quantification with proteome discoverer 1 with proteome discoverer bernard delanghe overview: which...

29
Quantification with Proteome Discoverer Bernard Delanghe

Upload: duongdiep

Post on 12-May-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

Quantification with Proteome DiscovererBernard Delanghe

Overview: Which approach to use?Quantification Method What When to use

Proteome DiscovererQuantification Method What When to useMetabolic labeling SILAC Cell culture systems

Small changes (10-50%)P tid l b li Di th l ti TMT Ti t iPeptide labeling Dimethylation, TMT,

iTRAQTissue proteinsMultiplexing (time courses)Moderate changes (20-200%))

Label free using detector response

Extracted Ion chromatograms, area calculation

Many largely similar experimentsModerate changes (20-200%)

Label free using spectral counting

Number of spectra per protein

Many highly similar experimentsL h (>100%)Large changes (>100%)

Single or Multiple Reaction Monitoring (SMR or MRM)

Absolutequantification, spiked with standards

Complex biological matrix(Serum)

2

with standards (AQUA)

PinPoint

Proteomics and Quantification

3

New feature for Proteome Discoverer 1.2

• Fast, Easy and automated Stable Isotope Precursor Ion Quantification• Exploits the capabilities of high-resolution MS with precursor ion-based

quantification

100k resolution1. Classical SILAC with heavy Arginene and Lysine2. SILAC with heavy Isoleucine3. Peptides labeled with light, medium, and heavy dimethyl4. Others like O16/O18, ICAT, ICPL5. Doublets or Triplets6. Using any enzymeg y y7. Any fragmentation technique (or a combinartion):CID, HCD, ETD, ECD8. Any search engine (or a combinartion : Mascot, Sequest or Zcore

4

Preconfigured workflows

Complete automation thru XcaliburComplete automation thru Xcaliburand Discoverer Daemon

5

Why are reliable and sensitive algorithms needed?

Jesper_SILAC_HeLa #6382 RT: 45.42 AV: 1 NL: 8.44E6F: FTMS + p NSI Full ms [350.00-1800.00]

90

95

100388.25610

Where are the SILAC pairs?

65

70

75

80

85

90 Where are the SILAC pairs?

45

50

55

60

65

elat

ive

Abu

ndan

ce

20

25

30

35

40Re

• Zoom -in

400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 18000

5

10

15

571.28833514.79395

429.09048

856.41388717.35846 1202.27087 1403.652341003.24561 1738.042971611.30396

6

m/z

Why are reliable and sensitive algorithms needed?

Jesper_SILAC_HeLa #6382 RT: 45.42 AV: 1 NL: 8.44E6F: FTMS + p NSI Full ms [350.00-1800.00]

16

17

Where are the SILAC pairs?

12

13

14

15

16

408.71713

Where are the SILAC pairs?

8

9

10

11

12

ativ

e A

bund

ance

4

5

6

7Rel

571.28833

635.31781553 76978

• Zoom -in

350 400 450 500 550 600 650 700 750 800 850 900 9500

1

2

3 514.79395429.09048

553.76978

466.26569856.41388717.35846

593.36768816.42786658.33838 914.43488737.35095

993.68835

7

m/z

Why are reliable and sensitive algorithms needed?

Jesper_SILAC_HeLa #6382 RT: 45.42 AV: 1 NL: 2.76E6F: FTMS + p NSI Full ms [350.00-1800.00]

16

17

Where are the SILAC pairs?

12

13

14

15

16 Where are the SILAC pairs?

8

9

10

11

12

ativ

e A

bund

ance

4

5

6

7Rel

• Zoom -in

358 359 360 361 362 363 364 365 366 367 368 369 370 371 3720

1

2

3 359.54297367.23563

369.21545363.22928359.87726362.23062 367.73743361.14905 369.71750365.20734363.73093359.22189 366.69992 368.23752

8

m/z

Why are reliable and sensitive algorithms needed?

Jesper_SILAC_HeLa #6382 RT: 45.42 AV: 1 NL: 7.74E4F: FTMS + p NSI Full ms [350.00-1800.00]

90

95

100359.54297

Where are the SILAC pairs?

70

75

80

85

90 367.23563

• Here

Where are the SILAC pairs?

