quantifying greenhouse gas emissions from managed and natural soils

17
Quan&fying greenhouse gas emissions from managed and natural soils Klaus Bu(erbachBahl 1,2 , Bjoern Ole Sander 3 , David Pelster 1 , Eugenio DíazPinés 2 Rome, Reducing the costs of GHG es&mates in agriculture to inform low emissions development, FAOCCAFS Workshop, November 1012, 2014 1 Interna(onal Livestock Research Ins(tute, Kenya; 2 Karlsruhe Ins(tute of Technology, Germany; 3 Interna(onal Rice Research Ins(tute, Phillipines; 4 The University of Western Australia, Australia

Upload: ilri

Post on 06-Jul-2015

127 views

Category:

Science


1 download

DESCRIPTION

Presented by Klaus Butterbach-Bahl, Bjoern Ole Sander, David Pelster and Eugenio Diaz-Pines at the FAO‐CCAFS Workshop on Reducing the Costs of GHG Estimates in Agriculture to Inform Low Emissions Development, Rome, 10-12 November 2014

TRANSCRIPT

Page 1: Quantifying greenhouse gas emissions from managed and natural soils

 Quan&fying  greenhouse  gas  emissions  from  managed  and  natural  soils

Klaus  Bu(erbach-­‐Bahl1,2,  Bjoern  Ole  Sander3,  David  Pelster1,  Eugenio  Díaz-­‐Pinés2    

Rome,  Reducing  the  costs  of  GHG  es&mates  in  agriculture  to  inform  low  emissions  

development,  FAO-­‐CCAFS  Workshop,  November  10-­‐12,  2014

1Interna(onal  Livestock  Research  Ins(tute,  Kenya;  2Karlsruhe  Ins(tute  of  Technology,  Germany;  3Interna(onal  Rice  Research  Ins(tute,  Phillipines;  4The  University  of  Western  Australia,  Australia

Page 2: Quantifying greenhouse gas emissions from managed and natural soils

Agricultural  GHG  emissions  and  developing  countries

•  Agriculture  is  responsible  for  47  and  84%  of  anthropogenic  CH4  and  N2O  emission,  respec@vely  (Smith  et  al.  2007)  •  But  these  es@mates  are  based  on  studies  in  Europe  /  N  America  /  Australia    

•  Importance  of  smallholder  farms  (e.g.  in  SSA)  •  75%  of  agricultural  produc@on  and  75%  of  job  produc@on  in  SSA  (Africa  Development  Bank,  2010)  

•  80%  of  farms  in  SSA  <  2  ha  (FAO  2010)  •  Yield  are  very  low  (~1  Mg  ha-­‐1)  

Page 3: Quantifying greenhouse gas emissions from managed and natural soils

GHG  emissions  and  underlying  mechanisms

Emission  =  produc@on  (microbial/  chemical)  –  consump@on  (microbial/  chemical)  BuZ

erbach-­‐Bahl  et  al,  2013,  Phil.  Trans.  R.  Soc.  

Page 4: Quantifying greenhouse gas emissions from managed and natural soils

GHG  emissions  processes  and  measuring  techniques

BuZerbach-­‐Bahl  et  al,  2013,  Phil.  Trans.  R.  Soc.  

Page 5: Quantifying greenhouse gas emissions from managed and natural soils

Drivers  of  soil  GHG  emissions

Turner  et  al.  2008,  Plant  &  Soil   Van  Beek  et  al.  2010,  Nutr.  Cycl  Agroecosys.  

•  Soil  proper@es  and  soil  environmental  condi@ons  •  Agricultural  management  (e.g.  fer@liza@on,  irriga@on,  residue  management…)  

•  Microbe-­‐plant  interac@ons  and  microbial  diversity  •  ……..  

Page 6: Quantifying greenhouse gas emissions from managed and natural soils

Advantages  of  chamber  techniques

Plus  •  Simple,  low  cost,  „easy“  to  apply  •  Allows  studying  of  management  effects  •  Can  be  established  elsewhere  •  Existence  of  protocolls  (e.g.  USDA,  GRA)  

Minus  •  Change  in  soil  environmental  condi@ons  •  Spa@al  and  temporal  variability  •  Accuracy  of  measurements  •  ….  

Page 7: Quantifying greenhouse gas emissions from managed and natural soils

Chamber  techniques  –  general  points

Page 8: Quantifying greenhouse gas emissions from managed and natural soils

Chamber  techniques  –  chamber  placement

Page 9: Quantifying greenhouse gas emissions from managed and natural soils

Chamber  techniques  –  chamber  placement

Page 10: Quantifying greenhouse gas emissions from managed and natural soils

Chamber  techniques  –  spa&al  variability

Arias-­‐Navarro  et  al.,  2013,  Soil  Biol.  Biochem.  

Page 11: Quantifying greenhouse gas emissions from managed and natural soils

Chamber  techniques  –  temporal  variability Barton  et  al.,  2014,  in  prep.  

OVERALL OBJECTIVE

Investigate the effect of sample frequency on estimates of annual N2O fluxes, using published data collected:

•  On a sub-daily basis using automated chamber systems

•  From a variety of climates and land-uses Measuring  soil  N2O  emissions  from  a  cropped  

soil  using  chambers.      Photo:  Graeme  Schwenke,  NSW,  Australia  

Page 12: Quantifying greenhouse gas emissions from managed and natural soils

Chamber  techniques  –  temporal  variability APPROACH  

Daily  fluxes  by  averaging  sub-­‐daily  fluxes  (removed  diurnal  varia0on)    

Annual  fluxes  at  different  sampling  frequencies  

 

 

 

 

 

 

Propor@on  of  ‘daily’  annual  flux  es@mated  by  each  sample  frequency  =  %  devia0on  of  ‘daily’  annual  flux  

For each data set, we calculated:

Barton  et  al.,  2014,  in  prep.  

Page 13: Quantifying greenhouse gas emissions from managed and natural soils

Chamber  techniques  –  temporal  variability

9%  

Measurement frequency0 5 10 15 20 25 30

% D

evia

tion

of a

nnua

l flu

x

-50

0

50

100

150

200

250

300

350

SAMPLING  FREQUENCY  &  ANNUAL  FLUX:  ‘Highly’  episodic  

Steppe  grassland,  semi-­‐arid  climate,  Inner  Mongolia    

Barton  et  al.,  2014,  in  prep.  

Page 14: Quantifying greenhouse gas emissions from managed and natural soils

Chamber  techniques  –  temporal  variability

9%  

Barton  et  al.,  2014,  in  prep.  

Measurement frequency0 7 14 21 28

Num

ber o

f dat

a-se

ts

0

5

10

15

20

25Within 10%Within 20% Within 30%

8%  

RECOMMENDED  SAMPLING  FREQUENCY  Annual  flux  within  10%,  20%  and  30%  

Page 15: Quantifying greenhouse gas emissions from managed and natural soils

Chamber  techniques  –  data  processing

9%  

Page 16: Quantifying greenhouse gas emissions from managed and natural soils

Chamber  techniques  –  auxiliary  measurements  and  repor&ng

9%  

Page 17: Quantifying greenhouse gas emissions from managed and natural soils

Summary

9%  

•  Measurements  are  needed,  not  only  GHG  fluxes,  but  also  auxilliary  data  

•  Chamber  techniques  are  best  suited  to  address  the  diversity  of  systems  in  developing  countries,  but  

•  hierachical  approach  should  be  considered  (very  detailed,  detailed,  basic)  

•  Piralls  at  every  step,  QA/  QC  is  essen@al  •  Targe@ng  is  needed,  to  close  gaps  in  knowledge