^- 0.99 Fǫ ], , Fǫ

₃₂",

"Z^!

", ¼", 9999 Fǫ , [ Fǫ Fǫ ,

₁₆",

5231

,

,

,

"Z^!

"•", "H", 6284 Fǫ Fǫ , Fǫ

₁₆",

1, 1, "Z^⅛ 18, Fǫ , , Fǫ Fǫ ,

1,

"Z^⅛

", , Fǫ ], ,

"zpa 0.99 Fǫ Fǫ , [ Fǫ

"ypa r" ", "Z^¼ 9999 Fǫ , , Fǫ ,

r" ],

"Z^¼

", 5231 , Fǫ Fǫ ,

], [ 6284 Fǫ Fǫ , , Fǫ

[ ", "Z^½ 18, Fǫ ], , Fǫ ],

"Z^!

"Z^½

", , [ Fǫ Fǫ , [

"Z^¼ ₃₂", "•" 0.99

Fǫ , ,

",

", ], 9999 Fǫ Fǫ ,

Fǫ Fǫ

"•"

"Z^! [ 5231 , , Fǫ Fǫ , ,

"Y^½

],

6284

],

,

₁₆",

", [

"zpa

18

,

[

"Z^⅛

"ZDe

r", ], , , Fǫ , ,

"X^½ 1, Fǫ Fǫ ,

",

", tect

1,

"com

,

,

or",

"Z^¼

1, pute ], , Fǫ ], ,

"H", 1, d_bl [ Fǫ Fǫ , [

",

"YDe

1, 1, och_ Fǫ , , Fǫ

tect

1, "Z^½

1, vect Fǫ , Fǫ Fǫ ,

or", "H" ors_ , Fǫ Fǫ , ,

",

Page 16: QSAR-QMMM Cryptographic Mining on Chern- Simons

"ypa

"YDe

] by_c Fǫ ], , Fǫ

r" "•",

] olum Fǫ , [ Fǫ Fǫ ,

], tect

},

n_th

,

,

,

or",

[ "xpa

en_w Fǫ Fǫ , Fǫ "cha ire" Fǫ , , Fǫ Fǫ ,

r"

"XDe

"Z^!

nce_

: [

,

],

,

],

tect

₁₆",

of_s

[

,

[

Fǫ [

or",

urvi

,

,

,

"Z^⅛ "X^-

"ZDe ving Fǫ , Fǫ Fǫ ,

,

,

,

Fǫ ",

_to_

¼",

tect

each Fǫ ], , Fǫ ],

Cont

"Z^¼

"Y^¼

_col Fǫ , [

Fǫ Fǫ , [

rolR

,

,

,

",

umn"

",

eset

: [ Fǫ Fǫ , Fǫ Fǫ

",

"Z^½

"X^-

1, Fǫ , ,

Fǫ Fǫ , ,

,

],

,

",

1,

½",

"YDe

1, Fǫ Fǫ , [ Fǫ Fǫ

tect

"•",

"Y^¼

1, Fǫ , ,

Fǫ , ,

Cont

,

,

1,

1,

",

rolR

1, Fǫ Fǫ , , Fǫ Fǫ

eset

"xpa

"Z^¼

1, Fǫ ], ,

Fǫ ], ,

",

,

[

,

[

1,

Page 17: QSAR-QMMM Cryptographic Mining on Chern- Simons

Fǫ , , }, 4134 { 0, 0, 0, 0, "

, "z": { 5739 0, 0, 0, 0, },

Fǫ Fǫ 0.35 6916 "pro 0, 0, 0, 0,

Fǫ ], , 5825 "x": 78e- babi 0, 0, 0, 0, "dat

, [ 9010 0, 9, liti 0, 0, 0, 0, a":

Fǫ 3149 es": 0, 0, 0, 0, fals

Fǫ Fǫ , 414 "y": "z": [ 0, 0, 0, 0, e

, , }, 0, - 0, 0, 0, 0, 0, },

Fǫ { 0.72 0, 0, 0, 0, 0, {

Fǫ Fǫ , "z": 0161 0, 0, 0, 0, 0,

, , "x": 1 4230 0, 1, 0, 0, 0, "loc

Fǫ - }, 8712 0, 0, 0, 0, 0, atio

Fǫ Fǫ , 0.58 { 01 0, 0, 0, 0, 0, n":

], , 1380 } 0, 0, 0, 0, 0, {

[ Fǫ 3672 "x": ] 0, 0, 0, 0, 0,

Fǫ , 7905 0, ], 0, 0, 0, 0, 0, "wir

Fǫ , 27, 0, 0, 0, 0, 0, e":

, Fǫ "y": "dis 0, 0, 0, 0, 0, 1,

Fǫ ], "y": 0, play 0, 0, 0, 0, 0,

Fǫ , [ - s": 0, 0, 0, 0, 0, "col

, { 0.05 "z": [ 0, 0, 0, 0, 0, umn"

Fǫ 3137 1 { 0, 0, 0, 0, 0, : 20

Fǫ , "x": 8239 }, 0, 0, 0, 0, 0 },

, 0.36 3932 { "loc 0, 0, 0, 0, ]

Fǫ 7222 3425 atio 0, 0, 0, 0, } "typ

Fǫ , 3091 , "x": n": 0, 0, 0, 0, }, e":

, 1254 0.59 { 0, 0, 0, 0, { {

Fǫ 883, "z": 8077 0, 0, 0, 0,

Fǫ ], - 4760 "wir 0, 0, 0, 0, "loc "ser

, [ "y": 0.16 2462 e": 0, 0, 0, 0, atio iali

- 5593 77, 0, 0, 0, 0, 0, n": zed_

Fǫ Fǫ 0.05 3856 0, 0, 0, 0, { id":

, , 1213 9641 "y": "col 0, 0, 0, 0, "YDe

1191 113 0.00 umn" 0, 0, 0, 0, "wir tect

Fǫ Fǫ 7901 }, 6776 : 1 0, 0, 0, 0, e": or",

, , 039, { 7612 }, 0, 0, 0, 0, 0,

6360 0, 0, 0, 0, "nam

Fǫ Fǫ "z": "x": 8932 "typ 0, 0, 0, 0, "col e":

], , 0.44 - 5, e": 0, 0, 0, 0, umn" "Y

[ 0322 0.27 { 0, 0, 0, 0, : 20 Axis

Page 18: QSAR-QMMM Cryptographic Mining on Chern- Simons

Fǫ 7865 3511 "z": 0, 0, 0, 0, }, Dete

Fǫ , 6959 5885 0.17 "ser 0, 0, 0, 0, ctor

, 534 7345 6265 iali 0, 0, 0, 0, "typ "

Fǫ }, 58, 5079 zed_ 0, 0, 0, 0, e": },

Fǫ , { 3647 id": 0, 0, 0, 0, {

, "y": 766 "Cha 0, 0, 0, 0, "dat

Fǫ "x": - }, nce8 0, 0, 0, 0, "ser a":

Fǫ , - 0.33 { ", 0, 0, 0, 0, iali fals

, 0.12 0614 0, 0, 0, 0, zed_ e

Fǫ 1442 0303 "x": "nam 0, 0, 0, 0, id": },

Fǫ , 7128 6117 - e": 0, 0, 0, 0, "ZDe {

, 4341 554, 0.27 "Pro 0, 0, 0, 0, tect

Fǫ 812, 9838 babi 0, 0, 0, 0, or", "loc

Fǫ ], "z": 5918 lity 0, 0, 0, 0, atio

, [ "y": - 1404 Disp 0, 0, 0, 0, "nam n":

0.35 0.21 114, lay" 0, 0, 0, 0, e": {

Fǫ Fǫ 2593 1523 }, 0, 0, 0, 0, "Z

, , 3027 8904 "y": 0, 0, 0, 0, Axis "wir

2674 9530 - "dat 0, 0, 0, 0, Dete e":

Fǫ Fǫ 56, 03 1.25 a": 0, 0, 0, 0, ctor 2,

Page 19: QSAR-QMMM Cryptographic Mining on Chern- Simons

"nam { i":0 }, }, }, }, i":0

"col e": {"r" {"r" }, {"r" },

umn" "X "loc :0.0 :0.0 {"r" {"r" {"r" {"r" :-

: 20 Axis atio 7841 0691 {"r" :0," :0," :0," :0," 0.06 {"r"

}, Dete n": 9581 8401 :- i":0 i":0 i":0 i":0 4701 :0.0

ctor { 0556 4573 0.11 }, }, }, }, 7657 5179

"typ " 4117 6932 9905 7568 9602

e": }, "wir ,"i" 75," 7549 {"r" {"r" {"r" {"r" 054, 8065

{ e": :0.1 i":- 2382 :0," :0," :0," :0," "i": 6814

"dat 5, 1825 0.04 05," i":0 i":0 i":0 i":0 0.02 6,"i

"ser a": 3618 6200 i":0 }, }, }, }, 7424 ":-

iali fals "col 4787 9645 .105 4919 0.07

zed_ e umn" 7502 9984 7956 {"r" {"r" {"r" {"r" 4192 0042

id": }, : 20 }, 7794 0697 :0," :0," :0," :0," 8864 2301

"YDe { }, }, 0787 i":0 i":0 i":0 i":0 }, 8884

tect {"r" 05}, }, }, }, }, 659}

or", "loc "typ :0," {"r" {"r" ,

atio e": i":0 :0," {"r" {"r" {"r" {"r" {"r" :0,"

"nam n": { }, i":0 :0," :0," :0," :0," :0," i":0 {"r"

e": { }, i":0 i":0 i":0 i":0 i":0 }, :0,"

"Y "ser {"r" }, }, }, }, }, i":0

Axis "wir iali :- {"r" {"r" },

Dete e": zed_ 0.07 :- {"r" {"r" {"r" {"r" {"r" :-

ctor 4, id": 0227 0.07 :0.0 :0," :0," :0," :0," 0.02 {"r"

" "YDe 3547 9130 1074 i":0 i":0 i":0 i":0 6332 :0.0

}, "col tect 6493 5750 8094 }, }, }, }, 9688 4025

umn" Cont 835, 6084 8790 4596 1221

"dat : 20 rolR "i": 442, 9078 {"r" {"r" {"r" {"r" 3478 5077

a": }, eset 0.01 "i": 6,"i :0," :0," :0," :0," ,"i" 8770

fals ", 7765 - ":- i":0 i":0 i":0 i":0 :- 4,"i

e "typ 4549 0.03 0.03 }, }, }, }, 0.00 ":0.

}, e": "nam 4794 8075 8270 0511 0530

{ { e": 8456 6147 2089 {"r" {"r" {"r" {"r" 2111 3036

"Y }, 2058 8461 :0," :0," :0," :0," 1027 4215

"loc "ser Dete 296} 342} i":0 i":0 i":0 i":0 8964 3739

atio iali ct- {"r" , , }, }, }, }, }, 9},

n": zed_ Cont :0,"

{ id": rol- i":0 {"r" {"r" {"r" {"r" {"r" {"r" {"r" {"r"

"ZDe Rese }, :0," :0," :0," :0," :0," :0," :0," :0,"

"wir tect t" i":0 i":0 i":0 i":0 i":0 i":0 i":0 i":0

Page 20: QSAR-QMMM Cryptographic Mining on Chern- Simons

e": Cont }, {"r" }, }, }, }, }, }, }, },

3, rolR :-

eset "dat 0.00 {"r" {"r" {"r" {"r" {"r" {"r" {"r" {"r"

"col ", a": 4121 :- :0," :0," :0," :0," :0.0 :- :-

umn" fals 7724 0.01 i":0 i":0 i":0 i":0 7423 0.00 0.07

: 20 "nam e 7926 0478 }, }, }, }, 2354 2403 2538

}, e": } 5928 3289 7601 9596 5174

"Z ], ,"i" 1345 {"r" {"r" {"r" {"r" 6998 3191 1552

"typ Dete :- 0241 :0," :0," :0," :0," ,"i" 9861 353,

e": ct- "out 0.13 ,"i" i":0 i":0 i":0 i":0 :0.0 ,"i" "i":

{ Cont put_ 1119 :- }, }, }, }, 5639 :- 0.12

rol- ampl 9218 0.02 7203 0.04 2138

"ser Rese itud 0347 1256 {"r" {"r" {"r" {"r" 3560 6627 6119

iali t" es": 443} 5604 :0," :0," :0," :0," 276} 5811 7233

zed_ }, [ , 5973 i":0 i":0 i":0 i":0 , 1953 2},

id": 301} }, }, }, }, 7354

"XDe "dat {"r" {"r" , {"r" }, {"r"

tect a": :0," :0," {"r" {"r" {"r" {"r" :0," :0,"

or", true i":0 i":0 {"r" :0," :0," :0," :0," i":0 {"r" i":0

},

},

},

:0,"

i":0

i":0

i":0

i":0

},

:0,"

},

Page 21: QSAR-QMMM Cryptographic Mining on Chern- Simons

}, }, }, }, 445} :0.0 0.01 i":0 i":0 i":0

{"r" , {"r" 1047 0748 }, }, },

:- {"r" {"r" {"r" {"r" :- 8328 0948

0.05 :0," :0," :0," :0," {"r" 0.00 9134 7909 {"r" {"r" {"r"

9105 i":0 i":0 i":0 i":0 :0.0 6918 5024 0786 :0," :0," :0,"

1578 }, }, }, }, 7022 4014 1,"i ,"i" i":0 i":0 i":0

5217 7354 5736 ":0. :0.0 }, }, },

285, {"r" {"r" {"r" {"r" 7649 9327 0212 3827

"i": :0," :0," :0," :0," 3835 5,"i 5656 0208 {"r" {"r" {"r"

- i":0 i":0 i":0 i":0 ,"i" ":0. 0459 9846 :0," :0," :0,"

0.08 }, }, }, }, :- 0462 7330 1342 i":0 i":0 i":0

6749 0.01 0096 1}, }, }, }, },

5164 {"r" {"r" {"r" {"r" 7765 4599

2751 :0," :0," :0," :0," 4549 8477 {"r" {"r" {"r" {"r" {"r"

694} i":0 i":0 i":0 i":0 4794 94}, :0.0 :0," :0," :0," :0,"

, }, }, }, }, 8456 9849 i":0 i":0 i":0 i":0

}, {"r" 7517 }, }, }, },

{"r" {"r" {"r" {"r" {"r" :0.0 4069

:0," :0," :0," :0," :- {"r" 6033 4046 {"r" {"r" {"r" {"r"

i":0 i":0 i":0 i":0 0.04 :0.0 5613 ,"i" :0," :0," :0," :0,"

}, }, }, }, 8106 2685 7871 :- i":0 i":0 i":0 i":0

8044 1676 7422 0.38 }, }, }, },

{"r" {"r" {"r" {"r" 9008 4044 5,"i 7356

:0," :0," :0," :0," 9417 7616 ":0. 3706 {"r" {"r" {"r" {"r"

i":0 i":0 i":0 i":0 ,"i" 6,"i 2205 8748 :0," :0," :0," :0,"

}, }, }, }, :- ":0. 0255 474} i":0 i":0 i":0 i":0

0.26 1328 5370 , }, }, }, },

{"r" {"r" {"r" {"r" 6494 2273 3308

:0," :0," :0," :0," 9297 7097 }, {"r" {"r" {"r" {"r" {"r"

i":0 i":0 i":0 i":0 9049 7401 :0.1 :0," :0," :0," :0,"

}, }, }, }, 68}, 7}, {"r" 1990 i":0 i":0 i":0 i":0

:0.0

5754

},

},

},

},

{"r" {"r" {"r" {"r" {"r" {"r" 7913 9238

:0," :0," :0," :0," :- :0.0 0575 205, {"r" {"r" {"r" {"r"

i":0 i":0 i":0 i":0 0.07 0412 0608 "i": :0," :0," :0," :0,"

}, }, }, }, 8419 1772 4442 - i":0 i":0 i":0 i":0

5810 4792 ,"i" 0.10 }, }, }, },

{"r" {"r" {"r" {"r" 5564 6592 :0.0 5795

:0," :0," :0," :0," 117, 8,"i 3807 6069 {"r" {"r" {"r" {"r"

i":0 i":0 i":0 i":0 "i": ":0. 5614 7078 :0," :0," :0," :0,"

Page 22: QSAR-QMMM Cryptographic Mining on Chern- Simons

}, }, }, }, - 1311 7205 705} i":0 i":0 i":0 i":0

0.11 1992 8296 , }, }, }, },

{"r" {"r" {"r" {"r" 8253 1803 },

:0," :0," :0," :0," 6184 4744 {"r" {"r" {"r" {"r" {"r"

i":0 i":0 i":0 i":0 7877 3}, {"r" :0.2 :0," :0," :0," :0,"

}, }, }, }, 502} :- 1202 i":0 i":0 i":0 i":0

, {"r" 0.12 0516 }, }, }, },

{"r" {"r" {"r" {"r" :- 3360 3955

:0," :0," :0," :0," {"r" 0.08 5742 6885 {"r" {"r" {"r" {"r"

i":0 i":0 i":0 i":0 :- 6599 4545 ,"i" :0," :0," :0," :0,"

}, }, }, }, 0.09 4542 288, :- i":0 i":0 i":0 i":0

8455 8371 "i": 0.05 }, }, }, },

{"r" {"r" {"r" {"r" 5706 43," 0.19 3896

:0," :0," :0," :0," 3817 i":- 1805 8481 {"r" {"r" {"r" {"r"

i":0 i":0 i":0 i":0 978, 0.04 9289 1234 :0," :0," :0," :0,"

}, }, }, }, "i": 4631 4554 474} i":0 i":0 i":0 i":0

0.07 2502 138} , }, }, }, },

{"r" {"r" {"r" {"r" 0607 0265 ,

:0," :0," :0," :0," 8708 579} {"r" {"r" {"r" {"r" {"r"

i":0 i":0 i":0 i":0 1718 , {"r" :- :0," :0," :0," :0,"

Page 23: QSAR-QMMM Cryptographic Mining on Chern- Simons

i":0 , 475} 5430 {"r" }, :0,"

}, {"r" , 069} :0," i":0

:0.0 {"r" , i":0 {"r" },

{"r" 6470 :0.0 {"r" }, :0,"

:0," 1765 0240 :- {"r" i":0 {"r"

i":0 7756 3959 0.04 :0.0 {"r" }, :0,"

}, 8054 6319 0251 5910 :0," i":0

,"i" 1986 2215 5157 i":0 {"r" },

{"r" :- 1,"i 0778 8521 }, :0,"

:0," 0.02 ":0. 7704 7285 i":0 {"r"

i":0 7424 0466 ,"i" ,"i" {"r" }, :0,"

}, 4919 2758 :- :0.0 :0," i":0

4192 1119 0.05 8674 i":0 {"r" },

{"r" 8864 5373 3030 9516 }, :0,"

:- }, 54}, 3642 4275 i":0 {"r"

0.08 1537 1694 {"r" }, :0,"

5597 {"r" {"r" 399} }, :0," i":0

3884 :0.1 :- , i":0 {"r" },

4633 8640 0.09 {"r" }, :0,"

102, 5375 5864 {"r" :0," i":0 {"r"

"i": 5998 8771 :0.1 i":0 {"r" }, :0,"

- 6115 0475 3269 }, :0," i":0

0.10 ,"i" 922, 7641 i":0 {"r" },

8038 :0.0 "i": 8495 {"r" }, :0,"

4328 0673 0.15 1782 :0," i":0 {"r"

9613 2526 2551 ,"i" i":0 {"r" }, :0,"

724} 7009 8894 :- }, :0," i":0

, 4370 1955 0.23 i":0 {"r" },

8}, 566} 4071 {"r" }, :0,"

{"r" , 1951 :0," i":0 {"r"

:- {"r" 2557 i":0 {"r" }, :0,"

0.07 :0.0 {"r" 983} }, :0," i":0

4232 2633 :- , i":0 {"r" },

3547 2968 0.05 {"r" }, :0,"

6016 8459 1799 {"r" :0," i":0 {"r"

998, 6347 6028 :0.0 i":0 {"r" }, :0,"

"i": 8,"i 0656 7253 }, :0," i":0

- ":0. 8146 8517 i":0 {"r" },

0.05 0005 ,"i" 4155 {"r" }, :0,"

6397 1121 :0.0 2353

2033 1110 7004 ,"i"

5602 2789 2230 :-

76}, 64}, 1888 0.12

4659 2138

{"r" {"r" }, 6119

:- :- 7233

0.00 0.20 {"r" 2},

7718 4493 :0.0

1453 1352 0140 {"r"

8165 1385 3664 :0.0

9269 193, 4715 5212

,"i" "i": 8157 3736

:0.2 - 83," 5901

3192 0.07 i":0 4702

6277 9754 .031 ,"i"

2798 1663 5993 :0.1

5382 0506 1674 6740

}, 516} 5996 4666

Page 24: QSAR-QMMM Cryptographic Mining on Chern- Simons

], 1, [

1,

"Z^!₆₄

", {"r" [

:0," "Swap", "xpar" "Z^!₃₂",

1, ],

"Z^!₁₆

", i":0

1, [ "Z^⅛",

},

1, "Y^-¼", "Z^¼",

{"r"

1, "X^-¼", "Z^½",

1, "H", "•"

:0," 1, 1, ],

i":0

1, [ "Swap"

}, ], 1,

[ "zpar" "ZDetect 1, ], or", {"r"

"Swap", [

:0,"

1, "Z^⅛", "YDetec

i":0

1, "Z^¼", tor",

}, 1, "Z^½",

1, "•", "YDetec

1, tor", {"r" "Swap"

], 1,

:0,"

[

"ypar" "XDetec i":0

1, ], tor",

},

1, [

{"r"

"Swap", "Z^¼", "ZDetect

1, "Y^½", Control

:0," 1, "X^½", Reset",

i":0

"H",

"Swap"

} ], 1, "YDetec

]

[ 1, tControl

1, "ypar" Reset", }

1, ], "H"

1, [ ],

"Swap",

"Z^!₁₆"

, [

"Swap" "Z^⅛",

"cols": [

], "Z^¼",

"Z^!₁₂₈

",

[

[ "Z^½",

"Z^!₆₄"

,

"H", "•",

"Z^!₃₂

",

"Countin

1, 1,

"Z^!₁₆

",

1, "xpar" "Z^⅛",

g8" 1, ], "Z^¼",

], 1, [ "Z^½",

[ 1, "Z^½", "•"

"Chance

"xpar" "Z^¼", ],

], "X^¼", [

8" [ "X^-¼", "zpar",

], "Z^½", "H", 1,

[ "•", 1, 1,

"inputA2

1, "zpar" 1,

1, ], 1,

", 1, [ 1,

1, 1,

"Z^!₃₂"

, 1,

1, "zpar"

"Z^!₁₆"

, "H"

1, ], "Z^⅛", ]

1, [ "Z^¼", ]

"inputB2

"Z^-¼", "Z^½", }

"

"H", "•",

1, "xpar"

],

1, ],

[

"…",

1, [

1, "X^-¼",

"…", "zpar" "Y^¼",

"…", ], "X^-½",

"…", [ "Y^¼",

Page 25: QSAR-QMMM Cryptographic Mining on Chern- Simons

"…", "Z^¼", "Z^¼",

"…", "Z^½", "H",

"…", "•", "ypar"

1, ],

Page 26: QSAR-QMMM Cryptographic Mining on Chern- Simons

Scheme3. Quantum Fourier Circuit of the BiogenetoligandoirolTM Cluster for the Roccustyrna small

molecule Merging and Hope-Re-coring algorithms. Gate nG0 (param) q { h q;}qreg q (3) ;creg c (3) ;reset q

(0) ;reset q (1) ;reset q (2) ;hq (0) ;u2 (pi/2,pi/2) q (1) ;measure q (2) -> c (2) ;x q (0) ;reset q (1) ;resetq (2) ;u3

(pi/2,pi/2,pi/2) q (0) ;measure q (2) -> c (2) ;u2 (pi/2,pi/2) q (2) ;cswapq (0) ,q (1) ,q (2) ;barrier q (0) ;u2

(pi/2,pi/2) q (2) ;h q (0) ;t q (2) ;t q (0) ;measure q (1) ->c (1) ;ch q (1) ,q (2) ; q (2) ;crx (pi/2) q (1) ,q (2) ;cu1

(pi/2) q (1) ,q (2) ;tdg q (2) ;sdg q (2) ;cy q (1) ,q (2) ;crz (pi/2) q (1) ,q (2) ;ch q (1) ,q (2) ;sdg q (1) ;u2

(pi/2,pi/2) q (2) ;ry (pi/2)q (2) ;cu3 (pi/2,pi/2,pi/2) q (1) ,q (2) ;tdg q (1) ;nG0 (pi/2) q (2) ;crx (pi/2) q (1) ,q (2)

;cu1 (pi/2)q (1) ,q (2) ;cswap q (0) ,q (1) ,q (2) ;swap q (1) ,q (2) ;cz q (1) ,q (2) ;rxx (pi/2) q (1) ,q (2) ;u1

(pi/2)q (1) ;cry (pi/2) q (1) ,q (2) ;crz (pi/2) q (1) ,q (2) ;measure q (0) -> c (0) ;z q (0) ;measure q (1) -

> c (1) ;z q (0) ;rx (pi/2) q (1) ;rx (pi/2) q (0) ;u2 (pi/2,pi/2) q (1) ;rx (pi/2) q (0) ;ch q (1) ,q (2) ;ry

(pi/2) q (0) ;ch q (1) ,q (2) ;u3 (pi/2,pi/2,pi/2) q (0) ;cz q (1) ,q (2) ;ch q (0) ,q (1) ;u1 (pi/2) q (0) ;swap

q (1) ,q (2) ;sdg q (2) ;

Therefore, from a mathematical perspective, a TQFT that recovers the above AI-Quantum Hilbert symmetric spaces may

be called ―Chern–Simons theory. We present here potential condensed eigenvalues applications for the positive

spectrum and finite-dimensional eigenspaces: S=14π∫M3 (a+ℓ) ta+ℓ {1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+

Fǫexp(iℏpˆ2A2mA +−1A∧dAk+13 (a+ℓ) ta+ℓ-{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA

+−1A∧[A∧A]k (mod2π) 1→U (1) →LG∼ →LG→1 (equation22) of the free loop group LG = (a+ℓ) ta+ℓ-

{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA +−1 (a+ℓ) ta+ℓ-

{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA +−1 (S1, G) (equation23) is a functional of G

bundles with connections over compact 3 manifolds. Here, A is the connection form, (a+ℓ) ta+ℓ-

{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA +−1 (a+ℓ) ta+ℓ-

{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA +−1∧ (a+ℓ) ta+ℓ-

{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA +−1F) 2zEGk: 2zEG ⊗ 2zEG → ℝ

(equation24) is a certain metric constructed and the integral from the level, is taken over a global section of the principal

bundle. ‡ δ ¯ υ−γµ¯ǫDµ ¯σ − ¯σσ¯ǫ −i_f (ϑ) ¯σ¯ǫ + i ¯ Fǫ (equation25), δF = (−γµDµυ + συ + λσ) +i (2_− 1) 2f (ϑ) ǫυ

(equation26), δ ¯ F = ¯ǫ (−γµDµ ¯ υ + ¯ υσ − ¯σ¯ λ) +i (2_ − 1) 2f (ϑ) ¯ǫ ¯ υ, (equation27) We hybridized then every

level k ∈ H4 (BG, ℤ) that yields the quantum field theory with those levels k that satisfy the following positivity

condition: Chern-Simons theory equation of the: (∫tr (+23) .S=k4π∫Mtr) (3d N = 2CSA∧dA+23A∧A∧A) (equation28). A

(equation 1), (ie. considering S as a functional of A). associated to a connected Lie group ας a simple current

Roccustryna XYZ chemical extension of the tensor product of the d/dx (33833 y^n×1152N^2 x^2 k^4) =3d N 2 CS

77951232 k^4 N^2 x y^n (equation29) associated to an even lattice and 38975616 k^4 N^2 x^2 y^n = sum_ (ν=0) ^∞

(n^ν 38975616 {x sin^ (-1) (sqrt (3)) x sin^ (-1) (sqrt (779) sqrt (θ^3)) x sin^ (-1) (2 sqrt (114109)) (sqrt (1 - sqrt

(456457) sqrt (x)) x^ (1/4) (2 sqrt (456457) sqrt (x) + 3)) / (8 456457^ (3/4)) + (x - 3/3651656) sin^ (-1) (456457^ (1/4)

x^ (1/4)) 1/2 sqrt (x/456456754 - x^2) + (x - 1/912913508) sin^ (-1) (sqrt (456456754) sqrt (x)) x sin^ (2^ (3/4) 57057^

(1/4)) x sin^ (-1) (sqrt (sum 444546 θ)) x sin^ (-1) (2^ (3/4) 431683182057^ (1/4) sqrt (sqrt (θ) / (sin^ (-1) (44545545))))

} + constant (k^4 N^2 x^2 log^ν (y))) / (ν!) (equations2,3,4,5,6,7,8,910,11,12,13,14,15,16,17,18,19,20-30) associated to

Page 27: QSAR-QMMM Cryptographic Mining on Chern- Simons

a simply connected Lie group classical equations of motion obtained via i and ii are known to be equivalent by

combining the works of Finkelberg obtained in this way are: =0k2πF=03d N = 2 CS (equation31) also known as Connes

fusion or every connected group G and level k≥0. It is given byγµǫDµ_ + ǫ (ρ · σ) _ +i_f (ϑ) ǫ_ = Mǫ_, (equation32)

where M is the eigenvalue given by M = Mm,n=ρ· σ + i_mb + nb−1+Q2 m n 2 Z_0 (equation33), Q = b + b−1

(equation34). The product of the eigenvalues roughly gives ―denominatorǁ of the one-loop determinant, where the right

action on H uses the isomorphism induced by reflection along the horizontal axis. (41) For every simple simply

connected Lie group G with the quantum Hilbert space CSG,k (S1 and every level k ≥ 0, a tensor category A∧A,k whose

Drinfel‗d center Z (dA,A) associated to a Riemann surface Σ can and has been defined at a mathematical level of

precision and is equivalent to the the VectkG[G] Vectk[G]) CSG,k (pt) d/dx (33833 y^n×1152 N^2 x^2 k^4) = 77951232

k^4 N^2 x y^n (equation33) categories of the sin (a+ℓ) ta+ℓ-{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+

Fǫexp(iℏpˆ2A2mA +−1Vectk ((a+ℓ) ta+ℓ-

{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+Fǫexp(iℏpˆ2A2mA+−1+(a+ℓ)ta+ℓ{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(

t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA +−1∧ (a+ℓ) ta+ℓ-{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+

Fǫexp(iℏpˆ2A2mA +−1F) k^4 x^4 y^n sin^ (-1) (n) ^33833 5429 N^2 (newtons

Page 28: QSAR-QMMM Cryptographic Mining on Chern- Simons

squared) - 1/3 x^6 (k^4 y^n sin^ (-1) (n) ^33833 5429 N^2 (newtons squared)) + 2/45 k^4 x^8 y^n sin^ (-1) (n) ^33833

5429 N^2 (newtons squared) + O (x^9) (equation34) of canonical quantization, it is the geometric quantization of LocG

(Σ) with respect tothe natural symplectic Roccustyrna structure coming from the Chern–Simons Lagrangian. We explain

below that, at leastalong the direction θ is defined by SθP (g) = Z1eiθ0dt e− tg BP (t) (equation35), (1) where BP (t) is

analytic continuation of the formal Borel transformation P1ℓ=0cℓ (a+ℓ) ta+ℓ-{1/12+ (∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′

(t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA +−1.whenG 432 π k^4N^2 x^2 sin^ (-1) (n) ^33833 (2 x- sin (2x)) y^ (Λn) for

Vectk[G] dCSG,k (pt) (equation36) is simply canonically connected with the the Reshetikhin– Turaev TQFT

quantizations as associated to the modular tensor category Repk (LG) of positive energy representations of the loop group

at level k has that property 14π∫M3 (a+ℓ) ta+ℓ-{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA

+−1A∧dA 2zEGZcl (σ) = exphXnp= 1isgn (kp) gptr (σ (p)) 2i (equation37), Z1loop (σ) =Qα2root+4 sinh (πbα · σ) sinh

(πb−1α · σ) QaQρa2Rasb_ρa · σ − iQ (1−_a) 2_) equation38), sb (z) =1 (equation39), Ym=01 (equation40), n=0mb +

nb−1 + Q/2 − izmb + nb−1 + Q/2 + izk+13 (a+ℓ) ta+ℓ-{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+

Fǫexp(iℏpˆ2A2mA +−1A∧[A∧A] (equation41) the coordinate (x1, x2, x3, x4) = (cos ϑ cosϕ, cos ϑ sin ϕ, sin ϑ cos τ, sin ϑ

sin τ) and f (ϑ) =pb−2 sin2 ϑb2 cos2 ϑ.k (mod2π) [1]+sin (a+ℓ) ta+ℓ{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩ CQ2t∣ϕ(t)⟩B)}+

Fǫexp(iℏpˆ2A2mA +−1Vectk ((a+ℓ) ta+ℓ-{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA +−1+

(a+ℓ) ta+ℓ-{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA +−1∧ (a+ℓ) ta+ℓ-

{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA +−1F) 1 4π∫M3 (a+ℓ) ta+ℓ-

{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA +−1A∧dA 2zEGk+13 (a+ℓ) ta+ℓ-{1/12+

(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA +−1A∧[A∧A] 2zEGk (mod2π) [1]∧sin (a+ℓ) ta+ℓ-

{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA +−1Vectk ((a+ℓ) ta+ℓ-{1/12+(∣∣α1′(t)⟩

CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA +−1+ (a+ℓ) ta+ℓ-{1/12+(∣∣α1′(t)⟩ CQ1t∣ϕ(t)⟩ B+∣α2′(t)⟩

CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA +−1∧ (a+ℓ) ta+ℓ-{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+

Fǫexp(iℏpˆ2A2mA +−1F) 14π∫M3 (a+ℓ) ta+ℓ-{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2 A2mA

+−1A∧ dA 2zEGk+13 (a+ℓ) ta+ℓ-{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA +−1A∧[A∧A]

2zEGk (mod2π) (equation42), F= dA+A∧A Repk (dA+A∧A AGA) (equation43) by [28]Fµν = 0, σ = const, D = −σf (ϑ),

λ = ¯λ = 0. (4) Repss (Fq 2zEG) [or Repk (AF2zEG) ] and Rep (Dk (ℂ[G])) =Repf ((a+ℓ)ta+ℓ 1) where

xˆAψ1CmdπCdπ2 |∇ |2 = { if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B|∇ |2 −ΔKΣ(dt−asin2θdϕ) if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B|∇ |2

−ΔKΣ(dt−asin2θdϕ) 1 ≠ exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if(p) - g.(V

‘(p + i(pv’ f))+ exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+

if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) (p) - g.(V ‘(p + i(pv’ f))≠ exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2

−ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if(p) - g.(V ‘(p + i(pv’ f))+ 2 2 _1 1 = 2 where if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B|∇ |2

−ΔKΣ(dt−asin2θdϕ) exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 πˆ2B2mB+πˆ2C2mC exp(iℏpˆ2A2mA(qˆCif

−πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) (p) - g.(V ‘(p +

i(pv’ f))if√(∣∣α1′(t)⟩ CQ1t∣ϕ(t)⟩ B+∣πˆ2B2mB+πˆ2C2mC exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ)

IfŜbpˆAmAŜ†b+ if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) (p) - g.(V ‘(p + i(pv’ f)). = exp(iℏpˆ2A2mA(qˆCif

−πˆCmdπCdπ2 |∇ |2 Πˆ2B2MB+Πˆ2C2MC EXP(IℏPˆ2A2MA(QˆC−ΠˆCMDΠCDΠ2|∇|2 −ΔKΣ(DT− ASIN2ΘDΦ

)IFŜBPˆAMAŜ†B+IF√(∣∣Α1′(T)⟩CQ1T∣Φ(T)⟩B+∣Α2′(T)⟩CQ2T∣Φ(T)⟩B)(P)-G.(V‘(P I(PV’ F))if√(∣∣α

Page 29: QSAR-QMMM Cryptographic Mining on Chern- Simons

1′(t)⟩CQ1t∣ϕ(t)⟩B+∣πˆ2B2mB+πˆ2C2mC exp(iℏpˆ2A2mA(qˆC−πˆCmdπCdπ2|∇|2 −ΔKΣ(dt− asin2θdϕ)

IfŜbpˆAmAŜ†b+if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) (p) - g.(V ‘(p + i(pv’ f)) where

2) > the function X(t)=X0, with X0 being a constant, and takes the form XˆAΨ1CMDΠCDΠ2 |∇ |2 = {

if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B|∇ |2 −ΔKΣ(dt−asin2θdϕ) − 1 1 ≠ exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ)

IfŜbpˆAmAŜ†b+ if(p) - g.(V ‘(p + i(pv’ f))+ exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ)

IfŜbpˆAmAŜ†b+ if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) (p) - g.(V ‘(p + i(pv’ f))≠ exp(iℏpˆ2A2mA(qˆCif

−πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if(p) - g.(V ‘(p + i(pv’ f))+ 2 2 _1 1 = 2 where

xˆAψ1CmdπCdπ2 |∇ |2 = { if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B|∇ |2 −ΔKΣ(dt−asin2θdϕ) − 1 1 ≠ exp(iℏpˆ2A2mA(qˆCif

−πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if(p) - g.(V ‘(p + i(pv’ f))+ exp(iℏpˆ2A2mA(qˆCif

−πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if√(∣∣α1′(t)⟩ CQ1t∣ϕ(t)⟩B +∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) (p) - g.(V ‘(p +

i(pv’ f))≠ exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt− asin2θdϕ) IfŜbpˆAmAŜ†b+ if(p) - g.(V ‘(p + i(pv’ f))+ 2

2 _1 1 = 2 where 1 = exp(iℏpˆ2A2m A(qˆC− πˆCmdπCdπ2 |∇ |2 and 3 =if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣πˆ2B2mB+πˆ2C2mC

exp(iℏpˆ2 A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if√(∣∣α1′ (t)⟩C

Q1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) (p) - g.(V ‘(p + i(pv’ f)). = exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2

Πˆ2B2MB+Πˆ2C2MC EXP(IℏPˆ2A2MA(QˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(DT−ASIN2ΘDΦ) IFŜBPˆAMAŜ†B+

IF√(∣∣Α1′(T)⟩CQ1T∣Φ(T)⟩B+∣Α2′(T)⟩CQ2T∣Φ(T)⟩B) (P) - G.(V ‘(P + I(PV’

F))if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣πˆ2B2mB+πˆ2C2mC exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ)

IfŜbpˆAmAŜ†b+ if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) (p) - g.(V ‘(p + i(pv’ f)).

(t)=eiℏpˆ2A2mAτxˆAψ1CmdπCdπ2 |∇ |2 = { 2 −1 if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B|∇ |2 −ΔKΣ(dt−asin2θdϕ) 1 ≠

exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if(p) - g.(V ‘(p + i(pv’ f))+

exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+

if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) (p) - g.(V ‘(p + i(pv’ f))≠ exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2

−ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if(p) - g.(V ‘(p + i(pv’ f))+ 2 2 _11 = 2 where if√(∣∣α1′(t)⟩ CQ1t∣ϕ(t)⟩B|∇ |2

−ΔKΣ(dt−asin2θdϕ) exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 πˆ2B2mB+πˆ2C2mC exp(iℏpˆ2A2mA(qˆCif

−πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if√(∣∣α1′(t)⟩ CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) (p) - g.(V ‘(p +

i(pv’ f))(1 −)− 1. e−iℏpˆ2A2mAτ, (Equation2) and the full operator Ŝ is ŜT=exp(−iℏπˆ2 C2mC(t−τ))

ˆ(x)ACexp(iℏxˆAψ1CmdπCdπ2 |∇ |2 = { if√(∣∣α1′(t)⟩ CQ1t∣ϕ(t)⟩B|∇ |2 −ΔKΣ(dt−asin2θdϕ) if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B|∇ |2

−ΔKΣ(dt−asin2θdϕ) 1 ≠ exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if(p) - g.(V

‘(p + i(pv’ f))+ exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if√(∣∣α1′(t)⟩

CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) (p) - g.(V ‘(p + i(pv’ f))≠ exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2

−ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if(p) - g.(V ‘(p + i(pv’ f))+ 2 2 _1 1 = 2 where if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B|∇ |2

−ΔKΣ(dt−asin2θdϕ) exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 πˆ2B2mB+πˆ2C2mC exp(iℏpˆ2A2mA(qˆCif

−πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if√(∣∣α1′(t)⟩ CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) (p)g.

(V‘(p+i(pv’f)) if√(∣∣α1′(t)⟩ CQ1t∣ϕ(t)⟩ B+∣πˆ2B2mB+πˆ2C2mC exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2

−ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if√(∣∣α1′(t)⟩ CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) (p) - g.(V ‘(p + i(pv’ f)). pˆB)

exp(iℏpˆ2A2mA(t−τ)) (Equation3), where ˆ(x)AC= ˆAC(Equation4) in (Equation1) and we have introduced the term

exp(−iℏπˆ2C2mC(t−τ)) to ensure that the position of the system A at time τ tranforms into the symmetric position of the

system C, ŜT(xˆAψ1CmdπCdπ2 |∇ |2 = { if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B|∇ |2 −ΔKΣ(dt−asin2θdϕ) if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B|∇ |2

Page 30: QSAR-QMMM Cryptographic Mining on Chern- Simons

−ΔKΣ(dt−asin2θdϕ) 1 ≠ exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if(p) - g.(V

‘(p + i(pv’ f))+ exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+

if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) (p) - g.(V ‘(p + i(pv’ f))≠ exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2

−ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if(p) - g.(V ‘(p + i(pv’ f))+ 2 2 _1 1 = 2 where if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B|∇ |2

−ΔKΣ(dt−asin2θdϕ) exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 πˆ2B2mB+πˆ2C2mC exp(iℏpˆ2A2mA(qˆCif

−πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) (p) - g.(V ‘(p +

i(pv’ f)) if√(∣∣α1′(t)⟩ CQ1t∣ϕ(t)⟩B+∣πˆ2B2mB+πˆ2C2mC exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ)

IfŜbpˆAmAŜ†b+ if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) (p) - g.(V ‘(p + i(pv’ f)). −pˆAmA(t−τ))Ŝ†T=−(qˆCif

−πˆCmdπCdπ2 |∇ |2 = { if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B|∇ |2 −ΔKΣ(dt−asin2θdϕ) if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B|∇ |2

−ΔKΣ(dt−asin2θdϕ) 1 ≠ exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if(p) - g.(V

‘(p + i(pv’ f))+ exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if√(∣∣α1′(t)⟩CQ

1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) (p) - g.(V ‘(p + i(pv’ f))≠ exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ)

IfŜbpˆAmAŜ†b+ if(p) - g.(V ‘(p + i(pv’ f))+ 2 2 _11 = 2 where y2 = exp(iℏpˆ2A2 mA(qˆCif −πˆCmdπCdπ2 |∇ |2

πˆ2B2mB+πˆ2C2mC exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+

if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) (p) - g.(V ‘(p + i(pv’ f))(1 −) −1. C(t−τ))(Equation5). Notice that for t = τ

the operator ŜT in (Equation2) is precisely the operator Ŝx in (Equation3) a generalization of the simplest non-static

Schwarzschild metric, and is expressed in Eddington coordinates (u,r,θ,ϕ), as follows

ds2=−(1−2m(u)r)du2+2ϵdudr+dΩ2,(ϵ=±1) (Equation6) where dΩ2=dθ2+sin2θdϕ2. ϵ=+1 (Equation7) represents the

―advancedǁ or ―ingoingǁ Vaidya metric, while ϵ=−1 represents the ―retardedǁ or ―outgoingǁ Vaidya metric

(31).Therefore, we can interpret Ŝx as the operator which performs the translation to a quantum reference frame when the

dynamics is ―frozenǁ at time τ. The transformation implemented by ŜT is ŜTxˆAψ1CmdπCdπ2 |∇ |2 = {

if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B|∇ |2 −ΔKΣ(dt−asin2θdϕ) if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B|∇ |2 −ΔKΣ(dt−asin2θdϕ) 1 ≠ exp(iℏpˆ2A

2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if(p) - g.(V ‘(p + i(pv’ f))+ exp(iℏpˆ2A 2mA(qˆCif

−πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if√(∣∣α1′(t)⟩CQ 1t∣ϕ(t)⟩B+∣α 2′(t)⟩CQ2t∣ϕ(t)⟩B) (p) - g.(V ‘(p +

i(pv’ f))≠ exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if(p) - g.(V ‘(p + i(pv’ f))+ 2

2 _1 1 = 2 where if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B|∇ |2 −ΔKΣ(dt− asin2θdϕ) exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2

πˆ2B2mB+πˆ2C2mC exp(iℏpˆ2A2m A(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if√(∣∣α1′(t)⟩

CQ1t∣ϕ(t)⟩B+ ∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) (p) - g.(V ‘(p + i(pv’ f))if√(∣∣α1′(t)⟩ CQ1t∣ϕ(t)⟩B +∣πˆ2B2mB+πˆ2C2mC

exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if√(∣∣α

1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) (p) - g.(V ‘(p + i(pv’ f)). Ŝ†T=−qˆC+πˆCmdπCdπ2 |∇ |2 = {

if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B|∇ |2 −ΔKΣ(dt−asin2θdϕ) if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B|∇ |2 −ΔKΣ(dt−asin2θdϕ) 1 ≠

exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if(p) - g.(V ‘(p + i(pv’ f))+

exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+

if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) (p) - g.(V ‘(p + i(pv’ f))≠ exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2

−ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if(p) - g.(V ‘(p + i(pv’ f))+ 2 2 _1 1 = 2 where if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B|∇ |2

−ΔKΣ(dt−asin2θdϕ) exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 πˆ2B2mB+πˆ2C2mC exp(iℏpˆ2A2mA(qˆCif

−πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) (p) - g.(V ‘(p +

i(pv’f))if√(∣∣α1′(t)⟩ CQ1t∣ϕ(t)⟩B+∣πˆ2B2mB+πˆ2C2mC exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ)

Page 31: QSAR-QMMM Cryptographic Mining on Chern- Simons

IfŜbpˆAmAŜ†b+ if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) (p) - g.(V ‘(p + i(pv’ f)). C(t−τ)−πˆB+ πˆCmdπCdπ2 |∇ |2

= { if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B|∇ |2 −ΔKΣ(dt−asin2θdϕ) if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B|∇ |2 −ΔKΣ(dt−asin2θdϕ) 1 ≠

exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if(p) - g.(V ‘(p + i(pv’ f))+

exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+

if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) (p) - g.(V ‘(p + i(pv’ f))≠ exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2

−ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if(p) - g.(V ‘(p + i(pv’ f))+ 2 2 _1 1 = 2 where

Fǫexp(iℏpˆ2A2mAπˆ2B2mB+πˆ2C2mC exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ)

IfŜbpˆAmAŜ†b+ if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) (p) - g.(V ‘(p + i(pv’

f))if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣πˆ2B2mB+πˆ2C2mC exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ)

IfŜbpˆAmAŜ†b+ if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) (p) - g.(V ‘(p + i(pv’ f)) A(t−τ);ŜTpˆAŜ†T=−(πˆB+πˆC);

(Equation8) ŜTxˆBŜ† T=qˆB −qˆC+πˆCmdπCdπ2 |∇ |2 = { if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B|∇ |2 −ΔKΣ(dt−asin2θdϕ)

if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B|∇ |2 −ΔKΣ(dt−asin2θdϕ) 1 ≠ exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ)

IfŜbpˆAmAŜ†b+ if(p) - g.(V ‘(p + i(pv’ f))+ exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ)

IfŜbpˆAmAŜ†b+ if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) (p) - g.(V ‘(p + i(pv’ f))≠ exp(iℏpˆ2A2mA(qˆCif

−πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if(p) - g.(V ‘(p + i(pv’ f))+ 2 2 _1 1 = 2 where

if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B|∇ |2 −ΔKΣ(dt−asin2θdϕ) exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 πˆ2B2mB+πˆ2C2mC

exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+

if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) (p) - g. (V ‘(p + i(pv’ f))if√(∣∣α1′(t)⟩ CQ1t∣ϕ(t)⟩B+∣πˆ2B2mB+πˆ2C2mC

exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+

if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) (p) - g.(V ‘(p + i(pv’ f)). C(t−τ);ŜTpˆBŜ†T=πˆB (Equation9) implies that

the position at time t of pharmacophoric system of ((2S,5R,6R)- 6-((2S)-2-amino-2- phenylacetamido)-3,3-

dimethyl-7-oxo- 4-thia-1- azabicyclo (3.2.0)heptane-2- carbonyloxy) ({((2-amino-6-oxo- 6,9-dihydro-3H-purin-9-yl)oxy)

(hydroxy) phosphoryl}oxy)phosphinic acid B: ŜT is ŜTxˆAυ1CmdπCdπ2 |∇ |2 = { if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B|∇ |2

−ΔKΣ(dt−asin2θdϕ) if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B|∇ |2 −ΔKΣ(dt−asin2θdϕ) 1 ≠ exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2

−ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if(p) - g.(V ‘(p + i(pv’ f))+ exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2

−ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) (p) - g.(V ‘(p + i(pv’ f))≠

exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if(p) - g.(V ‘(p + i(pv’ f))+ 2 2 _1 1 = 2

from the point of view of C is mapped into the relative position between system B and the position of A: 1

if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B|∇ |2 −ΔKΣ(dt−asin2θdϕ) 1 ≠ exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ)

IfŜbpˆAmAŜ†b+ if(p) - g.(V ‘(p + i(pv’ f))+ exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ)

IfŜbpˆAmAŜ†b+ if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) (p) - g.(V ‘(p + i(pv’ f))≠ exp(iℏpˆ2A2mA(qˆCif

−πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if(p) - g.(V ‘(p + i(pv’ f))+ 2 2 _1 1 = 2 at time τ, while the

momentum of B remains unchanged. In addition, this transformation is a symmetry of the free particle according to the

definition given in (Equation6), because the Hamiltonian Ĥ(C)AB is mapped through (Equation5) to

Ĥ(A)BC=πˆ2B2mB+πˆ2C2mC. Kerr metric in Boyer– Lindquist coordinates can be expressed as follows:

ds2=−ΔKΣ(dt−asin2θdϕ) 2+ΣΔK+Σdθ2 +sin2θΣ((r2+a2)dϕ− adt)2(Equation10), (31) where Σ=r2+a2cos2θ,

ΔK=r2−2Mr+a2 (31). Therefore, the transformation ŜT in (Equation3) constitutes a generalisation of the Galilean

translations to quantum reference frames. The simplest example of dynamical conserved quantities, in this case, are the

Page 32: QSAR-QMMM Cryptographic Mining on Chern- Simons

two momenta Ĉ(C)1=pˆA and Ĉ(C)2=pˆB(Equation11). It is immediate from (Equation4) and (5) to see that the choice

Ĉ(A)1=ŜTĈ(C)2Ŝ†T=πˆB (Equation12) and Ĉ(A)2=−ŜTĈ(C)1Ŝ†T−ŜTĈ(C)2Ŝ†T=πˆC (Equation13) leads to the

corresponding conserved quantities in the reference frame A. A similar procedure holds when we consider the extended

set of conserved quantities composed of translations pˆi and Galilean boosts Ĝi=pˆit−mixˆi, i=A,B(Equation14). Notice

that this construction of the ŜT operator satisfies the transitive property, meaning that changing the reference frame from

C to A directly has the same effect as changing the reference frame first from C to B and then from B to A, i.e.