45

50

55

60

65

ativ

e A

bund

ance

369.21545359 87726

20

25

30

35

40Rel 363.22928359.87726

362.23062

367.73743

361.14905360.21176

369 71750

359 360 361 362 363 364 365 366 367 368 369 3700

5

10

15

20 369.71750365.20734363.73093

365.71732370.21140366.69992

368.23752361.71088 364.17877

9

m/z

Result in Proteome Discoverer

10

Why are reliable and sensitive algorithms needed?

Jesper_SILAC_HeLa #6382 RT: 45.42 AV: 1 NL: 7.74E4F: FTMS + p NSI Full ms [350.00-1800.00]

90

95

100359.54297

70

75

80

85

90 367.23563

45

50

55

60

65

ativ

e A

bund

ance

369.21545359 87726

20

25

30

35

40Rel 363.22928359.87726

362.23062

367.73743

361.14905360.21176

369 71750

• And here

359 360 361 362 363 364 365 366 367 368 369 3700

5

10

15

20 369.71750365.20734363.73093

365.71732370.21140366.69992

368.23752361.71088 364.17877

11

m/z

Result in Proteome Discoverer

12

Why are reliable and sensitive algorithms needed?

Jesper_SILAC_HeLa #6382 RT: 45.42 AV: 1 NL: 7.74E4F: FTMS + p NSI Full ms [350.00-1800.00]

90

95

100359.54297

70

75

80

85

90 367.23563

45

50

55

60

65

ativ

e A

bund

ance

369.21545359 87726

• And here

20

25

30

35

40Rel 363.22928359.87726

362.23062

367.73743

361.14905360.21176

369 71750

359 360 361 362 363 364 365 366 367 368 369 3700

5

10

15

20 369.71750365.20734363.73093

365.71732370.21140366.69992

368.23752361.71088 364.17877

13

m/z

Result in Proteome Discoverer

14

Why are reliable and sensitive algorithms needed?

Jesper_SILAC_HeLa #6382 RT: 45.42 AV: 1 NL: 7.74E4F: FTMS + p NSI Full ms [350.00-1800.00]

90

95

100359.54297

Including the low abundant

70

75

80

85

90 367.23563Including the low abundant peptides and proteins

Peptide intensity about 4000 counts

45

50

55

60

65

ativ

e A

bund

ance

369.21545359 87726

Peptide intensity about 4000 counts

20

25

30

35

40Rel 363.22928359.87726

362.23062

367.73743

361.14905360.21176

369 71750

359 360 361 362 363 364 365 366 367 368 369 3700

5

10

15

20 369.71750365.20734363.73093

365.71732370.21140366.69992

368.23752361.71088 364.17877

15

m/z

Precursor Quan: How Does It Work?

EventDetection

PeptideIdentification

Isotope PatternDetection

Isotope PatternProtein Inference / Isotope PatternMultiplet Detection

Peptide

Protein Inference /Protein Grouping

Peptide Quantification

PeptideUniqueRedundantPeptide

Classification

Protein

RedundantNot Uniqueetc.

16

Quantification

Event Detection

Traditional TIC Chromatogram

Create XIC for every peak in every scan

Keep XICs with shape of eluting component

Event Chromatogram

Event Chromatogram

Peak-detection on every „good“ XIC

Event Chromatogram

Create an „event“ for each good“ XICeach „good XIC• Mass• Intensity• Area

RT

17

• RT• Etc.

Precursor Quan: Quan Result Display

18

Precursor Quan: Validation

HeLa Digest(Arg10, Lys8)

MixtureL : H = 1 : 3

Proteome Discoverer: Peptides at 1% FDRLog2 based

Count % Median Mean * 68% IntervalUnique 1182 56.18 2.31 2.35 1.25 1.84 - 2.90

Processing Time [min]Proteome Discoverer

Mascot Search 10Event Detection 6Quantification 2

Redundant 681 32.37 2.27 2.28 1.19 1.91 - 2.70Not Unique 50 2.38 2.23 2.16 1.19 1.87 - 2.65

Peptides with Single Peak ChannelsUnique 83 3.94 2.59 2.52 1.89 1.37 - 4.90

Redundant 17 0.81 2.93 3.10 1.34 2.19 - 3.93Not Unique 0 0 00 Total 18Not Unique 0 0.00

Indistinguishable Channels 3 0.14Inconsistently Labeled 7 0.33

Excluded by Method 53 2.52No Quan Values 28 1.33

Total 2104

19

Quantified 2013 95.67Not Quantifiable 63 2.99No Quan Values 28 1.33

Precursor Quan: Validation

HeLa Digest(Arg10, Lys6)