Ŝ(C→A)T=Ŝ(B→A)TŜ(C→B)T (Equation15) static axisymmetric solutions, one may start from a Minkowski spacetime,

expressed in Cartesian form as ds2=−dt2+dx2+dy2+dz2 (Equation16). (31) We then applied the following ellipsoid

coordinate transformations to (Equation3) as follows x→(r2+a2)1/2sinθcosϕ,y→ (r2+a2)1/2 sinθsinϕ,z→rcosθ,t→t.

(Equation17).{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA +−1G,k) (equation43) are equivalent

as balanced tensor

Page 33: QSAR-QMMM Cryptographic Mining on Chern- Simons

category Repk (dA+A∧AAGA) of positive energy representations of the loop group at the:

� INPUT: (432 k^4 N^2 π t^2 y^ (n Λ) {θ sin^ (-1) (sqrt (3)), θ sin^ (-1) (sqrt (779) �

sqrt (θ^3)) - 3/5 sqrt (779) θ sqrt (θ^3) 2F1 (1/2, 5/6, 11/6, 779 θ^3), 1/6 sqrt (1/49394 -

9 θ) sqrt (θ) + (θ - 1/889092) sin^ (-1) (3 sqrt (49394) sqrt (θ)), θ sin^ (-1) (sqrt (sin^ (-

1) (44545545))) } + constant sin^ (-1) (n) ^33833 sum g x^4 + O ((1/x) ^6)) + sin (2 x) (-

216 (k^4 N^2 π t^2 y^ (n Λ) sin^ (-1) (n) ^33833 sum g) x^3 + O ((1/x) ^6)) + e^ (-

x^2/2) sin (2 x) (-108 (k^4 N^2 sqrt (2 π) t^2 y^ (n Λ) sin^ (- 1) (n) ^33833 sum g) x^2 +

O ((1/x) ^6)) + e^ (-x^2/2) sin (2 x) (108 k^4 N^2 sqrt (2 π) t^2 y^ (n Λ) sin^ ((n)

^33833 sum g x^2 - 108 (k^4 N^2 sqrt (2 π) t^2 y^ (n Λ) sin^ (- 1) (n) ^33833 sum g) +

(324 k^4 N^2 sqrt (2 π) t^2 y^ (n Λ) sin^ (-1) (n) ^33833 sum g) /x^2 - (1620 (k^4 N^2

sqrt (2 π) t^2 y^ (n Λ) sin^ (-1) (n) ^33833 sum g)) /x^4 + O ((1/x) ^6)) + e^ (-x^2/2)

(216 k^4 N^2 sqrt (2 π) t^2 y^ (n Λ) sin^ (-1) (n) ^33833 sum g x^3 + O ((1/x) ^6)) + e^

(-x^2/2) (-216 (k^4 N^2 sqrt (2 π) t^2 y^ (n Λ) sin^ (- 1) (n) ^33833 sum g) x^3 + 216

k^4 N^2 sqrt (2 π) t^2 y^ (n Λ) sin^ (-1) (n) ^33833 sum g x - (648 (k^4 N^2 sqrt (2 π)

t^2 y^ (n Λ) sin^ ((n) ^33833 sum g)) /x + (3240 k^4 N^2 sqrt (2 π) t^2 y^ (n Λ) sin^ (-�

1) (n) ^33833 sum g) /x^3 - (22680 (k^4 N^2 sqrt (2 π) t^2 y^ (n Λ) sin^ (-1)

(n) ^33833 sum g)) /x^5 + O ((1/x) ^6)) (equations34,35,36,37,38,39,40-43)

Page 34: QSAR-QMMM Cryptographic Mining on Chern- Simons

Imaginary RoccustyrnaTM_fR GissitorviffirnaTM_gS part1

• Show contour lines

Real RoccustyrnaTM_fR GissitorviffirnaTM_gS part1

• Show contour lines

Page 35: QSAR-QMMM Cryptographic Mining on Chern- Simons

Imaginary RoccustyrnaTM_fR GissitorviffirnaTM_gS part2

• Show contour lines

Real RoccustyrnaTM_fR GissitorviffirnaTM_gS part2

• Show contour lines

Page 36: QSAR-QMMM Cryptographic Mining on Chern- Simons

Imaginary RoccustyrnaTM_fR GissitorviffirnaTM_gS part3

• Show contour lines

Contour plots: Real RoccustyrnaTM_fR GissitorviffirnaTM_gS part3

Page 37: QSAR-QMMM Cryptographic Mining on Chern- Simons

Imaginary RoccustyrnaTM_fR GissitorviffirnaTM_gS part4

Real RoccustyrnaTM_fR GissitorviffirnaTM_gS part4

Page 38: QSAR-QMMM Cryptographic Mining on Chern- Simons

Imaginary RoccustyrnaTM_fR GissitorviffirnaTM_gS part5

Real RoccustyrnaTM_fR GissitorviffirnaTM_gS part5

Page 39: QSAR-QMMM Cryptographic Mining on Chern- Simons

Imaginary RoccustyrnaTM_fR GissitorviffirnaTM_gS part6

(scheme4)

Real RoccustyrnaTM_fR GissitorviffirnaTM_gS part6

• Show contour lines

Page 40: QSAR-QMMM Cryptographic Mining on Chern- Simons

Imaginaryl RoccustyrnaTM_fR GissitorviffirnaTM_gS part7

• Show contour lines

Real RoccustyrnaTM_fR GissitorviffirnaTM_gS part7

• Show contour lines

Page 41: QSAR-QMMM Cryptographic Mining on Chern- Simons

Imaginaryl RoccustyrnaTM_fR GissitorviffirnaTM_gS part8

• Show contour lines

Real RoccustyrnaTM_fR GissitorviffirnaTM_gS part8

• Show contour lines

Page 42: QSAR-QMMM Cryptographic Mining on Chern- Simons

Imaginaryl RoccustyrnaTM_fR GissitorviffirnaTM_gS part9

• Show contour lines

Contour plots:

Real RoccustyrnaTM_fR GissitorviffirnaTM_gS part9

Page 43: QSAR-QMMM Cryptographic Mining on Chern- Simons

Imaginaryl RoccustyrnaTM_fR GissitorviffirnaTM_gS part10

Real RoccustyrnaTM_fR GissitorviffirnaTM_gS part10

Page 44: QSAR-QMMM Cryptographic Mining on Chern- Simons

Imaginaryl RoccustyrnaTM_fR GissitorviffirnaTM_gS part11

Real RoccustyrnaTM_fR GissitorviffirnaTM_gS part11

Page 45: QSAR-QMMM Cryptographic Mining on Chern- Simons

Imaginaryl RoccustyrnaTM_fR GissitorviffirnaTM_gS part12

Page 46: QSAR-QMMM Cryptographic Mining on Chern- Simons

(scheme5)

Page 47: QSAR-QMMM Cryptographic Mining on Chern- Simons

1

S N

N ab

2

> R s N O 3

4

HN 5

6

HNOH O this 7

8

9

enantiomer (fr1) 10

11

12

13

14

15

16

17

18

H 19

N 20

21

O N 22

23

24

25

26

27

28

this enantiomer

(fr3)

29

Scheme6. Chern-Simons topology geometrics of the 3 selected hit fragmented candidates (fr1), (fr2), (fr3) . 30

31

In this scheme we see two subkeys k1 and k2 along the axes of the graph. The choices for them are both ordered by 32

probability. In the x-y plane each square uniquely represents a key k (j) 1|k (i) 2, which is the concatenation of two 33

Page 48: QSAR-QMMM Cryptographic Mining on Chern- Simons

subkeys. For this figure we include on the z-axis the probability of each key to illustrate the gradual differences of 34

probabilities in the space. The blue key represents the key k used in the implementation that was attacked. The 35

green keys are those with a higher probability than k∗, the red those with a lower probability. In the graphical 36

representation this would mean starting at the top-left square and using the corresponding key to decipher a 37

ciphertext (or some equivalent check that verifies the key). If this does not yield the desired results, then we try 38

squares one by one, in order of their probabilities until one corresponding key does work. 39

40

::ALGORITHMQMMSR01 41

ROCCUSTYRNA:: 42

> 43

> In this case, the operator XˆAΨ1CMDΠCDΠ2 |∇ |2 = { if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B|∇ 44

|2−ΔKΣ(dt−asin2θdϕ) if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B|∇ |2 −ΔKΣ(dt−asin2θdϕ) 1 ≠ exp(iℏpˆ2A2mA(qˆCif 45

−πˆCmdπCdπ2 |∇ |2 phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del) v − 46

|∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 47

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) 48

Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 49

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del) ≡ ∫ (4( −1) −2 |∇ |2 = { 2 Dh 50

dt dp dtV’(p+(pV’2f)where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 51

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ 52

pentan-2-yl}-2-Carboxylicacid;N-(1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 53

1.0]pentan-2-yl}-2-oxo6-({[amino({[(6-amino-9H-purin-9-yl)methyl]amino})phosphoryl] 54

carbamoyl}amino) -3,3- di methyl-7-oxo-4-thia- 1-azabicyclo[3.2.0]heptane- 55

Page 49: QSAR-QMMM Cryptographic Mining on Chern- Simons

2-Carboxylicacid;N-(1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- 56

Carboxylicacid;N-3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- oxo-1lambda4,2 lambda5- 57

thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)- ethylidene]guanidine; [(S)-amino({[(S)- amino({[(4R)-6-oxo-4,6- 58

dihydro-1H-purin-2-yl]amino})phosphoryl]oxy})phos thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)+ + (sqrt(θ) Θ 59

(sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2,+ (sqrt(θ) Θ 60

> if(3 e del phos phoryl]formonitrile (rboximidoyl- 3- 61

fluoro-1-{5-oxabicyclo[2.1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile 62

2) (∫ 2 Dh dt dp dt −2 ( , |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + 63

i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t) ⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ 64

f)) ≠ + (sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 65

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del)) ≡ inf >0 |∇ |2 = { 2 Dh dt 66

Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 67

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) 68

Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 69

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del) d |∇ |2 = { 2 Dh dt Do dp 70

dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 71

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) 72

Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 73

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del) ≡ ∫ (4( −1) −2 |∇ |2 = { 2 Dh 74

dt dp dtV’(p+(pV’2f)where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 75

Page 50: QSAR-QMMM Cryptographic Mining on Chern- Simons

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ 76

pentan-2-yl}-2-Carboxylicacid;N-(1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 77

1.0]pentan-2-yl}-2-oxo6-({[amino({[(6-amino-9H-purin-9-yl)methyl]amino})phosphoryl] 78

carbamoyl}amino) -3,3- di methyl-7-oxo-4-thia- 1-azabicyclo[3.2.0]heptane- 79

2-Carboxylicacid;N-(1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- 80

Carboxylicacid;N-3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- oxo-1lambda4,2 lambda5- 81

thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)- ethylidene]guanidine; [(S)-amino({[(S)- amino({[(4R)-6-oxo-4,6- 82

dihydro-1H-purin-2-yl]amino})phosphoryl]oxy})phos thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)+ + (sqrt(θ) Θ 83

(sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ 84

(rboximidoyl- 3- fluoro-1-(sqrt(θ) Θ if(3 e del phos phoryl]formonitrile 85

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 86

phoryl]formonitrile (sqrt(θ) Θ if(3 e del phos phoryl]formonitrile 87

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 88

phoryl]formonitrile 2) (∫ 2 Dh dt dp dt −2 + |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 89

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 90

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del 91

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 92

e del)≡∫ (4( −1) −2|∇ |2={ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 93

3-formonitrile + + (sqrt- fluoro-phos phoryl]formonitrile where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ 94

f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ 95

Page 51: QSAR-QMMM Cryptographic Mining on Chern- Simons

f)) ≠ + (sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 96

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del) (∫ 2 Dh dt dp dt −2 ( , 97

|∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 98

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 99

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 100

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del)) ≡ inf >0 |∇ |2 = { 2 Dh 101

dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 102

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 103

(sqrt(θ) Θ if(3 e del 104

> purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 105

e del) (e x) Θ sqrt(θ)) (Equation25) are the number of bonds 106

available or the number of double bonds. The complete fragmentation scheme is analyzed to find 107

patterns that are contained within the selected hit compounds of the Colchicine, Ritonavir, 108

Favipinavir, Balanitin, Baueronol, Chlorogenin, Behenic acid, Aristolochic acid, Asparagusate, 109

Aspartic acid chemical structures. Whenever searching for a specific pattern, if the group has such 110

a ―chemical bridgeǁ parent pattern, the parent pattern is searched first eliminate the terms in 111

V'(p,which gives f = — %-r'+ g(t). One can eliminate the unwanted Vip term by the substitution 112

ip(r, t) = eiJ{r,t) (p(r', t) (Equation26). (32,33) Then, as a GENERAL INPUT of (Equations1-113

25):V'ip = (V'ip + I V 'f) eif,V'2ip = 1. If+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 114

Page 52: QSAR-QMMM Cryptographic Mining on Chern- Simons

phoryl]formonitrile 1 =+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile , 115

then+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1 ⊕+ (sqrt(θ) Θ 116

(sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 2 =+ (sqrt(θ) Θ (sqrt(θ) Θ 117

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile 2. 2. If+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 118

fluoro-phos phoryl]formonitrile 2 =+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 119

phoryl]formonitrile , then+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1 120

⊕+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 2 =+ (sqrt(θ) Θ (sqrt(θ) 121

Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1.Else, let 1 = ( 1, 1) and 2 = ( 2, 2). 4. If 1 = 122

2and 1 = − 2, then 1 ⊕ 2 = . 5. Else, define λ as = { 2 Dh dt dp dtV’(p+(pV’2f)where 123

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+ ∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 124

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ pentan-2-yl}-2-Carbo 125

xylicacid;N-(1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2-o 126

xo6-({[amino({[(6-amino-9H-purin-9-yl)methyl]amino})phosphoryl] carbamoyl}amino) -3,3- di 127

methyl-7-oxo-4-thia- 1-azabicyclo[3.2.0]heptane- 2-Carboxylicacid;N-(1-carboximidoyl- 3- 128

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- Carboxylicacid;N-3- fluoro-1-{5-oxabicyclo[2. 129

1.0]pentan-2-yl}-2- oxo-1lambda4,2 lambda5- thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)- 130

ethylidene]guanidine; [(S)-amino({[(S)- amino({[(4R)-6-oxo-4,6- 131

dihydro-1H-purin-2-yl]amino})phosphoryl]oxy})phos thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)+ + 132

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1 = = m(V,z(p + 2 iV’f-V’(p+ 133

Page 53: QSAR-QMMM Cryptographic Mining on Chern- Simons

i(pV f - (V ‘fY <p)= ifi ((<p + if(p) - g(V ‘(p + i(pv’ f))and 3 =( 1 −) − 1. Thus, 1 ⊕ 2 = ( , 3). For 134

example: Let ( 23): 2 = 3 + + 1, 1 = (1,16), and 2 = (11,20). Since 1 ≠ 2, = 20−16≡4 11-1≡10 = 4 · 10−1 135

= 4 · 7 ≡ 5( 23). Then use λ to compute and = 5 2– 1– 11 = 13( 23) and 3 = 5(1 − 13) − 16 = 16( 23). 136

Thus, 1 ⊕ 2 = (13,16). {V'2ip + 2iV'f - V'(p+(pV'2f+ <p(V'f)2)e‗f, -sin^(-1)(sqrt(θ) Θ del del −12 (d 137

≡∫ (4( −1) −2|∇ |2={ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3-formonitrile + + (sqrt- fluoro-phos 138

phoryl]formonitrile − 11≠ + (sqrt(θ) Θ if(3 e del purin-2-yl]amino} 139

)phosphoryl]oxy})phos phoryl]formonitrile + 22 +2) (∫ 2 −2) −2 + |∇ |2 = { 2 Dh dt Do dp 140

dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 141

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 142

(sqrt(θ) Θ if(3 e del purin-2-yl]amino}) phosphoryl]oxy})phos 143

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del)≡∫ (4( −1) −2|∇ |2={ + 144

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3-formonitrile + + (sqrt- fluoro-phos phoryl]formonitrile where 145

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 146

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 147

del purin-2-yl]amino}) phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 148

e del) (∫ 2 Dh dt dp dt −2 ( , |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f 149

where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t) ⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 150

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 151

del purin-2-yl]amino })phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 152

Page 54: QSAR-QMMM Cryptographic Mining on Chern- Simons

e del)) ≡ inf >0 |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 153

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ( t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 154

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 155

del purin-2-yl]amino})ph osphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 156

e del) v − |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 157

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 158

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 159

del purin-2-yl]amino})ph osphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 160

e del) ≡ ∫ (4( −1) −2 |∇ |2 = { 2 Dh dt dp dtV’(p+(pV’2f)where 161

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 162

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ pentan-2-yl}-2-Carbo 163

xylicacid;N-(1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2-ox o-1lamb 164

da4,2lambda5-thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)+ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 165

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-(sqrt(θ) 166

Θ if(3 e del phos phoryl]formonitrile (rboximidoyl- 3- 167

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2- yl]amino})phosphoryl]oxy})phos 168

phoryl]formonitrile (sqrt(θ) Θ if(3 e del phos phoryl]formonitrile 169

(rboximidoyl- 3- fluoro-1-{5-ox abicyclo[2. 1.0]pentan-2-yl}-purin 170

-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile 2) (∫ 2 Dh dt dp dt −2 ( , |∇ |2 = { 2 Dh dt Do 171

Page 55: QSAR-QMMM Cryptographic Mining on Chern- Simons

dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 172

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 173

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosp horyl]oxy})phos 174

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del)) ≡ inf >0 |∇ |2 = { 2 Dh 175

dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t) 176

⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 177

e del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile 178

+ + (sqrt(θ) Θ if(3 e del) d |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f 179

where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 180

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 181

del purin-2-yl]amino})p hosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 182

e del) ≡ ∫ (4( −1) −2|∇ |2={ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 183

3-formonitrile + + (sqrt- fluoro-phos phoryl]formonitrile where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + 184

i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + 185

i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del purin-2-yl]amino}) 186

phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del) 187

(∫ 2 Dh dt dp dt −2 + |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + 188

i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + 189

i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del purin-2-yl]amino}) 190

Page 56: QSAR-QMMM Cryptographic Mining on Chern- Simons

phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 e 191

del)≡∫ (4( −1) −2|∇ |2={ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3-formonitrile + + (sqrt- fluoro-phos 192

phoryl]formonitrile where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 193

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 194

(sqrt(θ) Θ if(3 e del purin-2-yl]amino}) phosphoryl]oxy})phos 195

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del) (∫ 2 −2) −2 ( , |∇ |2 = { 2 196

Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 197

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 198

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 199

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del)) ≡ inf >0 |∇ |2 = { 2 Dh 200

dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 201

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 202

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})pho sphoryl]oxy})phos 203

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del) 0) sin^(-1)(y - 3 204

sqrt(6734) X Y1^2) - (e sqrt(θ) Θ x del ' (0) del ' (del 0) sin^(-1)(y - 3 sqrt(6734) X Y1^2))/sqrt(1 - θ 205

Θ^2 (del del −12 (d |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + 206

i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + 207

i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del purin-2-yl]amino})pho 208

sphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del) ≡ ∫ 209

Page 57: QSAR-QMMM Cryptographic Mining on Chern- Simons

(4( −1) −2 |∇ |2 = { + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3-formonitrile + + (sqrt- fluoro-phos 210

phoryl]formonitrile where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 211

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ 231+ 212

22+ 2) (∫ 2 Dh dt dp dt −2 + ()≡∫ (4(−1)−2 |∇ |2 = { 2 Dh dt dp dtV’(p+(pV’2f)where IfŜbpˆAmAŜ†b+ 213

if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + 214

if(p) - g(V ‘(p + i(pv’ f)) ≠ pentan-2-yl}-2-Carboxylicacid;N-(1-carboximidoyl- 3- 215

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2 216

-oxo6-({[amino({[(6-amino-9H-purin-9-yl)methyl]amino})phosphoryl] carbamoyl}amino) -3,3- di 217

methyl-7-oxo-4-thia- 1-azabicyclo[3.2.0]heptane- 2-Carboxylicacid;N-(1-carboximidoyl- 3- 218

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- Carboxylicacid;N-3- fluoro-1-{5-oxabicyclo[2. 219

1.0]pentan-2-yl}-2- oxo-1lambda4,2 lambda5- thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)- 220

ethylidene]guanidine; [(S)-amino({[(S)- amino({[(4R)-6-oxo-4,6- 221

dihydro-1H-purin-2-yl]amino})phosphoryl]oxy})phos thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)+ + 222

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ 223

(sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-(sqrt(θ) Θ if(3 e del phos 224

phoryl]formonitrile (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}- 225

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile (sqrt(θ) Θ if(3 226

e del phos phoryl]formonitrile (rboximidoyl- 3- 227

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin- 2-yl]amino})phosphoryl]oxy})phos 228

Page 58: QSAR-QMMM Cryptographic Mining on Chern- Simons

phoryl]formonitrile 2) (∫ 2 Dh dt dp dt −2 ( , |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 229

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 230

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 231

del purin-2-yl]amino})p hosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 232

e del)) ≡ inf >0 |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 233

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 234

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 235

del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 236

e del) v − |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 237

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 238

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 239

del purin-2-yl]a mino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 240

e del) ≡ ∫ (4( −1) −2 |∇ |2 = { 2 Dh dt dp dtV’(p+(pV’2f)where 241

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 242

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ 243

pentan-2-yl}-2-Carboxylicacid;N-(1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 244

1.0]pentan-2-yl}-2-oxo- 1lambda4,2lambda5-thiaphosphiran-2 -yl)-N’-yl)- N’-[(Z)+ + (sqrt(θ) Θ 245

(sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ 246

(rboximidoyl- 3- fluoro-1-(sqrt(θ) Θ if(3 e del phos 247

Page 59: QSAR-QMMM Cryptographic Mining on Chern- Simons

phoryl]formonitrile (rboximidoyl- 3- fluoro-1-{5 -oxab icyclo[2. 1.0]pentan-2-yl}-purin-2- 248

yl]amino})phosphoryl]oxy})phos phoryl]form onitrile (sqrt(θ) Θ if(3 249

e del phos phoryl]formonitrile (rboximidoyl- 3- fluoro-1-{5-o 250

xabicyclo[2. 1.0]pentan-2-yl}-purin-2- yl]amino})ph osphoryl]oxy})phos phoryl]formo nitrile 2) (∫ 2 251

Dh dt dp dt −2 ( , |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + 252

i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + 253

i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosp 254

horyl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del)) ≡ inf 255

>0 |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 256

√(∣∣α1′(t)⟩CQ1t∣ϕ(t) ⟩B+∣α2′(t)⟩C Q2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 257

(sqrt(θ) Θ if(3 e del purin-2-yl]a mino})phosphoryl]oxy})phos 258

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del) d |∇ |2 = { 2 Dh dt Do 259

dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t) 260

⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 261

e del purin-2-yl]amino})ph osphoryl]oxy})phos phoryl]formonitrile 262

+ + (sqrt(θ) Θ if(3 e del) ≡ ∫ (4( −1) −2 |∇ |2 = { 2 Dh dt dp 263

dtV’(p+(pV’2f)where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 264

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 265

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})p hosphoryl]oxy})phos 266

Page 60: QSAR-QMMM Cryptographic Mining on Chern- Simons

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del) (∫ 2 Dh dt dp dt −2 + |∇ 267

|2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 268

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B +∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 269

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 270

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del)≡∫ (4( −1) −2|∇ |2={ + 271

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3-formonitrile + + (sqrt- fluoro-phos phoryl]formonitrile where 272

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 273

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ pentan-2-yl}-2-Carboxylica 274

cid;N-(1-carboximidoyl- 3- fluoro-1-{5-oxabic yclo[2. 1.0]pentan-2-yl}-2-oxo-1lambda4 275

,2lambda5-thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)+ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 276

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-(sqrt(θ) 277

Θ if(3 e del phos phoryl]formonitrile (rboximidoyl- 3- 278

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}- purin-2-yl]amino})phosphoryl]oxy})phos 279

phoryl]formonitrile (sqrt(θ) Θ if(3 e del phos phoryl]formonitrile 280

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl} 281

-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile 2) (∫ 2 Dh dt dp dt −2 ( , |∇ |2 = { 2 Dh 282

dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t 283

)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 284

e del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile 285

Page 61: QSAR-QMMM Cryptographic Mining on Chern- Simons

+ + (sqrt(θ) Θ if(3 e del)) ≡ inf >0 |∇ |2 = { 2 Dh dt Do dp 286

dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 287

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 288

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 289

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del) 0)^2) - 1/2 x^2 (sqrt(π) 290

sin^(-1)(y - 3 sqrt(6734) X Y1^2) ((e^2 θ^(3/2) Θ^3 del del −12 (d |∇ |2 = { 2 Dh dt Do dp 291

dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 292

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 293

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 294

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del) ≡ ∫ (4( −1) −2 |∇ |2={ + 295

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3-formonitrile + + (sqrt- fluoro-phos phoryl]formonitrile where 296

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 297

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 298

del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 299

e del) (∫ 2 Dh dt dp dt −2 + |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f 300

where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 301

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 302

del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 303

e del)≡∫ (4( −1) −2|∇ |2={ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 304

Page 62: QSAR-QMMM Cryptographic Mining on Chern- Simons

3-formonitrile + + (sqrt- fluoro-phos phoryl]formonitrile where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + 305

i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + 306

i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del 307

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 308

e del) (∫ 2 Dh dt dp dt −2 ( , |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f 309

where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 310

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 311

del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 312

e del)) ≡ inf >0 |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 313

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 314

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 315

del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 316

e del) v − |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 317

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 318

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 319

del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 320

e del) ≡ ∫ (4( −1) −2 |∇ |2 = { 2 Dh dt dp dtV’(p+(pV’2f)where 321

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 322

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ 323

Page 63: QSAR-QMMM Cryptographic Mining on Chern- Simons

pentan-2-yl}-2-Carboxylicacid;N-(1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 324

1.0]pentan-2-yl}-2-oxo6-({[amino({[(6-amino-9H-purin-9-yl)methyl]amino})phosphoryl] 325

carbamoyl}amino) -3,3- di methyl-7-oxo-4-thia- 1-azabicyclo[3.2.0]heptane- 326

2-Carboxylicacid;N-(1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- 327

Carboxylicacid;N-3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- oxo-1lambda4,2 lambda5- 328

thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)- ethylidene]guanidine; [(S)-amino({[(S)- 329

amino({[(4R)-6-oxo-4,6- dihydro-1H-purin-2-yl]amino})phosphoryl]oxy})phos thiaphosphiran-2 330

-yl)-N’-yl)-N’-[(Z)+ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 331

1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-(sqrt(θ) Θ if(3 332

e del phos phoryl]formonitrile (rboximidoyl- 3- 333

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 334

phoryl]formonitrile (sqrt(θ) Θ if(3 e del phos phoryl]formonitrile 335

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 336

1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile 2) (∫ 2 Dh dt dp dt −2 337

( , |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 338

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 339

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 340

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del)) ≡ inf >0 |∇ |2 = { 2 Dh 341

dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 342

Page 64: QSAR-QMMM Cryptographic Mining on Chern- Simons

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 343

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 344

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del) d |∇ |2 = { 2 Dh dt Do 345

dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 346

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 347

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 348

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del) ≡ ∫ (4( −1) −2 |∇ |2 = { 2 349

− 1 2where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 350

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 351

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 352

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del) (∫ 2 Dh dt dp dt −2 + |∇ 353

|2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 354

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 355

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 356

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del)≡∫ (4( −1) −2|∇ |2={ 2 357

Dh dt dp dtV’(p+(pV’2f)where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 358

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ 359

pentan-2-yl}-2-Carboxylicacid;N-(1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 360

1.0]pentan-2-yl}-2-oxo6-({[amino({[(6-amino-9H-purin-9-yl)methyl]amino})phosphoryl] 361

Page 65: QSAR-QMMM Cryptographic Mining on Chern- Simons

carbamoyl}amino) -3,3- di methyl-7-oxo-4-thia- 1-azabicyclo[3.2.0]heptane- 362

2-Carboxylicacid;N-(1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- 363

Carboxylicacid;N-3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- oxo-1lambda4,2 lambda5- 364

thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)- ethylidene]guanidine; [(S)-amino({[(S)- 365

amino({[(4R)-6-oxo-4,6- dihydro-1H-purin-2-yl]amino})phosphoryl]oxy})phos thiaphosphiran-2 366

-yl)-N’-yl)-N’-[(Z)+ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 367

1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-(sqrt(θ) Θ if(3 368

e del phos phoryl]formonitrile (rboximidoyl- 3- 369

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 370

phoryl]formonitrile (sqrt(θ) Θ if(3 e del phos phoryl]formonitrile 371

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 372

1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile 2) (∫ 2 Dh dt dp dt −2 373

( , |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 374

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 375

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 376

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del)) ≡ inf >0 |∇ |2 = { 2 Dh 377

dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 378

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 379

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 380

Page 66: QSAR-QMMM Cryptographic Mining on Chern- Simons

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del) 0 (del ' (0))^2 (del ' 381

(del0))^2)/(sqrt(π) (1 - θ Θ^2 (del del −12 (d |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 382

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 383

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 384

del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 385

e del) ≡ ∫ (4( −1) −2 |∇ |2 = { 2 − 1 2where IfŜbpˆAmAŜ†b+ if(p) - 386

g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - 387

g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del 388

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 389

e del) (∫ 2 Dh dt dp dt −2 + |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f 390

where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 391

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 392

del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 393

e del)≡∫ (4( −1) −2|∇ |2={ 2Dh dt dp dtV’(p+(pV’2f)where 394

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 395

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ 396

pentan-2-yl}-2-Carboxylicacid;N-(1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 397

1.0]pentan-2-yl}-2-oxo6-({[amino({[(6-amino-9H-purin-9-yl)methyl]amino})phosphoryl] 398

carbamoyl}amino) -3,3- di methyl-7-oxo-4-thia- 1-azabicyclo[3.2.0]heptane- 399

Page 67: QSAR-QMMM Cryptographic Mining on Chern- Simons

2-Carboxylicacid;N-(1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- 400

Carboxylicacid;N-3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- oxo-1lambda4,2 lambda5- 401

thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)- ethylidene]guanidine; [(S)-amino({[(S)- 402

amino({[(4R)-6-oxo-4,6- dihydro-1H-purin-2-yl]amino})phosphoryl]oxy})phos thiaphosphiran-2 403

-yl)-N’-yl)-N’-[(Z)+ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 404

1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-(sqrt(θ) Θ if(3 405

e del phos phoryl]formonitrile (rboximidoyl- 3- 406

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 407

phoryl]formonitrile (sqrt(θ) Θ if(3 e del phos phoryl]formonitrile 408

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 409

1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile 2) (∫ 2 Dh dt dp dt −2 410

( , |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 411

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 412

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 413

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del)) ≡ inf >0 |∇ |2 = { 2 Dh 414

dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 415

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 416

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 417

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del) v − |∇ |2 = { 2 Dh dt Do 418

Page 68: QSAR-QMMM Cryptographic Mining on Chern- Simons

dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 419

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 420

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 421

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del) ≡ ∫ (4( −1) −2|∇ |2={ + 422

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3-formonitrile + + (sqrt- fluoro-phos phoryl]formonitrile where 423

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 424

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 425

del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 426

e del) (∫ 2 Dh dt dp dt −2 ( ,|∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f 427

where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 428

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 429

del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 430

e del))≡ inf >0 |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 431

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 432

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 433

del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 434

e del) d |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 435

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 436

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 437

Page 69: QSAR-QMMM Cryptographic Mining on Chern- Simons

del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 438

e del) ≡ ∫ (4( −1) −2 |∇ |2 = { 2 Dh dt dp dtV’(p+(pV’2f)where 439

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 440

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ 441

pentan-2-yl}-2-Carboxylicacid;N-(1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 442

1.0]pentan-2-yl}-2-oxo6-({[amino({[(6-amino-9H-purin-9-yl)methyl]amino})phosphoryl] 443

carbamoyl}amino) -3,3- di methyl-7-oxo-4-thia- 1-azabicyclo[3.2.0]heptane- 444

2-Carboxylicacid;N-(1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- 445

Carboxylicacid;N-3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- oxo-1lambda4,2 lambda5- 446

thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)- ethylidene]guanidine; [(S)-amino({[(S)- 447

amino({[(4R)-6-oxo-4,6- dihydro-1H-purin-2-yl]amino})phosphoryl]oxy})phos thiaphosphiran-2 448

-yl)-N’-yl)-N’-[(Z)+ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 449

1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-(sqrt(θ) Θ if(3 450

e del phos phoryl]formonitrile (rboximidoyl- 3- 451

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 452

phoryl]formonitrile (sqrt(θ) Θ if(3 e del phos phoryl]formonitrile 453

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 454

1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile 2) (∫ 2 Dh dt dp dt −2 455

+ |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 456

Page 70: QSAR-QMMM Cryptographic Mining on Chern- Simons

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 457

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 458

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del)≡∫ (4( −1) −2|∇ |2={ + 459

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3-formonitrile + + (sqrt- fluoro-phos phoryl]formonitrile where 460

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 461

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 462

del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + 22 +2) (∫ 2 Dh dt dp dt −2 ( , |∇ |2 463

= { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 464

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 465

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 466

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del)) ≡ inf >0 |∇ |2 = { 2 Dh 467

dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 468

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 469

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 470

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del) 0)^2)^(3/2)) + (sqrt(θ) 471

Θ (e^2 (del ' (0))^2 del '' (del 0) + e^2 del ' (del 0) del '' (0)))/(sqrt(π) sqrt(1 - θ Θ^2 (del del −12 (d 472

|∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 473

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 474

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 475

Page 71: QSAR-QMMM Cryptographic Mining on Chern- Simons

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del) ≡ ∫ (4( −1) −2 |∇ |2 = {+ 476

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3-formonitrile + + (sqrt- fluoro-phos phoryl]formonitrile where 477

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 478

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 479

del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 480

e del) (∫ 2 Dh dt dp dt −2 + |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f 481

where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 482

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 483

del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 484

e del)≡∫ (4( −1) −2|∇ |2 = { 2 Dh dt dp dtV’(p+(pV’2f)where 485

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 486

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ 487

pentan-2-yl}-2-Carboxylicacid;N-(1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 488

1.0]pentan-2-yl}-2-oxo6-({[amino({[(6-amino-9H-purin-9-yl)methyl]amino})phosphoryl] 489

carbamoyl}amino) -3,3- di methyl-7-oxo-4-thia- 1-azabicyclo[3.2.0]heptane- 490

2-Carboxylicacid;N-(1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- 491

Carboxylicacid;N-3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- oxo-1lambda4,2 lambda5- 492

thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)- ethylidene]guanidine; [(S)-amino({[(S)- 493

amino({[(4R)-6-oxo-4,6- dihydro-1H-purin-2-yl]amino})phosphoryl]oxy})phos thiaphosphiran-2 494

Page 72: QSAR-QMMM Cryptographic Mining on Chern- Simons

-yl)-N’-yl)-N’-[(Z)+ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 495

1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-(sqrt(θ) Θ if(3 496

e del phos phoryl]formonitrile (rboximidoyl- 3- 497

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 498

phoryl]formonitrile (sqrt(θ) Θ if(3 e del phos phoryl]formonitrile 499

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 500

1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile 2) (∫ 2 Dh dt dp dt −2 501

( , |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 502

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 503

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 504

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del)) ≡ inf >0 |∇ |2 = { 2 Dh 505

dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 506

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 507

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 508

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del) v − |∇ |2 = { 2 Dh dt Do 509

dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 510

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 511

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 512

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del)≡∫ (4( −1) −2|∇ |2={ + 513

Page 73: QSAR-QMMM Cryptographic Mining on Chern- Simons

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3-formonitrile + + (sqrt- fluoro-phos phoryl]formonitrile where 514

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 515

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 516

del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 517

e del) (∫ 2 Dh dt dp dt −2 ( , |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f 518

where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 519

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 520

del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 521

e del)) ≡ inf >0 |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 522

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 523

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 524

del 525

> purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + 526

(sqrt(θ) Θ if(3 e del) d |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 527

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 528

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 529

del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 530

e del) ≡ ∫ (4( −1) −2 |∇ |2 = { 2 Dh dt dp dtV’(p+(pV’2f)where 531

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 532

Page 74: QSAR-QMMM Cryptographic Mining on Chern- Simons

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ pentan-2-yl}-2-Carboxylicacid; N-(1-carboximidoyl- 533

3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2-oxo-1lambda4 ,2lambda5-thiaphosphiran-2 534

-yl)-N’-yl)-N’-[(Z)+ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 535

1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-(sqrt(θ) Θ if(3 536

e del phos phoryl]formonitrile (rboximidoyl- 3- 537

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 538

phoryl]formonitrile (sqrt(θ) Θ if(3 e del phos phoryl]formonitrile 539

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 540

phoryl]formonitrile 2) (∫ 2 Dh dt dp dt −2 + |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 541

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 542

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 543

del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 544

e del)≡∫ (4( −1) −2|∇ |2={ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 545

3-formonitrile + + (sqrt- fluoro-phos phoryl]formonitrile where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + 546

i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + 547

i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del 548

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 549

3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 550

fluoro-1-(sqrt(θ) Θ if(3 e del phos phoryl]formonitrile (rboximidoyl- 551

Page 75: QSAR-QMMM Cryptographic Mining on Chern- Simons

3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 552

phoryl]formonitrile (sqrt(θ) Θ if(3 e del phos phoryl]formonitrile 553

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 554

phoryl]formonitrile 2) (∫ 2 −2) −2( , |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ 555

if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + 556

if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del 557

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 558

e del)) ≡ inf >0 |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 559

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 560

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 561

del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 562

e del) 0)^2)))) - 1/2 x^3 (sqrt(π) sin^(-1)(y - 3 sqrt(6734) X Y1^2) 563

((e^3 θ^(3/2) Θ^3 del del −12 (d |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) 564

- g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - 565

g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del 566

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 567

e del) ≡ ∫ (4( −1) −2 |∇ |2 = { 2 − 1 568

pentan-2-yl}-2-Carboxylicacid;N-(1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 569

1.0]pentan-2-yl}-2-oxo6-({[amino({[(6-amino-9H-purin-9-yl)methyl]amino})phosphoryl] 570

Page 76: QSAR-QMMM Cryptographic Mining on Chern- Simons

carbamoyl}amino) -3,3- di methyl-7-oxo-4-thia- 1-azabicyclo[3.2.0]heptane- 571

2-Carboxylicacid;N-(1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- 572

Carboxylicacid;N-3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- oxo-1lambda4,2 lambda5- 573

thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)- ethylidene]guanidine; [(S)-amino({[(S)- 574

amino({[(4R)-6-oxo-4,6- dihydro-1H-purin-2-yl]amino})phosphoryl]oxy})phos thiaphosphiran-2 575

-yl)-N’-yl)-N’-[(Z)1≠ + (sqrt(θ) Θ if(3 e del 576

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 577

e del) (∫ 2 Dh dt dp dt −2 + |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f 578

where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 579

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 580

del purin-2-yl]amino})phosp horyl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 581

e del)≡∫ (4( −1) −2|∇ |2={ 2Dh dt dp dtV’(p+(pV’2f)where 582

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+ ∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 583

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠pentan-2-yl}-2-Carboxylicacid; N-(1-carboximidoyl- 584

3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2-oxo-1lambda4, 2lambda5-thiaphosphiran-2 585

-yl)-N’-yl)-N’-[(Z)+ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 586

1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-(sqrt(θ) Θ if(3 587

e del phos phoryl]formonitrile (rboximidoyl- 3- 588

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2- yl]am ino})phosphoryl]oxy})phos 589

Page 77: QSAR-QMMM Cryptographic Mining on Chern- Simons

phoryl]formonitrile (sqrt(θ) Θ if(3 e del phos phoryl]formonitrile 590

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 591

phoryl]formonitrile 2) (∫ 2 Dh dt dp dt −2 ( , |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 592

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 593

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 594

del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 595

e del)) ≡ inf >0 |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 596

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 597

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 598

del purin-2-yl]amino})ph osphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 599

e del) v − |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 600

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 601

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 602

del purin-2-yl]amino})pho sphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 603

e del) ≡ ∫ 604

> (4( −1) −2|∇ |2={+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 605

phoryl]formonitrile + (sqrt(θ) Θ if(3 e del (1-carboximidoyl- 3- 606

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 607

phoryl]formonitrile 1+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1≠+ 608

Page 78: QSAR-QMMM Cryptographic Mining on Chern- Simons

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 609

e del purin-2-yl]ami no})phosphoryl]oxy})phos phoryl]formonitrile 610

++ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 22 ++ (sqrt(θ) Θ (sqrt(θ) Θ 611

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile 2)+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 612

fluoro-phos phoryl]formonitrile (∫ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 613

phoryl]formonitrile + (sqrt(θ) Θ if(3 e del (rboximidoyl- 3- 614

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 615

phoryl]formonitrile (+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile ,|∇ |2 = 616

{ 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t 617

∣ϕ(t)⟩B+∣α2′( t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 618

e del purin-2-yl]amino} )phosphoryl]oxy})phos phoryl]formonitrile 619

+ + (sqrt(θ) Θ if(3 e del))≡inf+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 620

fluoro-phos phoryl]formonitrile >0+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 621

phoryl]formonitrile + (sqrt(θ) Θ if(3 e del (rboximidoyl- 3- 622

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}- d+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 623

phoryl]formonitrile + (sqrt(θ) Θ if(3 e del (rboximidoyl- 3- 624

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}- ≡ ∫+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 625

phoryl]formonitrile (4( −1) −2 |∇ |2 = {+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 626

phoryl]formonitrile + (sqrt(θ) Θ if(3 e del phos phoryl]formonitrile 627

Page 79: QSAR-QMMM Cryptographic Mining on Chern- Simons

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 628

phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1 ≠+ 629

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 630

e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ 631

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ 632

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 633

fluoro-1-(sqrt(θ) Θ if(3 e del phos phoryl]formonitrile (rboximidoyl- 634

3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 635

phoryl]formonitrile (sqrt(θ) Θ if(3 e del phos phoryl]formonitrile 636

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 637

phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 2)+ 638

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (∫ + (sqrt(θ) Θ if(3 e 639

del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ 640

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile ++ (sqrt(θ) Θ (sqrt(θ) Θ 641

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 e 642

del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-≡∫+ (sqrt(θ) Θ (sqrt(θ) Θ 643

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile (4( −1) −2|∇ |2={+ (sqrt(θ) Θ (sqrt(θ) Θ 644

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 e 645

del (1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ 646

Page 80: QSAR-QMMM Cryptographic Mining on Chern- Simons

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 647

fluoro-phos phoryl]formonitrile 1≠+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 648

phoryl]formonitrile + (sqrt(θ) Θ if(3 e del 649

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile ++ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 650

3- fluoro-phos phoryl]formonitrile 22 +2)+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 651

phoryl]formonitrile (∫ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + 652

(sqrt(θ) Θ if(3 e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 653

1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (+ (sqrt(θ) 654

Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile , |∇ |2 = { 2 Dh dt Do dp 655

dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B 656

+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 657

e del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + 658

+ (sqrt(θ) Θ if(3 e del)) ≡ inf+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 659

fluoro-phos phoryl]formonitrile >0+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 660

phoryl]formonitrile + (sqrt(θ) Θ if(3 e del (rboximidoyl- 3- 661

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 662

phoryl]formonitrile 0 del ' (0) del ' (del((del ' (0))^2 del '' (del 0) +del ' (del 0) del '' (0)))/(sqrt(π) (1 - 663

θ Θ^2 (del del −12 (d+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + 664

(sqrt(θ) Θ if(3 e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 665

Page 81: QSAR-QMMM Cryptographic Mining on Chern- Simons

1.0]pentan-2-yl}- ≡ ∫+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (4( −1) 666

−2 |∇ |2 = {+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 667

e del phos phoryl]formonitrile (rboximidoyl- 3- 668

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 669

phoryl]formonitrile 670

> 1≠+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 671

e del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile 672

++ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 22 ++ (sqrt(θ) Θ (sqrt(θ) Θ 673

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile 2)+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 674

fluoro-phos phoryl]formonitrile (∫ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 675

phoryl]formonitrile + (sqrt(θ) Θ if(3 e del (rboximidoyl- 3- 676

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 677

phoryl]formonitrile ++ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + 678

(sqrt(θ) Θ if(3 e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 679

1.0]pentan-2-yl}-≡∫+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (4( −1) 680

−2|∇ |2={+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 681

e del (1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 682

1.0]pentan-2-yl}-1+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1 ≠+ 683

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 684

Page 82: QSAR-QMMM Cryptographic Mining on Chern- Simons

e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ 685

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ 686

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 687

fluoro-1-(sqrt(θ) Θ if(3 e del phos phoryl]formonitrile (rboximidoyl- 688

3- fluoro-1-{5- oxabicyclo[2.1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 689

phoryl]formonitrile (sqrt(θ) Θ if(3 e del phos phoryl]formonitrile 690

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2.1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 691

phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 2)+ 692

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (∫ + (sqrt(θ) Θ (sqrt(θ) Θ 693

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 e 694

del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 695

3- fluoro-phos phoryl]formonitrile (+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 696

phoryl]formonitrile , |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + 697

i(pv’ f)) =12‾√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B +∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + 698

i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del 699

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 700

e del)) ≡ inf+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 701

phoryl]formonitrile >0+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + 702

(sqrt(θ) Θ if(3 e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 703

Page 83: QSAR-QMMM Cryptographic Mining on Chern- Simons

1.0]pentan-2-yl}- v −+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + 704

(sqrt(θ) Θ if(3 e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 705

1.0]pentan-2-yl}- ≡ ∫ 706

> (4( −1) −2|∇ |2= {+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 707

phoryl]formonitrile + (sqrt(θ) Θ if(3 e del (1-carboximidoyl- 3- 708

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 709

phoryl]formonitrile 1+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1≠+ 710

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 711

e del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile 712

++ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 22 ++ (sqrt(θ) Θ (sqrt(θ) Θ 713

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile 2)+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 714

fluoro-phos phoryl]formonitrile (∫ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 715

phoryl]formonitrile + (sqrt(θ) Θ if(3 e del (rboximidoyl- 3- 716

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 717

phoryl]formonitrile (+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile ,|∇ |2 = 718

{ 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 719

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B +∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 720

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 721

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del))≡ 722

Page 84: QSAR-QMMM Cryptographic Mining on Chern- Simons

>inf+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile >0+ (sqrt(θ) Θ (sqrt(θ) 723

Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 724

e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}- d+ 725

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 726

e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}- ≡ 727

∫+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (4( −1) −2 |∇ |2 = {+ (sqrt(θ) 728

Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 729

e del phos phoryl]formonitrile (rboximidoyl- 3- 730

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-p urin-2-yl]amino})phosphoryl]oxy})phos 731

phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1 ≠+ 732

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 733

e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ 734

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ 735

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 736

fluoro-1-(sqrt(θ) Θ if(3 e del phos phoryl]formonitrile (rboximidoyl- 737

3- fluoro-1-{5-oxabicyclo[2.1.0]pentan-2-yl}-purin-2-yl]amino}) phosphoryl]oxy})phos 738

phoryl]formonitrile (sqrt(θ) Θ if(3 e del phos phoryl]formonitrile 739

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 740

phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 2)+ 741

Page 85: QSAR-QMMM Cryptographic Mining on Chern- Simons

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (∫ + (sqrt(θ) Θ if(3 742

e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ 743

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile ++ (sqrt(θ) Θ (sqrt(θ) Θ 744

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 e 745

del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-≡∫+ (sqrt(θ) Θ (sqrt(θ) Θ 746

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile (4( −1) −2|∇ |2={+ (sqrt(θ) Θ (sqrt(θ) Θ 747

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 e 748

del (1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ 749

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 750

fluoro-phos phoryl]formonitrile 1≠+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 751

phoryl]formonitrile + (sqrt(θ) Θ if(3 e del 752

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile ++ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 753

3- fluoro-phos phoryl]formonitrile 22 + 754

> 2)+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (∫ + (sqrt(θ) Θ 755

(sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 756

e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ 757

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (+ (sqrt(θ) Θ (sqrt(θ) Θ 758

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile , |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 759

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 760

Page 86: QSAR-QMMM Cryptographic Mining on Chern- Simons

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 761

del purin-2-yl]amino}) phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 762

e del)) ≡ inf+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 763

phoryl]formonitrile >0+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + 764

(sqrt(θ) Θ if(3 e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 765

1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 766

0)^2)^(3/2)) + (e^3 θ^(3/2) Θ^3 (del ' (0))^3(del ' (del 0))^3 (2 θ Θ^2 (del del −12 (d+ (sqrt(θ) Θ 767

(sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 768

e del (rboximidoyl- 3- fluoro-1-{5-oxa bicyclo[2.1.0]pentan-2-yl}- ≡ 769

∫+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (4( −1) −2 |∇ |2 = {+ (sqrt(θ) 770

Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 771

e del phos phoryl]formonitrile (rboximidoyl- 3- 772

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 773

phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1 ≠+ 774

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 775

e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}- 776

> 2 +2) (∫ 2 −2) −2+ |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V‘(p + i(pv’ f)) 777

=12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B +∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 778

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 779

Page 87: QSAR-QMMM Cryptographic Mining on Chern- Simons

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del)≡∫ (4( −1) −2|∇ |2={ + (sqrt(θ) Θ 780

(sqrt(θ) Θ (rboximidoyl- 3-formonitrile + + (sqrt- fluoro-phos phoryl]formonitrile − 11≠ 23 1++ (sqrt(θ) Θ 781

(sqr t(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 782

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-(sqrt(θ) Θ if(3 783

e del phos phoryl]formonitrile (rboximidoyl- 3- 784

fluoro-1-{5-oxabicyclo[2.1.0]pentan-2-yl}-purin-2-yl]amino}) phosphoryl]oxy})phos phoryl]formonitrile 785

(sqrt(θ) Θ if(3 e del phos phoryl]formonitrile (rboximidoyl- 3- 786

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}- purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + 787

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 2)+ (sqrt(θ) Θ (sqrt(θ) Θ 788

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile (∫ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 789

phoryl]formonitrile + (sqrt(θ) Θ if(3 e del (rboximidoyl- 3- 790

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 791

phoryl]formonitrile (+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile , |∇ |2 = { 2 Dh 792

dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B 793

+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 794

e del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + 795

(sqrt(θ) Θ if(3 e del)) ≡ inf+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 796

fluoro-phos phoryl]formonitrile >0+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + 797

(sqrt(θ) Θ if(3 e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 798

Page 88: QSAR-QMMM Cryptographic Mining on Chern- Simons

1.0]pentan-2-yl}- v −+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ 799

if(3 e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}- ≡ ∫+ 800

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (4( −1) −2 |∇ |2 801

> { 2 Dh dt dp dtV ’(p +(pV’2f)where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ 802

(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ pentan-2-yl}-2-Carbox 803

ylicacid;N-(1-carboximidoyl- 3- fluoro-1-{5-o xabicyclo[2. 1.0]pentan-2-yl}-2-oxo-1lam 804

bda4,2lambda5-thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)+ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 805

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-(sqrt(θ) Θ if(3 806

e del phos phoryl]formonitrile (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 807

1.0]pentan-2-yl}-pur in-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile (sqrt(θ) Θ if(3 808

e del phos phoryl]formonitrile (rboximidoyl- 3- 809

fluoro-1-{5-oxabicyclo[2.1.0]pentan-2-yl}-purin-2- yl]amino})phosphoryl]oxy})phos phoryl]formonitrile 2) (∫ 810

2 Dh dt dp dt −2 ( , |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) 811

=12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B +∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 812

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 813

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del)) ≡ inf >0 |∇ |2 = { 2 Dh dt Do dp 814

dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 815

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ 816

if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + 817

Page 89: QSAR-QMMM Cryptographic Mining on Chern- Simons

(sqrt(θ) Θ if(3 e del) d |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 818

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 819

((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del 820

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 821

e del) ≡ ∫ (4( −1) −2 |∇ |2 = { 2 Dh dt dp dtV’(p+(pV’2f)where 822

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 823

((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ pentan-2-yl}-2-Carboxylicacid;N-(1-carboximidoyl- 3- 824

fluoro-1-{5-oxabicyclo[2. 825

1.0]pentan-2-yl}-2-oxo6-({[amino({[(6-amino-9H-purin-9-yl)methyl]amino})phosphoryl] carbamoyl}amino) 826

-3,3- di methyl-7-oxo-4-thia- 1-azabicyclo[3.2.0]heptane- 2-Carboxylicacid;N-(1-carboximidoyl- 3- 827

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- Carboxylicacid;N-3- fluoro-1-{5-oxabicyclo[2. 828

1.0]pentan-2-yl}-2- oxo-1lambda4,2 lambda5- thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)- ethylidene]guanidine; 829

[(S)-amino({[(S)- amino({[(4R)-6-oxo-4,6- dihydro-1H-purin-2-yl]amino})phosphoryl]oxy})phos 830

thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)+ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 831

1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-(sqrt(θ) Θ if(3 832

e del phos phoryl]formonitrile (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 833

1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile (sqrt(θ) Θ if(3 834

e del phos phoryl]formonitrile (rboximidoyl- 3- 835

fluoro-1-{5-oxabicyclo[2.1.0]pentan-2-yl}-purin-2-yl]amino}) phosphoryl]oxy})phos phoryl]formonitrile 2) (∫ 836

Page 90: QSAR-QMMM Cryptographic Mining on Chern- Simons

2 Dh dt dp dt −2 + |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) 837

=12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 838

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 839

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del)≡∫ (4( −1) −2|∇ |2={ + (sqrt(θ) Θ 840

(sqrt(θ) Θ (rboximidoyl- 3-formonitrile + + (sqrt- fluoro-phos phoryl]formonitrile where IfŜbpˆAmAŜ†b+ 841

if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V 842

‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del 843

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 844

e del) (∫ 2 Dh dt dp dt −2 ( , |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 845

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 846

((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del 847

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 848

e del)) ≡ inf >0 |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 849

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 850

((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del 851

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 852

e del) 0)^2 + 1))/(3 sqrt(π) (1 - θ Θ^2 (del del −12 (d |∇ |2 = { 2 Dh dt Do dp 853

dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 854

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ 855

Page 91: QSAR-QMMM Cryptographic Mining on Chern- Simons

if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + 856

(sqrt(θ) Θ if(3 e del) ≡ ∫ (4( −1) −2|∇ |2={ + (sqrt(θ) Θ (sqrt(θ) Θ 857

(rboximidoyl- 3-formonitrile + + (sqrt- fluoro-phos phoryl]formonitrile where IfŜbpˆAmAŜ†b+ if(p) - g(V 858

‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ 859

f)) ≠ + (sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 860

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del) (∫ 2 Dh dt dp dt −2 + |∇ |2 = { 2 861

Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 862

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ 863

if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + 864

(sqrt(θ) Θ if(3 e del)≡ ∫ (4( −1) −2|∇ |2={ + (sqrt(θ) Θ (sqrt(θ) Θ 865

(rboximidoyl- 3-formonitrile + + (sqrt- fluoro-phos phoryl]formonitrile where IfŜbpˆAmAŜ†b+ if(p) - g(V 866

‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ 867

f)) ≠ + (sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 868

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del) (∫ 2 Dh dt dp dt −2 ( , |∇ |2 = { 2 869

Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 870

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ 871

if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + 872

(sqrt(θ) Θ if(3 e del)) ≡ inf >0 |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 873

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 874

Page 92: QSAR-QMMM Cryptographic Mining on Chern- Simons

((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del 875

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 876

e del) v − |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ 877

if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V 878

‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del 879

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 880

e del) ≡ ∫ (4( −1) −2 |∇ |2 = { 2 Dh dt dp dtV’(p+(pV’2f)where 881

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 882

((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ pentan-2-yl}-2-Carboxylicacid;N-(1-carboximidoyl- 3- 883

fluoro-1-{5-oxabicyclo[2. 884

1.0]pentan-2-yl}-2-oxo6-({[amino({[(6-amino-9H-purin-9-yl)methyl]amino})phosphoryl] carbamoyl}amino) 885

-3,3- di methyl-7-oxo-4-thia- 1-azabicyclo[3.2.0]heptane- 2-Carboxylicacid;N-(1-carboximidoyl- 3- 886

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- Carboxylicacid;N-3- fluoro-1-{5-oxabicyclo[2. 887

1.0]pentan-2-yl}-2- oxo-1lambda4,2 lambda5- thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)- ethylidene]guanidine; 888

[(S)-amino({[(S)- amino({[(4R)-6-oxo-4,6- dihydro-1H-purin-2-yl]amino})phosphoryl]oxy})phos 889

thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)+ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 890

1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-(sqrt(θ) Θ if(3 891

e del phos phoryl]formonitrile (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 892

1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile (sqrt(θ) Θ if(3 893

Page 93: QSAR-QMMM Cryptographic Mining on Chern- Simons

e del phos phoryl]formonitrile (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 894

1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile 2) (∫ 2 Dh dt dp dt −2 ( , |∇ |2 = 895

{ 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 896

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ 897

if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + 898

(sqrt(θ) Θ if(3 e del)) ≡ inf >0 |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 899

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 900

((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del 901

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 902

e del) d |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - 903

g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + 904

i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 905

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del) ≡ ∫ (4( −1) −2 |∇ |2 = { 2 Dh dt 906

dp dtV’(p+(pV’2f)where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 907

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ 908

if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + 909

(sqrt(θ) Θ if(3 e del) (∫ 2 Dh dt dp dt −2 + |∇ |2 = { 2 Dh dt Do dp 910

dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 911

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ 912

Page 94: QSAR-QMMM Cryptographic Mining on Chern- Simons

if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + 913

(sqrt(θ) Θ if(3 e del)≡∫ (4( −1) −2|∇ |2={ 2Dh dt dp dtV’(p+(pV’2f)where 914

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 915

((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ pentan-2-yl}-2-Carboxylicacid;N-(1-carboximidoyl- 3- 916

fluoro-1-{5-oxabicyclo[2.1.0]pentan-2-yl}-2-oxo- 1lambda4,2lambda5-thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)+ 917

+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ 918

(rboximidoyl- 3- fluoro-1-(sqrt(θ) Θ if(3 e del phos phoryl]formonitrile 919

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 920

phoryl]formonitrile (sqrt(θ) Θ if(3 e del phos phoryl]formonitrile 921

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 922

phoryl]formonitrile 2) (∫ 2 Dh dt dp dt −2 ( , |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ 923

if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V 924

‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del 925

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 926

e del)) ≡ inf >0 |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 927

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 928

((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del 929

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 930

e del) 0)^2)^(5/2)) + (sqrt(θ) Θ if(3 e^3 del ' (0) del '' (0) del ''(del 0) + e^3 931

Page 95: QSAR-QMMM Cryptographic Mining on Chern- Simons

del ^(3) (del 0) (del ' (0))^3 + e^3 del ^(3) (0) del ' (del 0)))/(3 sqrt(π) sqrt(1 - θ Θ^2 (del del −12 (d |∇ |2 = { 2 932

Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 933

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ 934

if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + 935

(sqrt(θ) Θ if(3 e del) ≡ ∫ (4( −1) −2 |∇ |2 = { 2 Dh dt dp dtV’(p+(pV’2f)−1 1≠ + 936

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 937

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del) (∫ 2 Dh dt dp dt −2 + |∇ |2 = { 2 938

Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 939

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ 940

if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + 941

(sqrt(θ) Θ if(3 e del)≡∫ (4( −1) −2|∇ |2={ 2 Dh dt dp dtV’(p+(pV’2f)where 942

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 943

((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ pentan-2-yl}-2-Carboxylicacid;N-(1-carboximidoyl- 3- 944

fluoro-1-{5-oxabicyclo[2. 945

1.0]pentan-2-yl}-2-oxo6-({[amino({[(6-amino-9H-purin-9-yl)methyl]amino})phosphoryl] carbamoyl}amino) 946

-3,3- di methyl-7-oxo-4-thia- 1-azabicyclo[3.2.0]heptane- 2-Carboxylicacid;N-(1-carboximidoyl- 3- 947

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- Carboxylicacid;N-3- fluoro-1-{5-oxabicyclo[2. 948

1.0]pentan-2-yl}-2- oxo-1lambda4,2 lambda5- thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)- ethylidene]guanidine; 949

[(S)-amino({[(S)- amino({[(4R)-6-oxo-4,6- dihydro-1H-purin-2-yl]amino})phosphoryl]oxy})phos 950

Page 96: QSAR-QMMM Cryptographic Mining on Chern- Simons

thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)+ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 951

1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-(sqrt(θ) Θ if(3 952

e del phos phoryl]formonitrile (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 953

1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile (sqrt(θ) Θ if(3 954

e del phos phoryl]formonitrile (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 955

1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile 2) (∫ 2 Dh dt dp dt −2 ( , |∇ |2 = 956

{ 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 957

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ 958

if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + 959

(sqrt(θ) Θ if(3 e del)) ≡ inf >0 |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 960

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 961

((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del 962

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 963

e del) v − |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ 964

if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V 965

‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del 966

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 967

e del) ≡ ∫ (4( −1) −2 |∇ |2 = { 2 Dh dt dp dtV’(p+(pV’2f)where 968

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 969

Page 97: QSAR-QMMM Cryptographic Mining on Chern- Simons

((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ pentan-2-yl}-2-Carboxylicacid;N-(1-carboximidoyl- 3- 970

fluoro-1-{5-oxabicyclo[2. 971

1.0]pentan-2-yl}-2-oxo6-({[amino({[(6-amino-9H-purin-9-yl)methyl]amino})phosphoryl] carbamoyl}amino) 972

-3,3- di methyl-7-oxo-4-thia- 1-azabicyclo[3.2.0]heptane- 2-Carboxylicacid;N-(1-carboximidoyl- 3- 973

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- Carboxylicacid;N-3- fluoro-1-{5-oxabicyclo[2. 974

1.0]pentan-2-yl}-2- oxo-1lambda4,2 lambda5- thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)- ethylidene]guanidine; 975

[(S)-amino({[(S)- amino({[(4R)-6-oxo-4,6- dihydro-1H-purin-2-yl]amino})phosphoryl]oxy})phos 976

thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)+ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 977

1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-(sqrt(θ) Θ if(3 978

e del phos phoryl]formonitrile (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 979

1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile (sqrt(θ) Θ if(3 980

e del phos phoryl]formonitrile (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 981

1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile 2) (∫ 2 Dh dt dp dt −2 ( , |∇ |2 = 982

{ 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 983

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ 984

if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + 985

(sqrt(θ) Θ if(3 e del)) ≡ inf >0 |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 986

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 987

((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del 988

Page 98: QSAR-QMMM Cryptographic Mining on Chern- Simons

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 989

e del) d |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - 990

g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + 991

i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 992

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del) ≡ ∫ (4( −1) −2 |∇ |2 = { 2 − 1 993

2where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 994

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ 231+ 22+ 2) (∫ 2 Dh dt dp dt −2 + ()≡∫ (4(−1)−2 |∇ |2={ + 995

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3-formonitrile + + (sqrt- fluoro-phos phoryl]formonitrile where 996

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 997

((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del 998

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 999

e del) (∫ 2 Dh dt dp dt −2 ( ,|∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 1000

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 1001

((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del 1002

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 1003

e del))≡ inf >0 |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 1004

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 1005

((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del 1006

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 1007

Page 99: QSAR-QMMM Cryptographic Mining on Chern- Simons

e del) 0)^2)))) sin^((integral Y1 dY1) X sqrt(242424) - y) sin^(-1)(del del −12 1008

(d |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 1009

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ 1010

if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + 1011

(sqrt(θ) Θ if(3 e del) ≡ ∫(4( −1) −2|∇ |2={ + (sqrt(θ) Θ (sqrt(θ) Θ 1012

(rboximidoyl- 3-formonitrile + + (sqrt- fluoro-phos phoryl]formonitrile where IfŜbpˆAmAŜ†b+ if(p) - g(V 1013

‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ 1014

f)) ≠ + (sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 1015

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del) (∫ 2 Dh dt dp dt −2 + |∇ |2 = { 2 1016

Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 1017

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ 1018

if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + 1019

(sqrt(θ) Θ if(3 e del)≡∫ (4( −1) −2|∇ |2={ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 1020

3-formonitrile + + (sqrt- fluoro-phos phoryl]formonitrile where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) 1021

=12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 1022

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 1023

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del) (∫ 2 Dh dt dp dt −2 ( , |∇ |2 = { 2 1024

Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 1025

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ 1026

Page 100: QSAR-QMMM Cryptographic Mining on Chern- Simons

if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + 1027

(sqrt(θ) Θ if(3 e del)) ≡ inf >0 |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 1028

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 1029

((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del 1030

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 1031

e del) v − |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ 1032

if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V 1033

‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del 1034

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 1035

e del) ≡ ∫ (4( −1) −2 |∇ |2 = { 2 Dh dt dp dtV’(p+(pV’2f)where 1036

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 1037

((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ pentan-2-yl}-2-Carboxylicacid;N-(1-carboximidoyl- 3- 1038

fluoro-1-{5-oxabicyclo[2. 1039

1.0]pentan-2-yl}-2-oxo6-({[amino({[(6-amino-9H-purin-9-yl)methyl]amino})phosphoryl] carbamoyl}amino) 1040

-3,3- di methyl-7-oxo-4-thia- 1-azabicyclo[3.2.0]heptane- 2-Carboxylicacid;N-(1-carboximidoyl- 3- 1041

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- Carboxylicacid;N-3- fluoro-1-{5-oxabicyclo[2. 1042

1.0]pentan-2-yl}-2- oxo-1lambda4,2 lambda5- thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)- ethylidene]guanidine; 1043

[(S)-amino({[(S)- amino({[(4R)-6-oxo-4,6- dihydro-1H-purin-2-yl]amino})phosphoryl]oxy})phos 1044

thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)+ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1045

Page 101: QSAR-QMMM Cryptographic Mining on Chern- Simons

1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-(sqrt(θ) Θ if(3 1046

e del phos phoryl]formonitrile (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1047

1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile (sqrt(θ) Θ if(3 1048

e del phos phoryl]formonitrile (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1049

1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile 2) (∫ 2 Dh dt dp dt −2 ( , |∇ |2 = 1050

{ 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 1051

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ 1052

if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + 1053

(sqrt(θ) Θ if(3 e del)) ≡ inf >0 |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 1054

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 1055

((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del 1056

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 1057

e del) d |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - 1058

g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + 1059

i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 1060

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del) ≡ ∫ (4( −1) −2 |∇ |2={ + (sqrt(θ) 1061

Θ (sqrt(θ) Θ (rboximidoyl- 3-formonitrile + + (sqrt- fluoro-phos phoryl]formonitrile where IfŜbpˆAmAŜ†b+ 1062

if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V 1063

‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del 1064

Page 102: QSAR-QMMM Cryptographic Mining on Chern- Simons

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 1065

e del) (∫ 2 Dh dt dp dt −2 + |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 1066

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 1067

((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del 1068

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 1069

e del)≡∫ (4( −1) −2|∇ |2={ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3-formonitrile 1070

+ + (sqrt- fluoro-phos phoryl]formonitrile where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 1071

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ 1072

if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + 1073

(sqrt(θ) Θ if(3 e del) (∫ 2 Dh dt dp dt −2 ( , |∇ |2 = { 2 Dh dt Do dp 1074

dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 1075

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ 1076

if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + 1077

(sqrt(θ) Θ if(3 e del)) ≡ inf >0 |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 1078

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 1079

((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del 1080

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 1081

e del) (e x) Θ sqrt(θ)) = -sin^(-1)(sqrt(θ) Θ del del −12 (d |∇ |2 = { 2 Dh dt Do 1082

dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 1083

Page 103: QSAR-QMMM Cryptographic Mining on Chern- Simons

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ 1084

if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + 1085

(sqrt(θ) Θ if(3 e del) ≡ ∫ (4( −1) −2 |∇ |2{ 2− 12−11≠ 231+ 22+2) (∫ 2 −2)−2+ 1086

()≡∫(4( −1) −2|∇ |2={+ (sqrt(θ) Θ ( sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 1087

e del (1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ 1088

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 1089

3- fluoro-phos phoryl]formonitrile 1≠+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1090

phoryl]formonitrile + (sqrt(θ) Θ if(3 e del 1091

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile ++ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 1092

fluoro-phos phoryl]formonitrile 22 ++ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1093

2)+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (∫ + (sqrt(θ) Θ (sqrt(θ) Θ 1094

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 e del 1095

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 1096

fluoro-phos phoryl]formonitrile (+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile , 1097

> |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 1098

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 1099

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 1100

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del)) ≡ inf+ (sqrt(θ) Θ 1101

(sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile >0+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 1102

Page 104: QSAR-QMMM Cryptographic Mining on Chern- Simons

3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 e del 1103

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}- v −+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 1104

3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 e del 1105

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}- ≡ ∫+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 1106

3- fluoro-phos phoryl]formonitrile (4( −1) −2 |∇ |2 = {+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 1107

fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 e del phos 1108

phoryl]formonitrile (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-pur 1109

in-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 1110

fluoro-phos phoryl]formonitrile 1 ≠+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1111

phoryl]formonitrile pentan-2-yl}-2-Carbo xylicacid;N-(1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1112

1.0]pentan-2-yl}-2-o xo6-({[amino({[(6-amino-9H-purin-9-yl)methyl]amino})phosphoryl] 1113

carbamoyl}amino) -3,3- di methyl-7-oxo-4-thia- 1-azabicyclo[3.2.0]heptane- 1114

2-Carboxylicacid;N-(1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- 1115

Carboxylicacid;N-3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- oxo-1lambda4,2 lambda5- 1116

thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)- ethylidene]guanidine; [(S)-amino({[(S)- 1117

amino({[(4R)-6-oxo-4,6- dihydro-1H-purin-2-yl]amino})phosphoryl]oxy})phos thiaphosphiran-2 1118

-yl)-N’-yl)-N’-[(Z)++ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + 1119

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) 1120

Θ (rboximidoyl- 3- fluoro-1-(sqrt(θ) Θ if(3 e del phos 1121

Page 105: QSAR-QMMM Cryptographic Mining on Chern- Simons

phoryl]formonitrile (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-puri 1122

n-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile (sqrt(θ) Θ if(3 1123

e del phos phoryl]formonitrile (rboximidoyl- 3- 1124

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 1125

phoryl]formonitrile 1126

> 2)+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (∫ + (sqrt(θ) Θ 1127

(sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 1128

e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ 1129

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (+ (sqrt(θ) Θ (sqrt(θ) Θ 1130

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile , |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 1131

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 1132

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 1133

delpurin-2-yl]amino})phosphor ryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 1134

e del)) ≡ inf+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1135

phoryl]formonitrile >0+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + 1136

(sqrt(θ) Θ if(3 e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1137

1.0]pentan-2-yl}- d+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) 1138

Θ if(3 e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1139

1.0]pentan-2-yl}- ≡ ∫+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (4( −1) 1140

Page 106: QSAR-QMMM Cryptographic Mining on Chern- Simons

−2 |∇ |2 = {+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 2 −+ (sqrt(θ) Θ 1141

(sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1 1142

> 2−+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1+ (sqrt(θ) Θ (sqrt(θ) 1143

Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1≠+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 1144

fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 e del 1145

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile ++ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 1146

3- fluoro-phos phoryl]formonitrile 22 ++ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1147

phoryl]formonitrile 2)+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (∫ + 1148

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 1149

e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ 1150

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile ++ (sqrt(θ) Θ (sqrt(θ) Θ 1151

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 e 1152

del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-≡∫+ (sqrt(θ) Θ (sqrt(θ) Θ 1153

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile (4( −1) −2|∇ |2={ 1154

> + (sqrt(θ) Θ if(3 e del phos phoryl]formonitrile (rboximidoyl- 1155

3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 1156

phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1 ≠+ 1157

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 1158

e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ 1159

Page 107: QSAR-QMMM Cryptographic Mining on Chern- Simons

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ 1160

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 1161

fluoro-1-(sqrt(θ) Θ if(3 e del phos phoryl]formonitrile (rboximidoyl- 1162

3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 1163

phoryl]formonitrile (sqrt(θ) Θ if(3 e del phos phoryl]formonitrile 1164

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 1165

phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 2)+ 1166

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (∫ + (sqrt(θ) Θ (sqrt(θ) Θ 1167

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 e 1168

del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0 ]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 1169

3- fluoro-phos phoryl]formonitrile (+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1170

phoryl]formonitrile , |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + 1171

i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + 1172

i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del purin-2-yl]amino})pho 1173

sphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del)) ≡ 1174

inf+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile >0+ (sqrt(θ) Θ (sqrt(θ) Θ 1175

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 e 1176

del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-(e x)) sin^(-1)( (constant + -3 1177

sqrt(6734) X Y1^2) + y)- 1/2 x^4 (sqrt(π) sin^(-1)(y - 3 sqrt(6734) X Y1^2)((e^4 θ^(5/2) Θ^5 del del 1178

Page 108: QSAR-QMMM Cryptographic Mining on Chern- Simons

− 12 (d+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 1179

e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}- ≡ 1180

∫+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (4( −1) −2 |∇ |2 = {+ (sqrt(θ) 1181

Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 1182

e del phos phoryl]formonitrile (rboximidoyl- 3- 1183

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2- yl]amino})phosphoryl]oxy})phos 1184

phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1 ≠+ 1185

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 1186

e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ 1187

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 2 1188

> 2 ++ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 2)+ (sqrt(θ) Θ 1189

(sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (∫ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 1190

3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 e del 1191

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 1192

fluoro-phos phoryl]formonitrile ++ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1193

phoryl]formonitrile + (sqrt(θ) Θ if(3 e del (rboximidoyl- 3- 1194

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-≡∫+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1195

phoryl]formonitrile (4( −1) −2|∇ |2={+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1196

phoryl]formonitrile + (sqrt(θ) Θ if(3 e del (1-carboximidoyl- 3- 1197

Page 109: QSAR-QMMM Cryptographic Mining on Chern- Simons

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1198

phoryl]formonitrile 1+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1≠+ 1199

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 2 1200

> 3 1++ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ 1201

(sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ 1202

(rboximidoyl- 3- fluoro-1-(sqrt(θ) Θ if(3 e del phos 1203

phoryl]formonitrile (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2- 1204

yl]amino})phosphoryl]oxy})phos phoryl]formonitrile (sqrt(θ) Θ if(3 1205

e del phos phoryl]formonitrile (rboximidoyl- 3- 1206

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2- yl]amino})phosphoryl]oxy})phos 1207

phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 2)+ 1208

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (∫ + (sqrt(θ) Θ (sqrt(θ) Θ 1209

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 e 1210

del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 1211

3- fluoro-phos phoryl]formonitrile (+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1212

phoryl]formonitrile , |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + 1213

i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + 1214

i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del purin-2-yl]amino} 1215

)phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del)) 1216

Page 110: QSAR-QMMM Cryptographic Mining on Chern- Simons

≡ inf+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile >0+ (sqrt(θ) Θ (sqrt(θ) 1217

Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 1218

e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}- v 1219

−+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 1220

e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}- ≡ 1221

∫+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (4( −1) −2 1222

> |∇ |2 = {+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 1223

e del phos phoryl]formonitrile (rboximidoyl- 3- 1224

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-y l]amino})phosphoryl]oxy})phos 1225

phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1 ≠+ 1226

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 1227

e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ 1228

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ 1229

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 1230

fluoro-1-(sqrt(θ) Θ if(3 e del phos phoryl]formonitrile (rboximidoyl- 1231

3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 1232

phoryl]formonitrile (sqrt(θ) Θ if(3 e del phos phoryl]formonitrile 1233

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 1234

phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 2)+ 1235

Page 111: QSAR-QMMM Cryptographic Mining on Chern- Simons

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (∫ + (sqrt(θ) Θ (sqrt(θ) Θ 1236

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 e 1237

del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 1238

3- fluoro-phos phoryl]formonitrile (+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1239

phoryl]formonitrile , |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + 1240

i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + 1241

i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del 1242

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 1243

e del)) ≡ inf+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1244

phoryl]formonitrile >0 1245

> + (sqrt(θ) Θ if(3 e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1246

1.0]pentan-2-yl}- d+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) 1247

Θ if(3 e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1248

1.0]pentan-2-yl}- ≡ ∫+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (4( −1) 1249

−2 |∇ |2 = {+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 1250

e del phos phoryl]formonitrile (rboximidoyl- 3- 1251

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 1252

phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1 ≠+ 1253

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 1254

Page 112: QSAR-QMMM Cryptographic Mining on Chern- Simons

e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ 1255

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ 1256

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 1257

fluoro-1-(sqrt(θ) Θ if(3 e del phos phoryl]formonitrile (rboximidoyl- 1258

3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 1259

phoryl]formonitrile (sqrt(θ) Θ if(3 e del phos phoryl]formonitrile 1260

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 1261

phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 2)+ 1262

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (∫ 1263

> + (sqrt(θ) Θ if(3 e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1264

1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile ++ (sqrt(θ) 1265

Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 1266

e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-≡∫+ 1267

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (4( −1) −2|∇ |2={+ (sqrt(θ) Θ 1268

(sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 1269

e del (1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1270

1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1+ (sqrt(θ) 1271

Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1≠+ (sqrt(θ) Θ (sqrt(θ) Θ 1272

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 e 1273

Page 113: QSAR-QMMM Cryptographic Mining on Chern- Simons

del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile ++ (sqrt(θ) Θ (sqrt(θ) Θ 1274

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile 22 + 1275

> 2)+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (∫ + (sqrt(θ) Θ 1276

(sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 1277

e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ 1278

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (+ (sqrt(θ) Θ (sqrt(θ) Θ 1279

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile , |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 1280

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 1281

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 1282

del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 1283

e del)) ≡ inf+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1284

phoryl]formonitrile >0+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + 1285

(sqrt(θ) Θ if(3 e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1286

1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 0 (del ' 1287

(0))^4 (del ' (del 0))^4 (2 θ Θ^2 1288

> (del del −12 (d+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + 1289

(sqrt(θ) Θ if(3 e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1290

1.0]pentan-2-yl}- ≡ ∫+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (4( −1) 1291

−2 |∇ |2 = {+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 1292

Page 114: QSAR-QMMM Cryptographic Mining on Chern- Simons

e del phos phoryl]formonitrile (rboximidoyl- 3- 1293

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 1294

phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1 ≠+ 1295

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1296

pentan-2-yl}-2-Carboxylicacid;N-(1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1297

1.0]pentan-2-yl}-2-oxo6-({[amino({[(6-amino-9H-purin-9-yl)methyl]amino})phosphoryl] 1298

carbamoyl}amino) -3,3- di methyl-7-oxo-4-thia- 1-azabicyclo[3.2.0]heptane- 1299

2-Carboxylicacid;N-(1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- 1300

Carboxylicacid;N-3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- oxo-1lambda4,2 lambda5- 1301

thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)- ethylidene]guanidine; [(S)-amino({[(S)- 1302

amino({[(4R)-6-oxo-4,6- dihydro-1H-purin-2-yl]amino})phosphoryl]oxy})phos thiaphosphiran-2 1303

-yl)-N’-yl)-N’-[(Z)++ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + 1304

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) 1305

Θ (rboximidoyl- 3- fluoro-1-(sqrt(θ) Θ if(3 e del phos 1306

phoryl]formonitrile (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1307

1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile (sqrt(θ) Θ if(3 1308

e del phos phoryl]formonitrile (rboximidoyl- 3- 1309

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 1310

phoryl]formonitrile 1311

Page 115: QSAR-QMMM Cryptographic Mining on Chern- Simons

> 2)+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (∫ + (sqrt(θ) Θ 1312

(sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 1313

e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ 1314

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile ++ (sqrt(θ) Θ (sqrt(θ) Θ 1315

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 e 1316

del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-≡∫+ (sqrt(θ) Θ (sqrt(θ) Θ 1317

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile (4( −1) −2|∇ |2={+ (sqrt(θ) Θ (sqrt(θ) Θ 1318

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 e 1319

del (1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ 1320

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 1321

fluoro-phos phoryl]formonitrile 1≠+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1322

phoryl]formonitrile 2 1323

> 3 1+ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ 1324

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-(sqrt(θ) Θ if(3 e del 1325

phos phoryl]formonitrile (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1326

1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile (sqrt(θ) Θ if(3 1327

e del phos phoryl]formonitrile (rboximidoyl- 3- 1328

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 1329

phoryl]formonitrile 2) (∫ 2 Dh dt dp dt −2 ( , |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 1330

Page 116: QSAR-QMMM Cryptographic Mining on Chern- Simons

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 1331

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 1332

del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 1333

e del)) ≡ inf >0 |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 1334

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 1335

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 1336

del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 1337

e del) v − |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 1338

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 1339

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 1340

del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 1341

e del) ≡ ∫ (4( −1) −2 |∇ |2 = { 2 Dh dt dp dtV’(p+(pV’2f)where 1342

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 1343

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ 1344

pentan-2-yl}-2-Carboxylicacid;N-(1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1345

1.0]pentan-2-yl}-2-oxo6-({[amino({[(6-amino-9H-purin-9-yl)methyl]amino})phosphoryl] 1346

carbamoyl}amino) -3,3- di methyl-7-oxo-4-thia- 1-azabicyclo[3.2.0]heptane- 1347

2-Carboxylicacid;N-(1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- 1348

Carboxylicacid;N-3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- oxo-1lambda4,2 lambda5- 1349

Page 117: QSAR-QMMM Cryptographic Mining on Chern- Simons

thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)- ethylidene]guanidine; [(S)-amino({[(S)- 1350

amino({[(4R)-6-oxo-4,6- dihydro-1H-purin-2-yl]amino})phosphoryl]oxy})phos thiaphosphiran-2 1351

-yl)-N’-yl)-N’-[(Z)+ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1352

1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-(sqrt(θ) Θ if(3 1353

e del phos phoryl]formonitrile (rboximidoyl- 3- 1354

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 1355

phoryl]formonitrile (sqrt(θ) Θ if(3 e del phos phoryl]formonitrile 1356

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1357

1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile 2) (∫ 2 Dh dt dp dt 1358

−2 ( , |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 1359

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 1360

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 1361

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del)) ≡ inf >0 |∇ |2 = { 2 Dh 1362

dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 1363

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 1364

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 1365

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del) d |∇ |2 = { 2 Dh dt Do 1366

dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 1367

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 1368

Page 118: QSAR-QMMM Cryptographic Mining on Chern- Simons

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 1369

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del) ≡ ∫ (4( −1) −2 |∇ |2 = { 1370

2 Dh dt dp dtV’(p+(pV’2f)where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 1371

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ 1372

pentan-2-yl}-2-Carboxylicacid;N-(1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1373

1.0]pentan-2-yl}-2-oxo6-({[amino({[(6-amino-9H-purin-9-yl)methyl]amino})phosphoryl] 1374

carbamoyl}amino) -3,3- di methyl-7-oxo-4-thia- 1-azabicyclo[3.2.0]heptane- 1375

2-Carboxylicacid;N-(1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- 1376

Carboxylicacid;N-3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- oxo-1lambda4,2 lambda5- 1377

thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)- ethylidene]guanidine; [(S)-amino({[(S)- 1378

amino({[(4R)-6-oxo-4,6- dihydro-1H-purin-2-yl]amino})phosphoryl]oxy})phos thiaphosphiran-2 1379

-yl)-N’-yl)-N’-[(Z)+ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1380

1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-(sqrt(θ) Θ if(3 1381

e del phos phoryl]formonitrile (rboximidoyl- 3- 1382

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 1383

phoryl]formonitrile (sqrt(θ) Θ if(3 e del phos phoryl]formonitrile 1384

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1385

1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile 2) (∫ 2 Dh dt dp dt 1386

−2 + |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 1387

Page 119: QSAR-QMMM Cryptographic Mining on Chern- Simons

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 1388

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 1389

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del)≡∫ (4( −1) −2|∇ |2={ + 1390

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3-formonitrile + + (sqrt- fluoro-phos phoryl]formonitrile where 1391

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 1392

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 1393

del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 1394

e del) (∫ 2 Dh dt dp dt −2 ( , |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f 1395

where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 1396

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 1397

del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 1398

e del)) ≡ inf >0 |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 1399

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 1400

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 1401

del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 1402

e del) 0)^2 + 3))/(4 sqrt(π) (1 - θ Θ^2 (del del −12 (d |∇ |2 = { 2 Dh 1403

dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 1404

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 1405

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 1406

Page 120: QSAR-QMMM Cryptographic Mining on Chern- Simons

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del) ≡ ∫ (4( −1) −2 |∇ |2 = { 1407

2 Dh dt dp dtV’(p+(pV’2f)where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 1408

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ 1409

pentan-2-yl}-2-Carboxylicacid;N-(1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1410

1.0]pentan-2-yl}-2-oxo6-({[amino({[(6-amino-9H-purin-9-yl)methyl]amino})phosphoryl] 1411

carbamoyl}amino) -3,3- di methyl-7-oxo-4-thia- 1-azabicyclo[3.2.0]heptane- 1412

2-Carboxylicacid;N-(1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- 1413

Carboxylicacid;N-3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- oxo-1lambda4,2 lambda5- 1414

thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)- ethylidene]guanidine; [(S)-amino({[(S)- 1415

amino({[(4R)-6-oxo-4,6- dihydro-1H-purin-2-yl]amino})phosphoryl]oxy})phos thiaphosphiran-2 1416

-yl)-N’-yl)-N’-[(Z)+ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1417

1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-(sqrt(θ) Θ if(3 1418

e del phos phoryl]formonitrile (rboximidoyl- 3- 1419

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 1420

phoryl]formonitrile (sqrt(θ) Θ if(3 e del phos phoryl]formonitrile 1421

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1422

1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile 2) (∫ 2 Dh dt dp dt 1423

−2 + |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 1424

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 1425

Page 121: QSAR-QMMM Cryptographic Mining on Chern- Simons

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 1426

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del)≡∫ (4( −1) −2|∇ |2={ + 1427

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3-formonitrile + + (sqrt- fluoro-phos phoryl]formonitrile where 1428

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 1429

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 1430

del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 1431

e del) (∫ 2 Dh dt dp dt −2 ( , |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f 1432

where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 1433

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 1434

del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 1435

e del)) ≡ inf >0 |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 1436

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 1437

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 1438

del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 1439

e del) v − |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 1440

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 1441

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 1442

del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 1443

e del) ≡ ∫ (4( −1) −2 |∇ |2 = { 2 Dh dt dp dtV’(p+(pV’2f)where 1444

Page 122: QSAR-QMMM Cryptographic Mining on Chern- Simons

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 1445

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ 1446

pentan-2-yl}-2-Carboxylicacid;N-(1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1447

1.0]pentan-2-yl}-2-oxo6-({[amino({[(6-amino-9H-purin-9-yl)methyl]amino})phosphoryl] 1448

carbamoyl}amino) -3,3- di methyl-7-oxo-4-thia- 1-azabicyclo[3.2.0]heptane- 1449

2-Carboxylicacid;N-(1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- 1450

Carboxylicacid;N-3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- oxo-1lambda4,2 lambda5- 1451

thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)- ethylidene]guanidine; [(S)-amino({[(S)- 1452

amino({[(4R)-6-oxo-4,6- dihydro-1H-purin-2-yl]amino})phosphoryl]oxy})phos thiaphosphiran-2 1453

-yl)-N’-yl)-N’-[(Z)+ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1454

1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-(sqrt(θ) Θ if(3 1455

e del phos phoryl]formonitrile (rboximidoyl- 3- 1456

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 1457

phoryl]formonitrile (sqrt(θ) Θ if(3 e del phos phoryl]formonitrile 1458

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1459

1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile 2) (∫ 2 Dh dt dp dt 1460

−2 ( , |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 1461

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 1462

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 1463

Page 123: QSAR-QMMM Cryptographic Mining on Chern- Simons

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del)) ≡ inf >0 |∇ |2 = { 2 Dh 1464

dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 1465

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 1466

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 1467

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del) d |∇ |2 = { 2 Dh dt Do 1468

dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 1469

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 1470

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 1471

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del) 1472

1473

> ∫ (4( −1) −2|∇ |2={ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3-formonitrile + + (sqrt- 1474

fluoro-phos phoryl]formonitrile where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 1475

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 1476

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 1477

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del) (∫ 2 Dh dt dp dt −2 + |∇ 1478

|2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 1479

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + 1480

(sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 1481

Page 124: QSAR-QMMM Cryptographic Mining on Chern- Simons

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del)≡∫ (4( −1) −2|∇ |2={ + 1482

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3-formonitrile + + (sqrt- fluoro-phos phoryl]formonitrile where 1483

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 1484

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 1485

del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 1486

e del) (∫ 2 −2 −2( , |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 1487

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 1488

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 1489

del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 1490

e del)) ≡ inf >0 |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 1491

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if 1492

−πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e 1493

del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 1494

e del) 0)^2)^(7/2)) + (e^4 θ^(3/2) Θ^3 (del ' (0))^2 (del ' (del)))^2 (2 1495

θΘ^2 (del del −12 (d |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + 1496

i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + 1497

i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del 1498

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 1499

e del) ≡ ∫ (4( −1) −2 |∇ |2 = { 2 − 1 2 − 11 ≠ 1500

Page 125: QSAR-QMMM Cryptographic Mining on Chern- Simons

pentan-2-yl}-2-Carboxylicacid;N-(1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1501

1.0]pentan-2-yl}-2-oxo6-({[amino({[(6-amino-9H-purin-9-yl)methyl]amino})phosphoryl] 1502

carbamoyl}amino) -3,3- di methyl-7-oxo-4-thia- 1-azabicyclo[3.2.0]heptane- 1503

2-Carboxylicacid;N-(1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- 1504

Carboxylicacid;N-3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- oxo-1lambda4,2 lambda5- 1505

thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)- ethylidene]guanidine; [(S)-amino({[(S)- 1506

amino({[(4R)-6-oxo-4,6- dihydro-1H-purin-2-yl]amino})phosphoryl]oxy})phos thiaphosphiran-2 1507

-yl)-N’-yl)-N’-[(Z)+ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1508

1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-(sqrt(θ) Θ if(3 1509

e del phos phoryl]formonitrile (rboximidoyl- 3- 1510

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 1511

phoryl]formonitrile (sqrt(θ) Θ if(3 e del phos phoryl]formonitrile 1512

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1513

1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile 1514

Page 126: QSAR-QMMM Cryptographic Mining on Chern- Simons

> 2)+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (∫ + (sqrt(θ) Θ (sqrt(θ) Θ 1515

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 e del 1516

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 1517

fluoro-phos phoryl]formonitrile ++ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + 1518

(sqrt(θ) Θ if(3 e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1519

1.0]pentan-2-yl}-≡∫+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (4( −1) −2|∇ |2={+ 1520

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 1521

e del (1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ 1522

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 1523

3- fluoro-phos phoryl]formonitrile 1≠+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1524

phoryl]formonitrile 2 3 1++ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) 1525

Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ 1526

(rboximidoyl- 3- fluoro-1-(sqrt(θ) Θ if(3 e del phos phoryl]formonitrile 1527

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 1528

phoryl]formonitrile (sqrt(θ) Θ if(3 e del phos phoryl]formonitrile 1529

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2.1.0]pentan-2-yl}-purin-2-yl]amino}) phosphoryl]oxy})phos 1530

phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 2)+ (sqrt(θ) Θ 1531

(sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (∫ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 1532

fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 e del (rboximidoyl- 3- 1533

Page 127: QSAR-QMMM Cryptographic Mining on Chern- Simons

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1534

phoryl]formonitrile (+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile , |∇ |2 = { 2 Dh 1535

dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 1536

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ 1537

if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + 1538

(sqrt(θ) Θ if(3 e del)) ≡ inf+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 1539

fluoro-phos phoryl]formonitrile >0+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + 1540

(sqrt(θ) Θ if(3 e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1541

1.0]pentan-2-yl}- v −+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 1542

e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}- ≡ ∫+ 1543

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (4( −1) −2|∇ |2 = {+ (sqrt(θ) Θ (sqrt(θ) 1544

Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 e del 1545

phos phoryl]formonitrile (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1546

1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ 1547

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1 ≠+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1548

phoryl]formonitrile + (sqrt(θ) Θ if(3 e del (rboximidoyl- 3- 1549

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1550

phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ 1551

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-(sqrt(θ) Θ if(3 e del phos 1552

Page 128: QSAR-QMMM Cryptographic Mining on Chern- Simons

phoryl]formonitrile (rboximidoyl- 3- 1553

fluoro-1-{5-oxabicyclo[2.1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile 1554

(sqrt(θ) Θ if(3 e del phos phoryl]formonitrile (rboximidoyl- 3- 1555

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + 1556

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 2)+ (sqrt(θ) Θ (sqrt(θ) Θ 1557

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile (∫ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1558

phoryl]formonitrile + (sqrt(θ) Θ if(3 e del (rboximidoyl- 3- 1559

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1560

phoryl]formonitrile (+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile , |∇ |2 = { 2 Dh 1561

dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 1562

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ 1563

if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + 1564

(sqrt(θ) Θ if(3 e del)) ≡ inf+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 1565

fluoro-phos phoryl]formonitrile >0 1566

> + (sqrt(θ) Θ if(3 e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1567

1.0]pentan-2-yl}- d+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 1568

e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}- ≡ ∫+ 1569

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (4( −1) −2 |∇ |2 = {+ (sqrt(θ) Θ (sqrt(θ) 1570

Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 e del 1571

Page 129: QSAR-QMMM Cryptographic Mining on Chern- Simons

phos phoryl]formonitrile (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1572

1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ 1573

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1 ≠+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1574

phoryl]formonitrile + (sqrt(θ) Θ if(3 e del (rboximidoyl- 3- 1575

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1576

phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ 1577

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-(sqrt(θ) Θ if(3 e del phos 1578

phoryl]formonitrile (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1579

1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile (sqrt(θ) Θ if(3 1580

e del phos phoryl]formonitrile (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1581

1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ 1582

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile 2)+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1583

phoryl]formonitrile (∫ 1584

> + (sqrt(θ) Θ if(3 e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1585

1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile ++ (sqrt(θ) Θ 1586

(sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 1587

e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-≡∫+ (sqrt(θ) 1588

Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (4( −1) −2|∇ |2={+ (sqrt(θ) Θ (sqrt(θ) Θ 1589

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 e del 1590

Page 130: QSAR-QMMM Cryptographic Mining on Chern- Simons

(1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 1591

fluoro-phos phoryl]formonitrile 1+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1592

1≠+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 1593

e del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile ++ 1594

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 22 + 1595

> 2)+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (∫ + (sqrt(θ) Θ (sqrt(θ) Θ 1596

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 e del 1597

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 1598

fluoro-phos phoryl]formonitrile (+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile , |∇ 1599

|2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 1600

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ 1601

if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + 1602

(sqrt(θ) Θ if(3 e del)) ≡ inf+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 1603

fluoro-phos phoryl]formonitrile >0+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + 1604

(sqrt(θ) Θ if(3 e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1605

1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 0)^2 + 1) ((del ' 1606

(0))^2 del '' (del 0) + del '(del 0) del '' (0)))/(2 sqrt(π) (1 - θ Θ^2 (del del −12 (d+ (sqrt(θ) Θ (sqrt(θ) Θ 1607

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 e del 1608

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}- ≡ ∫+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 1609

Page 131: QSAR-QMMM Cryptographic Mining on Chern- Simons

fluoro-phos phoryl]formonitrile (4( −1) −2 |∇ |2 = {+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1610

phoryl]formonitrile + (sqrt(θ) Θ if(3 e del phos phoryl]formonitrile 1611

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos 1612

phoryl]formonitrile 1613

> 1≠+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 1614

e del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile ++ 1615

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 22 ++ (sqrt(θ) Θ (sqrt(θ) Θ 1616

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile 2)+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1617

phoryl]formonitrile (∫ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ 1618

if(3 e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ 1619

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile ++ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 1620

3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 e del (rboximidoyl- 3- 1621

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-≡∫+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1622

phoryl]formonitrile (4( −1) −2|∇ |2={+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1623

2−+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 12 −+ (sqrt(θ) Θ (sqrt(θ) Θ 1624