MixtureL : H = 1 : 10 >4 orders of magnitude

Proteome Discoverer: Peptides at 1% FDRLog2 based

Count % Median Mean * 68% IntervalUnique 422 31.14 8.51 8.49 1.58 5.37 - 13.49

Redundant 133 9.82 8.44 8.72 1.43 5.91 - 12.03edu da t 33 9 8 8 8 3 5 9 03Not Unique 46 3.39 8.32 8.15 1.29 6.44 - 10.76

Peptides with Single Peak ChannelsUnique 180 13.28 9.83 8.60 2.57 3.83 - 25.23

Redundant 8 0.59 9.75 11.99 1.81 5.39 - 17.64Not Unique 15 1.11 10.93 7.98 2.62

I di ti i h bl

Processing Time [min]Proteome Discoverer

Mascot Search 8Event Detection 1Quantification 1Indistinguishable

Channels 2 0.15Inconsistently Labeled 4 0.30

Excluded by Method 391 28.86No Quan Values 154 11.37

Total 1355

Quantification 1Total 10

20

Quantified 804 59.34Not Quantifiable 397 29.30No Quan Values 154 11.37

Robustness and quality of the algorithms

• Excellent i bilit !variability!Number of raw files 72

Total file size (GB) 18.5Total number of MS2 spectra 893636

• Summary of 3 replicates of 24 fractions of a Hela experiment (raw files provided with theHela experiment (raw files provided with the Maxquant Software):

• > 190,000 peptides at 1% FDR• 3560 protein groups; >12 000 proteins• 3560 protein groups; >12,000 proteins• 96.5% of peptides quantified!

21

Complete SILAC Quantitation Workflow

®• Pierce® SILAC Quantitation Kits[500 ml media (2x), 50 ml dialyzed FBS (2x) and 50 mg of 13C6 L-lysine (1x), L-lysine (1x), L-arginine (2x)]

• RPMI 1640 kit, #89982• DMEM kit, #89983• Human Mesenchymal Stem Cell Kit #88200• Mouse Embryonic Stem Cell Kit

#88206

• LTQ Orbitrap Velos• Proteome Discoverer 1.2

22

Comprehensive Quantitative Proteomics enabled by simultaneous MS and MS/MS

Precursor Quan: Workflow for Unlabeled Peptides

• Precursor Ions Quantifier node has area calculation included

• Can be used in conjunction with Reporter Ions Quantifier node

23

Spectral CountingSpectral Counting

Bernard Delanghe

Definition

• The total number of identified peptide sequences (peptide spectrum matches) for the protein, including those redundantly identified.

• Standard feature in Proteome Discoverer

25

Protein Area Calculation

• Alternative method in Proteome Discoverer: Protein area calculation

• Average of the 3 highest peptide areaspeptide areas

• Same algorithms as for Precursor Ion Quantification

• Standard workflow• Standard workflow

26

Comparison of different quantification methods

• LTQ Orbitrap Velos raw file, SILAC labeled (Lys 8, Arg 10) HELA cells• Fixed Heavy Light ratio 3/1• 686 proteins identified (peptides at 1% FDR)

• Quantification methods• SILAC: Heavy/Light ratio • Area: Protein Area Heavy labeled peptide\ Protein Area Light labeled

peptide (area calculated as average of the 3 highest peptide areas)• Spectral Counting

SILAC Area Spectral CountingMedian 2.3 2.1 1.4Average 2.4 2.2 1.6SD 0.7 1.6 1.2% Quantified Proteins 82% 54% 51%

27

Distribution of Protein Heavy/Light ratios

10.000

12.000

Top 100 Proteins

8.000

tio

Spectral counting as well as Peak area Is unreliable at lower protein abundance

6.000

Heavy/Light Rat

SILAC Heavy/Light

Area Heavy/Light

SC Heavy/Light

2.000

4.000

Spectral counting is underestimating the ratios

0.000

0.000E0 5.000E7 1.000E8 1.500E8Area Light

28

Conclusion

• Proteome Discoverer has fast, robust, sensitive and reliable algorithms for Precursor based quantification.

• The workflow can be completely automated.

• Protein Area calculation method is clearly better than the spectral counting method.

• Thermo Fisher Scientific offers a complete workflow: from reagents to results.

29