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1625

phoryl]formonitrile 1 ≠+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ 1626

if(3 e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ 1627

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 1628

Page 132: QSAR-QMMM Cryptographic Mining on Chern- Simons

3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-(sqrt(θ) Θ if(3 1629

e del phos phoryl]formonitrile (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1630

1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile (sqrt(θ) Θ if(3 1631

e del phos phoryl]formonitrile (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1632

1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ 1633

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile 2)+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1634

phoryl]formonitrile (∫ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ 1635

if(3 e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ 1636

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 1637

3- fluoro-phos phoryl]formonitrile , |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V 1638

‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ 1639

f)) ≠ + (sqrt(θ) Θ if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos 1640

phoryl]formonitrile + + (sqrt(θ) Θ if(3 e del)) ≡ inf+ (sqrt(θ) Θ (sqrt(θ) Θ 1641

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile >0+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1642

phoryl]formonitrile + (sqrt(θ) Θ if(3 e del (rboximidoyl- 3- 1643

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}- v −+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1644

phoryl]formonitrile + (sqrt(θ) Θ if(3 e del (rboximidoyl- 3- 1645

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}- ≡∫+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1646

phoryl]formonitrile (4( −1) −2|∇ |2={+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1647

Page 133: QSAR-QMMM Cryptographic Mining on Chern- Simons

+ (sqrt(θ) Θ if(3 e del (1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1648

1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1+ (sqrt(θ) Θ 1649

(sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1≠+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 1650

fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 e del 1651

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile ++ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 1652

fluoro-phos phoryl]formonitrile 22 ++ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1653

2)+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (∫ + (sqrt(θ) Θ (sqrt(θ) Θ 1654

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 e del 1655

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}- 1656

> (+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile , |∇ |2 = { 2 Dh dt Do dp 1657

dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 1658

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ 1659

if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + 1660

(sqrt(θ) Θ if(3 e del)) ≡ inf+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 1661

fluoro-phos phoryl]formonitrile >0+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + 1662

(sqrt(θ) Θ if(3 e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1663

1.0]pentan-2-yl}- d+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 1664

e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}- ≡ ∫+ 1665

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (4( −1) −2 |∇ |2 = {+ (sqrt(θ) Θ (sqrt(θ) 1666

Page 134: QSAR-QMMM Cryptographic Mining on Chern- Simons

Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 e del 1667

phos phoryl]formonitrile (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1668

1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ 1669

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1 ≠+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1670

phoryl]formonitrile + (sqrt(θ) Θ if(3 e del (rboximidoyl- 3- 1671

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1672

phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ 1673

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-(sqrt(θ) Θ if(3 e del phos 1674

phoryl]formonitrile (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1675

1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile (sqrt(θ) Θ if(3 1676

e del phos phoryl]formonitrile (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1677

1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile 1678

> 2)+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (∫ + (sqrt(θ) Θ (sqrt(θ) Θ 1679

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 e del 1680

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 1681

fluoro-phos phoryl]formonitrile ++ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + 1682

(sqrt(θ) Θ if(3 e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1683

1.0]pentan-2-yl}-≡∫+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (4( −1) −2|∇ |2={+ 1684

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 1685

Page 135: QSAR-QMMM Cryptographic Mining on Chern- Simons

e del (1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ 1686

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 1687

3- fluoro-phos phoryl]formonitrile 1≠+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1688

phoryl]formonitrile 2 1689

> 3 1++ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ 1690

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 1691

fluoro-1-(sqrt(θ) Θ if(3 e del phos phoryl]formonitrile (rboximidoyl- 3- 1692

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile 1693

(sqrt(θ) Θ if(3 e del phos phoryl]formonitrile (rboximidoyl- 3- 1694

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + 1695

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 2)+ (sqrt(θ) Θ (sqrt(θ) Θ 1696

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile (∫ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1697

phoryl]formonitrile + (sqrt(θ) Θ if(3 e del (rboximidoyl- 3- 1698

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1699

phoryl]formonitrile (+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile , |∇ |2 = { 2 Dh 1700

dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 1701

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ 1702

if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + 1703

(sqrt(θ) Θ if(3 e del)) ≡ inf+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 1704

Page 136: QSAR-QMMM Cryptographic Mining on Chern- Simons

fluoro-phos phoryl]formonitrile >0+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + 1705

(sqrt(θ) Θ if(3 e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1706

1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 0)^2)^(5/2)) + 1707

(sqrt(θ) Θ del 1708

> del −12 (d+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 1709

e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}- ≡ ∫+ 1710

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (4( −1) −2 |∇ |2 = {+ (sqrt(θ) Θ (sqrt(θ) 1711

Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 e del 1712

phos phoryl]formonitrile (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1713

1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ 1714

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1 ≠+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1715

phoryl]formonitrile + (sqrt(θ) Θ if(3 e del (rboximidoyl- 3- 1716

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1717

phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ 1718

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-(sqrt(θ) Θ if(3 e del phos 1719

phoryl]formonitrile (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1720

1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile (sqrt(θ) Θ if(3 1721

e del phos phoryl]formonitrile (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1722

1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ 1723

Page 137: QSAR-QMMM Cryptographic Mining on Chern- Simons

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile 2)+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1724

phoryl]formonitrile (∫ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 2+ (sqrt(θ) Θ 1725

(sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile −2 1726

> ) −2+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile ++ (sqrt(θ) Θ (sqrt(θ) Θ 1727

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 e del 1728

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-≡∫+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 1729

fluoro-phos phoryl]formonitrile (4( −1) −2|∇ |2={+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1730

phoryl]formonitrile + (sqrt(θ) Θ if(3 e del (1-carboximidoyl- 3- 1731

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1732

phoryl]formonitrile 1+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1≠+ (sqrt(θ) Θ 1733

(sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 1734

e del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile ++ 1735

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 22 ++ (sqrt(θ) Θ (sqrt(θ) Θ 1736

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile 2)+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1737

phoryl]formonitrile (∫ 1738

> + (sqrt(θ) Θ if(3 e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1739

1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (+ (sqrt(θ) Θ 1740

(sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile , |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where 1741

IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 1742

Page 138: QSAR-QMMM Cryptographic Mining on Chern- Simons

((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 e del 1743

purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 1744

e del)) ≡ inf+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1745

phoryl]formonitrile >0+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ 1746

if(3 e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}- v −+ 1747

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 1748

e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}- ≡ ∫+ 1749

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (4( −1) −2 |∇ |2 = {+ (sqrt(θ) Θ (sqrt(θ) 1750

Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 e del 1751

phos phoryl]formonitrile (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1752

1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + (sqrt(θ) Θ (sqrt(θ) Θ 1753

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile 1 ≠ 1754

> + (sqrt(θ) Θ if(3 e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1755

1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ 1756

(sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 1757

3- fluoro-1-(sqrt(θ) Θ if(3 e del phos phoryl]formonitrile (rboximidoyl- 3- 1758

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile 1759

(sqrt(θ) Θ if(3 e del phos phoryl]formonitrile (rboximidoyl- 3- 1760

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + 1761

Page 139: QSAR-QMMM Cryptographic Mining on Chern- Simons

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile 2)+ (sqrt(θ) Θ (sqrt(θ) Θ 1762

(rboximidoyl- 3- fluoro-phos phoryl]formonitrile (∫ + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1763

phoryl]formonitrile + (sqrt(θ) Θ if(3 e del (rboximidoyl- 3- 1764

fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos 1765

phoryl]formonitrile (+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile , |∇ |2 = { 2 Dh 1766

dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 1767

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ 1768

if(3 e del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + 1769

(sqrt(θ) Θ if(3 e del)) ≡ inf+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- 1770

fluoro-phos phoryl]formonitrile >0+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + 1771

(sqrt(θ) Θ if(3 e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1772

1.0]pentan-2-yl}- d+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile + (sqrt(θ) Θ if(3 1773

e del (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}- ≡ ∫+ 1774

(sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-phos phoryl]formonitrile (4( −1) −2 |∇ |2 1775

> { + (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3-formonitrile + + (sqrt- fluoro-phos phoryl]formonitrile − 11≠ 231+ 1776

22+2) (∫ 2 −2)−2+ ()≡∫ (4(−1)−2|∇ |2 = { 2 Dh dt dp dtV’(p+(pV’2f)where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) 1777

=12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ 1778

pentan-2-yl}-2-Carboxylicacid;N-(1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1779

1.0]pentan-2-yl}-2-oxo6-({[amino({[(6-amino-9H-purin-9-yl)methyl]amino})phosphoryl] carbamoyl}amino) -3,3- di 1780

Page 140: QSAR-QMMM Cryptographic Mining on Chern- Simons

methyl-7-oxo-4-thia- 1-azabicyclo[3.2.0]heptane- 2-Carboxylicacid;N-(1-carboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1781

1.0]pentan-2-yl}-2- Carboxylicacid;N-3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-2- oxo-1lambda4,2 lambda5- 1782

thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)- ethylidene]guanidine; [(S)-amino({[(S)- amino({[(4R)-6-oxo-4,6- 1783

dihydro-1H-purin-2-yl]amino})phosphoryl]oxy})phos thiaphosphiran-2 -yl)-N’-yl)-N’-[(Z)+ + (sqrt(θ) Θ (sqrt(θ) Θ 1784

(rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1.0]pentan-2-yl}-+ (sqrt(θ) Θ (sqrt(θ) Θ (rboximidoyl- 3- fluoro-1-(sqrt(θ) 1785

Θ if(3 e del phos phoryl]formonitrile (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1786

1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile (sqrt(θ) Θ if(3 1787

e del phos phoryl]formonitrile (rboximidoyl- 3- fluoro-1-{5-oxabicyclo[2. 1788

1.0]pentan-2-yl}-purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile 2) (∫ 2 Dh dt dp dt −2 ( , |∇ |2 = { 2 Dh 1789

dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - g(V ‘(p + i(pv’ f)) =12‾ 1790

√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ + (sqrt(θ) Θ if(3 1791

e del purin-2-yl]amino})phosphoryl]oxy})phos phoryl]formonitrile + + (sqrt(θ) Θ if(3 1792

e del)) ≡ inf >0 |∇ |2 = { 2 Dh dt Do dp dtV’((p+(pV’2f where IfŜbpˆAmAŜ†b+ if(p) - 1793

g(V ‘(p + i(pv’ f)) =12‾ √(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) if −πˆCmdπCdπ2 ((<p + if(p) - g(V ‘(p + i(pv’ f)) ≠ 1794

+ (sqrt(θ) Θ if(3 e > del −ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if(p) - g.(V ‘(p + 1795

i(pv’ f))+ exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 −ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ 1796

if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B) (p) - g.(V ‘(p + i(pv’ f))≠ exp(iℏpˆ2A2mA(qˆCif −πˆCmdπCdπ2 |∇ |2 1797

−ΔKΣ(dt−asin2θdϕ) IfŜbpˆAmAŜ†b+ if(p) - g.(V ‘(p + i(pv’ f))+ 2 2 _1 1 = 2 1798

> > END 1799

Page 141: QSAR-QMMM Cryptographic Mining on Chern- Simons

> 1800

> OUTPUT:Roccustyrna XYZ Cartesian coordinates 1801

> P 4.35500 -1.77000 0.00000 1802

> O 4.67500 -3.27700 0.00000 1803

> N 4.03500 -0.26400 0.00000 1804

> O -3.33900 -1.48200 0.00000 1805

> O -4.51300 -5.29000 0.00000 1806

> O -7.00300 -3.04800 0.00000 1807

> O 3.40300 -4.70000 0.00000 1808

> N -1.61200 -3.61500 0.00000 1809

> N -0.27800 -2.84500 0.00000 1810

> N 0.24000 -5.28200 0.00000 1811

> N 2.84900 -2.09100 0.00000 1812

> C -5.49700 -2.72800 0.00000 1813

> C -4.35200 -3.75900 0.00000 1814

> C -4.87000 -1.32100 0.00000 1815

> C -3.01900 -2.98900 0.00000 1816

> C -5.64000 0.01200 0.00000 1817

> C -1.29200 -5.12100 0.00000 1818

> C 0.86600 -3.87500 0.00000 1819

> C 2.37300 -3.55500 0.00000 1820

> N -7.95000 1.34600 0.00000 1821

> N -10.26000 2.68000 0.00000 1822

> N -12.57000 1.34600 0.00000 1823

> N -12.57000 4.01300 0.00000 1824

> O -7.18000 0.01200 0.00000 1825

> C -9.49000 1.34600 0.00000 1826

> C -7.18000 2.68000 0.00000 1827

> C -10.26000 0.01200 0.00000 1828

> C -11.80000 2.68000 0.00000 1829

> N -6.41000 4.01300 0.00000 1830

> O 9.13500 4.34000 0.00000 1831

> N 6.33700 0.01400 0.00000 1832

> N 6.33700 2.50600 0.00000 1833

> N 9.13500 -0.28000 0.00000 1834

> N 10.46900 2.03000 0.00000 1835

> N 11.80300 -0.28000 0.00000 1836

> N 5.86100 -1.45000 0.00000 1837

Page 142: QSAR-QMMM Cryptographic Mining on Chern- Simons

> C 7.80200 0.49000 0.00000 1838

> C 5.43200 1.26000 0.00000 1839

> C 7.80200 2.03000 0.00000 1840

> C 9.13500 2.80000 0.00000 1841

> C 10.46900 0.49000 0.00000 1842

> F -1.00000 4.17600 0.00000 1843

> O 1.42600 -0.81900 0.00000 1844

> N 3.07400 4.25500 0.00000 1845

> N 0.78500 2.19400 0.00000 1846

> C 2.25000 1.71800 0.00000 1847

> C 3.39400 2.74900 0.00000 1848

> C 1.61000 4.73100 0.00000 1849

> C 0.46500 3.70000 0.00000 1850

> C 2.57000 0.21200 0.00000 1851

> C 19.48900 5.55300 0.00000 1852

> N 17.76100 3.42000 0.00000 1853

> N 18.08200 4.92600 0.00000 1854

> N 17.05100 6.07100 0.00000 1855

> C 17.82100 7.40400 0.00000 1856

> N 19.32800 7.08400 0.00000 1857

> S 17.19500 8.81100 0.00000 1858

> N 25.93100 3.15500 0.00000 1859

> C 26.83600 1.90900 0.00000 1860

> N 25.93100 0.66300 0.00000 1861

> N 24.46600 1.13900 0.00000 1862

> C 24.46600 2.67900 0.00000 1863

> O 22.36200 4.78300 0.00000 1864

> C 20.82200 4.78300 0.00000 1865

> S 28.37600 1.90900 0.00000 1866

> P 21.59200 1.90900 0.00000 1867

> O 20.05200 1.90900 0.00000 1868

> 1869

> N 23.13200 1.90900 0.00000 1870

> O 17.04300 -5.55700 0.00000 1871

> F 20.52400 -7.49700 0.00000 1872

> F 17.81300 -9.46700 0.00000 1873

> O 18.92500 0.36900 0.00000 1874

> N 19.48900 -4.31100 0.00000 1875

Page 143: QSAR-QMMM Cryptographic Mining on Chern- Simons

> N 19.01300 -2.84600 0.00000 1876

> N 21.50400 -2.84600 0.00000 1877

> O 21.59200 0.36900 0.00000 1878

> C 17.81300 -7.92700 0.00000 1879

> C 19.05900 -7.02100 0.00000 1880

> C 16.56700 -7.02100 0.00000 1881

> C 18.58300 -5.55700 0.00000 1882

> C 21.02900 -4.31100 0.00000 1883

> C 20.25900 -1.94100 0.00000 1884

> C 20.25900 -0.40100 0.00000 1885

> N 21.59200 3.44900 0.00000 1886

> F 15.10300 -7.49700 0.00000 1887

> P 37.30200 2.59600 0.00000 1888

> O 35.83800 2.12000 0.00000 1889

> N 38.76700 3.07200 0.00000 1890

> O 35.24100 0.30700 0.00000 1891

> N 36.31800 -2.72400 0.00000 1892

> C 38.68800 -1.95400 0.00000 1893

> N 37.77800 1.13100 0.00000 1894

> C 38.68800 -3.49400 0.00000 1895

> C 37.22400 -1.47800 0.00000 1896

> C 36.74800 -0.01300 0.00000 1897

> N 37.85700 5.20500 0.00000 1898

> N 38.41100 7.81400 0.00000 1899

> N 40.94800 8.63800 0.00000 1900

> N 36.82600 4.06000 0.00000 1901

> C 37.38100 6.66900 0.00000 1902

> C 39.91800 7.49400 0.00000 1903

> C 39.79700 4.21600 0.00000 1904

> C 40.27300 2.75100 0.00000 1905

> C 35.87500 6.99000 0.00000 1906

> N 34.36800 7.31000 0.00000 1907

> C 40.02200 -4.26400 0.00000 1908

> N 41.35600 -3.49400 0.00000 1909

> C 41.35600 -1.95400 0.00000 1910

> N 40.02200 -1.18400 0.00000 1911

> O 40.02200 -5.80400 0.00000 1912

> N 42.68900 -1.18400 0.00000 1913

Page 144: QSAR-QMMM Cryptographic Mining on Chern- Simons

> F 39.83900 -8.86800 0.00000 1914

> O 35.24100 -5.75500 0.00000 1915

> N 37.30200 -8.04300 0.00000 1916

> N 37.22400 -3.97000 0.00000 1917

> C 37.77800 -6.57900 0.00000 1918

> N 37.85700 -10.65300 0.00000 1919

> C 38.33300 -9.18800 0.00000 1920

> C 36.74800 -5.43400 0.00000 1921

1922

as a generalization of a set. Where in a set each element can appear only once, there can be multiple instances of identical 1923

members in a multiset. There is no standard, concise and unambiguous notation for multisets. In this paper we will use the 1924

notation of a sum of multisets of 1 element. A multiset M containing the elements a, b, b, c will be denoted as {a} + {b} + 1925

{b} + {c}. To reduce the fragmentation space for the generation of salt-bridge interaction between the Glu290 and the new 1926

ligand that needs to be searched, the algorithm of the two independent Chern-Simons S=14π∫M3 A level k ∈ H4 (BG, 1927

ℤ)(a+ℓ) ta+ℓ-{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA +−1A∧dA 2zEGk+ 13 (a+ℓ) ta+ℓ-1928

{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA +−1A∧[A∧A] 2zEG k (mod2π) actions with loop 1929

group at level k has that property (14π∫M3 (a+ℓ) ta+ℓ-{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ 1930

Fǫexp(iℏpˆ2A2mA +−1A∧dA 2zEGk+1 3 (a+ℓ) ta+ℓ-{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ 1931

Fǫexp(iℏpˆ2A2mA +−1A∧[A∧A] 2zEG k (mod2π) [1]+sin (a+ℓ) ta+ℓ-1932

{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA +−1Vectk ((a+ℓ) ta+ℓ-1933

{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA +−1+ (a+ℓ) ta+ℓ-1934

{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA +−1∧ (a+ℓ) ta+ℓ-1935

{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA +−1F) 1 4π∫M3 (a+ℓ) ta+ℓ-1936

{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA +−1A∧dA 2zEGk+13 (a+ℓ) ta+ℓ-1937

{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA +−1A∧[A∧A] 2zEG k (mod2π)[1]∧sin (a+ℓ) 1938

ta+ℓ-{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA +−1Vectk ((a+ℓ) ta+ℓ-1939

{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA +−1+ (a+ℓ) ta+ℓ-1940

{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA +−1∧ (a+ℓ) ta+ℓ-1941

{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA +−1F) 14π∫M3 (a+ℓ) ta+ℓ-1942

{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA +−1A∧dA 2zEGk+13 (a+ℓ) ta+ℓ-1943

{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA +−1A∧[A∧A] 2zEGk (mod2π) (equation45), F= 1944

dA+A∧A Repk (dA+A∧A AGA) Repss (Fq 2zEG) [or Repk (AF 2zEG) ] and Rep (Dk (ℂ[G])) =Repf ((a+ℓ) ta+ℓ-1945

{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA +−1G,k)), (equation46) on the heuristic level of 1946

path integrals ((a+ℓ) ta+ℓ-{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA +−1A is the potential 1947

11-form and F is the field strength 224-form) where 1948

1949

1950

1951

Page 145: QSAR-QMMM Cryptographic Mining on Chern- Simons

the partition function for the Chern-Simons theory to gather eigenvalues of the matrix models when associated with knot 1952

theory is the modulus square of the poles and zeroes in the one-loop determinant partition function The multiset of 1953

probabilities is the multiset {1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+Fǫexp(iℏpˆ2A2mA 1954

+{1/2}+{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+Fǫexp(iℏpˆ2A2mA+{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣1955

ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA +{1/4}, which is the same as the multiset {1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ 1956

Fǫexp(iℏpˆ2A2mA+{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+Fǫexp(iℏpˆ2A2mA+{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣1957

α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA + {1/4}+{1/2}. The multiplicity of 1/12 in this multiset is 3, the number of 1958

occurrences of 1/12. 1959

1960

Derivative: 1961

• RoccustyrnaTM_fR GissitorviffirnaTM_gS parts: @<TRIPOS>ATOM 1962

• 1 P1 4.3549 -1.7704 0.0000 P 1 fragment1 -0.1093 1963

• 2 O1 4.6751 -3.2767 0.0000 O.2 1 fragment1 -0.2831 1964

• 3 N1 4.0347 -0.2640 0.0000 N.3 1 fragment1 0.0896 1965

• 4 O2 -3.3388 -1.4822 0.0000 O.3 1 fragment1 -0.3468 1966

• 5 O3 -4.5133 -5.2901 0.0000 O.3 1 fragment1 -0.3856 1967

• 6 O4 -7.0031 -3.0483 0.0000 O.3 1 fragment1 -0.3873 1968

• 7 O5 3.4032 -4.6996 0.0000 O.2 1 fragment1 -0.2635 1969

• 8 N2 -1.6118 -3.6149 0.0000 N.3 1 fragment1 0.0427 1970

• 9 N3 -0.2781 -2.8449 0.0000 N.2 1 fragment1 -0.2100 1971

• 10 N4 0.2400 -5.2822 0.0000 N.2 1 fragment1 -0.1653 1972

• 11 N5 2.8486 -2.0906 0.0000 N.3 1 fragment1 0.0984 1973

• 12 C1 -5.4968 -2.7281 0.0000 C.3 1 fragment1 0.1128 1974

• 13 C2 -4.3523 -3.7585 0.0000 C.3 1 fragment1 0.1271 1975

• 14 C3 -4.8704 -1.3212 0.0000 C.3 1 fragment1 0.1141 1976

• 15 C4 -3.0186 -2.9885 0.0000 C.3 1 fragment1 0.1735 1977

• 16 C5 -5.6404 0.0125 0.0000 C.3 1 fragment1 0.0994 1978

• 17 C6 -1.2916 -5.1213 0.0000 C.2 1 fragment1 0.0117 1979

• 18 C7 0.8663 -3.8754 0.0000 C.2 1 fragment1 0.1225 1980

• 19 C8 2.3727 -3.5552 0.0000 C.2 1 fragment1 0.1189 1981

• 20 N6 -7.9504 1.3461 0.0000 N.3 1 fragment1 0.0880 1982

• 21 N7 -10.2604 2.6798 0.0000 N.2 1 fragment1 -0.2235 1983

• 22 N8 -12.5704 1.3461 0.0000 N.3 1 fragment1 -0.1303 1984

• 23 N9 -12.5704 4.0135 0.0000 N.3 1 fragment1 -0.1303 1985

• 24 O6 -7.1804 0.0125 0.0000 O.3 1 fragment1 -0.2597 1986

• 25 C9 -9.4904 1.3461 0.0000 C.2 1 fragment1 0.0178 1987

• 26 C10 -7.1804 2.6798 0.0000 C.1 1 fragment1 0.0796 1988

• 27 C11 -10.2604 0.0125 0.0000 C.2 1 fragment1 -0.0009 1989

• 28 C12 -11.8004 2.6798 0.0000 C.2 1 fragment1 -0.1256 1990

• 29 N10 -6.4104 4.0135 0.0000 N.1 1 fragment1 -0.1546 1991

• 30 O7 9.1355 4.3403 0.0000 O.2 1 fragment1 -0.2752 1992

• 31 N11 6.3372 0.0144 0.0000 N.3 1 fragment1 0.0724 1993

• 32 N12 6.3372 2.5062 0.0000 N.2 1 fragment1 -0.1956 1994

• 33 N13 9.1355 -0.2797 0.0000 N.2 1 fragment1 -0.2012 1995

• 34 N14 10.4691 2.0303 0.0000 N.3 1 fragment1 0.0507 1996

• 35 N15 11.8028 -0.2797 0.0000 N.3 1 fragment1 -0.1233 1997

Page 146: QSAR-QMMM Cryptographic Mining on Chern- Simons

• 36 N16 5.8613 -1.4502 0.0000 N.3 1 fragment1 0.0734 1998

• 37 C13 7.8018 0.4903 0.0000 C.2 1 fragment1 0.0555 1999

• 38 C14 5.4320 1.2603 0.0000 C.2 1 fragment1 -0.0051 2000

• 39 C15 7.8018 2.0303 0.0000 C.2 1 fragment1 0.0974 2001

• 40 C16 9.1355 2.8003 0.0000 C.2 1 fragment1 0.0887 2002

• 41 C17 10.4691 0.4903 0.0000 C.2 1 fragment1 -0.0769 2003

• 42 F1 -0.9995 4.1763 0.0000 F 1 fragment1 -0.1305 2004

• 43 O8 1.4257 -0.8186 0.0000 O.2 1 fragment1 -0.2765 2005

• 44 N17 3.0742 4.2550 0.0000 N.3 1 fragment1 -0.1387 2006

• 45 N18 0.7853 2.1941 0.0000 N.2 1 fragment1 -0.1545 2007

• 46 C18 2.2499 1.7182 0.0000 C.2 1 fragment1 0.1196 2008

• 47 C19 3.3944 2.7487 0.0000 C.3 1 fragment1 0.0472 2009

• 48 C20 1.6096 4.7309 0.0000 C.2 1 fragment1 -0.0369 2010

• 49 C21 0.4651 3.7004 0.0000 C.2 1 fragment1 0.0572 2011

• 50 C22 2.5701 0.2118 0.0000 C.2 1 fragment1 0.0961 2012

• 51 C23 19.4885 5.5526 0.0000 C.3 2 fragment2 0.1400 2013

• 52 N19 17.7615 3.4199 0.0000 N.3 2 fragment2 -0.2245 2014

• 53 N20 18.0817 4.9262 0.0000 N.3 2 fragment2 -0.1710 2015

• 54 N21 17.0512 6.0706 0.0000 N.3 2 fragment2 -0.0767 2016

• 55 C24 17.8212 7.4043 0.0000 C.2 2 fragment2 -0.0635 2017

• 56 N22 19.3276 7.0841 0.0000 N.3 2 fragment2 -0.1018 2018

• 57 S1 17.1948 8.8112 0.0000 S.2 2 fragment2 -0.1182 2019

• 58 N23 25.9305 3.1548 0.0000 N.3 2 fragment2 -0.0940 2020

• 59 C25 26.8357 1.9089 0.0000 C.2 2 fragment2 -0.0585 2021

• 60 N24 25.9305 0.6630 0.0000 N.3 2 fragment2 -0.0596 2022

• 61 N25 24.4659 1.1389 0.0000 N.3 2 fragment2 -0.0867 2023

• 62 C26 24.4659 2.6789 0.0000 C.3 2 fragment2 0.1775 2024

• 63 O9 22.3622 4.7826 0.0000 O.3 2 fragment2 -0.2542 2025

• 64 C27 20.8222 4.7826 0.0000 C.3 2 fragment2 0.1999 2026

• 65 S2 28.3757 1.9089 0.0000 S.2 2 fragment2 -0.1171 2027

• 66 P2 21.5922 1.9089 0.0000 P 2 fragment2 -0.0317 2028

• 67 O10 20.0522 1.9089 0.0000 O.2 2 fragment2 -0.2321 2029

• 68 N26 23.1322 1.9089 0.0000 N.3 2 fragment2 0.0296 2030

• 69 O11 17.0433 -5.5568 0.0000 O.3 2 fragment2 -0.3185 2031

• 70 F2 20.5239 -7.4973 0.0000 F 2 fragment2 -0.2390 2032

• 71 F3 17.8133 -9.4666 0.0000 F 2 fragment2 -0.2379 2033

• 72 O12 18.9248 0.3689 0.0000 O.2 2 fragment2 -0.2236 2034

• 73 N27 19.4885 -4.3109 0.0000 N.3 2 fragment2 0.0609 2035

• 74 N28 19.0126 -2.8463 0.0000 N.2 2 fragment2 -0.1908 2036

• 75 N29 21.5044 -2.8463 0.0000 N.2 2 fragment2 -0.1611 2037

• 76 O13 21.5922 0.3689 0.0000 O.3 2 fragment2 -0.0706 2038

• 77 C28 17.8133 -7.9266 0.0000 C.3 2 fragment2 0.1910 2039

• 78 C29 19.0592 -7.0214 0.0000 C.3 2 fragment2 0.1810 2040

• 79 C30 16.5675 -7.0214 0.0000 C.3 2 fragment2 0.2350 2041

• 80 C31 18.5833 -5.5568 0.0000 C.3 2 fragment2 0.1822 2042

• 81 C32 21.0285 -4.3109 0.0000 C.2 2 fragment2 0.0160 2043

• 82 C33 20.2585 -1.9411 0.0000 C.2 2 fragment2 0.1298 2044

• 83 C34 20.2585 -0.4011 0.0000 C.2 2 fragment2 0.1885 2045

• 84 N30 21.5922 3.4489 0.0000 N.3 2 fragment2 0.0812 2046

• 85 F4 15.1028 -7.4973 0.0000 F 2 fragment2 -0.2125 2047

Page 147: QSAR-QMMM Cryptographic Mining on Chern- Simons

• 86 P3 37.3023 2.5958 0.0000 P 3 fragment3 -0.1805 2048

• 87 O14 35.8377 2.1199 0.0000 O.2 3 fragment3 -0.2828 2049

• 88 N31 38.7669 3.0716 0.0000 N.3 3 fragment3 -0.0464 2050

• 89 O15 35.2414 0.3069 0.0000 O.2 3 fragment3 -0.2717 2051

• 90 N32 36.3184 -2.7238 0.0000 N.2 3 fragment3 -0.2133 2052

• 91 C35 38.6882 -1.9538 0.0000 C.2 3 fragment3 0.1085 2053

• 92 N33 37.7782 1.1311 0.0000 N.3 3 fragment3 0.0919 2054

• 93 C36 38.6882 -3.4938 0.0000 C.3 3 fragment3 0.1651 2055

• 94 C37 37.2236 -1.4779 0.0000 C.2 3 fragment3 0.1130 2056

• 95 C38 36.7477 -0.0133 0.0000 C.2 3 fragment3 0.1066 2057

• 96 N34 37.8569 5.2048 0.0000 N.3 3 fragment3 -0.1730 2058

• 97 N35 38.4114 7.8139 0.0000 N.2 3 fragment3 -0.2534 2059

• 98 N36 40.9483 8.6382 0.0000 N.3 3 fragment3 -0.1469 2060

• 99 N37 36.8264 4.0604 0.0000 N.3 3 fragment3 -0.0491 2061

• 100 C39 37.3810 6.6695 0.0000 C.3 3 fragment3 0.2011 2062

• 101 C40 39.9178 7.4937 0.0000 C.2 3 fragment3 -0.0763 2063

• 102 C41 39.7974 4.2161 0.0000 C.3 3 fragment3 0.0234 2064

• 103 C42 40.2733 2.7515 0.0000 C.3 3 fragment3 0.0234 2065

• 104 C43 35.8746 6.9896 0.0000 C.1 3 fragment3 0.0916 2066

• 105 N38 34.3683 7.3098 0.0000 N.1 3 fragment3 -0.1787 2067

• 106 C44 40.0219 -4.2638 0.0000 C.2 3 fragment3 0.1869 2068

• 107 N39 41.3556 -3.4938 0.0000 N.2 3 fragment3 -0.1225 2069

• 108 C45 41.3556 -1.9538 0.0000 C.2 3 fragment3 0.0119 2070

• 109 N40 40.0219 -1.1838 0.0000 N.2 3 fragment3 -0.1783 2071

• 110 O16 40.0219 -5.8038 0.0000 O.2 3 fragment3 -0.2450 2072

• 111 N41 42.6893 -1.1838 0.0000 N.3 3 fragment3 -0.0965 2073

• 112 F5 39.8391 -8.8677 0.0000 F 3 fragment3 -0.0999 2074

• 113 O17 35.2414 -5.7545 0.0000 O.2 3 fragment3 -0.2729 2075

• 114 N42 37.3023 -8.0434 0.0000 N.2 3 fragment3 -0.1348 2076

• 115 N43 37.2236 -3.9697 0.0000 N.3 3 fragment3 0.0885 2077

• 116 C46 37.7782 -6.5788 0.0000 C.2 3 fragment3 0.1208 2078

• 117 N44 37.8569 -10.6525 0.0000 N.2 3 fragment3 -0.1764 2079

• 118 C47 38.3328 -9.1879 0.0000 C.2 3 fragment3 0.0994 2080

• 119 C48 36.7477 -5.4343 0.0000 C.2 3 fragment3 0.0994 2081

• 120 H1 5.1792 0.7664 0.0000 H 1 fragment1 0.1444 2082

• 121 H2 -5.9201 -5.9165 0.0000 H 1 fragment1 0.2107 2083

• 122 H3 -7.4790 -4.5129 0.0000 H 1 fragment1 0.2106 2084

• 123 H4 1.3422 -1.7704 0.0000 H 1 fragment1 0.1444 2085

• 124 H5 -6.4019 -3.9740 0.0000 H 1 fragment1 0.0657 2086

• 125 H6 -5.4968 -4.7890 0.0000 H 1 fragment1 0.0675 2087

• 126 H7 -6.4100 -1.2890 0.0000 H 1 fragment1 0.0657 2088

• 127 H8 -2.3923 -4.3954 0.0000 H 1 fragment1 0.0867 2089

• 128 H9 -4.3344 0.8285 0.0000 H 1 fragment1 0.0617 2090

• 129 H10 -5.5866 1.5515 0.0000 H 1 fragment1 0.0617 2091

• 130 H11 -2.3221 -6.2657 0.0000 H 1 fragment1 0.1032 2092

• 131 H12 -14.1104 1.3461 0.0000 H 1 fragment1 0.1267 2093

• 132 H13 -11.8004 0.0125 0.0000 H 1 fragment1 0.1267 2094

• 133 H14 -11.8004 5.3472 0.0000 H 1 fragment1 0.1267 2095

• 134 H15 -14.1104 4.0135 0.0000 H 1 fragment1 0.1267 2096

• 135 H16 -11.5063 -0.8927 0.0000 H 1 fragment1 0.0572 2097

Page 148: QSAR-QMMM Cryptographic Mining on Chern- Simons

• 136 H17 -9.4904 -1.3212 0.0000 H 1 fragment1 0.0572 2098

• 137 H18 11.8028 2.8003 0.0000 H 1 fragment1 0.1400 2099

• 138 H19 11.8028 -1.8197 0.0000 H 1 fragment1 0.1268 2100

• 139 H20 13.1365 0.4903 0.0000 H 1 fragment1 0.1268 2101

• 140 H21 6.8917 -2.5946 0.0000 H 1 fragment1 0.0887 2102

• 141 H22 3.8920 1.2603 0.0000 H 1 fragment1 0.1019 2103

• 142 H23 4.2186 5.2855 0.0000 H 1 fragment1 0.1281 2104

• 143 H24 4.9110 3.0161 0.0000 H 1 fragment1 0.0500 2105

• 144 H25 4.4641 1.6409 0.0000 H 1 fragment1 0.0500 2106

• 145 H26 1.2894 6.2372 0.0000 H 1 fragment1 0.0798 2107

• 146 H27 20.8380 6.2945 0.0000 H 2 fragment2 0.0715 2108

• 147 H28 16.2969 2.9440 0.0000 H 2 fragment2 0.1390 2109

• 148 H29 18.9059 2.3894 0.0000 H 2 fragment2 0.1390 2110

• 149 H30 15.5196 5.9097 0.0000 H 2 fragment2 0.1511 2111

• 150 H31 20.4720 8.1146 0.0000 H 2 fragment2 0.1318 2112

• 151 H32 26.4064 4.6194 0.0000 H 2 fragment2 0.1331 2113

• 152 H33 26.4064 -0.8016 0.0000 H 2 fragment2 0.1512 2114

• 153 H34 23.8395 4.0858 0.0000 H 2 fragment2 0.0873 2115

• 154 H35 19.3751 4.2559 0.0000 H 2 fragment2 0.0864 2116

• 155 H36 18.8438 -9.0711 0.0000 H 2 fragment2 0.0751 2117

• 156 H37 19.8292 -8.3551 0.0000 H 2 fragment2 0.0741 2118

• 157 H38 16.2158 -8.5207 0.0000 H 2 fragment2 0.1013 2119

• 158 H39 20.0897 -5.2366 0.0000 H 2 fragment2 0.0872 2120

• 159 H40 21.9337 -5.5568 0.0000 H 2 fragment2 0.1032 2121

• 160 H41 39.2845 0.8108 0.0000 H 3 fragment3 0.1453 2122

• 161 H42 38.5272 -5.0254 0.0000 H 3 fragment3 0.0666 2123

• 162 H43 39.3632 4.8845 0.0000 H 3 fragment3 0.1454 2124

• 163 H44 42.4547 8.3180 0.0000 H 3 fragment3 0.1251 2125

• 164 H45 40.4724 10.1028 0.0000 H 3 fragment3 0.1251 2126

• 165 H46 35.3201 4.3806 0.0000 H 3 fragment3 0.1555 2127

• 166 H47 38.8874 6.3493 0.0000 H 3 fragment3 0.0904 2128

• 167 H48 40.3937 6.0290 0.0000 H 3 fragment3 0.0965 2129

• 168 H49 40.9237 5.2663 0.0000 H 3 fragment3 0.0452 2130

• 169 H50 39.6632 5.7502 0.0000 H 3 fragment3 0.0452 2131

• 170 H51 41.8018 2.5638 0.0000 H 3 fragment3 0.0452 2132

• 171 H52 40.6198 1.2509 0.0000 H 3 fragment3 0.0452 2133

• 172 H53 44.0230 -1.9539 0.0000 H 3 fragment3 0.1273 2134

• 173 H54 42.6893 0.3562 0.0000 H 3 fragment3 0.1273 2135

• 174 H55 39.2846 -6.2587 0.0000 H 3 fragment3 0.0895 2136

• 175 H56 38.8874 -11.7970 0.0000 H 3 fragment3 0.1918 2137

• @<TRIPOS>BOND 2138

• 1 1 2 2 2139

• 2 1 3 1 2140

• 3 14 4 1 2141

• 4 15 4 1 2142

• 5 13 5 1 2143

• 6 12 6 1 2144

• 7 7 19 2 2145

• 8 8 9 1 2146

• 9 15 8 1 2147

Page 149: QSAR-QMMM Cryptographic Mining on Chern- Simons

• 10 8 17 1 2148

• 11 9 18 2 2149

• 12 10 17 2 2150

• 13 10 18 1 2151

• 14 11 19 1 2152

• 15 12 13 1 2153

• 16 12 14 1 2154

• 17 13 15 1 2155

• 18 14 16 1 2156

• 19 18 19 1 2157

• 20 1 11 1 2158

• 21 24 20 1 2159

• 22 20 25 1 2160

• 23 20 26 1 2161

• 24 21 25 1 2162

• 25 21 28 2 2163

• 26 22 28 1 2164

• 27 23 28 1 2165

• 28 25 27 2 2166

• 29 24 16 1 2167

• 30 26 29 3 2168

• 31 30 40 2 2169

• 32 36 31 1 2170

• 33 31 37 1 2171

• 34 31 38 1 2172

• 35 32 38 2 2173

• 36 32 39 1 2174

• 37 33 37 1 2175

• 38 33 41 2 2176

• 39 34 40 1 2177

• 40 34 41 1 2178

• 41 35 41 1 2179

• 42 37 39 2 2180

• 43 39 40 1 2181

• 44 1 36 1 2182

• 45 42 49 1 2183

• 46 43 50 2 2184

• 47 44 47 1 2185

• 48 44 48 1 2186

• 49 45 46 2 2187

• 50 45 49 1 2188

• 51 46 47 1 2189

• 52 46 50 1 2190

• 53 48 49 2 2191

• 54 3 50 1 2192

• 55 51 53 1 2193

• 56 52 53 1 2194

• 57 54 55 1 2195

• 58 55 56 1 2196

• 59 51 56 1 2197

Page 150: QSAR-QMMM Cryptographic Mining on Chern- Simons

• 60 53 54 1 2198

• 61 55 57 2 2199

• 62 58 59 1 2200

• 63 59 60 1 2201

• 64 61 60 1 2202

• 65 62 61 1 2203

• 66 62 58 1 2204

• 67 64 63 1 2205

• 68 59 65 2 2206

• 69 64 51 1 2207

• 70 66 67 2 2208

• 71 68 66 1 2209

• 72 79 69 1 2210

• 73 80 69 1 2211

• 74 78 70 1 2212

• 75 77 71 1 2213

• 76 72 83 2 2214

• 77 73 74 1 2215

• 78 80 73 1 2216

• 79 73 81 1 2217

• 80 74 82 2 2218

• 81 75 81 2 2219

• 82 75 82 1 2220

• 83 76 83 1 2221

• 84 77 78 1 2222

• 85 77 79 1 2223

• 86 78 80 1 2224

• 87 82 83 1 2225

• 88 66 76 1 2226

• 89 66 84 1 2227

• 90 84 63 1 2228

• 91 84 64 1 2229

• 92 68 62 1 2230

• 93 68 61 1 2231

• 94 79 85 1 2232

• 95 86 87 2 2233

• 96 86 88 1 2234

• 97 89 95 2 2235

• 98 90 94 2 2236

• 99 91 94 1 2237

• 100 92 95 1 2238

• 101 94 95 1 2239

• 102 86 92 1 2240

• 103 99 96 1 2241

• 104 100 96 1 2242

• 105 100 97 1 2243

• 106 97 101 2 2244

• 107 98 101 1 2245

• 108 86 99 1 2246

• 109 102 103 1 2247

Page 151: QSAR-QMMM Cryptographic Mining on Chern- Simons

• 110 88 102 1 2248

• 111 88 103 1 2249

• 112 100 104 1 2250

• 113 104 105 3 2251

• 114 106 107 1 2252

• 115 107 108 2 2253

• 116 108 109 1 2254

• 117 91 109 2 2255

• 118 93 106 1 2256

• 119 93 91 1 2257

• 120 106 110 2 2258

• 121 108 111 1 2259

• 122 112 118 1 2260

• 123 113 119 2 2261

• 124 114 116 2 2262

• 125 114 118 1 2263

• 126 115 119 1 2264

• 127 116 119 1 2265

• 128 117 118 2 2266

• 129 115 90 1 2267

• 130 93 115 1 2268

• 131 3 120 1 2269

• 132 5 121 1 2270

• 133 6 122 1 2271

• 134 11 123 1 2272

• 135 12 124 1 2273

• 136 13 125 1 2274

• 137 14 126 1 2275

• 138 15 127 1 2276

• 139 16 128 1 2277

• 140 16 129 1 2278

• 141 17 130 1 2279

• 142 22 131 1 2280

• 143 22 132 1 2281

• 144 23 133 1 2282

• 145 23 134 1 2283

• 146 27 135 1 2284

• 147 27 136 1 2285

• 148 34 137 1 2286

• 149 35 138 1 2287

• 150 35 139 1 2288

• 151 36 140 1 2289

• 152 38 141 1 2290

• 153 44 142 1 2291

• 154 47 143 1 2292

• 155 47 144 1 2293

• 156 48 145 1 2294

• 157 51 146 1 2295

• 158 52 147 1 2296

• 159 52 148 1 2297

Page 152: QSAR-QMMM Cryptographic Mining on Chern- Simons

• 160 54 149 1 2298

• 161 56 150 1 2299

• 162 58 151 1 2300

• 163 60 152 1 2301

• 164 62 153 1 2302

• 165 64 154 1 2303

• 166 77 155 1 2304

• 167 78 156 1 2305

• 168 79 157 1 2306

• 169 80 158 1 2307

• 170 81 159 1 2308

• 171 92 160 1 2309

• 172 93 161 1 2310

• 173 96 162 1 2311

• 174 98 163 1 2312

• 175 98 164 1 2313

• 176 99 165 1 2314

• 177 100 166 1 2315

• 178 101 167 1 2316

• 179 102 168 1 2317

• 180 102 169 1 2318

• 181 103 170 1 2319

• 182 103 171 1 2320

• 183 111 172 1 2321

• 184 111 173 1 2322

• 185 116 174 1 2323

• 186 117 175 1 2324

• @<TRIPOS>SUBSTRUCTURE 2325

• 1 fragment1 1 2326

• 2 fragment2 51 2327

• 3 fragment3 86 42 2328

2329

Indefinite integral: 2330

• RoccustyrnaTM_fR GissitorviffirnaTM_gS parts: HETATM 1 P UNK 0 4.355 -1.770 2331

0.000 0.00 0.00 P+0 2332

• HETATM 2 O UNK 0 4.675 -3.277 0.000 0.00 0.00 O+0 2333

• HETATM 3 N UNK 0 4.035 -0.264 0.000 0.00 0.00 N+0 2334

• HETATM 4 O UNK 0 -3.339 -1.482 0.000 0.00 0.00 O+0 2335

• HETATM 5 O UNK 0 -4.513 -5.290 0.000 0.00 0.00 O+0 2336

• HETATM 6 O UNK 0 -7.003 -3.048 0.000 0.00 0.00 O+0 2337

• HETATM 7 O UNK 0 3.403 -4.700 0.000 0.00 0.00 O+0 2338

• HETATM 8 N UNK 0 -1.612 -3.615 0.000 0.00 0.00 N+0 2339

• HETATM 9 N UNK 0 -0.278 -2.845 0.000 0.00 0.00 N+0 2340

• HETATM 10 N UNK 0 0.240 -5.282 0.000 0.00 0.00 N+0 2341

• HETATM 11 N UNK 0 2.849 -2.091 0.000 0.00 0.00 N+0 2342

• HETATM 12 C UNK 0 -5.497 -2.728 0.000 0.00 0.00 C+0 2343

Page 153: QSAR-QMMM Cryptographic Mining on Chern- Simons

• HETATM 13 C UNK 0 -4.352 -3.759 0.000 0.00 0.00 C+0 2344

• HETATM 14 C UNK 0 -4.870 -1.321 0.000 0.00 0.00 C+0 2345

• HETATM 15 C UNK 0 -3.019 -2.989 0.000 0.00 0.00 C+0 2346

• HETATM 16 C UNK 0 -5.640 0.012 0.000 0.00 0.00 C+0 2347

• HETATM 17 C UNK 0 -1.292 -5.121 0.000 0.00 0.00 C+0 2348

• HETATM 18 C UNK 0 0.866 -3.875 0.000 0.00 0.00 C+0 2349

• HETATM 19 C UNK 0 2.373 -3.555 0.000 0.00 0.00 C+0 2350

• HETATM 20 N UNK 0 -7.950 1.346 0.000 0.00 0.00 N+0 2351

• HETATM 21 N UNK 0 -10.260 2.680 0.000 0.00 0.00 N+0 2352

• HETATM 22 N UNK 0 -12.570 1.346 0.000 0.00 0.00 N+0 2353

• HETATM 23 N UNK 0 -12.570 4.013 0.000 0.00 0.00 N+0 2354

• HETATM 24 O UNK 0 -7.180 0.012 0.000 0.00 0.00 O+0 2355

• HETATM 25 C UNK 0 -9.490 1.346 0.000 0.00 0.00 C+0 2356

• HETATM 26 C UNK 0 -7.180 2.680 0.000 0.00 0.00 C+0 2357

• HETATM 27 C UNK 0 -10.260 0.012 0.000 0.00 0.00 C+0 2358

• HETATM 28 C UNK 0 -11.800 2.680 0.000 0.00 0.00 C+0 2359

• HETATM 29 N UNK 0 -6.410 4.013 0.000 0.00 0.00 N+0 2360

• HETATM 30 O UNK 0 9.135 4.340 0.000 0.00 0.00 O+0 2361

• HETATM 31 N UNK 0 6.337 0.014 0.000 0.00 0.00 N+0 2362

• HETATM 32 N UNK 0 6.337 2.506 0.000 0.00 0.00 N+0 2363

• HETATM 33 N UNK 0 9.135 -0.280 0.000 0.00 0.00 N+0 2364

• HETATM 34 N UNK 0 10.469 2.030 0.000 0.00 0.00 N+0 2365

• HETATM 35 N UNK 0 11.803 -0.280 0.000 0.00 0.00 N+0 2366

• HETATM 36 N UNK 0 5.861 -1.450 0.000 0.00 0.00 N+0 2367

• HETATM 37 C UNK 0 7.802 0.490 0.000 0.00 0.00 C+0 2368

• HETATM 38 C UNK 0 5.432 1.260 0.000 0.00 0.00 C+0 2369

• HETATM 39 C UNK 0 7.802 2.030 0.000 0.00 0.00 C+0 2370

• HETATM 40 C UNK 0 9.135 2.800 0.000 0.00 0.00 C+0 2371

• HETATM 41 C UNK 0 10.469 0.490 0.000 0.00 0.00 C+0 2372

• HETATM 42 F UNK 0 -1.000 4.176 0.000 0.00 0.00 F+0 2373

• HETATM 43 O UNK 0 1.426 -0.819 0.000 0.00 0.00 O+0 2374

• HETATM 44 N UNK 0 3.074 4.255 0.000 0.00 0.00 N+0 2375

• HETATM 45 N UNK 0 0.785 2.194 0.000 0.00 0.00 N+0 2376

• HETATM 46 C UNK 0 2.250 1.718 0.000 0.00 0.00 C+0 2377

• HETATM 47 C UNK 0 3.394 2.749 0.000 0.00 0.00 C+0 2378

• HETATM 48 C UNK 0 1.610 4.731 0.000 0.00 0.00 C+0 2379

• HETATM 49 C UNK 0 0.465 3.700 0.000 0.00 0.00 C+0 2380

• HETATM 50 C UNK 0 2.570 0.212 0.000 0.00 0.00 C+0 2381

• HETATM 51 C UNK 0 19.489 5.553 0.000 0.00 0.00 C+0 2382

• HETATM 52 N UNK 0 17.761 3.420 0.000 0.00 0.00 N+0 2383

• HETATM 53 N UNK 0 18.082 4.926 0.000 0.00 0.00 N+0 2384

• HETATM 54 N UNK 0 17.051 6.071 0.000 0.00 0.00 N+0 2385

• HETATM 55 C UNK 0 17.821 7.404 0.000 0.00 0.00 C+0 2386

• HETATM 56 N UNK 0 19.328 7.084 0.000 0.00 0.00 N+0 2387

• HETATM 57 S UNK 0 17.195 8.811 0.000 0.00 0.00 S+0 2388

• HETATM 58 N UNK 0 25.931 3.155 0.000 0.00 0.00 N+0 2389

• HETATM 59 C UNK 0 26.836 1.909 0.000 0.00 0.00 C+0 2390

• HETATM 60 N UNK 0 25.931 0.663 0.000 0.00 0.00 N+0 2391

• HETATM 61 N UNK 0 24.466 1.139 0.000 0.00 0.00 N+0 2392

• HETATM 62 C UNK 0 24.466 2.679 0.000 0.00 0.00 C+0 2393

Page 154: QSAR-QMMM Cryptographic Mining on Chern- Simons

• HETATM 63 O UNK 0 22.362 4.783 0.000 0.00 0.00 O+0 2394

• HETATM 64 C UNK 0 20.822 4.783 0.000 0.00 0.00 C+0 2395

• HETATM 65 S UNK 0 28.376 1.909 0.000 0.00 0.00 S+0 2396

• HETATM 66 P UNK 0 21.592 1.909 0.000 0.00 0.00 P+0 2397

• HETATM 67 O UNK 0 20.052 1.909 0.000 0.00 0.00 O+0 2398

• HETATM 68 N UNK 0 23.132 1.909 0.000 0.00 0.00 N+0 2399

• HETATM 69 O UNK 0 17.043 -5.557 0.000 0.00 0.00 O+0 2400

• HETATM 70 F UNK 0 20.524 -7.497 0.000 0.00 0.00 F+0 2401

• HETATM 71 F UNK 0 17.813 -9.467 0.000 0.00 0.00 F+0 2402

• HETATM 72 O UNK 0 18.925 0.369 0.000 0.00 0.00 O+0 2403

• HETATM 73 N UNK 0 19.489 -4.311 0.000 0.00 0.00 N+0 2404

• HETATM 74 N UNK 0 19.013 -2.846 0.000 0.00 0.00 N+0 2405

• HETATM 75 N UNK 0 21.504 -2.846 0.000 0.00 0.00 N+0 2406

• HETATM 76 O UNK 0 21.592 0.369 0.000 0.00 0.00 O+0 2407

• HETATM 77 C UNK 0 17.813 -7.927 0.000 0.00 0.00 C+0 2408

• HETATM 78 C UNK 0 19.059 -7.021 0.000 0.00 0.00 C+0 2409

• HETATM 79 C UNK 0 16.567 -7.021 0.000 0.00 0.00 C+0 2410

• HETATM 80 C UNK 0 18.583 -5.557 0.000 0.00 0.00 C+0 2411

• HETATM 81 C UNK 0 21.029 -4.311 0.000 0.00 0.00 C+0 2412

• HETATM 82 C UNK 0 20.259 -1.941 0.000 0.00 0.00 C+0 2413

• HETATM 83 C UNK 0 20.259 -0.401 0.000 0.00 0.00 C+0 2414

• HETATM 84 N UNK 0 21.592 3.449 0.000 0.00 0.00 N+0 2415

• HETATM 85 F UNK 0 15.103 -7.497 0.000 0.00 0.00 F+0 2416

• HETATM 86 P UNK 0 37.302 2.596 0.000 0.00 0.00 P+0 2417

• HETATM 87 O UNK 0 35.838 2.120 0.000 0.00 0.00 O+0 2418

• HETATM 88 N UNK 0 38.767 3.072 0.000 0.00 0.00 N+0 2419

• HETATM 89 O UNK 0 35.241 0.307 0.000 0.00 0.00 O+0 2420

• HETATM 90 N UNK 0 36.318 -2.724 0.000 0.00 0.00 N+0 2421

• HETATM 91 C UNK 0 38.688 -1.954 0.000 0.00 0.00 C+0 2422

• HETATM 92 N UNK 0 37.778 1.131 0.000 0.00 0.00 N+0 2423

• HETATM 93 C UNK 0 38.688 -3.494 0.000 0.00 0.00 C+0 2424

• HETATM 94 C UNK 0 37.224 -1.478 0.000 0.00 0.00 C+0 2425

• HETATM 95 C UNK 0 36.748 -0.013 0.000 0.00 0.00 C+0 2426

• HETATM 96 N UNK 0 37.857 5.205 0.000 0.00 0.00 N+0 2427

• HETATM 97 N UNK 0 38.411 7.814 0.000 0.00 0.00 N+0 2428

• HETATM 98 N UNK 0 40.948 8.638 0.000 0.00 0.00 N+0 2429

• HETATM 99 N UNK 0 36.826 4.060 0.000 0.00 0.00 N+0 2430

• HETATM 100 C UNK 0 37.381 6.669 0.000 0.00 0.00 C+0 2431

• HETATM 101 C UNK 0 39.918 7.494 0.000 0.00 0.00 C+0 2432

• HETATM 102 C UNK 0 39.797 4.216 0.000 0.00 0.00 C+0 2433

• HETATM 103 C UNK 0 40.273 2.751 0.000 0.00 0.00 C+0 2434

• HETATM 104 C UNK 0 35.875 6.990 0.000 0.00 0.00 C+0 2435

• HETATM 105 N UNK 0 34.368 7.310 0.000 0.00 0.00 N+0 2436

• HETATM 106 C UNK 0 40.022 -4.264 0.000 0.00 0.00 C+0 2437

• HETATM 107 N UNK 0 41.356 -3.494 0.000 0.00 0.00 N+0 2438

• HETATM 108 C UNK 0 41.356 -1.954 0.000 0.00 0.00 C+0 2439

• HETATM 109 N UNK 0 40.022 -1.184 0.000 0.00 0.00 N+0 2440

• HETATM 110 O UNK 0 40.022 -5.804 0.000 0.00 0.00 O+0 2441

• HETATM 111 N UNK 0 42.689 -1.184 0.000 0.00 0.00 N+0 2442

• HETATM 112 F UNK 0 39.839 -8.868 0.000 0.00 0.00 F+0 2443

Page 155: QSAR-QMMM Cryptographic Mining on Chern- Simons

• HETATM 113 O UNK 0 35.241 -5.755 0.000 0.00 0.00 O+0 2444

• HETATM 114 N UNK 0 37.302 -8.043 0.000 0.00 0.00 N+0 2445

• HETATM 115 N UNK 0 37.224 -3.970 0.000 0.00 0.00 N+0 2446

• HETATM 116 C UNK 0 37.778 -6.579 0.000 0.00 0.00 C+0 2447

• HETATM 117 N UNK 0 37.857 -10.653 0.000 0.00 0.00 N+0 2448

• HETATM 118 C UNK 0 38.333 -9.188 0.000 0.00 0.00 C+0 2449

• HETATM 119 C UNK 0 36.748 -5.434 0.000 0.00 0.00 C+0 2450

• MASTER 0 0 0 0 0 0 0 0 119 0 0 0 2451

• END 2452

2453

2454

Limit: 2455

2456

Series representations: 2457

2458

2459

2460

2461

2462

2463

2464

2465

Page 156: QSAR-QMMM Cryptographic Mining on Chern- Simons

(scheme8)

(scheme9)

OUTPUTA:

202274696d655f706172616d65746572223a20302e32343631333331323530303031343231372c0d0a20226369726375697

4223a207b0d0a2022636f6c73223a205b0d0a205b0d0a2022436f756e74696e6738220d0a205d2c0d0a205b0d0a2022436861

6e636538220d0a205d2c0d0a205b0d0a2022696e7075744132222c0d0a20312c0d0a20312c0d0a20312c0d0a20312c0d0a20

22696e7075744232220d0a205d2c0d0a205b0d0a202285222c0d0a202285222c0d0a202285222c0d0a202285222c0d0a2022

85222c0d0a202285222c0d0a202285222c0d0a202285220d0a205d2c0d0a205b0d0a202253776170222c0d0a20312c0d0a20

312c0d0a20312c0d0a20312c0d0a20312c0d0a20312c0d0a202253776170220d0a205d2c0d0a205b0d0a20312c0d0a202253

776170222c0d0a20312c0d0a20312c0d0a20312c0d0a20312c0d0a202253776170220d0a205d2c0d0a205b0d0a20312c0d0a

20312c0d0a202253776170222c0d0a20312c0d0a20312c0d0a202253776170220d0a205d2c0d0a205b0d0a20312c0d0a2031

2c0d0a20312c0d0a202253776170222c0d0a202253776170220d0a205d2c0d0a205b0d0a202248222c0d0a20312c0d0a2031

2c0d0a20312c0d0a20312c0d0a20312c0d0a202278706172220d0a205d2c0d0a205b0d0a20225a5ebd222c0d0a202295222c

0d0a20312c0d0a20312c0d0a20312c0d0a20312c0d0a20227a706172220d0a205d2c0d0a205b0d0a20225a5e2dbc222c0d0a2

02248222c0d0a20312c0d0a20312c0d0a20312c0d0a20312c0d0a20227a706172220d0a205d2c0d0a205b0d0a20225a5ebc22

2c0d0a20225a5ebd222c0d0a202295222c0d0a20312c0d0a20312c0d0a20312c0d0a202278706172220d0a205d2c0d0a205b

0d0a2022595e2dbc222c0d0a2022585e2dbc222c0d0a202248222c0d0a20312c0d0a20312c0d0a20312c0d0a20227a7061722

20d0a205d2c0d0a205b0d0a20225a5e3f222c0d0a20225a5ebc222c0d0a20225a5ebd222c0d0a202295222c0d0a20312c0d0a

20312c0d0a202279706172220d0a205d2c0d0a205b0d0a20225a5ebc222c0d0a2022595ebd222c0d0a2022585ebd222c0d0a

202248222c0d0a20312c0d0a20312c0d0a202279706172220d0a205d2c0d0a205b0d0a20225a5e3f3136222c0d0a20225a5e3

Page 157: QSAR-QMMM Cryptographic Mining on Chern- Simons

f222c0d0a20225a5ebc222c0d0a20225a5ebd222c0d0a202295222c0d0a20312c0d0a202278706172220d0a205d2c0d0a205b

0d0a20225a5ebd222c0d0a20225a5ebc222c0d0a2022585ebc222c0d0a2022585e2dbc222c0d0a202248222c0d0a20312c0d0

a20227a706172220d0a205d2c0d0a205b0d0a20225a5e3f3332222c0d0a20225a5e3f3136222c0d0a20225a5e3f222c0d0a202

25a5ebc222c0d0a20225a5ebd222c0d0a202295222c0d0a202278706172220d0a205d2c0d0a205b0d0a2022585e2dbc222c0d

0a2022595ebc222c0d0a2022585e2dbd222c0d0a2022595ebc222c0d0a20225a5ebc222c0d0a202248222c0d0a20227970617

2220d0a205d2c0d0a205b0d0a20225a5e3f3634222c0d0a20225a5e3f3332222c0d0a20225a5e3f3136222c0d0a20225a5e3f2

22c0d0a20225a5ebc222c0d0a20225a5ebd222c0d0a202295220d0a205d2c0d0a205b0d0a20225a4465746563746f72222c0d

0a2022594465746563746f72222c0d0a2022594465746563746f72222c0d0a2022584465746563746f72222c0d0a20225a44

6574656374436f6e74726f6c5265736574222c0d0a202259446574656374436f6e74726f6c5265736574222c0d0a202248220

d0a205d2c0d0a205b0d0a20225a5e3f313238222c0d0a20225a5e3f3634222c0d0a20225a5e3f3332222c0d0a20225a5e3f313

6222c0d0a20225a5e3f222c0d0a20225a5ebc222c0d0a20225a5ebd222c0d0a202295220d0a205d2c0d0a205b0d0a20227a70

6172222c0d0a20312c0d0a20312c0d0a20312c0d0a20312c0d0a20312c0d0a20312c0d0a202248220d0a205d0d0a205d0d0a

207d2c0d0a20226368616e63655f6f665f737572766976696e675f746f5f656163685f636f6c756d6e223a205b0d0a20312c0d

0a20312c0d0a20312c0d0a20312c0d0a20312c0d0a20312c0d0a20312c0d0a20312c0d0a20312c0d0a20312c0d0a20312c0d0

a20312c0d0a20312c0d0a20312c0d0a20312c0d0a20312c0d0a20312c0d0a20312c0d0a20312c0d0a20312c0d0a20302e3939

39393939353233313632383431382c0d0a20302e393939393939353233313632383431382c0d0a20302e393939393939353

233313632383431380d0a205d2c0d0a2022636f6d70757465645f626c6f63685f766563746f72735f62795f636f6c756d6e5f7

468656e5f77697265223a205b0d0a205b0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a2

06e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c0d0a205d2c0d0a205b0d0a206e756c6c2c0d0a206e756

c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c0d0

a205d2c0d0a205b0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206

Page 158: QSAR-QMMM Cryptographic Mining on Chern- Simons

e756c6c2c0d0a206e756c6c2c0d0a206e756c6c0d0a205d2c0d0a205b0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6

c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c0d0a205d2c0d0a205b0d0

a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e7

56c6c2c0d0a206e756c6c0d0a205d2c0d0a205b0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2

Page 159: QSAR-QMMM Cryptographic Mining on Chern- Simons

c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c0d0a205d2c0d0a205b0d0a206e756c6c2c0d0a2

06e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756

c6c0d0a205d2c0d0a205b0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0

d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c0d0a205d2c0d0a205b0d0a206e756c6c2c0d0a206e756c6c2c0d0a206

e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c0d0a205d2c0d0a2

05b0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0

a206e756c6c2c0d0a206e756c6c0d0a205d2c0d0a205b0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e7

56c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c0d0a205d2c0d0a205b0d0a206e756c6c2

c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a2

06e756c6c0d0a205d2c0d0a205b0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756

c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c0d0a205d2c0d0a205b0d0a206e756c6c2c0d0a206e756c6c2c0

d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c0d0a205d2

c0d0a205b0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6

c2c0d0a206e756c6c2c0d0a206e756c6c0d0a205d2c0d0a205b0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0

a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c0d0a205d2c0d0a205b0d0a206e7

56c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2

c0d0a206e756c6c0d0a205d2c0d0a205b0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a2

06e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c0d0a205d2c0d0a205b0d0a206e756c6c2c0d0a206e756

c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c0d0

a205d2c0d0a205b0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206

e756c6c2c0d0a206e756c6c2c0d0a206e756c6c0d0a205d2c0d0a205b0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6

c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c0d0a205d2c0d0a205b0d0

a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e7

56c6c2c0d0a206e756c6c0d0a205d2c0d0a205b0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2

c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c2c0d0a206e756c6c0d0a205d2c0d0a205b0d0a207b0d0a20227822

3a20302e33363732323233303931313235343838332c0d0a202279223a202d302e303531323133313139313739303130333

92c0d0a20227a223a20302e34343033323237383635363935393533340d0a207d2c0d0a207b0d0a202278223a202d302e313

23134343237313238343334313831322c0d0a202279223a20302e333532353933333032373236373435362c0d0a20227a22

3a20302e33353538323539303130333134393431340d0a207d2c0d0a207b0d0a202278223a202d302e35383133383033363

7323739303532372c0d0a202279223a202d302e3035333133373832333933393332333432352c0d0a20227a223a202d302e3

1363535393333383536393634313131330d0a207d2c0d0a207b0d0a202278223a202d302e32373335313135383835373334

3535382c0d0a202279223a202d302e33333036313430333033363131373535342c0d0a20227a223a202d302e323131353233

383930343935333030330d0a207d2c0d0a207b0d0a202278223a20302c0d0a202279223a20302c0d0a20227a223a20310d0a

207d2c0d0a207b0d0a202278223a20302c0d0a202279223a20302c0d0a20227a223a20310d0a207d2c0d0a207b0d0a202278

223a20302e353938303737343736303234363237372c0d0a202279223a20302e30303637373637363132363336303839333

2352c0d0a20227a223a20302e31373632363535303739333634373736360d0a207d2c0d0a207b0d0a202278223a202d302e3

2373938333835393138313430343131342c0d0a202279223a202d312e32353431333435373339363931363738652d392c0d

0a20227a223a202d302e373230313631343233303837313230310d0a207d0d0a205d0d0a205d2c0d0a2022646973706c6179

73223a205b0d0a207b0d0a20226c6f636174696f6e223a207b0d0a202277697265223a20302c0d0a2022636f6c756d6e223a2

0310d0a207d2c0d0a202274797065223a207b0d0a202273657269616c697a65645f6964223a20224368616e636538222c0d0

a20226e616d65223a202250726f626162696c69747920446973706c6179220d0a207d2c0d0a202264617461223a207b0d0a2

Page 160: QSAR-QMMM Cryptographic Mining on Chern- Simons

02270726f626162696c6974696573223a205b0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a

20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a2

0302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20

302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a203

02c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a2030

2c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302

c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20312c0d0a20302c0d0a20302c0d0a20302c

0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0

d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d

0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0

a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a

Page 161: QSAR-QMMM Cryptographic Mining on Chern- Simons

20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a2

0302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20

302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a203

02c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a2030

2c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302

c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c

0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0

d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d

0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0

a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a

20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a2

0302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20

302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a203

02c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a2030

2c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20302c0d0a20300d0a205d0d0a207d0d0a207d2c0d0a2

07b0d0a20226c6f636174696f6e223a207b0d0a202277697265223a20302c0d0a2022636f6c756d6e223a2032300d0a207d2c

0d0a202274797065223a207b0d0a202273657269616c697a65645f6964223a20225a4465746563746f72222c0d0a20226e61

6d65223a20225a2041786973204465746563746f72220d0a207d2c0d0a202264617461223a2066616c73650d0a207d2c0d0a

207b0d0a20226c6f636174696f6e223a207b0d0a202277697265223a20312c0d0a2022636f6c756d6e223a2032300d0a207d2

c0d0a202274797065223a207b0d0a202273657269616c697a65645f6964223a2022594465746563746f72222c0d0a20226e6

16d65223a2022592041786973204465746563746f72220d0a207d2c0d0a202264617461223a2066616c73650d0a207d2c0d0

Page 162: QSAR-QMMM Cryptographic Mining on Chern- Simons

OUTPUTB: Score Text

25634 i c i a s d i a a m i a c d a m i a m i a c s s i a i d i a m i a s i a i d i a m i a s d i a d i a d i a d i a d i a s i a i d i

a m i a d i a d i a d i a d i a d i a d i a d i a i a i d i a m i a d i a d i a d i a d i a d i a d i a d i a i a i d i a m i a d i a d i a

d i a d i a d i a d i a i a i d i a m i a d i a d i a d i a d i a d i a i a i d i a m i a d i a d i a d i a d i a i a i d i a m i a d i a d i

a d i a d i a d i a d i a i a i d i a m i a a smi d i a d i a d i a d i a d i a d i a a

25576 i p i a o s i a a d i a p s a d i a d i a p o o i a i s i a d i a o i a i s i a d i a o s i a s i a s i a s i a s i a o i a i s i a d i

a s i a s i a s i a s i a s i a s i a s i a i a i s i a d i a s i a s i a s i a s i a s i a s i a s i a i a i s i a d i a s i a s i a s i a s i a s i a s

i a i a i s i a d i a s i a s i a s i a s i a s i a i a i s i a d i a s i a s i a s i a s i a i a i s i a d i a s i a s i a s i a s i a s i a s i a i a i

s i a d i a a odi s i a s i a s i a s i a s i a s i a a

25572 i m i a c d i a a s i a m d a s i a s i a m c c i a i d i a s i a c i a i d i a s i a c d i a d i a d i a d i a d i a c i a i d i a

s i a d i a d i a d i a d i a d i a d i a d i a i a i d i a s i a d i a d i a d i a d i a d i a d i a d i a i a i d i a s i a d i a d i a d i a d

i a d i a d i a i a i d i a s i a d i a d i a d i a d i a d i a i a i d i a s i a d i a d i a d i a d i a i a i d i a s i a d i a d i a d i a d i

a d i a d i a i a i d i a s i a a csi d i a d i a d i a d i a d i a d i a a

25570 i m i a p s i a a d i a m s a d i a d i a m p p i a i s i a d i a p i a i s i a d i a p s i a s i a s i a s i a s i a p i a i s i a

d i a s i a s i a s i a s i a s i a s i a s i a i a i s i a d i a s i a s i a s i a s i a s i a s i a s i a i a i s i a d i a s i a s i a s i a s i a s i

a s i a i a i s i a d i a s i a s i a s i a s i a s i a i a i s i a d i a s i a s i a s i a s i a i a i s i a d i a s i a s i a s i a s i a s i a s i a i

a i s i a d i a a pdi s i a s i a s i a s i a s i a s i a a

24831 a e a s o i a s s d a s e i s d a s d a s e o o a s a i a s d a s o a s a i a s d a s o i a s i a s i a s i a s i a s o a s a i a s

d a s i a s i a s i a s i a s i a s i a s i a s a s a i a s d a s i a s i a s i a s i a s i a s i a s i a s a s a i a s d a s i a s i a s i a s i a s

i a s i a s a s a i a s d a s i a s i a s i a s i a s i a s a s a i a s d a s i a s i a s i a s i a s a s a i a s d a s i a s i a s i a s i a s i a s

i a s a s a i a s d a s s oda i a s i a s i a s i a s i a s i a s s

23832 s e s i d a s i i o s i e a i o s i o s i e d d s i s a s i o s i d s i s a s i o s i d a s i a s i a s i a s i a s i d s i s a s i o s i a

s i a s i a s i a s i a s i a s i a s i s i s a s i o s i a s i a s i a s i a s i a s i a s i a s i s i s a s i o s i a s i a s i a s i a s i a s i a s i

s i s a s i o s i a s i a s i a s i a s i a s i s i s a s i o s i a s i a s i a s i a s i s i s a s i o s i a s i a s i a s i a s i a s i a s i s i s a s

i o s i i dos a s i a s i a s i a s i a s i a s i i

� OUTPUT: =

(7aR)-5-amino-N-*(S)-2-*(S)-*(E)-(aminomethylidene)amino+(cyano)methyl+hydrazin-1-

Page 163: QSAR-QMMM Cryptographic Mining on Chern- Simons

� yl(aziridin-1-yl)phosphoryl+-1-*(2E)-2-*(fluoromethanimidoyl)imino+acetyl+-7-oxo-7aH-pyrazolo*4,3-d+pyrimid

ine-3-carboxamide; 3-(2-amino-5-sulfanylidene-1,2,4-triazolidin-3- yl)oxaziridin-2-yl(3- sulfany

lidene-1,2,4,6-tetraazabicyclo*3.1.0+hexan-6-yl)phosphoroso 1-(3,4,5-trifluorooxolan-2-yl)-1,2,4-triazole-3-

carboxylate; N-*(2-amino-6-oxo-1H-purin-9-yl)amino(,1-*5-(,*cyano(,1-[(diaminomethylidene)

amino]ethenyl})amino+oxy-methyl)-3,4-dihydroxyoxolan-2-yl+-1,2,4-triazol-3-yl-formamido)phosphoryl

+-6-fluoro-3,4-dihydropyrazine-2-carboxamide (7aR)-5-amino-N- *(S)-,2-*(S)-*(E)-(aminomethy

lidene)amino+(cyano)methyl+ hydrazin-1-yl-(aziridin-1-yl) phosphoryl+-1-*(2E)-2-* (fluoromethanimidoyl)

imino+ acetyl+-7-oxo-1H,7H,7aH-pyrazolo*4,3-d+pyrimidine-3-carboxamide; N-,*(2-amino-6-oxo-6,9-

dihydro-1H-purin-9-yl)amino+(,1-*5- (,*cyano(,1-*(diaminomethylidene)amino+ethenyl-)amino+oxy-

methyl)-3,4-dihydroxyoxolan-2-yl+-1H-1,2,4-triazol-3-yl-formamido)phosphoryl--6-fluoro-3,4-

dihydropyrazine-2-carboxamide; *3-(2-amino-5-sulfanylidene- 1,2,4-triazolidin-3- yl)oxaziridin-2

-yl+(,3-sulfanylidene-1,2,4,6-tetraazabicyclo*3.1.0+hexan-6-yl-) phosphoroso 1-(3,4,5- trifluorooxolan-

2-yl)-1H-1,2,4-triazole-3-carboxylate

Figure1. 2D Atoms of (i) GisitorviffirnaTM, (ii) Roccustyrna_gs1_TM, and (ii) Roccustyrna_fr1_TM fragments 2D

structure.

(22,27,28,35) This In Silico approach keeps track of the solutions already found of the selected group of the selected hit

candidates which were fragmented, re-cored, and superposed in a non-relativistic quantum mechanics environment and

finally led us to the complete Roccustyrna chemical structure. (Table1), (20,28,29,30) If several chemical space solutions

were found in the phase end, the combined theory has a sequence of similar such function spaces of finite but arbitrarily

large selected dimension, where the partition dimension increases with the finite resolution of relative knot space

measurements to the first dihydro-3H-purin-9-yl) - system when extracted from the 10 hit selected small molecules as the

possible chemical bimodules over a hyperfinite 1-factor solutions which were sorted by the number of different SARS-CoV

Mpro, PDB entry 6lu7 receptor patterns.

Page 164: QSAR-QMMM Cryptographic Mining on Chern- Simons

Figure2. 3D Docking Interactions between Quantum Thinking 3D GisitorviffirnaTM, Roccustyrna_gs1_TM, and

Roccustyrna_fr1_TM TM Small Molecules and the PDB:5R80 Crystal Structure of SARS-CoV-2 main protease in

complex with Z18197050 protein targets. (Figure2a). 3D Docking Interactions between Quantum Thinking 3D

GisitorviffirnaTM, Roccustyrna_gs1_TM, and Roccustyrna_fr1_TM TM Small Molecule and the PDB:6YB7 SARS-

CoV-2 main protease with unliganded active site (2019-nCoV, coronavirus disease 2019, COVID-19) protein targets.

(Figure2b). 3D Docking Interactions between Quantum Thinking 3D GisitorviffirnaTM, Roccustyrna_gs1_TM, and

Roccustyrna_fr1_TM TM Small Molecule and the PDB:6W63 protein targets of the COVID-19 main protease as

bound to potent broad-spectrum non-covalent inhibitor X77. (Figure2c). 3D Docking diagram Interactions of the

Quantum Thinking 3D GisitorviffirnaTM, Roccustyrna_gs1_TM, and Roccustyrna_fr1_TM TM Small Molecules

when binds inside the PDB:6W9C of the crystal structure of papain-like protease of SARS CoV-2 (Figure2d). 3D

Docking interactions of the Quantum Thinking 3D GisitorviffirnaTM, Roccustyrna_gs1_TM, and

Roccustyrna_fr1_TM TM Small Molecule when binds inside the PDB:2ZU5 complex structure of SARS-CoV 3CL

protease (Figure2e).

Covystyrn 9 3 2 3 6.510 7 3 2 3 6.341 5 3 7 2 6

aTM 3 4 0 1 ligand_82 1 2 4 0 ligand_82 8 1 1 4 .

Model . . . . 27b6750a . . . . 27b6750a . . . . 6

T.Energy 0 2 2 9 _1_run_2 6 8 2 6 _1_run_5 3 9 5 4 0

I.Energy 3 3 5 8 2.log 2 4 9 7 2 .log 8 9 8 6 2 6

vdW Coul 1 6 4 2 8 8 1 7 6 1 1 0

NumRoto

rs RMSD 2 2 2

Score

Page 165: QSAR-QMMM Cryptographic Mining on Chern- Simons

ligand_82 0 4 3

27b6750a . . .

_1_run_2 0 9 3

1.log 1 0 3 5

0 5 1

Covystyr 1 2 4 2 6.294 1 2 6 2 6.681 1 2 7 2 6

naTM 3 8 . 4 ligand_10 2 8 . 1 ligand_10 2 9 . 2 .

Model 1 . 5 . 48ee8467 9 . 6 . 48ee8467_ 2 . 1 . 4

T.Energy . 6 2 1 _1_run_3 . 6 7 9 1_run_13. . 6 4 4 6

I.Energy 4 6 9 3 .log 1 3 5 3 7 log 3 9 2 1 8 5

vdW Coul 1 5 6 7 2 9 9 4 3

NumRoto 7 8 8

rs RMSD 2 2 2

Score

ligand_10 0 5 3

48ee8467_ . . .

1_run_10. 0 8 5

log 1 0 8 9

0 3 4

Covystyrn 1 1 9 6 6.590 1 1 1 5 6.594 1 1 9 6 6

Page 166: QSAR-QMMM Cryptographic Mining on Chern- Simons

aTM 1

6

.

.

ligand_c5 2

6

1

.

ligand_c5

1

5

.

. .

Model 8 . 4 9 24abbe38 9 . . 0 24abbe38 9 . 8 0 4

T.Energy . 3 2 0 _1_run_4. . 2 1 3 _1_run_1. . 8 4 4 6

I.Energy 8 3 8 2 log 1 0 1 8 5 log 2 3 8 5 2 7

vdW Coul 7 0 9 9 4 6 7

NumRoto 8 2 4 2 7 2

rs RMSD

Score 0 4 4

ligand_c5 . . .

24abbe38 0 5 3

_1_run_1 0 1 0

1.log 1 0 3 0

Covystyrn 1 4 0 4 6.703 1 4 4 6.690 1 3 3 3 6

aTM 1 0 . 0 ligand_089 2 0 1 ligand_089 0 8 . 5 .

Model 5 . 5 . 75351b6_1 3 . . 75351b6_1 3 . 8 . 6

T.Energy . 7 6 1 _run_11.lo . 4 4 _run_19.lo . 9 1 0 7

I.Energy 4 4 0 8 g 4 9 7 2 g 5 6 0 8 8 7

vdW Coul 7 6 6 7 7 3 3 3 5

NumRotor 3 1 8

s RMSD 2 0 2 2

Score .

ligand_089 0 9 4 2

75351b6_1 . 4 . .

_run_19.lo 0 6 3 1

g 1 0 8 2

0 0 5

Gisitorviffirna

TM,

Roccustyrna_gs

1_TM, and

Roccustyrna_fr

1_TM 1 3 3 6.844 1 3 0 3 6.549 1 3 3 6

TM Model 2 8 9 ligand_9d3 0 5 . 4 ligand_9d3 0 5 5 .

T.Energy 1 . . d8d7be8_1 9 . 8 . d8d7be8_1 8 . . 5

I.Energy . 2 7 _run_17.lo . 4 3 6 _run_18.lo . 2 6 3

vdW Coul 2 0 7 g 3 6 7 1 4 g 4 6 8 1 4

Page 167: QSAR-QMMM Cryptographic Mining on Chern- Simons

NumRotors 5 3 0 4 6 5 5 1 9

RMSD 6 6 4

Score 1 2 2 0 2

ligand_9d3 . .

d8d7be8_1 5 0 1 3 6

_run_24.lo 6 . 6 3 .

g 1 7 0 . 8 2

0 3 1

0 4 3

0

Spectra Peaks and Possible Matching Fragments for [P@@] (=O) (O) (OC (=O) c1nn ([C@@H]2O[

C@@H] ([C@@H] (O) [C@@H]2O) CON (C (=C) N=C (N) N) C#N) cn1) On1c2nc ([nH]c (=O)

c2nc1) N

energy0

26.00252542 0.778730226 124 0.77873

60.05562361 3.716423202 27 3.7164

84.05562361 3.02280991 25 3.0228

96.0192381 11.65479926 12 11.655

96.96852159 0.8502082112 43 0.85021

98.03488817 1.281240907 17 1.2812

126.0774217 0.7548524965 23 0.75485

150.0410362 2.556712907 7 2.5567

152.0566862 6.969008261 46 6.969

175.9855686 1.289434684 63 1.2894

191.9804832 2.621783054 64 2.6218

230.0073667 1.104990207 6 1.105

246.0022813 2.12208104 42 2.1221

248.0179314 5.369941396 45 5.3699

256.1040303 1.016723755 16 1.0167

269.0992793 1.366647703 30 1.3666

271.1149294 2.158154871 13 2.1582

323.1210774 0.9311552775 52 0.93116

325.0193283 1.895121245 62 60 1.5985 0.29658

326.0033439 0.9389838875 67 0.93898

327.0349784 0.7645545874 51 3 0.41138 0.35317

343.029893 17.39800572 59 17.398

349.1003419 2.982706934 40 2.9827

351.115992 8.044091673 14 8.0441

Page 168: QSAR-QMMM Cryptographic Mining on Chern- Simons

371.0248076 1.285731821 113 1.2857

447.0772371 3.252880778 163 3.2529

554.0891988 0.9607558578 139 0.96076

580.1160822 2.014756741 85 50 1.1535 0.86131

580.1160822 1.665758616 2 84 173 267 0.73943 0.59946 0.26201 0.064852

581.1000978 1.329838416 174 143 0.80798 0.52186

598.1266469 7.901116363 0 7.9011

598.1266465294001 7.901116363

energy1

60.05562361 7.269235378 27 7.2692

67.02907452 0.6286246294 121 0.62862

82.03997355 2.564615975 122 119 2.5505 0.014083

84.05562361 2.195066828 25 2.1951

96.0192381 1.358685027 12 1.3587

99.06652264 0.5851117514 125 0.58511

107.0352225 0.9401855833 126 0.94019

109.0508726 0.6957005328 123 312 0.69554 0.00016218

124.0617716 2.858552374 24 2.8586

126.0774217 3.741195056 23 3.7412

135.0301371 0.8704921551 154 159 0.6877 0.18279

142.0498695 0.5839293552 218 0.58393

144.0655196 0.9188017894 219 0.9188

150.0410362 5.318483191 7 5.3185

152.0566862 26.39658318 46 26.397

175.9855686 6.52539378 63 6.5254

191.9804832 2.602282921 64 2.6023

193.9961333 1.069135995 65 1.0691

Page 169: QSAR-QMMM Cryptographic Mining on Chern- Simons

230.0073667 2.82893221 6 2.8289

241.0931313 0.5906218423 220 0.59062

246.0022813 0.5728839349 42 0.57288

248.0179314 3.872858948 45 3.8729

256.1040303 0.6783852279 16 0.67839

283.1149294 0.966497666 215 0.9665

316.018994 0.7313014582 73 79 0.55659 0.17471

325.0193283 1.001103696 62 60 0.52304 0.47806

326.0033439 0.9030743176 67 0.90307

327.0349784 0.983743004 3 51 0.87674 0.107

343.029893 18.15431144 59 18.154

457.0615871 1.038427982 98 1.0384

570.1317323 0.5557827707 274 307 0.47091 0.084875

598.1266465294001 0.5557827707

energy2

43.02907452 6.581133857 72 69 6.4975 0.083609

44.0130901 1.561218523 235 1.5612

46.02874017 1.423859512 236 1.4239

57.00833907 1.723362591 181 1.7234

59.02398914 1.098678731 182 1.0987

60.05562361 12.98827182 27 12.988

69.00833907 2.170846374 203 191 1.9256 0.24523

71.02398914 2.09602186 204 192 32 1.8861 0.1169 0.093014

72.00800472 1.628892254 233 1.6289

74.02365479 1.026896632 255 1.0269

76.03930485 1.27553983 234 1.2755

84.05562361 2.658445221 25 2.6584

85.00325369 1.322232123 180 1.3222

96.0192381 8.870605993 12 8.8706

99.01890376 1.029719922 208 189 0.81155 0.21817

102.0185694 1.957725071 232 1.9577

107.0352225 1.536242051 126 1.5362

108.0192381 3.085763499 157 3.0858

124.0141527 3.318851194 36 3.3189

124.0617716 2.724955604 24 2.725

126.0774217 4.368849008 23 4.3688

134.0461215 1.251787012 153 1.2518

135.0301371 2.770561685 159 154 1.8526 0.91801

150.0410362 5.329265847 7 5.3293

152.0566862 11.88569588 46 11.886

175.9855686 1.04850615 63 1.0485

Page 170: QSAR-QMMM Cryptographic Mining on Chern- Simons

191.9804832 1.635244987 64 1.6352

219.9753979 1.20936679 171 1.2094

246.0022813 1.108489037 42 1.1085

271.1149294 1.754610351 13 1.7546

343.029893 7.558360588 59 7.5584

598.1266465294001 7.558360588

Spectra Peaks and Possible Matching Fragments for [P@@] (=O) (O) (OC (=O) c1nn

([C@@H]2O[C@@H] ([C@@H] (O) [C@@H]2O) CON (C (=C) N=C (N) N) C#N) cn1) ON

(C/N=C/N) C

energy0

45.04472458 1.313086472 51 91 1.312 0.0011014

57.04472458 1.739574993 49 1.7396

60.05562361 3.843337957 28 3.8433

84.05562361 3.405326164 26 76 3.1208 0.28448

86.07127368 1.426202657 8 1.4262

88.08692374 2.523317548 48 2.5233

96.0192381 11.46434112 14 11.464

96.96852159 1.195323406 45 1.1953

98.03488817 1.259137729 19 71 1.2248 0.034334

Page 171: QSAR-QMMM Cryptographic Mining on Chern- Simons

102.0661883 1.205143584 44 68 1.1128 0.092327

166.0376042 1.091435355 7 1.0914

182.0325188 2.050023495 43 75 1.9772 0.07278

184.0481689 5.016570352 47 5.0166

191.9804832 3.486218624 77 3.4862

256.1040303 1.088434104 18 1.0884

261.0495659 1.76504193 70 66 1.4888 0.27622

262.0335814 1.088401911 85 94 0.72604 0.36236

269.0992793 1.387379522 30 1.3874

271.1149294 2.294269934 15 2.2943

273.1305794 1.213152323 189 277 1.2084 0.0047445

279.0601305 16.89404051 65 16.894

307.0550452 1.365858902 129 1.3659

323.1210774 0.9408207653 57 0.94082

349.1003419 3.017359935 40 3.0174

351.115992 8.271209543 16 8.2712

445.0615871 0.9126493615 172 0.91265

447.0772371 3.509464162 173 3.5095

490.1194363 1.702508927 153 186 1.1486 0.55387

516.1463197 3.45175662 102 55 2 101 298 1.1973 0.84114 0.74435 0.60344 0.065561

517.1303353 2.374125586 191 193 156 157 286 0.76414 0.69712 0.52763 0.37036 0.014867

534.1568844 7.70448651 0 7.7045

534.15688402852 7.70448651

energy1

45.04472458 7.764770581 51 91 7.7616 0.0031984

57.04472458 2.884718558 49 2.8847

59.06037464 1.427799216 168 1.4278

60.05562361 7.775135692 28 7.7751

82.03997355 2.646028015 139 136 2.6315 0.014548

84.05562361 2.614026782 26 76 2.2656 0.3484

86.07127368 3.131816066 8 3.1318

88.08692374 4.697422087 48 4.6974

96.0192381 1.299893846 14 1.2999

98.03488817 1.079464832 71 19 0.74693 0.33254

102.0661883 0.8623318491 44 68 0.8439 0.018431

124.0617716 3.178117992 25 3.1781

126.0774217 4.282247212 24 4.2822

142.0498695 0.8736066731 256 0.87361

144.0655196 1.374603567 257 1.3746

166.0376042 2.314768117 7 2.3148

175.9855686 5.221444996 72 5.2214

Page 172: QSAR-QMMM Cryptographic Mining on Chern- Simons

184.0481689 3.391418123 47 3.3914

191.9804832 3.974525868 77 3.9745

193.9961333 1.043303384 78 1.0433

221.0070323 2.792037327 79 2.792

235.0226824 1.720298432 81 97 1.6993 0.020953

241.0931313 0.8836191881 258 0.88362

250.0335814 6.342041424 84 269 6.0571 0.28496

262.0335814 2.212149109 85 94 2.1857 0.026451

263.0288304 1.150382816 87 1.1504

263.0652159 1.015741418 3 56 0.90573 0.11001

279.0601305 19.05814369 65 19.058

283.1149294 0.9860058369 260 0.98601

292.0329127 0.9710766156 114 0.97108

393.0918246 1.031060689 116 1.0311

534.15688402852 1.031060689

energy2

43.02907452 7.019569481 96 92 6.9236 0.095945

44.0130901 2.832265009 237 2.8323

45.04472458 1.712878214 51 91 1.605 0.10786

46.02874017 3.254129623 238 3.2541

Page 173: QSAR-QMMM Cryptographic Mining on Chern- Simons

48.04439023 1.533696822 239 1.5337

57.00833907 2.531566114 197 2.5316

60.05562361 14.50847006 28 14.508

63.05528926 1.209031737 198 1.209

69.00833907 2.179276301 281 213 1.9388 0.24049

71.02398914 1.570626316 282 214 32 1.3655 0.11465 0.090449

72.00800472 2.440305212 234 2.4403

73.0396392 1.480872022 283 1.4809

74.02365479 1.85234156 235 1.8523

76.03930485 2.362521527 236 2.3625

84.05562361 3.289821573 26 76 3.0351 0.25472

85.00325369 1.282300062 204 1.2823

86.07127368 1.657348609 8 1.6573

88.08692374 1.632278075 48 1.6323

96.0192381 9.145846797 14 9.1458

102.0185694 2.932942116 231 2.9329

104.0342195 1.317839272 232 1.3178

106.0498695 1.705526831 233 1.7055

116.0342195 1.394325568 221 1.3943

124.0141527 3.976571266 36 3.9766

124.0617716 3.400544196 25 3.4005

126.0774217 5.582475611 24 5.5825

186.098551 1.39244588 228 1.3924

191.9804832 1.735770458 77 1.7358

219.9753979 2.14274427 181 2.1427

271.1149294 2.480283824 15 2.4803

279.0601305 8.443385598 65 8.4434

534.15688402852 8.443385598

Page 174: QSAR-QMMM Cryptographic Mining on Chern- Simons

This small molecule prototype was obtained directly from the solution of the D[- (k^ (-4 - k^4 n^33835 N^2) n^33834

N^213) /33834432, n] LocG (S1) CSG (equation47), k (S1) = TrigToExp[ArcSin[x[τ] x'[22 τ]^244 y'[τ]^ArcSin

[242424222242424 Sin[X] x[τ]^22]]] (equation48), VectkG[G]= Rep (Dk (C[G])) Z (Vectk[G]) (equation 49) into the

(k^ (-8 - k^4 n^33835 N^2) N^211) / (1144788006720 Log[3d N = 2 CS k]) (50) by a procedure akin to geometric

quantization as derived by a first phase solution was taken as the 13

(a+ℓ)3dN=2CSta+ℓ{1/12+(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+ Fǫexp(iℏpˆ2A2mA +−1A∧[A∧A] 2zEG k

(mod2π), (equation51) determined fragmentation. (36,37,39) and larger groups are prioritized over smaller chemical

patterns with potential antiviral properties of GisitorviffirnaTM, Roccustyrna_gs1_TM, and Roccustyrna_fr1_TM small

molecules of Preferred IUPAC Names of (7aR)-5- amino-N- [(S)-{2- [(S)- [(E)-

(aminomethylidene)amino](cyano)methyl]hydrazin-1- yl} (aziridin- 1-yl)phosphoryl]- 1-[(2E)-2-

[(fluoromethanimidoyl) imino]acetyl]-7-oxo-1H,7H,7aH-pyrazolo[4,3-d]pyrimidine -3-carboxamide;

N-{[(2-amino-6-oxo- 6,9-dihydro- 1H-purin-9-yl)amino]({1-[5-({[cyano({1-[(diaminomethylidene)amino]e thenyl})

amino]oxy}methyl)- 3,4-dihydroxyoxolan-2-yl]-1H-1,2,4-triazol-3-yl}formamido)phosphoryl}-6-fluoro-3,4-dihydro

pyrazine-2-carboxamide; [3-(2-amino-5-sulfanylidene-1,2,4-triazolidin-3-yl)oxaziridin-2-yl]({3-sulfanylidene-1,2,4,6-

tetraazabicyclo [3.1.0]hexan-6-yl})phosphoroso 1-(3,4,5-trifluorooxolan-2-yl)-1H-1,2,4-triazole-3-carboxylate PDB

generated (Figure1) patterns.

Roccustyrna ligand Protein targets

The docking engine employed in this computer-aided drug design effort is the DockThor program, which generates

preparations of the acceptable topology files for the Roccustyrna ligand for the protein (.in) and ligand cofactors (.top)

and a specific input .pdb file containing our prototype‘s ligand atoms and Roccustyrna partial charges from the

MMFF94S49 force field. (19,21,37,42) The .pdbqt file of the Roccustyrna new ligand was generated by the

MMFFLigand software, which is based on the utilities of the OpenBabel chemical toolbox for extracting atom types and

partial charges with MMFF94S applied force field, and for the identification of the rotatable bonds, and calculating the

properties necessary for computing the intramolecular interactions. (16,17,41) In the MMFFLigand, all hydrogen atoms

were removed and the PdbThorBox software was utilized to set the protein atomic types and the partial ionization

charges from the MMFF94S force field analysis considering the nonpolar atomic groups as implicit to rebuild missing

residue side-chain atoms. (3-9,31) Thus, in this KNIME based GEMDOCK-DockThor-Virtual Screening platform, both

the Roccustyrna small molecule, SARS-COV-2 protein targets of and cofactors were treated again with the MMFF94S

force field by keeping the same set of equations and parameters that define the new

molecule‗s molecular force field parameterizations. (2,31-40) The preparations of the steps to be used for diagonal

force field for modeling such as modifying the protonation state of all the keeping amino acid residues, to parameterize

Page 175: QSAR-QMMM Cryptographic Mining on Chern- Simons

a simple group of knots and atoms by adding metal complexes, hydrogen atoms, and freezing rotatable bonds was done

interactively for a variety of all-Roccustyrna atoms in the publically available web servers and performed automatically

by the programs cited without the need for intervention. (3,15,16,17) The search docking space to rapidly simulate the

combination of GisitorviffirnaTM, Roccustyrna_gs1_TM, and Roccustyrna_fr1_TM cluster of molecular systems and

the configuration of the new molecule‗s grid box were interactively set in the KNIME designed

BiogenetoligandorolTM pipeline which was represented as a grid box and the docking potentials are stored at the best

grid points for the description of the combination of GisitorviffirnaTM, Roccustyrna_gs1_TM, and

Roccustyrna_fr1_TM cluster of molecular energetics and structures through the parameters of the center of coordinates,

size of the grid and discretization (i.e, the spacing between the grid points). (5,13,29,31) The initial population for the

rotational, and translational, was randomly generated within the conformational degrees and grid box using random

values of freedom of the Roccustyrna ligand. (15,16,17,38) For each SARS-CoV-2 therapeutic target, DockThor-VS

default parameters were uploaded as a recommended set of parameters for the grid box (i.e, center and grid sizes) which

can be used or modified according to the objectives of this docking experiment which was specially designed to deal

with highly flexible ligands such as the Roccustyrna small molecule. (15,29,31) In this strategy, a replacement ligand-

based method was introduced by using a low mass phase phenotypic steady-state and crowding-based protocol and a

multiple genetic parental algorithms as a Dynamic Solution Modified Restricted Tournament Selection (DSMRTS)

approach, which provided us a better machine learning exploration of the energetic hypersurface for the identification of

multiple quantum phase minima solutions in a single Hadamard run, preserving the population diversity of the

generated structures. The default parameters of this parallel docking algorithm (named BiogenetoligandorolTM) is set in

the KNIME-web server as follows: (i) 24 inverse docking runs, (ii) 1.000.000 evaluations per parallel docking run, (iii)

population of the Roccustyrna individuals, (iv) maximum of 20 cluster small molecule top leaders on each parallel

inverse docking run. For this sequential screening experiment, we also provided an alternative dataset of geometric

parameters to improve the Euclidean space between the Roccustyrna and protein interacting chains without significantly

losing binding site accuracy (named EuTHTS Euclidean Topology Virtual Screening) : (i) 120 docking runs, (ii)

200.000 evaluations per docking run, (iii) population of Roccustyrna individuals, (iv) maximum of 20 cluster leaders on

each docking run. The docking experiments were performed on DockThor CPU nodes of the Dumont supercomputer,

each one containing two processors Intel Xeon E5-2695v2 Ivy Bridge (12c @2,4 GHz) and 64 Gb of RAM memory.

We validated the docking experiments through the redocking of the non-covalent Roccustyrna ligand present in the

complexes 6W63 (Mpro) using the standard configuration, successfully predicting the co-crystallized conformation of

each complex. In the crystallographic structure, this moiety is exposed to the solvent and has insufficient electronic

density data. The free energy scoring function applied to score the best-docked poses of the same Roccustyrna ligand

was based on the sum of the following terms from the MMFF94S force field and is named ―Total Energy (Etotal) ǁ: (i)

intermolecular interaction energy calculated as the sum of the van der Waals between the hydroxyl and cyano groups

(buffering constant = 0.35) and electrostatic potentials between the protein-ligand atom pairs, (ii) intramolecular

interaction energy of the van der Waals and electrostatic potentials calculated as the sum between the 1-4 atom pairs,

and (iii) torsional term of the ligand. All best docking poses generated during all the docking steps in this project were

then low mass weight categorized and clustered by our in-house tool BiogenetoligandorolTM. The top docking energy-

poses of each Roccustyrna-Protein complex were selected as top hit representatives of cluster energetic representatives

Page 176: QSAR-QMMM Cryptographic Mining on Chern- Simons

to be made available in the homogenicity results analysis and Chern-Simons pharmacophoric fragmentation section

(27,28). The binding affinity prediction and total energy ranking with the linear protein model and untailored for

specific ligand interacted protein classes,of the Roccustyrna small molecule was generated by utilizing the

DockTScoreGenLscoring function as a set of empirical scoring functions. Biogenetoligandorol cluster of DockTScore,

PLIP, DockThor and GEMDOCK-AUTODOCK-VINA current docking scoring functions for protein and small

molecule preparation take into account important terms, multiple protein-ligand binding, such as intermolecular

interactions, binding affinity predictions, the combination of GisitorviffirnaTM, Roccustyrna_gs1_TM, and

Roccustyrna_fr1_TM cluster of ligand entropy and desolvation of the specific target classes such as SARS-COV-2

6W63 (Mpro) proteases using protein-protein interactions (PPIs) trained with PdbThorBox and MMFFLigand

sophisticated machine-learning derived topology algorithms totalizing 66 892 contacts between a carbon and a halogen,

carbon or sulfur atom. The docking visualization of the SARS-COV-2 protein, cofactors and the Roccustyrna

compound, the grid space location superposed with the protein targets of the (PDB codes of the

PDB:6xs6,1xak,2g9t,3fqq, 2ghv,6yb7) (3,4,35,39) and the docking outputs were generated with NGL, a WebGL-based

library for intra-molecular visualization.

In silico Bioactivity Prediction and ADMET Analysis of the Roccustyrna small molecule.

The drug likeliness and bioactivity of the Roccustyrna small molecule were initially analyzed utilizing the

Molinspiration server (http://www.molinspiration.com). (30,31) By applying the Molinspiration prediction tool, a

multi-tasking cheminformatics software we calculated the combination of GisitorviffirnaTM, Roccustyrna_gs1_TM,

and Roccustyrna_fr1_TM cluster of molecular modeling docking, and total binding energy properties as well as drug-

likeness and bioactivity prediction of our prototype ligand (Mabkhot et al, 2016). (40,41) In this part, a drug-likeness

prediction analysis was incorporated to predict the combination of GisitorviffirnaTM, Roccustyrna_gs1_TM, and

Roccustyrna_fr1_TM cluster of two important factors, including the polar surface area (PSA), and lipophilicity level

(log P) directly associated with the pharmacokinetic properties (PK) of the same combination of lead structures (Beetge

et al, 2000). (31,40) Then, by uploading the combination of GisitorviffirnaTM, Roccustyrna_gs1_TM, and

Roccustyrna_fr1_TM cluster of [P@@](=O)(NC(=O)c1nc(F)cnc1) (NC(=O)c1nn(c2o

c(c(O)c2O)CON(C(=[N]=C(N)N)C) CN)cn1)Nn1c2nc([nH]c(=O) c2nc1)N.C\1(=C/

2\ON2[P@](=O)(N2N3N[C](=N[C@H]23)=S)

OC(=O)c2nn(c3oc(c(F)c3F)F)cn2)/N(N)N=[C](=S)N1.[P@@](=O)(N1CC1)(NC(=O)c1nn(c2c1[nH]c (nc2=O)N)

C(=O)/C=N/C(=N)F) N/N=C(/N=C/N)\CN smiles in the Molinspiration-based bioactivity analysis web server, we

calculated the bioactivity score of this ligand through the systemic examination cf hannel modulators, GPCR ligands,

nuclear receptor ligands, kinase inhibitors, protease inhibitors, and other enzyme targets which were analyzed by

sophisticated Bayesian statistics (Mabkhot et al, 2016). (5,7,40) The PK properties, such as adverse effect predictive

modeling, Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET), of the Roccustyrna

pharmacophoric scaffold, were predicted by utilizing the admerSAR v2.0 server (http://lmmd.ecust.edu.cn/admetsar2/)

for the prediction of our novel combination of GisitorviffirnaTM, Roccustyrna_gs1_TM, and Roccustyrna_fr1_TM

ligands ADMET properties on factors such as membrane permeability [designated by colon cancer cell line (Caco-2) ],

Page 177: QSAR-QMMM Cryptographic Mining on Chern- Simons

human intestinal absorption (HIA), and the status of either P-glycoprotein substrate or inhibitor. Finally, knowledge of

these processes and more specifically the ability of the combination of GisitorviffirnaTM, Roccustyrna_gs1_TM, and

Roccustyrna_fr1_TM cluster of small molecules to penetrate the blood-brain barrier and its metabolism is of crucial

importance to evaluate the risk of exposure to toxins and was evaluated by the MATE1, CYP, and OATP1B3 -

OATP1B1testing models. The Excretion of the Roccustyrna ligand was estimated by applying the advanced matched

molecular pair analysis (MMPA), based on the renal OCT substrate and the toxicity which was then predicted

accordingly on the Human Ether-a-go-go-related gene inhibition, mutagenic status, carcinogenic status, and acute oral

toxicity default parameters (30,31,40,41).

Results

In silico Prediction of the Roccustyrna ADMET Properties and Bioactivity Score

To predict important molecular properties such as logP, polar surface area, drug-likeness and bioactivity of our new

prototype and small-sized Roccustyrna ligand 2- ({[fluoro ({[ (2E) -5-oxabicyclo[2.1.0]pentan-2-ylidene]

cyano-lambda6-sulfanyl}) methyl]phosphorylidene}amino) -4,6-dihydro-1H-purin-6-one (1S,2R,3S) - 2- ({[

(1S,2S,4S,5R) - 4- ethenyl-4-sulfonylbicyclo (1S,2R,3S) -2- ({[ (1S,2S, 4S,5R) -4- ethenyl-4-

sulfonylbicyclo[3.2.0]heptan-2- yl]oxy}amino) - 3-[ (2R,5R) - 5- (2-methyl-6-methylidene-6,9-dihydro-3H-purin -9-yl)

-3-methylideneoxolan- 2-yl]phosphirane-1-carbonitrile[3.2.0]he ptan-2-yl]oxy}amino) -3-[ (2R,5R) -5- (2-methyl-

6-methylidene-6,9-dihydro- 3H-purin-9-yl) -3-methylideneoxolan-2-yl]p hosphirane-1-carbonitrile, the Molinspiration

tool was employed as customized on the basis of this rational anti-viral drug design study. The milogP (Octanol-water

partition coefficient logP) and TPSA (Topological polar surface area) values were calculated by utilizing the same

online tool using Bayesian statistics. These In-Silico results indicated that the milogP value of the Roccustyrna small

molecule was predicted as having optimum lipophilicity properties (logP < 5) (Han et al, 2019) in the aspect of dermal

absorption and parallel artificial permeation (Tables1,2,4).

Screening of the Roccustyrna Inhibitor for Spike Protein-RBD-ACE2 Interaction.

In this study, we have shown that the QMMM designed Roccustyrna small molecule which was designed in silico by

using Topology Euclidean Geometric and Artificial Intelligence-Driven Predictive Neural Networks was engaged in

the binding domains of the protein targets of of the (pdb:1xak) (Figure2) with the docking energy values of the

(T.Energy, I.Energy, vdW, Coul, NumRotors, RMSD, Score), (-19.625, -35.483, 7.633, -43.116, 7, -5.813) Kcal/mol,

(Tables1,2) The Roccustyrna chemical structure interacted into the binding sites of the protein targets of (pdb:6w9c),

(Figure2) with the negative docking energies of the (T.Energy, I.Energy, vdW, Coul, NumRotors, RMSD, Score), (-

36.678,-55.648, -7.519, -48.129, 7, -6.762) Kcal/Mol. The same combination of small molecules also generated

hydrophobic interactions when docked onto the binding cavities of the amino acid of the 168 PRO, A1, 02J C with the

docking energy values of the (-3.53, -2369, -1303, -10.425, -3.42, -72.447, -13.394, -3.19, -70.551) Kcal/mol. Our new

QMMM designed cluster of quantum thinking small molecules additionally involved in the generation of the hydrogen

bonding within the PJE:C:5 (PJE-010) 010:C:6 Interacting chain (s) while generating hydrophobic interactions when

docked into the binding domains of the amino acid of the 25THR, A6, 010 C domains with the docking energy values

Page 178: QSAR-QMMM Cryptographic Mining on Chern- Simons

of the (-3.73, - 2415, 179, - 7.156, -21.406, -66.898 -8.709, -22.779, -70.002) Kcal/mol. The combination of

GisitorviffirnaTM, Roccustyrna_gs1_TM, and Roccustyrna_fr1_TM cluster of active pharmacophoric sites of the 2-

({[fluoro ({[ (2E) -5-oxabicyclo[2.1.0]pentan-2-ylidene] cyano-lambda6-sulfanyl}) methyl]phosphorylidene}amino)

-4,6-dihydro-1H-purin-6-one (methylamino) -1,6- diazabicyclo (3.2.0) heptan-4-yl) oxy}imino) interacted into the

binding cavities of the amino acid of the 26 THR, A6 010C with the docking energy values of the (-3.81, -2415, -186, -

7.156, -21.406, -66.898, -6.155, -24.392, -64.757) Kcal/mol. The combination of GisitorviffirnaTM,

Roccustyrna_gs1_TM, and Roccustyrna_fr1_TM cluster of active pharmacophoric sites of the 2- ({[fluoro ({[ (2E)

-5-oxabicyclo[2.1.0] pentan-2-ylidene]cyano-lambda6- sulfanyl}) methyl]phosphorylidene} amino) -4,6-

dihydro-1H-purin-6-onedihydro-3H-purin-9-yl) -3- hydroxyoxolan generated a docking effect which was involved in

the generation of hydrogen bonds when docked into the binding cavities of the amino acid of the 143 GLY A 6 010 C

with the docking energy values of the (-1.93, -2.8, -145.29, -1105, -2411, -8.911, -17.849, -65.703 -8.918, - 17.918,-

62.905) Kcal/mol.

Figure3. (Figure3a) Binding patterns, CoMFA contour map, and aminoacid interactions of the steric regions (blue,

favored; yellow; disfavored) around Roccustyrna scaffold (Ser682, Thy456, and Arg624 with a distance of 1.224,

2.445, and 2.159 Å, respectively). (Figure3b) Shows the receptor-binding domain and the CoMFA contour map of

steric regions (blue, favored; yellow; disfavored) around Roccustyrna; Blue regions are favored by positively charged

groups and red regions favored by negatively charged groups inside the SARS-COV-2 protein targets of

(pdb:6W9C). 02J:C:1 (02J). (Figure3c) Roccustyrna binding sites inside the (pdb:6lu7) binding domains02J:C:1 (02J).

Page 179: QSAR-QMMM Cryptographic Mining on Chern- Simons

(Figure3b) Roccustyrna binding sites in (pdb:6lu7) D10-C-1099 DMS:A:402 (DMS). (Figure3d) Roccustyrna binding

sites in (pdb:6lu7) D10-F-1099. 2J:C:1 (02J). (Figure3e) Roccustyrna binding sites in (pdb:6lu7) D10-H-1099.

X77:A:401 (X77). (Figure3f) Roccustyrna binding sites into the 02J (5-Methylisoxazole-3-carboxylic acid) 6LU7

protein targets. DMS:A:402 (DMS). (Figure3g) Roccustyrna binding sites into the 02J (5-Methylisoxazole-3-

carboxylic acid) PJE-C-56LU7 protein targets. ZN:A:998 (ZN) – ION. (Figure3h) Shows the Blue regions are favored

by positively charged groups and red regions favored by negatively charged groups inside the SARS-COV-2 protein

targets of (pdb:1xak) within the EDO:A:506 (EDO) receptor-binding domain and the CoMFA contour map of steric

regions (blue, favored; yellow; disfavored) around Roccustyrna; Blue regions are favored by positively charged

groups and red regions favored by negatively charged groups inside the SARS-COV-2 protein targets of

(pdb:6W9C). 02J:C:1 (02J) .

In addition, the CoMFA contour map of electrostatic regions around Roccustyrna chemical structure indicated that

the contact residues of the Roccustyrna small molecule when docked onto the SARS-COV-2 protein targets of

(pdb:2zu5). (green, favored; yellow; disfavored) around the Roccustyrna chemical structure hits the entire sequence

of the amino acid of the V-M-THR-25, V-S-THR-25, V-M-THR-26, V-S-HIS-41, V-M-LEU-141, V-M-ASN-142,

V-S-ASN-142, V-M-GLY-143, V-S-CYS-145, V-M-MET-165 with the binding energy values of the -97.2 and -

5.16512, -4.15949, - 9.8487, -4.77062, -4.72901, -6.7295, -5.82428, - 5.35883, -4.2588, -5.37491 Kcal/mol

respectively. (Figure2d)

The same prototype pharmacophoric elements named Roccustyrna when docked into the binding sites of the amino

acid of the 164HIS, A5, PJE C2.generated hydrogen interactions with the binding energy values of the (-16 3.07, -

153.73,-2408) Kcal/mol/A, in the coupled atoms of the N3 and O2 with the docking energy values of the (-12.282,

-14.994, -67.123 - 15.161, 15.336, 68.144) Kcal.Mol. The binding patterns of the 02J:C:1 (02J) active sites of the

amino acid 168 PRO, A1, 02J C binding domains generated hydrophobic interactions with docking energy values of

the (-3.53, -2369, - 1303, - 10.425, -3.42, -72.447, -13.394,- 3.19, -70.551) Kcal/mol/A inside the PJE:C:5 (PJE-

010) + 010:C:6 interacting chain (s) : A C of the amino acid of the 164HIS, A5, PJE C2. (Figure3b). D10-C-1099

DMS:A:402 (DMS) binding sites were also constructed when the combined pharmacophoric elements of the

combination of GisitorviffirnaTM, Roccustyrna_gs1_TM, and Roccustyrna_fr1_TM ligands docked inside the (pdb:6lu7)

protein targets. Hydrogen Bonds were then identified when the RoccustyrnaTM’s chemical coupled atoms

interacted within the 298 ARG A amino acid’s 402 DMS A Ng+ 2377 O2 binding cavities with the docking energy

values of the (-1.76, -2.73, -166.89, -2331, 6.971, -0.756, -7.541 -9.700, -0.883, -7.581) Kcal/mol/A. Salt Bridges

were also shown to be involved in the generation of the Sulfonium bondings when docked inside the DMS A 5.49

binding cavities of the amino acid of the 295 ASP A domains with the docking energy values of the (-402, -2376, -

Page 180: QSAR-QMMM Cryptographic Mining on Chern- Simons

6.081, -1.005, -6.367 -10.436, -2.231, -5.560) Kcal/mol/A. pi-Cation Interactions of sulfonium bondings within our

small molecule whole residue subsurface were also constructed within the 8 PHE A amino acid 402 DMS A

pharmacophoric sites with the docking energy values of the (-4.70, -1.01, -2376, -6.081,-1.005, -6.367, -8.339, -

4.556, -4.264) Kcal/mo/A. (Figure3d). Hydrophobic Interactions were simultaneously generated by the Roccustyrna

chemical residues when docked in the (pdb:6lu7) protein targets of inside the D10-H-1099. X77:A:401 (X77) side

domains within the active sites of the amino acids of the 41 HIS A 401 X77 A, 165 MET A 401 X77 A, and 166 GLU

A 401 X77 A with the docking energy values of the (-3.75, -4670, -609, -20.444, -13.613, -29.034, -19.778, -13.574,

-32.721 -3.90, -4673, -2529, -19.389, -17.775, -28.688, -16.611, 16.152, -26.489, -3.86, -4661, -2546, -17.350, -

23.138, -25.438 -16.439, -20.244, -23.055, -189 GLN A 401 X77 A -3.90, -4657,- 2881, -21.763, -15.894, -23.429 -

24.934, -13.635, -23.312) Kcal/mol/A showing that my AI-quantum thinking chemical structure named Roccustyrna

is capable of generating Hydrogen Bonds when docked onto the 41 HIS A 401 X77 A, 143 GLY A 401 X77 A, 144

SER A 401 X77 A, and 166 GLU A 401 X77 A, sequence of amino acids while targeting the Npl 4680 N2, O3 4679

N2 Nam 4682 O2, and Nam 4683 O2 binding sites with the binding free energy values of the (-3.46, -3.79, -106.13,

-611, - 20.860, -19.573, - 32.52, -19.394, -16.086, -32.767, -2.17, -2.94, -148.03, -2216 -19.635, -22.244, -29.036 -

18.779, -24.455, -30.773, -3.14, -3.42, -101.78, -2228 -16.096, -21.679, -26.816, -14.503, -23.707, -29.056, -1.98, -

2.80, -158.32, -2542 - 18.546, -18.654, -26.028 -16.172,- 18.348, -24.583) Kcal/molA respectively. (Figure3f).

The2‐ ({[fluoro ({[ (2E) ‐5‐oxabicyclo[2.1.0]pentan‐2‐ylidene] cyano‐lambda6‐sulfanyl}) methyl]

phosphorylidene}amino) ‐4,6‐dihydro‐1H‐purin‐6‐one (1Z) ‐2‐{ ((2S,3S,5R) ‐5‐ (2‐amino‐ 6‐oxo‐6,9‐ dihydro

‐1H‐purin‐9‐yl) ‐ 3‐hydroxyoxolan‐2‐yl) methylidene}‐2‐cyano‐ 1‐ ({ ((2S,4R,5R) ‐2‐ methyl‐2‐ (methylamino)

‐1,6‐diazabicyclo (3.2.0) heptan‐4‐yl) oxy}imino) ‐1lambda5,2lambda5‐azap hosphiridin‐1‐ylium. druggable scaffold

of the Roccustyrna small molecule therefore competes with endogenous SARS-CoV2 PLpro for binding to Lys711

and Arg355 targeting into the binding domains of the critical SARS-CoV2 PLpro residues onto the SARS- COV-2

protein targets of (pdb:2zu5) within the binding sites of the amino acid of the V-M-THR-25, V-S-THR-25, V-M-

THR-26, V-S-HIS-41, V-M-LEU-141, V-M-ASN- 142, V-S-ASN-142, V-M-GLY-143, V-S-CYS-145, V-M-MET-

165 with the binding energy values of the -97.2 and -5.16512, -4.15949, -9.8487, -4.77062, -4.72901, -6.7295, -

5.82428, -5.35883, -4.2588, -5.37491 respectively.

Page 181: QSAR-QMMM Cryptographic Mining on Chern- Simons

Figure4. 3D Docking interactions between our prototype Gisitorviffirna neo-ligand and the FDA approved

drugs of Faldaprevir, Gemigliptin, Raltegravir, Ribavirin, Doxycycline, Histrelin, Eflornithine,

Cycloserine, Bleomycin, Azathioprine, Ritonavir, Umifenovir, Cobicistat, Darunavir, Baricitinib,

Hydroxychloroquine, Minocycline, Azithromycin, Linoleic acid, Remdesivir, and the experimental

GC376, EIDD2801MK4482 small molecule when targeted onto the (PDB:6WZU) protein targets.

(Figure4a) Contact residues of the Roccustyrna small molecule when docked onto the SARS-COV-2

protein targets of (pdb:7bv2). (green, favored; yellow; disfavored) around the Roccustyrna chemical

structure. Blue regions are favored by positively charged groups and red regions favored by negatively

charged groups.(Figure4b). Comparative Docking Cluster Analysis between the Remdesivir and the

Roccustyrna small molecules when docked onto the SARS-COV-2 protein targets of (pdb:7bv2).

(Figure4c) Comparative Docking Energy Analysis between the Remdesivir and the Roccustyrna small

molecules when docked onto the SARS-COV-2 protein targets of (pdb:7bv2). (Figure4d) CoMFA contour

map of electrostatic regions around Roccustyrna chemical structure. Contact residues of the Roccustyrna

small molecule when docked onto the SARS COV-2 protein targets of (pdb:3fqq). (green, favored; yellow;

disfavored) around the Roccustyrna chemical structure. Blue regions are favored by positively charged

groups and red regions favored by negatively charged groups within the sequence of the amino acid of V-

S-HIS-159, V-S-ARG-160, V-S-ARG-112 V-M-GLU-148 V-M-PHE-150, V-S-PHE-150, V-S-HIS-159,

V-M-TYR-161 with the docking energy values of -101Kcal/mol, and binding free energies of the docking

values of the 9-14.0762, - 5.11094, -7.98447, -4.17314, - 4.43549, -9.66939, -9.42926, -7.30085)

Kcal/mol. (Figure4e) Contact residues of the Roccustyrna small molecule when docked onto the SARS-

COV-2 protein targets of (pdb:2ghv). (green, favored; yellow; disfavored) around the Roccustyrna

chemical structure. (Figure4f) CoMFA contour map of electrostatic regions around Roccustyrna chemical

structure. Contact residues of the Roccustyrna small molecule when docked onto the SARS-COV-2 protein

targets of (pdb:6xs6). (green, favored; yellow; disfavored) around the Roccustyrna chemical structure.

Page 182: QSAR-QMMM Cryptographic Mining on Chern- Simons

Blue regions are favored by positively charged groups and red regions favored by negatively charged

groups within the sequence of the amino acid of V-M-LYS-557, V-S-LYS-557, V-M-ARG-567, V-M-

ASP-568, V-S-ASP-574, V-S-PHE-43, V-M-ARG-44, V-M-SER-45, V-S-SER-45 amino acid residues

with the docking energy values of (- 85.8, and (-5.56004, - 5.0011, -8.38956, -5.77168, -6.13664, -

12.8661, - 5.37546, -6.10391, - 5.00928) Kcal/mol/A respectively. (Figure4g) CoMFA contour map of

electrostatic regions around Roccustyrna chemical structure. Contact residues of the Roccustyrna small

molecule when docked onto the SARS-COV-2 protein targets of (pdb:2zu5), (Figure4h). Docking energy

ranking and comparative free energy analysis between our prototype Gisitorviffirna neoligand and the

FDA approved drugs of Faldaprevir, Gemigliptin, Raltegravir, Ribavirin, Doxycycline, Histrelin,

Eflornithine, Cycloserine, Bleomycin, Azathioprine, Ritonavir, Umifenovir, Cobicistat, Darunavir,

Baricitinib, Hydroxychloroquine, Minocycline, Azithromycin, Linoleic acid, Remdesivir, and the

experimental GC376, EIDD2801MK4482 small molecule when targeted onto the (PDB:6WZU) protein

targets.

CoMFA contour map analysis of electrostatic regions around the Roccustyrn’small molecule a chemical

structure indicated to us that Hydrogen bonds, Salt bridges and Metal complexes containing Diphosphate,

dihydrogen and ION binding sites were generated into the contact residues of the Roccustyrna’s small

molecule when docked onto the SARS- COV-2 protein targets of the (pdb:2zu5) within the sequence of the

amino acid of the V-M-THR-25, V-S-THR-25, V-M-THR-26, V-S-HIS-41, V-M-LEU-141, V-M-ASN-

142, V-S-ASN-142, V-M-GLY-143, V-S-CYS-145, V-M-MET-165 with the binding energy values of the

negative docking values of the (-97.2 and - 5.16512, -4.15949, -9.8487, - 4.77062, -4.72901, -6.7295, -

5.82428, -5.35883, -4.2588, -5.37491) Kcal/mol/A respectively. (Figure4a), (Table4) The Roccustyrna

DMS:A:402 (DMS) binding sites into the 524 Nam 2578 O2 02J (5-Methylisoxazole-3-carboxylic acid)

domains inside the 65 ASN A 402 DMS A cavities of the pdb:6LU7 protein targets of generated Hydrogen

Bonds of the docking energy values of the (-2.05, -2.94, -148.0, -8.211, -20.857, -29.787 -11.058, -20.242,

-30.160 298)) Kcal/mol/A. Salt Bridges were also contructed when our prototype’s surface sites docked

inside the DMS -A, Ng+ 2582 O2 binding pocket cavities of the amino acid of the ARG A 403 with the

docking energy values of the (-1.93, -2.87, -160.38, -2512 -7.044, -0.753, -7.469 9.865, -1.270, -7.327)

Kcal/mol/A. Sulfonium bondings were also constructed when our small molecule 403 DMS A contact

residues of the binding sites of the 295 ASP amino acid with the docking energy values of the (-5.31, -

2581, -6.227, -1.042, -6.293 -10.460,- 2.019, -5.344) Kcal/mol/A. (Figure4b). 999 ZN D 20947 Zn,

ZN:A:998 (ZN) and 998 ZN A 20940 Zn 470 S Metal Complexes were constructed into the 02J (5-

Methylisoxazole-3-carboxylic acid) PJE-C-56LU7 Roccustyrna’s (1Z)-2-{((2S,3S,5R)-5-

(2-amino-6-oxo-6,9-dihydro-1H-purin-9-yl -4-yl)oxy}imino)-

1lambda5,2lambda5-azaphosphiridin-1-ylium. binding sites inside the 117 CYS D, 74 CYS A amino acids

tetrahedral side chains with the docking energy values of the (-1103.746, -101.848, -13.968, - 103.306,-

102.613, -16.001 -1118.874, -104.964,- 32.313 -118.938, -103.573, -30.6090Kcal/mol/A generated

indicating that our multi-targeted drug design could of generating a self-assembled monolayer inside the 1:

Page 183: QSAR-QMMM Cryptographic Mining on Chern- Simons

Mg, NA (1), 1, 10P, G Metal Complexes when docked onto the 1,553A binding cavities of the amino acid

of the ARG into the pdb:7bv2 protein targets. The combination of GisitorviffirnaTM,

Roccustyrna_gs1_TM, and Roccustyrna_fr1_TM clusterpharmacophoric (1Z) -2-{ ((2S,3S,5R) - 5-

(2-amino-6-2-yl)methylidene}-2-cyano-12-({[fluoro({[(2E)-5-oxabicyclo[2.1.0]pentan-2-ylidene]

cyano-lambda6-sulfanyl})methyl]phosphorylidene}amino)-4,6-dihydro-1H-purin-6-one- ({ ((2S,4R,5R)

-2-methyl-2- (methylamino) -1,6-dia-zabicyclo (3.2.0)heptan-4-yl) oxy}imino) -1lambda5,2lambda5-

azaphosphiridin-1-ylium. active site of the 2-lambda5-azaphosphiridin-1-ylium was engaged in hydrogen

bonding interactions with the formation of hydrogen bonds inside the N3 1266 O2 binding cavities of the

amino acid of the 143 GLY, A6, 010 C with the docking energy values of the (-1.93, -2.80, -145.29, -1105,

-3.81, -2415, -186, -7.156, -21.406, -66.898 -6.155, -24.392, -64.757, -2411, -8.911, -17.849, -65.703 -

8.918, -17.918, -62.905, -2.16, -3.07, -153.73, -2408, -12.282, -14.994, -67.123, -15.161, -15.336, -68.144)

Kcal/mol. The Roccustyrna small molecule involved also in the generation of the hydrophobic interactions

within the binding domains of the amino acid of the 25 THR A 6 010 C with the docking energy values of

the 3.73, 2415, 179, -7.156, 21.406, 66.898 -8.709, 22.779, 70.002Kcal/mol as illustrated in the (Figure4c).

(Table4), (Figure4d). In this drug designing project the electrostatic regions around the

combination of GisitorviffirnaTM, Roccustyrna_gs1_TM, and Roccu- styrna_fr1_TM

pharmacophoric elements of (7aR)-5-amino-N-[(S)-{2-[(S)-[(E)- (aminomethylidene)

amino](cyano)methyl]hydrazin-1-yl}(aziridin-1-yl)phosphoryl]-1-[(2E)-2-[(fluoromethanimidoyl)imino]ac

etyl]-7-oxo-1H,7H,7aH-pyrazolo[4,3-d]pyrimidine-3-carboxamide;N-{[(2-amino-6-oxo-6,9-dihydro-1H-p

urin-9-yl)amino]({1-[5-({[cyano({1-[(diaminomethylidene)amino]ethenyl})amino]oxy}methyl)-3,4-dihyd

roxyoxolan-2-yl]-1H-1,2,4-triazol-3-yl}formamido)phosphoryl}-6-fluoro-3,4-dihydropyrazine-2-carboxa

mide;[3-(2-amino-5-sulfanylidene-1,2,4-triazolidin-3-yl)oxaziridin-2-yl]({3-sulfanylidene-1,2,4,6-tetraaza

bicyclo[3.1.0]hexan-6-yl})phosphoroso1-(3,4,5-trifluorooxolan-2-yl)-1H-1,2,4-triazole-3-carboxylate

3-hydroxyoxolan-2-yl) methylidene}-2- cyano-1- ({ ((2S,4R,5R) -2-methyl-2- (methylamino)

-1,6-diazabicyclo (3.2.0) heptan-4-yl) oxy} imino) -1lambda5,2- lambda5-azaphosphiridin -1-ylium.

substrate targets the SARS-COV-2 protein targets of (pdb:7bv2) with the docking values if the (Total

Docking Energy = -1.004, vdW= -6.072, Coulomb = -7.135, Internal = 12.203) Kcal/mol/A, (Figure4a),

(Figure4f) showing that combination of GisitorviffirnaTM, Roccustyrna_gs1_TM, and

Roccustyrna_fr1_TM binding site (s) inside the (pdb:6lu7) binding domains of the 02J:C:1 (02J) regions

while co-generating Hydrophobic Interactions and Hydrogen Bonds against the coupled atoms of the Nam

2411 O3 inside the cavities of the crucial entering amino acids of the 25 THR A 6 010 C and 143 GLY A 6

010 C with the docking energy values of the (-3.73, -2415, -179, -7.156, 21.406, -66.898, -8.709, -22.779,

-70.002, -26, -81, -2415, -186, -7.156, -21.406, -66.898, -6.155, -24.392,- 64.757,- 1.93, -2.80, -145,.-29, -

1105, -8.911, 17.849, -65.703, -8.918,-17.918,-62.905.) Kcal/mol/A respectively.

energy0

15.02292652 0.4060678502 104 0.40607

28.01817548 0.4426414388 119 0.44264

29.01342445 0.5933494802 96 0.59335

Page 184: QSAR-QMMM Cryptographic Mining on Chern- Simons

30.03382555 3.330037916 89 3.33

32.04947561 0.2649148276 118 0.26491

134.0461215 0.9838770235 6 0.98388

134.0712737 5.57351989 31 5.5735

135.0301371 1.86992575 7 9 1.7116 0.15831

136.0869237 11.21795003 30 11.218

138.1025738 1.431327796 29 1.4313

140.1182239 0.3671556052 47 0.36716

150.0410362 0.7929313096 19 0.79293

152.0566862 49.31054254 5 49.311

180.0879864 0.7681764357 159 0.76818

182.1036364 1.467775142 52 1.4678

184.1192865 0.7180259882 51 0.71803

244.0465155 0.3652402401 64 0.36524

246.0621655 2.261060568 65 2.2611

256.1195972 0.4290301518 55 0.42903

258.1352473 0.3358267929 38 0.33583

318.0624763 0.3558278528 80 0.35583

320.0781263 0.3459573031 131 157 0.18525 0.1607

333.0733753 1.170057696 93 77 0.9874 0.18266

335.0890254 1.751048884 78 132 1.6093 0.14174

348.0842743 0.4018061355 85 0.40181

350.0999244 4.38361709 86 4.3836

352.1155745 0.4145152322 97 0.41452

352.1407266 0.3900780858 22 0.39008

485.1795717 0.3226983921 23 1 0.18582 0.13687

486.1635873 2.571618507 130 24 154 2.0479 0.51313 0.010561

503.1901364 4.963398041 0 4.9634

504.19796099486 4.963398041

energy1

30.03382555 0.8332515186 89 0.83325

55.02907452 3.30223967 53 3.3022

57.04472458 1.146599965 54 1.1466

90.03413627 0.9862407869 42 0.98624

109.0508726 1.38332795 16 1.3833

124.0617716 0.8003629309 14 0.80036

125.0457872 1.130019032 8 15 1.1222 0.0078051

134.0461215 1.725656392 6 1.7257

Page 185: QSAR-QMMM Cryptographic Mining on Chern- Simons

134.0712737 2.838200914 31 2.8382

135.0301371 4.298096788 7 9 2.9621 1.336

136.0869237 6.293153997 30 6.2932

138.1025738 1.597738093 29 1.5977

152.0566862 50.40516444 5 50.405

167.0927374 2.408083132 40 2.4081

169.1083875 0.8953113338 39 0.89531

225.0773981 0.8913538224 57 0.89135

227.0930481 2.510142602 49 2.5101

229.1086982 1.412732227 50 1.4127

237.0773981 0.8789623209 61 0.87896

239.0930481 1.734393206 58 1.7344

241.1086982 2.964325457 32 2.9643

242.1039472 0.6675279668 48 0.66753

244.0465155 0.7821951272 64 0.7822

253.1086982 0.8259693476 34 0.82597

254.1039472 0.8025430704 60 0.80254

256.1195972 1.747998078 55 1.748

258.1352473 1.394974344 38 1.395

446.1686726 0.6524683206 127 0.65247

472.1479372 0.6531930434 121 0.65319

474.1635873 1.10962513 125 1.1096

486.1635873 0.9281489958 130 24 154 0.82151 0.091657 0.014982

504.19796099486 0.9281489958

energy2

15.02292652 0.9631940764 104 0.96319

30.03382555 2.183392012 89 2.1834

45.04472458 0.8713630772 10 0.87136

55.02907452 2.652991481 53 2.653

57.04472458 1.167959916 54 1.168

77.01342445 0.9866217004 115 0.98662

80.04947561 3.118089353 102 3.1181

82.03997355 1.498767106 18 1.4988

82.06512568 2.769281666 99 2.7693

83.06037464 0.6499641349 100 0.64996

101.0137352 0.7462997821 56 0.7463

103.0293852 0.9310038166 44 0.931

105.0450353 0.6698317619 45 0.66983

Page 186: QSAR-QMMM Cryptographic Mining on Chern- Simons

107.0352225 2.818555232 17 2.8186

108.0192381 1.986002639 12 1.986

108.0556236 0.6387170465 108 0.63872

109.0508726 3.789738017 16 3.7897

110.0348882 4.094508706 13 4.0945

117.0450353 0.6218431989 27 0.62184

122.0712737 1.993087401 101 1.9931

125.0457872 3.663488942 8 15 3.1939 0.46954

134.0461215 5.489591485 6 5.4896

134.0712737 4.032973122 31 4.033

135.0301371 14.10296777 9 7 9.8482 4.2547

136.0869237 4.625228599 30 4.6252

138.1025738 1.33819799 29 1.3382

150.0410362 3.075093176 19 3.0751

152.0566862 25.91603659 5 25.916

178.0359508 0.8719036982 66 0.8719

246.0621655 0.9856692923 65 0.98567

352.1407266 0.7476372137 22 0.74764

504.19796099486 0.7476372137

Fragments Generated

Structure ID Mass SMILES

0 503.1901364 CN1CC12CC(ONN1C[P]1(CN)C

Page 187: QSAR-QMMM Cryptographic Mining on Chern- Simons

1 485.1795717 CN1CC12CC(ONN1C[P]1(C=C

2 158.1036364 [NH3+]C1NC2N=CNC2C(O)N1

3 156.0879864 [NH3+]C1NC2N=CN=C2C(O)N

4 154.0723363 [NH3+]C1NC(=O)C2=NC=NC2

Page 188: QSAR-QMMM Cryptographic Mining on Chern- Simons

5 152.0566862 [NH3+]C1=NC(=O)C2=NC=NC

6 134.0461215 [NH2+]=C1N=CC2=NC=NC2=N

7 135.0301371 [OH+]=C1N=CN=C2N=CN=C21

8 125.0457872 NC1=NC(=O)C(=[NH2+])C=N1

Page 189: QSAR-QMMM Cryptographic Mining on Chern- Simons

9 135.0301371 [NH+]#CN=C1N=CN=C1C=O

10 45.04472458 NC=[NH2+]

11 43.02907452 [NH+]#CN

12 108.0192381 N=C1N=CN=C1C#[O+]

Page 190: QSAR-QMMM Cryptographic Mining on Chern- Simons

13 110.0348882 [NH2+]=C1N=CN=C1C=O

14 124.0617716 NC(=[NH2+])N=C1C=NC=N1

15 125.0457872 N=C1N=CN=C1C([NH3+])=O

16 109.0508726 [NH+]#CNC1C=NC=N1

Page 191: QSAR-QMMM Cryptographic Mining on Chern- Simons

17 107.0352225 [NH+]#CN=C1C=NC=N1

18 82.03997355 [NH2+]=C1C=NC=N1

19 150.0410362 [NH3+]C1=NC(=O)C2=NC=NC

20 133.0144871 N#CN=C1N=CN=C1C#[O+]

Page 192: QSAR-QMMM Cryptographic Mining on Chern- Simons

21 350.1250765 CN1CC12CC(O[NH2+]N1C[P]1(

22 352.1407266 CN1CC12CC(O[NH2+]N1C[P]1(

23 485.1795717 CN1CC12CC(ONN1C[P]1(C=C

24 486.1635873 CN1CC12CC(O[NH2+]N1C[P]1(

Page 193: QSAR-QMMM Cryptographic Mining on Chern- Simons

25 270.1352473 CN1CC12CC(O[NH2+]N1C[P]1(

26 104.0497863 C[P]1(C[NH3+])C=N1

27 117.0450353 C[P]1(C#N)CN1[NH3+]

28 119.0606854 C[P]1(C=N)CN1[NH3+]

Page 194: QSAR-QMMM Cryptographic Mining on Chern- Simons

29 138.1025738 [CH4+]N1CC12CC=C1NCN12

30 136.0869237 [CH4+]N1CC12CC=C1N=CN12

31 134.0712737 [CH2+]N1CC12CC=C1N=CN12

32 241.1086982 C=[P]1CN1[NH2+]OC1=C2NCN

Page 195: QSAR-QMMM Cryptographic Mining on Chern- Simons

33 243.1243482 C=[P]1CN1[NH2+]OC1CC2(CN

34 253.1086982 CN1CC12CC([O+]=NN1C[P]1(C

35 268.1195972 CN1CC12CC(O[NH2+]N1C[P]1(

36 266.1039472 CN1CC12CC(O[NH2+]N1C[P]1(

Page 196: QSAR-QMMM Cryptographic Mining on Chern- Simons

37 236.0778156 [NH3+]C1=NC(O)=C2N=CN(C3=

38 258.1352473 CN1CC12CC(O[NH2+]N1C[PH

39 169.1083875 CN1CC12CC(O[NH3+])=C1NC

40 167.0927374 CN1CC12CC(O[NH3+])=C1N=

Page 197: QSAR-QMMM Cryptographic Mining on Chern- Simons

41 88.01848621 [NH2+]=C[P]1=NC1

42 90.03413627 [NH3+]C[P]1=NC1

43 92.04978634 [NH3+]C[PH]1CN1

44 103.0293852 N=C=[P]1CN1[NH3+]

Page 198: QSAR-QMMM Cryptographic Mining on Chern- Simons

45 105.0450353 NC=[P]1CN1[NH3+]

46 107.0606854 NC[PH]1CN1[NH3+]

47 140.1182239 [CH4+]N1CC12CCC1NCN12

48 242.1039472 NC[PH]1CN1[NH2+]OC1=C2N

Page 199: QSAR-QMMM Cryptographic Mining on Chern- Simons

49 227.0930481 CN1CC12CC(O[NH2+]N1C[PH

50 229.1086982 CN1CC12CC(O[NH2+]N1C[PH

51 184.1192865 CN1CC12CC(ON=[NH2+])C1N

52 182.1036364 CN1CC12CC(ON=[NH2+])=C1

Page 200: QSAR-QMMM Cryptographic Mining on Chern- Simons

53 55.02907452 C1=NC=[NH+]1

54 57.04472458 C1=[NH+]CN1

55 256.1195972 CN1CC12CC(O[NH2+]N1C[PH

56 101.0137352 N#C[P]1=CN1[NH3+]

Page 201: QSAR-QMMM Cryptographic Mining on Chern- Simons

57 225.0773981 CN1CC12CC(O[NH2+]N1C=[P

58 239.0930481 C=[P]1CN1[NH2+]OC1=C2N=C

59 63.02323724 [NH3+]C=[PH2]

60 254.1039472 CN1CC12CC(O[NH2+]N1C[P]1=

Page 202: QSAR-QMMM Cryptographic Mining on Chern- Simons

61 237.0773981 C=[P]1CN1N=[O+]C1=C2N=CN

62 252.0882971 CN1CC12CC(O[NH2+]N1C[P]1=

63 250.072647 CN1CC12CC([O+]=NN1C[P]1=

64 244.0465155 [CH+]=C1OC(N2C=NC3=C(O)N

Page 203: QSAR-QMMM Cryptographic Mining on Chern- Simons

65 246.0621655 C=C1OC(N2C=NC3=C(O)N=C(

66 178.0359508 NC1=NC(O)=C2N=CN(C#[O+])

67 216.0516009 C#COC(=[CH+])N1C=NC2=C(O

68 218.0672509 C#COC(=C)N1C=NC2=C(O)N=

Page 204: QSAR-QMMM Cryptographic Mining on Chern- Simons

69 248.0778156 CC1OC(N2C=NC3=C(O)N=C([

70 250.0934657 CC1OC(N2C=NC3=C(O)N=C([

71 220.082901 C=COC(=C)N1C=NC2=C(O)N=

72 252.1091157 CC1OC(N2C=NC3=C(O)NC([N

Page 205: QSAR-QMMM Cryptographic Mining on Chern- Simons

73 254.1247658 CC1OC(N2C=NC3C2NC([NH3+

74 171.1240375 CN1CC12CC(O[NH3+])C1NCN

75 153.0770873 [NH3+]OC1=C2NCN2C2(C=N2)

76 165.0770873 CN1CC12CC([O+]=N)=C1N=C

Page 206: QSAR-QMMM Cryptographic Mining on Chern- Simons

77 333.0733753 NC[P]1(C=C2OC(N3C=NC4=C

78 335.0890254 NC[P]1(C=C2OC(N3C=NC4=C

79 308.0781263 [NH3+]C1=NC(O)=C2N=CN(C3=

80 318.0624763 C[P]1(C=C2OC(N3C=NC4=C(O

Page 207: QSAR-QMMM Cryptographic Mining on Chern- Simons

81 337.1046754 NC[P]1(CC2OC(N3C=NC4=C(O

82 339.1203255 NC[P]1(CC2OC(N3C=NC4=C(O

83 154.0974884 CN1CC12CC(=[OH+])C1NCN12

84 152.0818384 CN1CC12CC(=[OH+])C1N=CN

Page 208: QSAR-QMMM Cryptographic Mining on Chern- Simons

85 348.0842743 N=C[P]1(C=C2OC(N3C=NC4=C

86 350.0999244 NC[P]1(C=C2OC(N3C=NC4=C

87 115.0293852 [CH2+][P]1(C#N)CN1N

88 18.03382555 [NH4+]

Page 209: QSAR-QMMM Cryptographic Mining on Chern- Simons

89 30.03382555 C=[NH2+]

90 319.0577252 NN1C[P]1=C=C1OC(N2C=NC3=

91 321.0733753 NN1C[PH]1C=C1OC(N2C=NC3=

92 323.0890254 NN1C[PH]1CC1OC(N2C=NC3=

Page 210: QSAR-QMMM Cryptographic Mining on Chern- Simons

93 333.0733753 C[P]1([C+]=C2OC(N3C=NC4=C

94 180.0516009 [NH3+]C1=NC(O)=C2N=CN(C=

95 322.1050098 C=C(OC#C[P]1(CN)CN1N)N1C

96 29.01342445 N#[NH+]

Page 211: QSAR-QMMM Cryptographic Mining on Chern- Simons

97 352.1155745 NC[P]1(CC2OC(N3C=NC4=C(O

98 124.0869237 C1=C2NC[NH+]2C2(CN2)C1

99 82.06512568 CN1CC1=C=[CH3+]

Table6. Peak Table and Roccustyrna Fragment Structures

Page 212: QSAR-QMMM Cryptographic Mining on Chern- Simons

a

b

c

Page 213: QSAR-QMMM Cryptographic Mining on Chern- Simons

Figure5. Roccustyrna active fragments CN1CC12CC(ONN1C[P]1(CN)Cc1oc(-n3cnc4c3[nH]c

([NH3+])nc4=O)cc1O)=C1NCN12 smiles prediction correlation analysis. (Figure5a) Roccustyrna

CN1CC12CC([O+]=NN1C[P]1(C)C)=C1N=CN12 active fragment. (Figure5b) Roccustyrna

[NH3+]C1=NC(O)=C2N=CN(C3=CC(=O)CO3)C2N1 recored fragment. (Figure5c)

N#CN=C1N=CN=C1C#[O+] active fragment.

In this project, we implemented Quantum Heuristic Fragmentation Algorithms for the merging

and recoring of the hit selected Drug Pair interactions by using Quantum Hamiltonians for the

=γB⋅ (Sˆ1+Sˆ2) +Iˆ⋅A⋅Sˆ2 (equation52), Sˆi= (σx,σy,σz) Iˆρs (t) = TrI (U (t) ρ (0) U† (t))

(equation52) ,ρI (0) =I/2P (t′) =d M (t′) (equation53) M=f (t′) dt′, (equation54)

ρ¯s=∫−∞0f (t′) ρs (t′) (equation55) dt′=∫0∞f (t) ρs (t) dt,∫−∞0f (t′)

(equation56)dt=∫0f(t)dt=1ρ¯sρ¯sρ¯sρ¯(equation57)s(,π/2)ρ¯sρs(0)ρ¯s (equation58)

,QFI≈∑i=01Re (ρi12) 2 (1ρi11+1ρi22) + (ρi11−ρi22) 2 ρi11+ρi22 (equation59) ,ρ1ij=〈φi 〈1 ρs

(0) φj〉1〉ρ (equation60) 0ij=〈φi 〈0 ρs (0) φj〉 0〉 0〉 1〉 (equation23-55) H1=γB0⋅Sˆ1

Re (ρi12) ρi12ρs (0) ρ¯s (equation21-45) S〉=12 (〉−01〉) 30%ρs (equation59) ρ¯s=H⊗m

0〉⊗m=H⊗H⊗⋯⊗H 00⋯0=12 (0+ 1) ⊗12 (0+ 1) ⊗⋯⊗12 (0+) =12m (00⋯0〉+00⋯1〉)

+⋯+ (11⋯1) equation (60). (Figure2a) Electrostatic CoMFA analysis of the contact residues of

the best docking poses of the contact merged chemical residues of the entire Roccustyrna

chemical structure when docked onto the SARS-COV-2 protein targets of (pdb:3fqq) hits the

positively charged groups and red regions favored by negatively charged groups within the

sequence of the binding domain of the amino acid of the V-S-HIS-159, V-S-ARG-16, V-S-ARG-

112, V-M-GLU-148, V-M-PHE-15, V-S-PHE-15, V-S-HIS-159, V-M-TYR-161 with the docking

energy values of the (-101, - 14.0762, -5.11094, -7.98447, -4.17314, -4.43549, -9.66939, -

9.42926, -7.30085) Kcal/mol/A. (Figure2b) Other QSAR/CoMFA contour map experiments of

electrostatic regions of the binding interaction of the entire pharmacophoric residues of the

Roccustyrna chemical design when docked onto the SARS-COV-2 protein binding sites of the

electrostatic surface view of active site pocket of its active contact residues of the Roccustyrna

small molecule when docked onto the SARS-COV-2 protein targets of (pdb:6xs6), interacted

negatively with all the charged groups of the sequence of the amino acid of the V-M-LYS-557,

V-S-LYS-557, V-M-ARG-567, V-M-ASP-568, V-S-ASP-574, V-S-PHE-43, V-M-ARG-44, V-

M-SER-45, V-S-SER-45 with the docking energy values of the -85.8, and (-5.56004, -5.0011, -

8.38956, - 5.77168, -6.13664, - 12.8661, -5.37546, -6.10391, -5.00928) Kcal/mol respectively.

(Figure2c) Moreover, Cluster of the QSAR/QMMM/CoMFA map analysis of electrostatic

regions around the contact residues of the Roccustyrna small molecule when docked onto the

SARS-COV-2 protein targets of (pdb:2ghv). (green, favored; yellow; disfavored) around the

entire Roccustyrna chemical structure regions has shown that our innovative drug design

generated negatively charged groups within the sequence of the amino acid of the H-M-ASN-33,

H-S-ASN-33, H-S-TYR-356, H-M-ASN-424, V-M-ASN-33, V-M-ALA-331, V-M-THR-332, V-

Page 214: QSAR-QMMM Cryptographic Mining on Chern- Simons

S-THR-332, V-S-TYR-356, V-S-TRP-423, V-S-ILE-428, V-S-ARG-495 with the docking energy

values of the -104.7 and-3.45708, -3.5, - 3.97711, -3.5, -5.33228, -6.79753, -7.9376, - 6.69969, -

12.2528, -7.66989, -8.15072, -7.00332Kcal/mol respectively. The Roccustyrna small molecule

hits also the entire binding domains of the SARS-COV-2 protein targets of (pdb:6w9c) within the

sequence of the amino acid of the V-S-PRO-59, V-S-ARG-65, V-M-THR-75, V-S-THR-75, V-

M-PRO-77, V-S-PRO-77, V-M-HIS-47, V-S-HIS-47 with the docking energies of the -83.9, -

4.21999, -12.6164, -7.60372, -6.69528, -5.89416, - 6.40663, - 5.51621, -7.99273. (Figure2e) As

illustrated in the (Figure3) the Roccustyrna small molecule generated also negative docking

energy values with a potential inhibitory effect when docked against the sequence of the amino

acids of the protein targets of (PDB: 6YI3) of the N-terminal RNA-binding domain of the SARS-

CoV-2 nucleocapsid phosphoprotein which is essential for linking the viral genome to the viral

membrane. (Figure4d), (Figure4e) In this project for the first time we generated a Comparative

Docking Cluster Analysis between the Remdesivir and our prototype Roccustyrnasmall molecule

when docked onto the SARS-COV-2 protein targets of (pdb:7bv2), with the docking energy

values of the (Num_Members = 40, Total_Energy = 2.103, vdW = -5.122, Coulomb = - 4.977,

Internal = 12.203, rmsd = 3.183 and $Number of Clusters = 10, $Seed = -1985, $Leader_Info 1 {

Num_Members = 63 Total_Energy = -0.883, vdW = -6.041, Coulomb = -7.045, Internal =

12.203, rmsd = 0.000) respectively. (Figure3). A quantum distribution correlation similarity

analysis was implemented regarding the Roccustyrna active fragments of the: 20107.0352225

(NH+) #CN=C1C=NC=N12182. 03997355 (NH2+) =C1C=NC=N122150.

Page 215: QSAR-QMMM Cryptographic Mining on Chern- Simons

Figure6. In Silico Radar ADMET analysis of the smiles of Roccustyrna small molecules of

S=[C]1=N[C@H]2N(N1)N2P(=O)(N1O/C/1=C/1\N[C](=NN1N)=S)OC(=O)c1ncn(n1)c1 M

oc(c(c1F)F)F.NCN(C(=[N]=C(N)N)C)OCc1oc(c(c1O)O)n1cnc(n1)C(=O)NP(=O)(Nn1cn IL

c2c1nc(N)[nH]c2=O)NC(=O)c1cncc(n1)F.N/C=N/C(=N/NP(=O)(N1CC1)NC(=O)c1nn(c

E 2c1[nH]c(N)nc2=O)C(=O)/C=N/C(=N)F)/CN

S

Physicochemical Properties

Formula C48H49F5N44O17P3S2

Molecular weight 1766.23 g/mol

Page 216: QSAR-QMMM Cryptographic Mining on Chern- Simons

Num. heavy atoms 119

Num. arom. heavy atoms 44

Fraction Csp3 0.15

Num. rotatable bonds 31

Num. H-bond acceptors 45

Num. H-bond donors 20

Molar Refractivity 421.86

TPSA 938.78 Ų

Lipophilicity

Log Po/w (iLOGP) 0.00

Log Po/w (XLOGP3) -3.94

Log Po/w (WLOGP) -8.15

Log Po/w (MLOGP) -0.95

Log Po/w (SILICOS-IT) -8.31

Consensus Log Po/w -4.27

Water Solubility

Log S (ESOL) -6.54

Solubility 5.14e-04 mg/ml ; 2.91e-07 mol/l

Class Poorly soluble

Log S (Ali) -15.18

Solubility 1.17e-12 mg/ml ; 6.65e-16 mol/l

Class Insoluble

Log S (SILICOS-IT) -2.61

Solubility 4.31e+00 mg/ml ; 2.44e-03 mol/l

Class Soluble

Pharmacokinetics

GI absorption Low

BBB permeant No

P-gp substrate Yes

Page 217: QSAR-QMMM Cryptographic Mining on Chern- Simons

CYP1A2 inhibitor No

CYP2C19 inhibitor No

CYP2C9 inhibitor No

CYP2D6 inhibitor No

CYP3A4 inhibitor No

Log Kp (skin permeation) -19.87 cm/s

Figure6. Radar ADMET analysis of the GissitorviffirnaTM, Roccustyrna_gs1 and Roccustryrna_fr1 small

molecule fragments of 0410362 (NH3+) C1=NC (=) C2=NC=NC2= N123133.014487

N#CN=C1N=CN=C1 C# (O+), and 24354.1563766CNC1 (C) C=C (O (NH2) N2C (P) 2

(C=C2OC=CC2=O) CN) C2NCN2 125356.1720267CNC1 (C) CC (O (NH2+) N2C (P) 2

(C=C2OC=CC2=O) CN) C2NCN21. Geometrical descriptors of the Roccustyrna small molecule were

calculated as follows, Dreiding energy = 287,17 kcal/mol MMFF94 energy = 234,59 kcal/mol, Minimal

projection area = 63,36, Maximal projection area = 133,25, Minimal projection radius = 6,25, Maximal

projection radius = 9,68, Length perpendicular to the max area = 8,32, Length perpendicular to the min

area = 19,36, van der Waals volume = 440,91.

Figure7. 3D Docking comparative interactions analysis between our RoccustyrnaTM, GisitorviffirnaTM, AND

innovative chemical structures, and the Amprenavir, Asunaprevir, Atazanavir, Boceprevir, Cytarabine,

Darunavir, Ritonavir, Sorivudine, Taribavirin, Tenofovir, Valganciclovir, Vidarabine, Lopinavir, Sofosbuvir,

Zanamivir, Penciclovir, Nelfinavir, Merimepodib, Maribavir, Indinavir, Inarigivir, Galidesivir, Famciclovir,

Faldaprevir FDA approved antiviral drugs when docked onto the SARS-COV-2 protein binding sites of the (PDB:

6M2Q) SARS-CoV-2 3CL protease (3CL pro) apo structure (space group C21) protein targets.

#Ligand TotalEnergy VDW AverConPair

Page 218: QSAR-QMMM Cryptographic Mining on Chern- Simons

6m2q-Roccustyrna_fr1-0.pdb -896.465 -896.465 10.058

6m2q-Roccustyrna_fr2-0.pdb -798.627 -798.627 165.152

6m2q-Roccustyrna_fr4-0.pdb -785.438 -785.438 151.111

6m2q-Roccustyrna_fr5-0.pdb 348.743 348.743 794.118

6m2q-Roccustyrna_fr6-0.pdb -904.774 -904.774 173.421

6m2q-Roccustyrna_fr7-0.pdb -846.778 -846.778 210.286

6m2q-Zanamivir_CID_60855-0.pdb -613.535 -613.535 166.522

6m2q-Vidarabine_CID_21704-0.pdb -661.163 -661.163 230.526

6m2q-Valganciclovir_CID_135413535-0.pdb 198.156 198.156 22.84

6m2q-Tenofovir_CID_464205-0.pdb -638.549 -638.549 215.789

6m2q-Taribavirin_CID_451448-0.pdb -606.346 -606.346 222.353

6m2q-Sorivudine_CID_5282192-0.pdb 820.449 820.449 18.05

6m2q-Sofosbuvir_CID_45375808-0.pdb 296.684 296.684 188.056

6m2q-Ritonavir_CID_392622-0.pdb 155.543 155.543 8.8

6m2q-Penciclovir_CID_135398748-0.pdb -69.663 -69.663 251.111

6m2q-Nelfinavir_CID_64143-0.pdb 487.507 487.507 25.95

6m2q-Merimepodib_CID_153241-0.pdb -821.219 -821.219 160.606

6m2q-Maribavir_CID_471161-0.pdb -720.599 -720.599 204.167

6m2q-Lopinavir_CID_92727-0.pdb 353.779 353.779 178.261

6m2q-Indinavir_CID_5362440-0.pdb -920.937 -920.937 184.889

6m2q-Inarigivir_CID_6912016-0.pdb -904.684 -904.684 144.359

6m2q-Galidesivir_CID_10445549-0.pdb -700.417 -700.417 221.579

6m2q-Famciclovir_CID_3324-0.pdb 484.732 484.732 217.391

6m2q-Faldaprevir_CID_42601552-0.pdb 196.047 196.047 150.175

6m2q-Darunavir_CID_213039-0.pdb -811.094 -811.094 134.211

6m2q-Cytarabine_CID_6253-0.pdb -590.168 -590.168 223.529

6m2q-Boceprevir_CID_10324367-0.pdb 242.807 242.807 15

6m2q-Atazanavir_CID_148192-0.pdb 290.66 290.66 193.137

6m2q-Asunaprevir_CID_16076883-0.pdb -797.693 -797.693 133.529

6m2q-Amprenavir_CID_65016-0.pdb -813.987 -813.987 162.571

6m2q-GissitorviffirnaTM1-0.pdb -70.081 -70.081 216.818

6m2q-GissitorviffirnaTM4-0.pdb -69.95 -69.95 22.8

6m2q-GissitorviffirnaTM6-0.pdb 166.473 166.473 140.256

6m2q-GissitorviffirnaTM7-0.pdb -790.107 -790.107 135.789

6m2q-GissitorviffirnaTM8-0.pdb -731.542 -731.542 154.737

6m2q-GissitorviffirnaTM9-0.pdb -842.045 -842.045 187.353

6m2q-Roccustyrna_gs1-0.pdb 261.182 261.182 138.043

6m2q-Roccustyrna_gs2-0.pdb -690.297 -690.297 235.263

6m2q-Roccustyrna_gs3-0.pdb 204.639 204.639 182.766

6m2q-Roccustyrna_gs4-0.pdb -334.177 -334.177 898.039

6m2q-Roccustyrna_gs5-0.pdb 100.983 100.983 10.5

6m2q-Roccustyrna_gs6-0.pdb -635.585 -635.585 24

6m2q-Roccustyrna_gs8-0.pdb 306.373 306.373 12.74

Table7. 3D Docking comparative interactions analysis between our RoccustyrnaTM, GisitorviffirnaTM, AND

innovative chemical structures, and the Amprenavir, Asunaprevir, Atazanavir, Boceprevir, Cytarabine,

Darunavir, Ritonavir, Sorivudine, Taribavirin, Tenofovir, Valganciclovir, Vidarabine, Lopinavir, Sofosbuvir,

Page 219: QSAR-QMMM Cryptographic Mining on Chern- Simons

Za

na

miv

ir, Pe

nciclo

vir, N

elfin

av

ir, Me

rime

po

dib

, Ma

riba

vir, Ind

ina

vir, In

arig

ivir, G

alid

esivir, F

am

ciclovir,

Fa

lda

pre

vir F

DA

ap

pro

ve

d a

ntivira

l dru

gs w

he

n d

ock

ed

on

to th

e S

AR

S-C

OV

-2 p

rote

in b

ind

ing

sites o

f the

(PD

B:

6M

2Q

) SA

RS

-Co

V-2

3C

L pro

tea

se (3

CL p

ro) a

po

structu

re (sp

ace

gro

up

C2

1) p

rote

in ta

rge

ts.

Compound Energy V-M-ARG-4 V-S-ARG-4 V-S-MET-6 V-M-ALA-7 V-S-PHE-8 V-M-GLY-11 V-M-LYS-12 V-S-LYS-12 V-M-GLU-14 V-S-GLU-14 V-M-GLY-15 V-M-THR-24 V-S-THR-24 V-M-THR-25 V-S-THR-25 V-M-THR-26 V-S-THR-26 V-M-VAL-35 V-S-VAL-35 V-S-ARG-40 V-S-HIS-41 V-M-THR-45 V-M-SER-46 V-S-SER-46 V-S-MET-49 V-M-ASN-53 V-S-ASN-53 V-S-TYR-54 V-M-ALA-70 V-M-GLY-71 V-M-ASN-95 V-S-LYS-97 V-M-PRO-99 V-S-LYS-102 V-S-VAL-104 V-M-ILE-106 V-S-GLN-V-M-PRO-108 V-M-GLY-109 V-S-GLN-110 V-M-THR-111 V-S-ASN-119 V-M-GLY-124 V-S-TYR-126 V-M-GLN-127 V-M-CYS-128 V-S-ARG-131 V-S-LYS-137

V-M-LEU-141 V-M-ASN-142 V-S-ASN-142 V-M-GLY-143 V-M-ASN-151 V-S-ASN-151 V-M-ILE-152 V-M-ASP-153 V-S-ASP-153 V-S-SER-158 V-M-MET-165 V-S-MET-165 V-M-GLU-166 V-S-GLU-166 V-M-LEU-167 V-S-PRO-168 V-M-GLU-178 V-M-VAL-186 V-S-VAL-186 V-S-ARG-188 V-M-GLN-189 V-S-GLN-189 V-M-THR-190 V-S-TRP-218 V-M-LEU-220 V-M-ASN-221 V-S-PHE-223 V-M-TYR-237 V-S-TYR-237 V-S-TYR-239 V-M-ASP-245 V-S-ASP-245 V-S-HIS-246 V-S-ILE-249 V-M-GLU-270 V-S-GLU-270 V-S-LEU-271 V-M-LEU-272 V-M-GLN-V-M-ASN-274 V-S-ASN-274 V-M-GLY-275 V-M-MET-276 V-M-ASN-277 V-S-ASN-277 V-M-GLY-278 V-M-LEU-286 V-S-LEU-286 V-M-LEU-287 V-S-LEU-287

V-S-ASP-289 V-S-GLU-290 V-S-THR-292 V-S-PRO-293 V-M-PHE-294 V-S-PHE-294 V-S-ARG-298 V-M-GLN-299 V-S-GLN-299 V-M-GLY-302 V-M-VAL-303 V-M-PHE-305

6m2q-Roccustyrna_-90.5 0 0 0 0 0 0 0 0 0 0 0 -2.87935 -0.529074 -3.51266 -3.5922 -4.10917 -0.719914 0 0 0 -3.84686 -0.276282 -0.642568 -1.43099 -3.98787 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-0.451496 -2.23583 -4.22963 -3.68157 0 0 0 0 0 0 -3.9472 0.211286 -8.89846 -5.24092 -4.15427 -2.87172 0 0 0 -0.00690109 -3.237 -10.3415 -0.990351 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

6m2q-Inarigivir_CI-90.5 0 0 0 0 0 -7.13319 -8.63323 -7.20816 -6.80714 -3.57075 -10.1047 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -4.93369 -7.2226 0 -11.3565 -1.44027 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

6m2q-Roccustyrna_-89.6 0 0 0 0 0 0 0 0 0 0 0 -1.98723 -0.278337 -0.946134 -2.78597 -3.94421 -5.31202 0 0 0 -0.64407 -3.97099 -7.14354 -5.91313 -1.2806 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -4.39335 0 0 0 0 0 0

0 -7.07452 -11.543 -5.53585 0 0 0 0 0 0 -0.050443 -0.737757 -3.51037 -0.866247 -1.37021 -0.35976 0 0 0 0 -1.65578 -9.59949 -0.964387 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Page 220: QSAR-QMMM Cryptographic Mining on Chern- Simons

0 0 0 0 0 0 0 0 0 0 0 0

6m2q-Roccustyrna_-84.7 0 0 0 0 0 0 0 0 0 0 0 -0.0876324 0 -0.312066 -2.71207 0 0 0 0 0 2.38328 -3.54187 -1.48477 -2.50829 -5.29044 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-4.78827 -5.08366 -4.06546 -2.49952 0 0 0 0 0 0 -4.04094 -3.6595 -2.92451 -3.90575 -4.08514 -3.92728 0 0 0 0 -3.95094 -6.65001 -4.0581 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

6m2q-Gissitorviffir-84.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.0219373 -5.71748 -2.23393 0 0 0 0 0 0 0 0.316286 -5.09256 -5.16688 0 -10.5765 -10.0025 -10.5057 -4.29954 -6.20993 -5.33533 -0.551299 -3.67294 -5.90643

0 0 0 0 0 0 0 0 0 0 0 0

6m2q-Merimepodib-82.1 0 0 0 0 -0.0861605 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.886482 -8.1141 -0.276713 0 0 -0.0812439 -10.6628 -1.93055 0 0 0 0 0 0 0

0 0 0 0 -2.10565 -5.04765 -1.97855 -1.1228 -3.28251 -4.60448 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.904346 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 -5.54066 -1.17273 -1.6893 -14.757 -0.0385549 0 0 0 0 0

6m2q-Amprenavir_-81.4 0 0 0 0 0 0 0 0 0 0 0 -5.04575 -4.4302 -4.34891 -7.79059 -4.80026 -0.260657 0 0 0 -7.4183 -4.63071 -4.63598 -6.91298 -5.0064 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 -2.12988 -2.54871 -3.00985 0 0 0 0 0 0 -1.6828 -3.19974 -1.58255 -0.240563 0 0 0 0 0 0 0 -0.123525 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Page 221: QSAR-QMMM Cryptographic Mining on Chern- Simons

0 0 0 0 0 0 0 0 0 0 0 0

6m2q-Darunavir_CI-81.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -5.31524 -5.75459 -3.86039 -6.14452 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -5.7236 -10.2459 -6.40052 -5.88465 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 -3.0809 -1.76363 -0.264194 -1.10617 0 0 0 0 0 0

6m2q-Roccustyrna_-79.9 0 0 0 0 0 0 0 0 0 0 0 -0.211447 0 -0.0937198 -0.512844 -3.88526 -2.93824 0 0 0 -3.34287 0 -0.0269276 -0.735353 -1.51787 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -3.09987 0 0 0 0 0 0

-2.99572 -10.6364 -14.711 -6.8497 0 0 0 0 0 0 -4.8447 -2.91536 0.405668 -6.63266 -0.290715 0 0 0 0 0 0 -0.16998 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

6m2q-Asunaprevir_-79.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -6.19077 0 0 0 0 0 -3.31295 -3.87184 -4.42949 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -5.97064 -6.14425 -6.33367 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

6m2q-Gissitorviffir-79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -4.28876 -7.21787

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -4.84006 -3.91257 -8.48405 0 0 0 0 0 0 0 -1.20189 0 0 0 0 0 0 0 0 -3.25965 -13.9575 -5.40413 -4.07674

Page 222: QSAR-QMMM Cryptographic Mining on Chern- Simons

-3.7543 -5.76288 0 0 0 0 0 0 0 0 0 0

6m2q-Roccustyrna_-78.5 0 0 0 0 -0.638299 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.31144 -0.0514715 -0.147752 -9.93502 -2.29848 0 0 0 0 0 0 0

0 0 0 0 0 -3.82007 -0.0890266 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.0478743 0 -0.0340477 -11.0289 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 -6.52591 -2.27583 -4.28224 -23.4296 -3.48124 0 0 0 0 0

6m2q-Gissitorviffir-73.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -5.55374 -0.975548

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.23242 -2.97356 -6.81173 0 0 0 0 0 0 -0.0562892 -4.98051 -0.587768 -1.14426 0 -5.22218 -1.3223 0 0 0 -1.1748 -4.79124 -5.45496 1.69259

-4.27677 -0.180851 0 0 0 0 0 0 0 0 0 0

6m2q-Maribavir_CI-72.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -9.0624 -4.26297 -6.7864 -10.8963 -0.164318 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.0607019 0 -6.00362 -4.43336 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 -5.1465 -4.10565 -0.66867 -3.38723 0 0 0 0 0 0

6m2q-Gissitorviffir-70.1 0 0 0 0 0 0 0 0 0 0 0 -0.450267 -0.0433907 -1.37877 -4.22458 -2.50338 0 0 0 0 -5.32492 -2.33614 -3.58156 -3.19234 -3.16916 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-3.67339 -5.78232 -6.23111 -4.6025 0 0 0 0 0 0 -0.671733 0 -2.00331 -3.29369 0 0 0 0 0 0 0 -1.00875 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Page 223: QSAR-QMMM Cryptographic Mining on Chern- Simons

0 0 0 0 0 0 0 0 0 0 0 0

6m2q-Galidesivir_C-70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -3.71799 -0.0333726 -0.3857 -0.0522733 -5.22778 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-3.88469 -2.68637 -3.90668 -0.502134 0 0 0 0 0 0 -5.89299 -4.26295 -9.94526 -8.96677 -0.077165 0 0 0 0 0 -1.2797 -4.4996 -0.0432443 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

6m2q-Gissitorviffir-69.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.607555 0 0 0 0 0 -6.65742 -2.22777 -3.45288 -1.75183 -7.7266 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-5.20093 -3.98583 -3.2353 -0.833559 0 0 0 0 0 0 -3.40084 -0.981759 -5.61166 -7.23048 -0.0264801 0 0 0 0 0 -0.276563 -3.05404 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

6m2q-Penciclovir_-69.7 0 0 -12.4732 -4.09227 -6.03014 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 -0.328634 -7.77163 -7.93937 -4.17092 -4.2593 -5.42043

6m2q-Roccustyrna_-69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -5.82461 -0.757696 -1.7461 -0.780025 -6.55173 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-4.73791 -3.40386 -3.8955 -0.456717 0 0 0 0 0 0 -4.03645 -2.46936 -5.38666 -7.82316 0 0 0 0 0 0 -0.984527 -4.56819 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Page 224: QSAR-QMMM Cryptographic Mining on Chern- Simons

0 0 0 0 0 0 0 0 0 0 0 0

6m2q-Vidarabine_C-66.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -7.29969 -0.254505 -0.286456 -0.110354 -2.46322 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-6.35815 -4.5503 -7.02546 -1.14006 0 0 0 0 0 0 -4.44717 -2.32022 -5.33089 -7.81442 0 0 0 0 0 0 0 -0.144579 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

6m2q-Tenofovir_CI-63.9 0 0 0 0 -2.97927 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.349829 -1.11711 0 0 0 0 0 0 0

0 0 0 0 -1.19365 -5.00693 -4.28977 -3.11708 -6.50517 -0.227442 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 -1.87105 0 -4.50592 -8.17173 -12.984 0 0 0 -0.0452377 -1.84953

6m2q-Roccustyrna_-63.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -5.55183 -5.18071 -5.67415 -4.27178 0 0 0 0 0 0 0 -4.60782 -7.12919 -4.66495 -0.06306 0 -2.35944 -4.48676 -0.39117 -2.39752 -0.823018 1.75363 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

6m2q-Zanamivir_CI-61.4 0 0 0 0 -2.24458 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2.13436 -0.152847 0 0 0 -4.35175 -0.414901 0 0 0 0 0 0 0

0 0 0 0 -2.10569 -9.85621 -3.4622 -3.55843 -6.6748 -1.89346 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Page 225: QSAR-QMMM Cryptographic Mining on Chern- Simons

0 0 -2.06484 0 -1.73379 -8.77754 -4.49842 0 0 0 0 -2.12198

6m2q-Taribavirin_C-60.6 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.000743897 -0.174816 -0.605839 0 0 0 0 -1.21484 0 0 -0.0543274 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-5.22701 -9.38156 -10.606 -5.96108 0 0 0 0 0 0 -1.80761 -0.0254513 -4.98824 -6.06612 -0.0524583 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

6m2q-Cytarabine_C-59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.472347 0 0 0 -0.958172 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 -0.0535053 -1.13731 0 0 0 0 0 0 0 -2.9335 -5.18858 -1.88828 -4.32936 -3.92384 -5.45818 0 -0.0145075 0 0 -7.08701 -11.9257 -5.65589 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

6m2q-Roccustyrna_-3.3 0 0 0 0 0 -4.22085 -1.0112 -0.45354 -5.55968 14.282 -3.80849 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -6.08478 0 0 0 0 0 0 0 0 0 0 -4.45881 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

6m2q-Ritonavir_CI15.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.0269973 0 0 0 0 0 -4.37203 -11.0911 -0.380874 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.00115596 -2.05462 -3.35561 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Page 226: QSAR-QMMM Cryptographic Mining on Chern- Simons

0 0 0 0 0 0 0 0 0 0 0 0

6m2q-Famciclovir_48.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -5.6647 -5.48808 -2.44468 0 0 -4.47605 -0.975993 0 0 0 0 0 0 0

0 0 0 0 -2.58219 17.849 -0.301247 0 0 -0.38039 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

6m2q-Sorivudine_C82 -8.67017 -9.06009 78.2817 -0.743337 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 -2.26525 20.8228 0 0 0

6m2q-Faldaprevir_196 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.245983 -4.49999 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.61055 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -4.17841 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

6m2q-Valganciclovi198.2 -0.288226 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -5.23501 -4.71514 -4.17242 -0.688774 -3.04955

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.600947 -0.629094 0

Page 227: QSAR-QMMM Cryptographic Mining on Chern- Simons

-2.11472 55.0766 0 0 0 0 0 0 0 0 0 0

6m2q-Boceprevir_C242.8 0 0 0 0 -1.33003 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.969924 -0.390909 -0.0786541 -0.650866 122.445 -5.69257 0 0 0 0 0 0 0

0 0 0 0 -0.0634971 -6.73564 -0.344458 -0.68431 4.44103 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.57945 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 -2.80008 0 -4.91192 156.593 -5.29847 0 0 0 0 -0.0332345

6m2q-Atazanavir_C290.7 0 0 -0.00099206 0 6.23035 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12.0328 -2.9458 0 0 0 0 -1.08278 -5.30747 0 0 0 -0.183286 -0.433929 0 0

0 0 0 0 -4.4992 17.9128 -8.60519 -4.75176 -7.71874 122.939 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 -1.70459 0 -2.18654 39.9542 28.7952 0 0 0 0 -0.628527

6m2q-Sofosbuvir_C296.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.342949 0 0 0 0 0 0 0 0 0 0 0 0 -6.78122 -0.192318 -5.90921 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

6m2q-Lopinavir_CI353.8 0 0 0 0 0 33.9738 -0.156013 -1.83496 -7.48691 -7.07572 108.911 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.0483832 -1.32576 -3.1827 48.4176 -1.30946 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Page 228: QSAR-QMMM Cryptographic Mining on Chern- Simons

0 0 0 0 0 0 0 0 0 0 0 0

6m2q

-N

elfi

navi

r_C

I48

7.5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -4.1

7982

43

.799

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

Table8. 3D Docking comparative interactions analysis between our RoccustyrnaTM, GisitorviffirnaTM, AND

innovative chemical structures, and the Amprenavir, Asunaprevir, Atazanavir, Boceprevir, Cytarabine,

Darunavir, Ritonavir, Sorivudine, Taribavirin, Tenofovir, Valganciclovir, Vidarabine, Lopinavir, Sofosbuvir,

Zanamivir, Penciclovir, Nelfinavir, Merimepodib, Maribavir, Indinavir, Inarigivir, Galidesivir, Famciclovir,

Faldaprevir FDA approved antiviral drugs when docked onto the SARS-COV-2 protein binding sites of the (PDB:

6M2Q) SARS-CoV-2 3CL protease (3CL pro) apo structure (space group C21) protein targets inside the

sequence of V-M-ARG-4, V-S-ARG-4, V-S-MET-6, V-M-ALA-7, V-S-PHE-8, V-M-GLY-11, V-M-LYS-12, V-S-LYS-12, V-M-GLU-14, V-S-GLU-14, V-M-GLY-15, V-M-THR-24, V-S-THR-24, V-M-THR-25, V-S-THR-25, V-M-THR-26, V-S-THR-26, V-M-VAL-35, V-S-VAL-35, V-S-ARG-40, V-S-HIS-41, V-M-THR-45, V-M-SER-46, V-S-SER-46, V-S-MET-49, V-M-ASN-53, V-S-ASN-53, V-S-TYR-54, V-M-ALA-70, V-M-GLY-71, V-M-ASN-95, V-S-LYS-97, V-M-PRO-99, V-S-LYS-102, V-S-VAL-104, V-M-ILE-106, V-S-GLN-107, V-M-PRO-108, V-M-GLY-109, V-S-GLN-110, V-M-THR-111, V-S-ASN-119, V-M-GLY-124, V-S-TYR-126, V-M-GLN-127, V-M-CYS-128, V-S-ARG-131, V-S-LYS-137, V-M-LEU-141, V-M-ASN-142, V-S-ASN-142, V-M-GLY-143, V-M-ASN-151, V-S-ASN-151, V-M-ILE-152, V-M-ASP-153, V-S-ASP-153, V-S-SER-158, V-M-MET-165, V-S-MET-165, V-M-GLU-166, V-S-GLU-166, V-M-LEU-167, V-S-PRO-168, V-M-GLU-178, V-M-VAL-186, V-S-VAL-186, V-S-ARG-188, V-M-GLN-189, V-S-GLN-189, V-M-THR-190, V-S-TRP-218, V-M-LEU-220, V-M-ASN-221, V-S-PHE-223, V-M-TYR-237, V-S-TYR-237, V-S-TYR-239, V-M-ASP-245, V-S-ASP-245, V-S-HIS-246, V-S-ILE-249, V-M-GLU-270, V-S-GLU-270, V-S-LEU-271, V-M-LEU-272, V-M-GLN-273, V-M-ASN-274, V-S-ASN-274, V-M-GLY-275, V-M-MET-276, V-M-ASN-277, V-S-ASN-277, V-M-GLY-278, V-M-LEU-286, V-S-LEU-286, V-M-LEU-287, V-S-LEU-287, V-S-ASP-289, V-S-GLU-290, V-S-THR-292, V-S-PRO-293, V-M-PHE-294, V-S-PHE-294, V-S-ARG-298, V-M-GLN-299, V-S-GLN-299, V-M-GLY-302, V-M-VAL-303, V-M-PHE-305 amino acids respectively.

Page 229: QSAR-QMMM Cryptographic Mining on Chern- Simons

Figure8. 3D Cluster WEIGHT Docking interactions between our RoccustyrnaTM, and GisitorviffirnaTM drug

design novelties, and the Amprenavir, Asunaprevir, Atazanavir, Boceprevir, Cytarabine, Darunavir, Ritonavir,

Sorivudine, Taribavirin, Tenofovir, Valganciclovir, Vidarabine, Lopinavir, Sofosbuvir, Zanamivir, Penciclovir,

Nelfinavir, Merimepodib, Maribavir, Indinavir, Inarigivir, Galidesivir, Famciclovir, Faldaprevir FDA approved

antiviral drugs when docked onto the SARS-COV-2 protein binding sites of the (PDB: 6WOJ) Structure of the

SARS-CoV-2 macrodomain (NSP3) in complex with ADP-ribose.

Compound

Energy

V-M-ALA-21

V-M-ASP-22

V-S-ASP-22

V-M-GLU-25

V-S-GLU-25

V-M-ALA-38

V-M-ALA-39

V-S-ASN-40

V-M-TYR-42

V-M-GLY-46

V-M-GLY-47

V-M-GLY-48

V-M-VAL-49

V-S-VAL-49

V-M-ALA-50

V-M-GLY-51

V-M-ALA-52

V-S-LEU-53

V-M-VAL-95

V-S-VAL-95

V-M-VAL-96

V-M-PRO-98

V-S-VAL-100

V-S-ASN-101

V-S-LEU-109

V-S-PRO-125

V-M-LEU-126

V-S-LEU-126

V-M-SER-128

V-M-ALA-129

V-M-GLY-130

V-M-ILE-131

V-S-ILE-131

V-S-PHE-132

V-M-GLY-133

V-M-ALA-134

V-S-PRO-136

V-M-SER-139

V-M-ALA-154

V-M-VAL-155

V-S-VAL-155

V-M-PHE-156

V-S-PHE-156

V-M-ASP-157

V-M-LEU-160

V-S-LEU-160

V-M-GLU-120

cav6woj_APR-GissitorviffirnaTM9-0.pdb

-112

0 0 0 0 0 -5.45066

-3.24616

-2.12515

0 -3.31307

-8.69666

-10.8875

-3.21412

-2.5302

-1.15984

-0.0838635

0 0 0 0 0 0 0 0 0 -2.01281

-1.78023

-0.810807

-4.1486

-7.1094

-12.7642

-8.13623

-14.8247

-5.81068

0 0 0 0 -0.0344631

0 0 0 -0.461158

0 0 0 -1.8155

cav6woj_APR-Roccustyrna_fr1-0.pdb

-95

-0.499451

-2.14494

-4.60272

0 -1.29206

0 0 0 0 -0.578232

-9.29736

-8.67008

-0.572708

0.132344

-0.100561

0 0 0 0 0 0 0 0 -5.11636

0 0 0 0 0 -1.24865

-7.6031

-7.62001

-4.78245

-0.482689

0 0 0 0 0 0 0 -3.31983

-18.0795

0 0 0 -9.9299

cav6woj_APR-Roccustyrna_fr7-0.pdb

-95

0 0 0 0 0 -3.78706

-0.0129269

0 0 0 -0.114183

-10.467

-1.01842

0.972955

-0.826127

0 0 0 0 0 0 0 0 0 0 -3.7901

-5.54019

-1.9808

-3.82486

-7.02123

-5.8733

-8.21611

-8.75605

-3.86488

0 0 -0.940241

0 -1.55814

-1.85367

-2.29631

-0.607041

-1.18495

-0.037696

-0.0236378

-1.34136

-7.09042

cav6woj_APR-Penciclovir_CID_13539

-94.3

0 0 0 0 0 -6.481

-4.66458

-4.55201

0 -3.92781

-2.30872

-2.68187

-1.790

-0.941

-0.954324

-0.083637

0 0 0 0 0 0 0 0 0 -0.259011

0.4697

-0.122866

-5.65449

-4.137

-7.674

-6.63743

-10.81

-11.7162

0 0 0 0 0 0 0 0 0 0 0 0 -0.009918

Page 230: QSAR-QMMM Cryptographic Mining on Chern- Simons

8748-0.pdb

72

41

718

1 49

53

8 42

54

cav6woj_APR-GissitorviffirnaTM8-0.pdb

-92.4

-0.22592

-0.595418

-1.682

0 0 0 0 0 0 0 -2.20231

-7.1882

-6.15086

-5.71433

0 0 -0.0723372

0 0 0 0 0 0 -1.88312

0 -1.62

-4.31046

1.23696

0 -3.20237

-10.4839

-8.24676

-6.60007

0 -0.110233

0 -1.35918

0 -2.08943

-1.89629

-1.6383

-2.24909

-13.9983

-0.331961

0 -2.32159

-1.00482

cav6woj_APR-Merimepodib_CID_153241-0.pdb

-91.7

0 0 -0.0800009

0 0 -9.61486

-3.05012

-2.01459

0 -3.85626

-4.48912

-11.2649

-2.89315

-7.33389

-2.43114

-0.511464

-0.249879

0 0 0 0 0 0 0 0 -0.353855

-1.01675

-0.367546

-2.49073

-4.35181

6.18967

-2.7423

-6.38446

-6.83267

-0.112024

0 0 0 0 0 0 0 -10.0569

0 0 0 -5.62841

cav6woj_APR-Roccustyrna_fr2-0.pdb

-89.9

-0.0172945

-0.446074

-8.15764

-0.326277

-3.31993

0 0 0 0 0 -1.37235

-6.12249

-6.04153

-4.81033

0 0 0 0 0 0 0 0 0 0 0 -1.33542

-3.48218

-1.22165

-0.0583203

-3.34365

-3.28774

-0.0885185

0 0 0 0 -0.57156

0 -1.12189

-2.61664

-2.61406

-1.86263

-23.3286

-3.17616

-0.251728

-3.55889

-3.53947

cav6woj_APR-Darunavir_CID_213039-0.pdb

-89.8

-0.307245

-1.92942

-3.61818

0 0 -0.323732

0 0 0 0 -1.94206

-7.73104

-5.35504

-0.960825

-0.0290978

0 -0.104763

0 0 0 0 0 0 -0.0561518

0 -2.35165

-3.59863

-2.45508

-0.628769

-2.1649

-5.33

-8.02544

-7.79767

-0.233586

0 0 0 0 -3.15086

-1.33954

-2.89619

-2.9239

-16.4116

-0.38132

0 -1.06141

0.943236

cav6woj_APR-Maribavir_CID_471161-0.pdb

-86.2

-1.00467

-2.57998

3.9513

0 0 -1.52129

0 0 0 0 -3.37406

-11.1517

-8.39544

-9.39289

-0.441268

0 0 0 0 0 0 0 0 0 0 -2.94024

-2.41609

-0.614994

-0.810008

-3.6262

-5.95623

-2.69741

-4.12865

0 0 0 0 0 -1.19596

-1.22848

-0.0104166

-1.71345

-11.4266

0 0 0 -2.59576

cav6woj_APR-Roccustyrna_fr6-0.pdb

-86

0 -0.252674

-5.57936

0 0 -3.93996

-0.398492

0 0 -0.0236598

-3.83878

-9.04196

-6.47521

-1.38396

-0.696988

-0.0092343

-0.411276

0 0 0 0 0 0 0 0 -1.53641

-2.29396

-0.264407

-0.56042

-4.45543

-3.95417

-4.31167

-4.40544

-2.01668

0 0 -0.0187488

0 0 0 0 -0.0879569

-15.7482

0 0 -0.270812

-5.62181

cav6woj_APR-Taribavirin_CID_451448-0.pdb

-85.9

0 0 0 0 0 -6.80772

-3.58097

-2.00991

0 -3.28321

-2.5895

-7.27828

-4.02912

-2.47247

-2.02374

-0.500549

0 0 0 0 0 0 0 0 0 -1.12236

-2.01158

0 -2.79021

-2.5348

-7.59212

-3.63573

-11.1718

-8.42333

0 0 0 0 0 0 0 0 0 0 0 0 -0.281915

cav6woj_APR-GissitorviffirnaTM7-0.pdb

-85.3

-1.30848

-2.02276

-1.61075

0 0 0 0 0 0 0 -1.00658

-4.38099

-4.18381

-6.33665

-0.0381085

0 0 0 0 0 0 0 0 -0.0369719

0 -2.84297

-3.27362

-1.24568

0 -5.93997

-4.39751

-5.56414

-4.48988

0 0 0 0 0 0.755838

-3.09611

-0.382719

-3.31739

-10.483

-0.192669

0 -1.0478

-9.4801

cav6woj_APR-Roccustyrna_fr4-0.pdb

-85

0 0 0 0 0 3.7126

2.29833

-4.90604

0 -2.9388

-6.62262

3.45746

-6.42592

-3.40811

-4.76923

-0.831777

0 0 -0.0298277

0 0 0 0 -0.553399

0 -0.00993214

-0.165047

0 -2.21835

-1.51001

-9.42568

-13.9858

-8.85348

-7.66944

-0.296584

0 0 0 0 0 0 0 -0.945278

0 0 0 -5.70837

cav6woj_APR-Cytarabine_CID_6253-0.pdb

-83.7

0 0 0 0 0 -6.2089

-2.91831

-1.06417

0 -0.114319

-1.1394

-6.81735

-4.2640

-3.3716

-0.724242

0 0 0 0 0 0 -0.0290674

0 0 0 -1.29427

-2.3312

-0.198951

-3.83183

-4.8053

-8.3589

-6.98769

-9.2076

-9.90638

-0.111781

0 0 0 0 0 0 0 -0.3230

0 0 0 -0.400825

Page 231: QSAR-QMMM Cryptographic Mining on Chern- Simons

5 5 6 2 7 7 3 35

cav6woj_APR-Indinavir_CID_5362440-0.pdb

-83.5

-3.38985

-4.71835

-11.7638

0 -6.61065

0 0 0 0 0 -4.17736

-6.22603

-4.26165

-2.51875

-0.243172

-2.68408

-7.62613

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.206667

0 0 0 0 0 0 -0.223116

0 -3.74599

-15.581

-0.154166

0 0 -2.64577

cav6woj_APR-Roccustyrna_gs2-0.pdb

-81.6

-0.201795

-0.00487581

0 0 0 -3.74364

-0.0627882

0 0 0 -0.0758614

-2.52114

-1.91376

-4.38224

-0.197411

0 0 0 0 0 0 0 0 0 0 -4.11955

-1.99222

-3.93928

-3.94167

-5.78303

-6.55353

-2.62321

-1.83984

-1.63656

0 0 -0.114078

0 -3.23063

-4.90879

-4.01332

-2.6914

-5.96161

-1.30822

0 -2.39407

0

cav6woj_APR-GissitorviffirnaTM4-0.pdb

-79

0 0 0 0 0 -4.611

-0.552741

-0.0134168

0 0 -0.331059

-3.74085

-2.39331

-2.04816

-0.144139

0 0 0 0 0 0 -0.0875171

0 0 0 -0.486828

-2.82795

-0.543842

-3.85836

-8.05377

-12.8401

-6.87267

-6.69179

-6.80777

-0.0372318

0 -1.05608

0 0 0 0 0 -2.79321

0 0 -1.74158

-2.75199

cav6woj_APR-Vidarabine_CID_21704-0.pdb

-78.8

-0.0152624

0 0 0 0 -3.64629

-0.180381

0 0 0 -0.489829

-5.55704

-4.80412

-4.33173

-0.553868

0 0 0 0 0 0 -0.0537051

0 0 0 -2.19579

-3.3057

-0.254568

-5.12314

-5.0137

-8.51175

-5.37501

-4.79796

-4.51998

-0.061227

0 0 0 -0.895784

-1.27234

-0.751755

-0.931623

-5.2123

-0.0578401

0 -0.227952

-0.971364

cav6woj_APR-Inarigivir_CID_6912016-0.pdb

-77.8

0 0 0 0 0 -0.970973

0 0 0 -2.2486

-11.7109

-9.51113

-2.95038

-2.56777

-0.0350476

0 0 0 0 0 0 0 0 0 0 -1.55435

0.491206

-0.676131

-2.77909

-6.97904

-9.44561

-4.46889

-12.5884

0 0 0 0 0 0 0 0 0 -1.60485

0 0 0 -3.87491

cav6woj_APR-Tenofovir_CID_464205-0.pdb

-77.6

-1.2058

-2.06761

-2.68887

0 0 -0.140397

0 0 0 0 -0.122922

-4.45224

-6.00585

-4.38653

-0.136193

0 -0.515009

0 0 0 0 0 0 0 0 -4.33137

-5.33672

-1.85759

-0.948029

-2.79739

-2.35373

-0.517945

0 0 0 0 0 0 -3.76271

-3.96738

-1.98265

-3.17041

-9.8918

-0.183826

0 -0.566906

-0.228985

cav6woj_APR-Roccustyrna_gs6-0.pdb

-77.2

0 0 0 0 0 -6.75074

-1.40041

-0.144082

0 -1.83227

-1.66542

-7.56815

-3.07245

-1.66824

-2.70361

-0.564273

0 0 0 0 0 -0.0864584

0 0 0 -2.61025

-6.15036

-1.14965

-5.77829

-6.76436

-6.98188

-4.60644

-6.7997

-3.96676

-0.276087

0 0 0 -0.0850909

0 0 0 0 0 0 -0.100607

0

cav6woj_APR-Zanamivir_CID_60855-0.pdb

-74.1

0 0 -0.112928

0 0 -0.793229

0 0 0 0 -1.073

-6.8749

-4.61339

-5.49594

-0.177625

0 0 0 0 0 0 0 0 0 0 -0.714401

-5.03313

-2.74561

-1.02823

-6.67568

-5.75396

-3.70388

-3.03519

-0.118913

0 0 0 0 -1.87913

-1.91266

-1.56327

-0.791004

-6.69262

-0.00685414

0 -1.14547

-4.75171

cav6woj_APR-Asunaprevir_CID_16076883-0.pdb

-73.5

-1.92635

-4.45476

-8.27504

0 -1.53663

0 0 0 0 0 -2.36508

-7.57871

-7.75624

1.70199

-0.1315

-0.26485

-2.5391

0 0 0 0 0 0 0 0 -1.00662

-0.215698

0 0 -0.818343

-2.7357

-0.985248

-0.913257

0 0 0 0 0 -0.907888

-0.532723

0 -3.22943

-19.5193

-0.139691

0 0 -4.36504

cav6woj_APR-Galidesivir_CID_10445

-73.2

-0.428957

-0.323407

-0.047391

0 0 -2.168

-0.089361

0 0 0 -0.703729

-6.80784

-6.319

-8.096

-0.526057

0 0 0 0 0 0 0 0 0 0 -3.90148

-4.894

-0.679966

-0.29925

-1.709

-6.425

-2.69804

-3.486

0 0 0 0 0 -2.21382

-2.715

-1.08058

-2.05353

-7.666

-0.115086

0 -0.295834

-0.514787

Page 232: QSAR-QMMM Cryptographic Mining on Chern- Simons

549-0.pdb

2 73

1 55

42

26

18

98

73

43

42

cav6woj_APR-GissitorviffirnaTM1-0.pdb

-72.5

-0.0274366

0 0 0 0 0 0 0 0 0 -2.03273

-3.26947

-2.30684

-2.3182

0 0 0 0 0 0 0 0 0 0 0 -1.01803

-2.69285

-2.45825

0 -2.58492

-6.94717

-3.03395

-3.97602

0 0 0 -0.603048

0 -1.81086

-3.42501

-3.53165

-3.11449

-9.69987

-2.86976

-0.312091

-1.8143

-7.52363

cav6woj_APR-Amprenavir_CID_65016-0.pdb

-70.6

-0.811329

-0.932358

-0.262404

0 0 -0.254768

0 0 0 0 -0.537801

-1.22089

-1.31504

-4.45217

0 0 0 0 0 0 0 0 0 0 0 -2.95799

-3.73864

-0.950636

-1.12983

-8.64743

-2.30487

-3.99638

-2.71413

0 0 -0.125167

-2.63918

0 1.30777

-3.48926

-1.36581

-3.08904

-6.50587

-0.300595

-1.14468

-5.38448

-2.97603

cav6woj_APR-GissitorviffirnaTM6-0.pdb

16.6

0 0 0 0 0 0 0 0 0 -2.37623

-6.36254

-0.934651

0 0 -4.51999

-9.85382

-1.72477

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

cav6woj_APR-Sofosbuvir_CID_45375808-0.pdb

26.6

0 0 -0.0632174

0 0 0 0 0 0 0 -6.11419

9.97304

4.33305

-1.95246

-0.311435

-0.0441573

0 0 0 0 0 0 0 0 0 -0.842923

-2.16328

-0.0152884

-2.30097

-2.27397

20.1425

-1.51722

0.089863

-0.209088

-0.0355249

0 0 0 -0.00982016

0 0 0 -6.37784

0 0 0 3.36963

cav6woj_APR-Roccustyrna_gs1-0.pdb

34.6

0 0 0 0 0 0 0 0 0 -14.4882

-5.74571

-0.0922689

0 0 -0.906712

-5.70865

-0.301635

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

cav6woj_APR-Ritonavir_CID_392622-0.pdb

47

0 -0.0669971

-0.78844

-4.16081

-1.70729

0 0 0 0 0 0 0 0 0 0 -0.0667458

-4.56667

-4.79085

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

cav6woj_APR-Roccustyrna_fr3-0.pdb

49.5

0 0 0 0 0 0 0 -3.00544

-3.45936

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.24133

0 0 0 0 0 0 0 0 0 0 0 0 0

cav6woj_APR-Valganciclovir_CID_135413535-0.pdb

55

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -4.24546

-5.34311

0 -4.63433

0 0 0 -2.43154

-1.0729

0 0 0 -0.0238878

-1.89503

3.22384

-0.32382

-2.61615

0 0 0 0 0 0 0 0 0

cav6woj_APR-Atazanavir_CID_148192-0.pdb

66.1

0 0 0 0 0 -0.778602

-2.64872

35.6718

-0.026968

-1.31625

-3.78574

-0.0229089

0 0 0 0 0 0 0 0 0 0 0 -2.81243

0 0 0 0 0 0 0 -7.19103

7.9128

21.9853

0 0 0 0 0 0 0 0 0 0 0 0 0

cav6woj_APR-Famciclovir_CID_3324-0.pdb

92.3

-0.172868

-0.289718

-0.363288

0 0 55.602

-3.27348

-2.98531

0 2.21699

-0.902326

0.65942

24.4448

29.2332

-2.4276

-1.0472

0 0 -0.141787

0 0 0 0 0 0 -1.7409

0 0 0 -1.64897

14.4257

5.55591

-7.33829

-2.98441

0 0 0 0 -0.777264

-0.381344

0 -0.577691

-2.5848

0 0 0 -1.14554

cav6woj_APR-

10

0 0 0 0 0 -0.

4.40

-0.

-7.

0 0 0 0 0 0 0 0 0 -2.

-4.

-0.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Page 233: QSAR-QMMM Cryptographic Mining on Chern- Simons

Roccustyrna_gs4-0.pdb

5 408171

436

343623

93143

36598

79789

49109

cav6woj_APR-Sorivudine_CID_5282192-0.pdb

122.9

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.0723592

0 109.829

0 -1.4545

-1.04994

-4.11914

6.7022

-0.240763

0 0 0 -0.593111

-7.51596

-1.12367

-2.46467

0 0 0 0 0 0 0 0 0

cav6woj_APR-Lopinavir_CID_92727-0.pdb

141.5

0 0 0 0 0 0 -0.844793

49.7266

-0.565617

-0.949133

-0.315983

0 0 0 0 0 0 0 0 0 0 -0.496857

0 0 0 0 0 0 0 0 0 -2.09722

4.71042

22.8449

0 0 0 0 0 0 0 0 0 0 0 0 0

cav6woj_APR-Roccustyrna_gs5-0.pdb

166

0 0 0 0 0 0 -0.310687

-1.04208

-1.39938

0 0 0 0 0 0 0 0 0 -5.11384

26.0042

-11.0433

11.0952

0 0 -2.96081

0 0 0 0 0 0 0 0 -3.25508

0 0 0 0 0 0 0 0 0 0 0 0 0

cav6woj_APR-Boceprevir_CID_10324367-0.pdb

242.1

0 0 0 0 0 0 0 0 0 0 -0.20015

-0.59114

-0.526659

-0.765441

0 0 0 0 0 0 0 0 0 0 0 -0.288699

-0.323604

-1.13875

0 -3.10134

-8.15444

-1.22403

-0.581747

0 0 -0.0739684

-4.01016

0 -0.0552752

-1.48816

5.06275

-0.726264

-6.65868

-5.03676

-6.27592

130.101

130.702

cav6woj_APR-Nelfinavir_CID_64143-0.pdb

251.2

-0.16943

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.3637

-2.21881

-2.80155

0 0 0 0 0 0 0 0 -0.146732

-0.0621755

34.4743

-0.489704

7.14971

-0.172407

0 0 -0.807997

-0.0590613

0

cav6woj_APR-Roccustyrna_fr5-0.pdb

385.4

0 0 0 0 0 -1.60246

0 0 0 2.3018

66.9159

13.2475

-3.15663

-3.37526

-0.401855

-0.396729

0 0 0 0 0 0 0 -0.690659

0 -2.43654

-3.10301

-0.747566

-1.09278

-11.7364

-4.54154

21.2671

227.058

-0.591028

0 -0.0166424

-0.240788

0 -0.0907856

0 -0.0979447

-0.21966

48.0638

-2.41229

-0.244191

-0.274423

52.3647

cav6woj_APR-Faldaprevir_CID_42601552-0.pdb

397.3

-2.34412

-2.38049

2.79959

0 0 0 0 0 0 -4.82006

161.061

26.6748

-3.54851

1.36176

0 -0.414779

-0.887489

0 0 0 0 0 0 0 0 -1.46753

-1.63524

-0.751698

0 -1.10995

-1.48616

-0.538171

13.3184

0 0 0 -0.054921

0 97.1579

49.6942

11.8577

-5.05695

80.0217

-0.8026

0 -1.35972

-7.9865

cav6woj_APR-Roccustyrna_gs8-0.pdb

589

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -3.15981

8.46744

0 113.988

0 -2.39706

-0.864114

16.3526

54.0638

-1.91284

0 0 -0.226768

-6.28885

28.0676

14.19

-6.22885

0 0 0 0 0 0 0 -0.0901261

0

cav6woj_APR-Roccustyrna_gs3-0.pdb

862.7

-4.28418

-3.31748

-2.54582

0 0 0 0 0 0 0 -0.0192858

-0.180167

0 -0.117594

0 0 0 0 0 0 0 0 0 0 0 0 -1.05474

-4.04351

-0.112858

-4.01836

24.9611

0.581227

-1.88049

0 0 0 -4.20004

0 -5.63014

31.5941

92.2819

115.765

298.253

26.1688

8.12764

232.956

4.5647

Page 234: QSAR-QMMM Cryptographic Mining on Chern- Simons

Table9. 3D Cluster WEIGHT Docking interactions between our RoccustyrnaTM, and GisitorviffirnaTM drug design novelties, and the Amprenavir, Asunaprevir, Atazanavir, Boceprevir, Cytarabine, Darunavir, Ritonavir, Sorivudine, Taribavirin, Tenofovir, Valganciclovir, Vidarabine, Lopinavir, Sofosbuvir, Zanamivir, Penciclovir, Nelfinavir, Merimepodib, Maribavir, Indinavir, Inarigivir, Galidesivir, Famciclovir, Faldaprevir FDA approved antiviral drugs when docked onto the SARS-COV-2 protein binding sites of the (PDB: 6WOJ) Structure of the SARS-CoV-2 macrodomain (NSP3) in complex with ADP-ribose inside the sequence of targeting V-M-ALA-21, V-M-ASP-22, V-S-ASP-22, V-M-GLU-25, V-S-GLU-25, V-M-ALA-38, V-M-ALA-39, V-S-ASN-40, V-M-TYR-42, V-M-GLY-46, V-M-GLY-47, V-M-GLY-48, V-M-VAL-49, V-S-VAL-49, V-M-ALA-50, V-M-GLY-51, V-M-ALA-52, V-S-LEU-53, V-M-VAL-95, V-S-VAL-95, V-M-VAL-96, V-M-PRO-98, V-S-VAL-100, V-S-ASN-101, V-S-LEU-109, V-S-PRO-125, V-M-LEU-126, V-S-LEU-126, V-M-SER-128, V-M-ALA-129, V-M-GLY-130, V-M-ILE-131, V-S-ILE-131, V-S-PHE-132, V-M-GLY-133, V-M-ALA-134, V-S-PRO-136, V-M-SER-139, V-M-ALA-154, V-M-VAL-155, V-S-VAL-155, V-M-PHE-156, V-S-PHE-156, V-M-ASP-157, V-M-LEU-160, V-S-LEU-160, V-M-GLU-120 amino acids.

Figure9. 3D Mapping of Docking interactions of GisitorviffirnaTM, Roccustyrna_gs1_TM, and

Roccustyrna_fr1_TM neoligands onto the PDB:7khp (Figure9A), PDB: 6WOJ (Figure9B), PDB: 7B3D

(Figure9C), PDB:6M2Q Figure9D), PDB:6LU7 (Figure9E), PDB: 6WZU (Figure9F), PDB:1XU9 (Figure9G),

PDB: 3TWU (Figure9H), PDB:7BEO (Figure9H), PDB:1XAK (Figure9I) protein targets.

Page 235: QSAR-QMMM Cryptographic Mining on Chern- Simons

(Figure4f), (Figure4g), (Figure4h) Finally, the Roccustyrna chemical structure generated an inhibitory

docking effect of high negative binding energy docking values of the -66,7 Kcal/mol when docked onto

the cav7bv2_POP binding domains within the amino acids of the V-M-LYS-551, V-S-LYS-551, V-S-

ARG-553, V-S-ASP-618, V-M-TYR-619, V-M-PRO-620 with the docking energy values of the (-

4.71516, -10.4842, -4.7999, - 6.65538, - 5.1339,-6.28532) Kcal/mol. (Figure5a),(Figure5b),(Figure5c),

(Figure6) On the other hand the Remdesivir drug when combined to the Roccustyrna small molecule

interacted at the same binding domains of the amino acids of the V-M-LYS-551, V-S-LYS-551, V-S-

ARG-553, V-S-ASP-618, V-M-TYR-619, V-M-PRO-620 with positive and zero docking values of the

+42.1, -0.104885, -0.19986, +25.0575, Kcal/mol. That means that the Remdesivir drug could induce the

COVID19 disease.

Discussions

In this article, we are improving the speed and accuracy and proposing an alternative topological quantum

computing optimization framework for the computation of topological invariants of knots, links, and

tangles through a discrete stochastic optimization multithreading procedure that uses nonlinear finite

element analysis and a ground structure approach, for quantum repeater networks, as applied to quantum

homology inspired Chern-Simons topology evolutionary scalable and fast fragmentation algorithm in

which the geometric concepts of proper time enter in the non-relativistic limit (20-38,39). (Figure2b),

(Figure2c). In this computer-aided drug designing project, we generated the GisitorviffirnaTM,

Roccustyrna_ gs1_TM, and Roccustyrna_fr1_TM PDB and MOL2 files which are consisting of the

merged pharmacophoric elements of the small molecule 2- ({[fluoro ({[ (2E) -5-oxabicyclo [2.1.0]pentan-

2-ylidene]cyano-lambda6-sulfanyl}) methyl]phosphorylidene}amino) -4,6-dihydro-1H-purin-6-one1Z)

-2-{ ((2S,3S,5R) -5- (2-amino-6-oxo -6,9-dihydro- 1H-purin-9-yl) -3-hydroxyoxolan-2yl)

methylidene}-2-cyano-1- ({ ((2S,4R,5R) -2-methyl-2- (methylamino) -1,6- diazabicyclo (3.2.0)

heptan-4-yl) oxy}imino) -1lambda5,2lambda5- azaphosphiridin-1-ylium. (Figure2d). (Figure1) (Scheme1).

The focus of this work is to develop a Quantum Heuristic Fragmentation driven Chern-Simons

fragmentation algorithm that is as independent to allow for a faster multi-cut solutions as possible from the

chosen pharmacophoric fragmentation scheme obtained by localization of the S3 partition function of {x

sin^ (-1) (sqrt (3)), x sin^ (-1) (sqrt (779) sqrt (θ^3)), x sin^ (-1) (2 sqrt (114109)), (sqrt (1 - sqrt (456457)

sqrt (x)) x^ (1/4) (2 sqrt (456457) sqrt (x) + 3)) / (8 456457^ (3/4)) + (x - 3/3651656) sin^ (-1) (456457^

(1/4) x^ (1/4)), 1/2 sqrt (x/456456754 - x^2) + (x - 1/912913508) sin^ (-1) (sqrt (456456754) sqrt (x)), x

sin^ (-1) (2^ (3/4) 57057^ (1/4)), x sin^ (-1) (sqrt (sum 444546 θ)) ,sin^ (-1) (2^ (3/4) 431683182057^

(1/4) sqrt (sqrt (θ) / (sin^ (-1) (44545545)))) } + constant 3d (equation61) N = 2 CS{θ sin^ (-1) (sqrt (3))

(equation62), θ sin^ (-1) (sqrt (779δυ = i¯ǫυ, (equation63) δ ¯υ = iǫ ¯ υ, (equation64) δυ = −γµǫDµυ – ǫ

(equation65) συ −if (ϑ) ǫυ + i¯ǫF, (equation66) δ ¯ υ = −γµ¯ǫDµ ¯υ − ¯υσ¯ǫ −if (ϑ) ¯υ¯ǫ + i ¯ Fǫ,

(equation67) δF = ǫ (−γµDµυ + συ + λυ) +i (if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B|∇ |2 −ΔKΣ(dt−asin2θdϕ)) 2f (ϑ) ǫυ,

(equation68) δ ¯ F = ¯ǫ (−γµDµ ¯ υ + ¯ υσ − ¯υ¯ λ) +i (if√(∣∣α1′(t)⟩CQ1t∣ϕ(t)⟩B|∇ |2 −ΔKΣ(dt−asin2θdϕ))

2f (ϑ) ¯ǫ ¯ υ,) sqrt (θ^3)) - 3/5 sqrt (779) θ sqrt (θ^3) 2F1 (1/2, 5/6, 11/6, 779 θ^3), 1/6 sqrt (1/49394 - 9 θ)

Page 236: QSAR-QMMM Cryptographic Mining on Chern- Simons

sqrt (θ) + (θ 1/889092) sin^ (-1) (3 sqrt (49394) sqrt (θ)), θ sin^ (-1) (sqrt (sin^ (-1) (44545545))) } +

constant (equations4-67) of new group contribution drug design methods. (32,35-38,40) For this reason,

the Roccustyrna multi- targeting pharmacophoric element for each Turing pattern was kept as simple as

possible and can be geometrically represented at a growing boundary as promising potent and selective

anti-viral inhibitor with rationally calculated logical atomic spaces and subatomic subspaces to Higgs

branch Representation allowing a vectorial negative docking energy representation against this drug target.

(20,25,26) Harmonic resonant excitation by picking up poles of the one-loop determinant and Quantum

principal analysis on flow-distributed oscillation waves and few chemical space Turing patterns were

applied at a growing boundary for the design of my novel multi-chemo-structure the Roccustyrna small

molecule against the crystal structure of COVID-19 main protease in a Lindenbaum-Tarski in a half

complex plane generated QSAR automating modeling lead compound design approach. Post-quantum

cryptography hopes to fix this problem by developing new cryptographic algorithms that rely on hard

problems that, to the best of our knowledge, a quantum computer cannot break. A side channel of a

cryptographic algorithm is a way to gather information besides looking at the encrypted data. In this hybrid

drug designing approach, we have designed the combination of GisitorviffirnaTM, Roccustyrna_gs1_TM,

and Roccustyrna_fr1_TM nano-structures by improving the speed and the accuracy of the known docking

protocols as represented a system of intrinsically positioned cables filtered before evaluation and triangular

bars kinematically stable and structurally valid symmetric formations of connected components, holes, and

voids jointed at their ends in the (Coulomb branch) localization formula for ZS3 by hinged connections to

form our combination of GisitorviffirnaTM, Roccustyrna_gs1_TM, and Roccustyrna_fr1_TM prototype

rigid chemical scaffolds with therapeutic potential against novel respiratory 2019 coronavirus in

comparative effectiveness persistent homologies by combined virtual screening and supervised machine

learning (19,21,24,41,42). It was also observed in this parallel docking energy analysis that our QMMM

designed Risitorviffirna interacted onto the (PDB:6WZU) protein targets with the highest docking energy

negative score when compared to other FDA-approved and experimental drugs.GisitorviffirnaTM neo-

ligand could also be hypothetically combined with Faldaprevir, Gemigliptin, Raltegravir, Ribavirin,

Eflornithine, Cycloserine, Azathioprine, Umifenovir, Darunavir, Baricitinib, Hydroxychloroquine,

Minocycline, Azithromycin, and the Linoleic acid, FDA approved drugs and the experimental

EIDD2801MK4482) small molecule but not with Minocycline, Azithromycin, Remdesivir, GC376,

Histrelin, Doxycycline, Cobicistat, Ritonavir, Colchicine, Bleomycin when targeted at the same

(PDB:6WZU) protein targets (Figure4a).

Conclusions

DNA-Protein-Ligand signatures in more general spacetimes enhanced by ZK-based proofs of nonlinear

dynamics may be extended to hyper-symmetric equations of Chern-Simons Topology driven motion of a

collection of nonlinearly-coupled remerging harmonic oscillators. Of special interest here may be

emerging pharmaceutical or medical applications, including medicinal products, gene therapy for

biological pacemakers (Farraha et al, 2018), and for the nervous system (Bowers et al, 2011). Certain

Page 237: QSAR-QMMM Cryptographic Mining on Chern- Simons

mathematical problems, such as factoring or discrete logarithms, have the property that solving them is

believed to be hard unless you have knowledge of some secret information: a secret key. This secret key

can be used in combination with a cryptographic algorithm to encrypt your internet traffic, payment

information, or messages such that only the owner (s) of the secret key can decrypt the information.

However, basing security on mathematics also introduces mathematical structure in encryptions and secret

keys. (Table6) Here, for the first time we have generated drug repositioning In-Silico approaches through

the example of two coupled Chern-Simons Topology driven anti-de Sitter black harmonic black-hole

oscillators and brane spacetimes against the COVID-19, not only for constructing, remerging and

generating chemical and physical small molecule libraries available through publically available web

servers, but also for the implementation of fragmentation and re-coring in-silico quantum phase

cryptographic experiments introducing new fragment-based machine-learning virtual screening

experiments and employing in-house ligand libraries applied for the design of a quantum thinking novel

multi-chemo-structure against the protein targets of COVID-19 main protease, the combination of

GisitorviffirnaTM, Roccustyrna_gs1_TM, and Roccustyrna_fr1_TM small molecules (scheme1) which is

the fusion product of such chemical space representations of negative energy selected representations as

merged into the connection form, (a+ℓ)ta+ℓ{1/12+(∣∣α1′(t)⟩CQ1 t∣ϕ(t)⟩B+∣α2′(t)⟩CQ2t∣ϕ(t)⟩B)}+

Fǫexp(iℏpˆ2A2mA +−1 2zEGk: 2zEG ⊗ 2zEG → ℝ (equation70) of the 6,9-dihydro-3H-purin loop group

(scheme2) (scheme3) (scheme4). By applying the Biogenetoligandorol accuracy (named EuTHTS

Euclidean Topology Virtual Screening) algorithm, a Gravitational Topological (UFs) based Quantum-

Parallel Particle Swarm Inspired framework was deployed by using 2D chemical features in which a

generalized procedure of Quantization of classical heuristic fields was be fused together with QSAR

automating modeling. I finally developed and implemented the two algorithms using natural Euclidean

Geometric Topologies and Artificial Intelligence-Driven Predictive Neural Networks, showing that it is

possible to well-defined surjective atom mapping and to automate phase group and ligand-based

fragmentations based on computed diagonal chemical descriptors. By identifying chemical patterns I made

use of partial small fragment derivatives with the additional MM-PBSA-WSAS binding free energy

calculation difficulties that the drug designs we deal with are not orthogonal. (30-42) Both Chern-Simons

theories and knot theory algorithms applied in this project into merged pharmacophoric groups.

Furthermore, the geometric topology-driven heuristic algorithms that were used in this project are capable

of fragmenting and remerging small molecules that could not be fragmented by the algorithm of any of the

known reference databases. (2,5-42) We have illustrated the power of such a Flexible heuristic algorithm

approach interpreted as a distinct quantum circuit, qubit preparations, and certain 1- and 2-qudit gates for

automatic molecule fragmentation in a meaningful application to Molecular epidemiology, evolution, and

phylogeny of SARS coronavirus components, such as qubits (scheme5). Our Biogenetoligandorol platform

also offers utility to researchers simply wishing to interrogate and organize generalized Hadamard where H

← [1 1; 1 −1]/2; (−1) (i, j) |j (2) (scheme6) and control-Z gates data, to create an inventory of available

numerical docking ∈{0,1,000,111}and b ∈{++++,−} (scheme7) data with particular clinical or genomic

features, of the shaded tangle into two-dimensional m ×m matrix I2 ←E (m) ; m2-dimensional vector

Page 238: QSAR-QMMM Cryptographic Mining on Chern- Simons

|Φ〉←I2 →; (*maximally matrix M1 ←I2 −M0; (equation6) (scheme8) entangled state*) (*m-

dimensional identity*) space such as available datasets or patients with particular mutations and calculate

the fusion of the combination of GisitorviffirnaTM, Roccustyrna_gs1_TM, and Roccustyrna_fr1_TM

cluster of active fragments as it can be applied which may be used to draw independently of its drug

identification Hilbert space CSG,k (S1 S ←X ⊗|0〉〈0| + C ⊗|1 W ←S (I ⊗H) M1; (equations7-70),

(scheme9), capabilities. (26,29-42) More specifically, in this project we implemented a Quantum principal

applied and a Kappa-Symmetry inspired Inverse Docking Algorithmic analysis with nonlinear

electrodynamics indicated that the combination of GisitorviffirnaTM, Roccustyrna_gs1_TM, and

Roccustyrna_fr1_TM small molecules generated the highest negative docking energy values when

virtually compared with Amprenavir, Asunaprevir, Atazanavir, Boceprevir, Cytarabine, Darunavir,

Ritonavir, Sorivudine, Taribavirin, Tenofovir, Valganciclovir, Vidarabine, Lopinavir, Sofosbuvir,

Zanamivir, Penciclovir, Nelfinavir, Merimepodib, Maribavir, Indinavir, Inarigivir, Galidesivir,

Famciclovir, Faldaprevir FDA approved antiviral drugs against the SARS-COV-2 protein binding sites of

the (PDB: 6M2Q) SARS-CoV-2 3CL protease (3CL pro) apo structure (space group C21) protein targets

inside the sequence of V-M-ARG-4, V-S-ARG-4, V-S-MET-6, V-M-ALA-7, V-S-PHE-8, V-M-GLY-11,

V-M-LYS-12, V-S-LYS-12, V-M-GLU-14, V-S-GLU-14, V-M-GLY-15, V-M-THR-24, V-S-THR-24, V-

M-THR-25, V-S-THR-25, V-M-THR-26, V-S-THR-26, V-M-VAL-35, V-S-VAL-35, V-S-ARG-40, V-S-

HIS-41, V-M-THR-45, V-M-SER-46, V-S-SER-46, V-S-MET-49, V-M-ASN-53, V-S-ASN-53, V-S-

TYR-54, V-M-ALA-70, V-M-GLY-71, V-M-ASN-95, V-S-LYS-97, V-M-PRO-99, V-S-LYS-102, V-S-

VAL-104, V-M-ILE-106, V-S-GLN-107, V-M-PRO-108, V-M-GLY-109, V-S-GLN-110, V-M-THR-111,

V-S-ASN-119, V-M-GLY-124, V-S-TYR-126, V-M-GLN-127, V-M-CYS-128, V-S-ARG-131, V-S-

LYS-137, V-M-LEU-141, V-M-ASN-142, V-S-ASN-142, V-M-GLY-143, V-M-ASN-151, V-S-ASN-

151, V-M-ILE-152, V-M-ASP-153, V-S-ASP-153, V-S-SER-158, V-M-MET-165, V-S-MET-165, V-M-

GLU-166, V-S-GLU-166, V-M-LEU-167, V-S-PRO-168, V-M-GLU-178, V-M-VAL-186, V-S-VAL-186,

V-S-ARG-188, V-M-GLN-189, V-S-GLN-189, V-M-THR-190, V-S-TRP-218, V-M-LEU-220, V-M-

ASN-221, V-S-PHE-223, V-M-TYR-237, V-S-TYR-237, V-S-TYR-239, V-M-ASP-245, V-S-ASP-245,

V-S-HIS-246, V-S-ILE-249, V-M-GLU-270, V-S-GLU-270, V-S-LEU-271, V-M-LEU-272, V-M-GLN-

273, V-M-ASN-274, V-S-ASN-274, V-M-GLY-275, V-M-MET-276, V-M-ASN-277, V-S-ASN-277, V-

M-GLY-278, V-M-LEU-286, V-S-LEU-286, V-M-LEU-287, V-S-LEU-287, V-S-ASP-289, V-S-GLU-

290, V-S-THR-292, V-S-PRO-293, V-M-PHE-294, V-S-PHE-294, V-S-ARG-298, V-M-GLN-299, V-S-

GLN-299, V-M-GLY-302, V-M-VAL-303, V-M-PHE-305. Αditionally, the same combination of drug

design novelties interacted with the highest docking energy values onto the binding sites of the (PDB:

6WOJ) Structure of the SARS-CoV-2 macrodomain (NSP3) in complex with ADP-ribose of the targeting

sequence of V-M-ALA-21, V-M-ASP-22, V-S-ASP-22, V-M-GLU-25, V-S-GLU-25, V-M-ALA-38, V-

M-ALA-39, V-S-ASN-40, V-M-TYR-42, V-M-GLY-46, V-M-GLY-47, V-M-GLY-48, V-M-VAL-49, V-

S-VAL-49, V-M-ALA-50, V-M-GLY-51, V-M-ALA-52, V-S-LEU-53, V-M-VAL-95, V-S-VAL-95, V-

M-VAL-96, V-M-PRO-98, V-S-VAL-100, V-S-ASN-101, V-S-LEU-109, V-S-PRO-125, V-M-LEU-126,

V-S-LEU-126, V-M-SER-128, V-M-ALA-129, V-M-GLY-130, V-M-ILE-131, V-S-ILE-131, V-S-PHE-

Page 239: QSAR-QMMM Cryptographic Mining on Chern- Simons

132, V-M-GLY-133, V-M-ALA-134, V-S-PRO-136, V-M-SER-139, V-M-ALA-154, V-M-VAL-155, V-

S-VAL-155, V-M-PHE-156, V-S-PHE-156, V-M-ASP-157, V-M-LEU-160, V-S-LEU-160, V-M-GLU-

120 amino acids respectively when compared with Amprenavir, Asunaprevir, Atazanavir, Boceprevir,

Cytarabine, Darunavir, Ritonavir, Sorivudine, Taribavirin, Tenofovir, Valganciclovir, Vidarabine,

Lopinavir, Sofosbuvir, Zanamivir, Penciclovir, Nelfinavir, Merimepodib, Maribavir, Indinavir, Inarigivir,

Galidesivir, Famciclovir, Faldaprevir FDA approved antiviral drugs while targeting the PDB:7khp

(Figure9A), PDB: 6WOJ (Figure9B), PDB: 7B3D (Figure9C), PDB:6M2Q Figure9D), PDB:6LU7

(Figure9E), PDB: 6WZU (Figure9F), PDB:1XU9 (Figure9G), PDB: 3TWU (Figure9H), PDB:7BEO

(Figure9H), PDB:1XAK (Figure9I) protein targets. It is probably true that the injudicious use involving the

management of these quantum ideas or points can cause problems, it is also true that they do and should

play an important role quantum mechanically in this drug discovery field (Figure7),(Table8),

(Figure8),(Table9).

Significant Statements

In this project I implemented Inverse Docking Algorithms with nonlinear electrodynamics for the

cryptographic designing of the combination of GisitorviffirnaTM, Roccustyrna_gs1_TM, and

Roccustyrna_fr1_TM ligands which generated the highest negative docking energies when

compared to other FDA approved small molecules onto the SARS-COV-2 protein targets by

solving Chern-Simons Topology Euclidean Geometrics in a Lindenbaum-Tarski equations (1-70)

based QSAR automating modeling for practical quantum computing, and Artificial Intelligence-

Driven Predictive Neural Networks.

• Availability of data and materials

The author confirms that the data supporting the findings of this study are available within

its supplementary materials.

• Competing interests

No potential competing interest was reported by the author.

• Funding

The author received no financial support for the research, authorship, and/or publication of

this article.

• Data Availability Statements

Page 240: QSAR-QMMM Cryptographic Mining on Chern- Simons

• Due to confidentiality agreements, data included in this research work have been

generated at Biogenea’s central large-scale facility Department of Biogeneto -

ligandorolQMMIDDD/QPRPICA/MACHNOT/ QIICDNNDCA

ADMET/QIICDNNDCA Stations, and are available upon request.

• Authors' contributions

Author's diverse contributions to the published work are accurate and agreed.

Author has contributed in the below multiple roles:

• Conceptualization of Ideas, Formulation or evolution of overarching research goals

and aims

• Methodology, Development and design of methodology, creation of models

Software, Programming, software development; designing computer programs;

implementation of the computer code and supporting algorithms; testing of existing

code components

• Validation, Verification, whether as a part of the activity or separate, of the overall

replication/reproducibility of results/experiments and other

• research outputs

• Formal analysis Application of statistical, mathematical, computational, or other

formal techniques to analyze or synthesize study data�

• Investigation, Conducting a research and investigation process, specifically

performing the experiments, or data/evidence collection

• Resources of study materials, reagents, materials, patients, laboratory samples,

animals, instrumentation, computing resources, or other analysis tools

• Data Curation, Management activities to annotate (produce metadata), scrub data and

maintain research data (including software code, where it is necessary for

interpreting the data itself) for initial use and later reuse

• Writing - Original Draft, Preparation, creation and presentation of the published

work, specifically writing the initial draft (including substantive translation)

• Writing - Review & Editing Preparation, creation and/or presentation of the

published work by those from the original research group, specifically critical

review, commentary or revision – including pre-or postpublication stages

• Visualization, Preparation, creation and presentation of the published work,

specifically visualization/ data presentation

• Supervision, Oversight and leadership responsibility for the research activity

planning and execution, including mentorship external to the core team Project

Page 241: QSAR-QMMM Cryptographic Mining on Chern- Simons

administration, Management and�coordination responsibility for the research

activity planning and execution.

Acknowledgments

I would like to cordially express my special thanks of gratitude to my father and teacher

(George Grigoriadis Pharmacist) as well as our principal (Nikolaos Grigoriadis Phd

Pharmacist) who gave me the opportunity to generalized Hadamard gates, to apply Chern-

Simons Topology Geometrics, and to do this wonderful project on the Drug Discovery and

Quantum Chemistry topic, for the generation of the RoccustyrnaTM molecule, a ligand

targeting COVID-19-SARS-COV-2 SPIKE D614G binding sites.

References

1. Hui DS. Epidemic and Emerging Coronaviruses (Severe Acute Respiratory

Syndrome and Middle East Respiratory Syndrome). Clin Chest Med. 2017;38 (1) :71-86.

2. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Novel Coronavirus from

Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382 (8) :727-33.

3. Paraskevis D, Kostaki EG, Magiorkinis G, Panayiotakopoulos G, Sourvinos G,

Tsiodras S. Full-genome evolutionary analysis of the novel coronavirus (2019-nCoV) rejects the

hypothesis of emergence as a result of a recent recombination event. Infect Genet Evol.

2020;79:104212.

4. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Genomic characterisation andepidemiology

of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395

(10224) :565-74.

5. Mueller S. On DNA Signatures, Their Dual-Use Potential for GMO Counterfeiting,

and a Cyber-Based Security Solution. Front Bioeng Biotechnol. 2019;7:189. Published 2019

Aug 7. doi:10.3389/fbioe.2019.00189

6. Ziebuhr J. Molecular biology of severe acute respiratory syndrome coronavirus.

Curr Opin Microbiol. 2004;7 (4) :412-9.

7. Weiss SR, Leibowitz JL. Coronavirus pathogenesis. Adv Virus Res. 2011;81:85-164.

Page 242: QSAR-QMMM Cryptographic Mining on Chern- Simons

8. Brian DA, Baric RS. Coronavirus genome structure and replication. Curr

Top Microbiol Immunol.2005;287:1-30.

9. Narayanan K, Huang C, Makino S. SARS coronavirus accessory proteins.Virus Res.2008;133

(1) :113-21.

10. Arndt AL, Larson BJ, Hogue BG. A conserved domain in the coronavirus

membrane protein tail is important for virus assembly. J Virol. 2010;84 (21) :11418-28.

11. Neuman BW, Kiss G, Kunding AH, Bhella D, Baksh MF, Connelly S, et al. A

structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol.

2011;174 (1) :11-22.

12. Siu KL, Chan CP, Kok KH, Chiu-Yat Woo P, Jin DY. Suppression of innate antiviral

response by severe acute respiratory syndrome coronavirus M protein is mediated through the

first transmembrane domain. Cell Mol Immunol. 2014;11 (2) :141-9.

Page 243: QSAR-QMMM Cryptographic Mining on Chern- Simons

13. Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J.

2019;16 (1) :69.

14. Al-Tawfiq JA, Al-Homoud AH, Memish ZA. Remdesivir as a possible

therapeutic option for the COVID-19. Travel Med Infect Dis. 2020:101615.

15. Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, Lu X, et al.

Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the

Viral Polymerase and the Proofreading Exoribonuclease. mBio. 2018;9 (2) .

16. de Wit E, Feldmann F, Cronin J, Jordan R, Okumura A, Thomas T, et al. Prophylactic

and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV

infection. Proc Natl Acad Sci U S A. 2020.

17. Pilon AC, Valli M, Dametto AC, et al. NuBBEDB: an updated database to

uncover chemical and biological information from Brazilian biodiversity. Sci Rep.

2017;7 (1) :7215. Published 2017 Aug 3. doi:10.1038/s41598-017-07451-x

18. Khot WY, Nadkar MY. The 2019 Novel Coronavirus Outbreak - A Global Threat. J

Assoc Physicians India. 2020;68 (3) :67-71.

19. Zeng YM, Xu XL, He XQ, Tang SQ, Li Y, Huang YQ, et al. Comparative effectiveness

and safety of ribavirin plus interferon-alpha, lopinavir/ritonavir plus interferon-alpha and

ribavirin plus lopinavir/ritonavir plus interferon-alphain in patients with mild to moderate novel

coronavirus pneumonia. Chin Med J (Engl). 2020.

20. McGraw PN, Menzinger M, Muñuzuri AP. Harmonic resonant excitation of flow-

distributed oscillation waves and Turing patterns driven at a growing boundary. Phys Rev E

Stat Nonlin Soft Matter Phys. 2009 Aug;80 (2 Pt 2) :026209. doi: 10.1103/PhysRevE.

80.026209. Epub 2009 Aug 20. PMID: 19792233.

21. Martinez MA. Compounds with therapeutic potential against novel respiratory

2019 coronavirus. Antimicrob Agents Chemother. 2020.

Page 244: QSAR-QMMM Cryptographic Mining on Chern- Simons

22. Gordon CJ, Tchesnokov EP, Feng JY, Porter DP, Gotte M. The antiviral compound

remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory

syndrome coronavirus. J Biol Chem. 2020.

23. Sheahan TP, Sims AC, Leist SR, Schafer A, Won J, Brown AJ, et al. Comparative

therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta

against MERS-CoV. Nat Commun. 2020;11 (1) :222.

24. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of

docking with a new scoring function, efficient optimization, and multithreading. J

Comput Chem. 2010;31 (2) :455-61.

25. Van Meter R, Satoh T, Ladd TD, Munro WJ, Nemoto K (2013) Path selection for

quantum repeater networks. Networking Science 3 (1-4) : 82-95.

26. Lloyd S, Mohseni M, Rebentrost P (2014) Quantum principal component

analysis. Nature Physics. 10: 631.

Page 245: QSAR-QMMM Cryptographic Mining on Chern- Simons

27. Henriques AG. What Chern-Simons theory assigns to a point. Proc Natl Acad Sci U S A. 2017 Dec 19;114 (51) :13418-13423. doi: 10.1073/pnas.1711591114. Epub 2017 Dec 5. PMID: 29208715; PMCID: PMC5754777.

28. Honda M. Supersymmetric Solutions and Borel Singularities for N=2 Supersymmetric Chern-Simons Theories. Phys Rev Lett. 2018 Jul 13;121 (2) :021601. doi: 10.1103/PhysRevLett.121.021601. PMID: 30085688.

29. Simón J. Brane Effective Actions, Kappa-Symmetry and Applications. Living Rev Relativ. 2012;15 (1) :3. doi: 10.12942/lrr-2012-3. Epub 2012 Feb 27. PMID: 28179834; PMCID: PMC5256004.

30. Cavaglià A, Fioravanti D, Gromov N, Tateo R. Quantum spectral curve of the N=6

supersymmetric Chern-Simons theory. Phys Rev Lett. 2014 Jul 11;113 (2) :021601. doi:

10.1103/PhysRevLett.113.021601. Epub 2014 Jul 11. PMID: 25062163.

31. Mabkhot YN, Alatibi F, El-Sayed NN, Al-Showiman S, Kheder NA, Wadood A, Rauf A,

Bawazeer S, Hadda TB. Antimicrobial Activity of Some Novel Armed Thiophene Derivatives and

Petra/Osiris/Molinspiration (POM) Analyses. Molecules. 2016 Feb 17;21 (2) :222. doi:

10.3390/molecules21020222. PMID: 26901173; PMCID: PMC6273311.

32. Khan T, Lawrence AJ, Azad I, Raza S, Joshi S, Khan AR. Computational Drug Designing and Prediction Of Important Parameters Using in silico Methods- A Review. Curr Comput Aided Drug Des. 2019;15 (5) :384-397. doi: 10.2174/1573399815666190326120006. PMID: 30914032.

33. Ulrich, H. & Pillat, M. M. CD147 as a Target for COVID-19 Treatment: Suggested Effects of Azithromycin and Stem Cell Engagement. Stem Cell Rev. Rep. 16, 434–440 (2020) .

34. Chan, J. F.-W. et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect. 9, 221–236 (2020) .

35. Kong, R. et al. COVID-19 Docking Server: A meta server for docking small molecules, peptides and antibodies against potential targets of COVID-19. Bioinformatics (2020) doi:10.1093/bioinformatics/btaa645.

36. Shi, Y. et al. D3Targets-2019-nCoV: a webserver for predicting drug targets and for multi-target and multi-site based virtual screening against COVID-19. Acta Pharm. Sin. B 1, 1239– 1248 (2020) .

37. de Magalhães, C. S, Almeida, D. M, Barbosa, H. J. C. & Dardenne, L. E. A dynamic niching genetic algorithm strategy for docking highly exible ligands. Inf. Sci. 289, 206–224 (2014) .

38. Van Loock P (2006) Hybrid quantum repeater using bright coherent light. Phys Rev Lett 96: 240501.

39. Zhao B, Chen ZB, Chen YA, Schmiedmayer J, Pan JW (2007) Robust creation of entanglement between remote memory qubits. Phys Rev Lett 98: 240502.

Page 246: QSAR-QMMM Cryptographic Mining on Chern- Simons

40. dos Santos, K. B, Guedes, I. A, Karl, A. L. M. & Dardenne, L. Highly Flexible Ligand

Docking: Benchmarking of the DockThor Program on the LEADS-PEP Protein-peptide

Dataset. J. Chem. Inf. Model. acs.jcim.9b00905 (2020) doi:10.1021/acs.jcim.9b00905.

41. O. Kadioglu, M. Saeed, H. Johannes Greten, and T. Efferth, ―Identification of novel

compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and

supervised machine learning,ǁ Bulletin of the World Health Organization, 202, In press.

42. Müller S. Flexible heuristic algorithm for automatic molecule fragmentation: application to the UNIFAC group contribution model. J Cheminform. 2019;11:57. Published 2019 Aug 20. doi:10.1186/s13321-019-0382-3

Page 247: QSAR-QMMM Cryptographic Mining on Chern- Simons

Figures

Figure 1

2D Atoms of (i) Gisitorvi�rnaTM, (ii) Roccustyrna_gs1_TM, and (ii) Roccustyrna_fr1_TM fragments 2Dstructure.

Figure 2

3D Docking Interactions between Quantum Thinking 3D Gisitorvi�rnaTM, Roccustyrna_gs1_TM, andRoccustyrna_fr1_TM TM Small Molecules and the PDB:5R80 Crystal Structure of SARS-CoV-2 mainprotease in complex with Z18197050 protein targets. (Figure2a). 3D Docking Interactions betweenQuantum Thinking 3D Gisitorvi�rnaTM, Roccustyrna_gs1_TM, and Roccustyrna_fr1_TM TM SmallMolecule and the PDB:6YB7 SARS-CoV-2 main protease with unliganded active site (2019-nCoV,coronavirus disease 2019, COVID-19) protein targets. (Figure2b). 3D Docking Interactions betweenQuantum Thinking 3D Gisitorvi�rnaTM, Roccustyrna_gs1_TM, and Roccustyrna_fr1_TM TM SmallMolecule and the PDB:6W63 protein targets of the COVID-19 main protease as bound to potent broad-

Page 248: QSAR-QMMM Cryptographic Mining on Chern- Simons

spectrum non-covalent inhibitor X77. (Figure2c). 3D Docking diagram Interactions of the QuantumThinking 3D Gisitorvi�rnaTM, Roccustyrna_gs1_TM, and Roccustyrna_fr1_TM TM Small Moleculeswhen binds inside the PDB:6W9C of the crystal structure of papain-like protease of SARS CoV-2(Figure2d). 3D Docking interactions of the Quantum Thinking 3D Gisitorvi�rnaTM, Roccustyrna_gs1_TM,and Roccustyrna_fr1_TM TM Small Molecule when binds inside the PDB:2ZU5 complex structure ofSARS-CoV 3CL protease (Figure2e).

Figure 3

(Figure3a) Binding patterns, CoMFA contour map, and aminoacid interactions of the steric regions (blue,favored; yellow; disfavored) around Roccustyrna scaffold (Ser682, Thy456, and Arg624 with a distance of1.224, 2.445, and 2.159 Å, respectively). (Figure3b) Shows the receptor-binding domain and the CoMFAcontour map of steric regions (blue, favored; yellow; disfavored) around Roccustyrna; Blue regions arefavored by positively charged groups and red regions favored by negatively charged groups inside theSARS-COV-2 protein targets of (pdb:6W9C). 02J:C:1 (02J). (Figure3c) Roccustyrna binding sites insidethe (pdb:6lu7) binding domains02J:C:1 (02J). (Figure3b) Roccustyrna binding sites in (pdb:6lu7) D10-C-1099 DMS:A:402 (DMS). (Figure3d) Roccustyrna binding sites in (pdb:6lu7) D10-F-1099. 2J:C:1 (02J).(Figure3e) Roccustyrna binding sites in (pdb:6lu7) D10-H-1099. X77:A:401 (X77). (Figure3f) Roccustyrnabinding sites into the 02J (5-Methylisoxazole-3-carboxylic acid) 6LU7 protein targets. DMS:A:402 (DMS).(Figure3g) Roccustyrna binding sites into the 02J (5-Methylisoxazole-3-carboxylic acid) PJE-C-56LU7protein targets. ZN:A:998 (ZN) – ION. (Figure3h) Shows the Blue regions are favored by positivelycharged groups and red regions favored by negatively charged groups inside the SARS-COV-2 protein

Page 249: QSAR-QMMM Cryptographic Mining on Chern- Simons

targets of (pdb:1xak) within the EDO:A:506 (EDO) receptor-binding domain and the CoMFA contour mapof steric regions (blue, favored; yellow; disfavored) around Roccustyrna; Blue regions are favored bypositively charged groups and red regions favored by negatively charged groups inside the SARS-COV-2protein targets of (pdb:6W9C). 02J:C:1 (02J) .

Figure 4

3D Docking interactions between our prototype Gisitorvi�rna neo-ligand and the FDA approved drugs ofFaldaprevir, Gemigliptin, Raltegravir, Ribavirin, Doxycycline, Histrelin, E�ornithine, Cycloserine, Bleomycin,Azathioprine, Ritonavir, Umifenovir, Cobicistat, Darunavir, Baricitinib, Hydroxychloroquine, Minocycline,Azithromycin, Linoleic acid, Remdesivir, and the experimental GC376, EIDD2801MK4482 small moleculewhen targeted onto the (PDB:6WZU) protein targets. (Figure4a) Contact residues of the Roccustyrnasmall molecule when docked onto the SARS-COV-2 protein targets of (pdb:7bv2). (green, favored; yellow;disfavored) around the Roccustyrna chemical structure. Blue regions are favored by positively chargedgroups and red regions favored by negatively charged groups.(Figure4b). Comparative Docking ClusterAnalysis between the Remdesivir and the Roccustyrna small molecules when docked onto the SARS-COV-2 protein targets of (pdb:7bv2). (Figure4c) Comparative Docking Energy Analysis between the Remdesivirand the Roccustyrna small molecules when docked onto the SARS-COV-2 protein targets of (pdb:7bv2).(Figure4d) CoMFA contour map of electrostatic regions around Roccustyrna chemical structure. Contactresidues of the Roccustyrna small molecule when docked onto the SARS COV-2 protein targets of(pdb:3fqq). (green, favored; yellow; disfavored) around the Roccustyrna chemical structure. Blue regionsare favored by positively charged groups and red regions favored by negatively charged groups within thesequence of the amino acid of V-S-HIS-159, V-S-ARG-160, V-S-ARG-112 V-M-GLU-148 V-M-PHE-150, V-S-PHE-150, V-S-HIS-159, V-M-TYR-161 with the docking energy values of -101Kcal/mol, and binding freeenergies of the docking values of the 9-14.0762, - 5.11094, -7.98447, -4.17314, - 4.43549, -9.66939,-9.42926, -7.30085) Kcal/mol. (Figure4e) Contact residues of the Roccustyrna small molecule when

Page 250: QSAR-QMMM Cryptographic Mining on Chern- Simons

docked onto the SARS-COV-2 protein targets of (pdb:2ghv). (green, favored; yellow; disfavored) aroundthe Roccustyrna chemical structure. (Figure4f) CoMFA contour map of electrostatic regions aroundRoccustyrna chemical structure. Contact residues of the Roccustyrna small molecule when docked ontothe SARS-COV-2 protein targets of (pdb:6xs6). (green, favored; yellow; disfavored) around theRoccustyrna chemical structure. Blue regions are favored by positively charged groups and red regionsfavored by negatively charged groups within the sequence of the amino acid of V-M-LYS-557, V-S-LYS-557, V-M-ARG-567, V-M-ASP-568, V-S-ASP-574, V-S-PHE-43, V-M-ARG-44, V-M-SER-45, V-S-SER-45 aminoacid residues with the docking energy values of (- 85.8, and (-5.56004, - 5.0011, -8.38956, -5.77168,-6.13664, -12.8661, - 5.37546, -6.10391, - 5.00928) Kcal/mol/A respectively. (Figure4g) CoMFA contourmap of electrostatic regions around Roccustyrna chemical structure. Contact residues of the Roccustyrnasmall molecule when docked onto the SARS-COV-2 protein targets of (pdb:2zu5), (Figure4h). Dockingenergy ranking and comparative free energy analysis between our prototype Gisitorvi�rna neoligand andthe FDA approved drugs of Faldaprevir, Gemigliptin, Raltegravir, Ribavirin, Doxycycline, Histrelin,E�ornithine, Cycloserine, Bleomycin, Azathioprine, Ritonavir, Umifenovir, Cobicistat, Darunavir, Baricitinib,Hydroxychloroquine, Minocycline, Azithromycin, Linoleic acid, Remdesivir, and the experimental GC376,EIDD2801MK4482 small molecule when targeted onto the (PDB:6WZU) protein targets.

Page 251: QSAR-QMMM Cryptographic Mining on Chern- Simons

Figure 5

Roccustyrna active fragments CN1CC12CC(ONN1C[P]1(CN)Cc1oc(-n3cnc4c3[nH]c([NH3+])nc4=O)cc1O)=C1NCN12 smiles prediction correlation analysis. (Figure5a) RoccustyrnaCN1CC12CC([O+]=NN1C[P]1(C)C)=C1N=CN12 active fragment. (Figure5b) Roccustyrna[NH3+]C1=NC(O)=C2N=CN(C3=CC(=O)CO3)C2N1 recored fragment. (Figure5c) N#CN=C1N=CN=C1C#[O+] active fragment.

Page 252: QSAR-QMMM Cryptographic Mining on Chern- Simons

Figure 6

In Silico Radar ADMET analysis of the smiles of Roccustyrna small molecules of S=[C]1=N[C@H]2N(N1)N2P(=O)(N1O/C/1=C/1\N[C](=NN1N)=S)OC(=O)c1ncn(n1)c1 Moc(c(c1F)F)F.NCN(C(=[N]=C(N)N)C)OCc1oc(c(c1O)O)n1cnc(n1)C(=O)NP(=O)(Nn1cn IL c2c1nc(N)[nH]c2=O)NC(=O)c1cncc(n1)F.N/C=N/C(=N/NP(=O)(N1CC1)NC(=O)c1nn(c E2c1[nH]c(N)nc2=O)C(=O)/C=N/C(=N)F)/CN S

Page 253: QSAR-QMMM Cryptographic Mining on Chern- Simons

Figure 7

3D Docking comparative interactions analysis between our RoccustyrnaTM, Gisitorvi�rnaTM, ANDinnovative chemical structures, and the Amprenavir, Asunaprevir, Atazanavir, Boceprevir, Cytarabine,Darunavir, Ritonavir, Sorivudine, Taribavirin, Tenofovir, Valganciclovir, Vidarabine, Lopinavir, Sofosbuvir,Zanamivir, Penciclovir, Nel�navir, Merimepodib, Maribavir, Indinavir, Inarigivir, Galidesivir, Famciclovir,Faldaprevir FDA approved antiviral drugs when docked onto the SARS-COV-2 protein binding sites of the(PDB: 6M2Q) SARS-CoV-2 3CL protease (3CL pro) apo structure (space group C21) protein targets.

Page 254: QSAR-QMMM Cryptographic Mining on Chern- Simons

Figure 8

3D Cluster WEIGHT Docking interactions between our RoccustyrnaTM, and Gisitorvi�rnaTM drug designnovelties, and the Amprenavir, Asunaprevir, Atazanavir, Boceprevir, Cytarabine, Darunavir, Ritonavir,Sorivudine, Taribavirin, Tenofovir, Valganciclovir, Vidarabine, Lopinavir, Sofosbuvir, Zanamivir, Penciclovir,Nel�navir, Merimepodib, Maribavir, Indinavir, Inarigivir, Galidesivir, Famciclovir, Faldaprevir FDA approvedantiviral drugs when docked onto the SARS-COV-2 protein binding sites of the (PDB: 6WOJ) Structure ofthe SARS-CoV-2 macrodomain (NSP3) in complex with ADP-ribose.

Page 255: QSAR-QMMM Cryptographic Mining on Chern- Simons

Figure 9

3D Mapping of Docking interactions of Gisitorvi�rnaTM, Roccustyrna_gs1_TM, and Roccustyrna_fr1_TMneoligands onto the PDB:7khp (Figure9A), PDB: 6WOJ (Figure9B), PDB: 7B3D (Figure9C), PDB:6M2QFigure9D), PDB:6LU7 (Figure9E), PDB: 6WZU (Figure9F), PDB:1XU9 (Figure9G), PDB: 3TWU (Figure9H),PDB:7BEO (Figure9H), PDB:1XAK (Figure9I) protein targets.

Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

SIAppendixdscqcRoccustyrnajCAcSOmgeiu9IGG.doc