quantitative analysis of randomized distributed...

124
Quantitative Analysis of Randomized Distributed Systems and Probabilistic Automata Christel Baier Technische Universit¨at Dresden joint work with Nathalie Bertrand Frank Ciesinski Marcus Gr¨ oßer 1 / 124

Upload: vucong

Post on 21-May-2018

219 views

Category:

Documents


1 download

TRANSCRIPT

Quantitative Analysis ofRandomized Distributed Systems

and Probabilistic Automata

Christel BaierTechnische Universitat Dresden

joint work with Nathalie BertrandFrank CiesinskiMarcus Großer

1 / 124

Probability elsewhere int-01

• randomized algorithms [Rabin 1960]

breaking symmetry, fingerprints, input sampling, . . .. . .. . .

• stochastic control theory [Bellman 1957]

operations research

• performance modeling [Markov, Erlang, Kolm., ∼∼∼ 1900]

emphasis on steady-state and transient measures

• biological systems, resilient systems, security protocols.........

2 / 124

Probability elsewhere int-01

• randomized algorithms [Rabin 1960]

breaking symmetry, fingerprints, input sampling, . . .. . .. . .models: discrete-time Markov chains

Markov decision processes

• stochastic control theory [Bellman 1957]

operations researchmodels: Markov decision processes

• performance modeling [Markov, Erlang, Kolm., ∼∼∼ 1900]

emphasis on steady-state and transient measuresmodels: continuous-time Markov chains

• biological systems, resilient systems, security protocols.........

3 / 124

Model checking int-02

requirements(safety, liveness)

specification, e.g.,temporal formula ΦΦΦ

reactive system

abstractmodelMMM

model checking

“doesM |= ΦM |= ΦM |= Φ hold ?”

no yes4 / 124

Probabilistic model checking int-03

quantitativerequirements

specification, e.g.,temporal formula ΦΦΦ

probabilisticreactive system

probabilisticmodelMMM

probabilistic model checking

“doesM |= ΦM |= ΦM |= Φ hold ?”

probability for “bad behaviors” is < 10−6< 10−6< 10−6

probability for “good behaviors” is 111expected costs for ....

5 / 124

Probabilistic model checking int-03

quantitativerequirements

linear temporal formula ΦΦΦ(path event)

probabilisticreactive system

Markov decisionprocessMMM

probabilistic model checking

quantitative analysis ofMMM against ΦΦΦ

probability for “bad behaviors” is < 10−6< 10−6< 10−6

probability for “good behaviors” is 111

6 / 124

Outline overview

• Markov decision processes (MDP) andquantitative analysis against path events

• partial order reduction for MDP

• partially-oberservable MDP

• conclusions

7 / 124

Markov decision process (MDP) mdp-01

operational model with nondeterminism and probabilism

8 / 124

Markov decision process (MDP) mdp-01

operational model with nondeterminism and probabilism

• modeling randomized distributed systemsby interleaving

sss121212

121212

121212

121212

process 111tosses a

coin

process 222tosses acoin

process 111tosses acoin

process 222tosses a

coin

121212

121212

121212

121212

9 / 124

Markov decision process (MDP) mdp-01

operational model with nondeterminism and probabilism

• modeling randomized distributed systemsby interleaving

• nondeterminism useful for abstraction, underspec.,modeling interactions with an unkown environment

sss121212

121212

121212

121212

process 111tosses a

coin

process 222tosses acoin

process 111tosses acoin

process 222tosses a

coin

121212

121212

121212

121212

10 / 124

Markov decision process (MDP) mdp-02-r

M = (S , Act, P, . . .)M = (S , Act, P, . . .)M = (S , Act, P, . . .)

11 / 124

Markov decision process (MDP) mdp-02-r

M = (S , Act, P, . . .)M = (S , Act, P, . . .)M = (S , Act, P, . . .)

• finite state space SSS

12 / 124

Markov decision process (MDP) mdp-02-r

M = (S , Act, P, . . .)M = (S , Act, P, . . .)M = (S , Act, P, . . .)

• finite state space SSS

• ActActAct finite set of actions

13 / 124

Markov decision process (MDP) mdp-02-r

M = (S , Act, P, . . .)M = (S , Act, P, . . .)M = (S , Act, P, . . .)

• finite state space SSS

• ActActAct finite set of actions

• P : S × Act × S → [0, 1]P : S × Act × S → [0, 1]P : S × Act × S → [0, 1] s.t.∑s ′∈S

P(s, α, s ′)∑s ′∈S

P(s, α, s ′)∑s ′∈S

P(s, α, s ′) = 1= 1= 1

sssααα βββ

141414

343434

121212

161616

131313

nondeterministic choice

probabilistic choice

14 / 124

Markov decision process (MDP) mdp-02-r

M = (S , Act, P, . . .)M = (S , Act, P, . . .)M = (S , Act, P, . . .)

• finite state space SSS

• ActActAct finite set of actions

• P : S × Act × S → [0, 1]P : S × Act × S → [0, 1]P : S × Act × S → [0, 1] s.t.

∀s ∈ S∀s ∈ S∀s ∈ S ∀α ∈ Act...∀α ∈ Act...∀α ∈ Act...∑s ′∈S

P(s, α, s ′)∑s ′∈S

P(s, α, s ′)∑s ′∈S

P(s, α, s ′) ∈ {0, 1}∈ {0, 1}∈ {0, 1}

sssααα βββ

141414

343434

121212

161616

131313

nondeterministic choice

probabilistic choice

↗↗↗α /∈ Act(s)α /∈ Act(s)α /∈ Act(s)

↖↖↖α ∈ Act(s)α ∈ Act(s)α ∈ Act(s)

Act(s) =Act(s) =Act(s) = set of actionsthat are enabledin state sss

15 / 124

Markov decision process (MDP) mdp-02-r

M = (S , Act, P, s0, AP , L, rew , . . .)M = (S , Act, P, s0, AP, L, rew , . . .)M = (S , Act, P, s0, AP, L, rew , . . .)

• finite state space SSS

• ActActAct finite set of actions

• P : S × Act × S → [0, 1]P : S × Act × S → [0, 1]P : S × Act × S → [0, 1] s.t.

∀s ∈ S∀s ∈ S∀s ∈ S ∀α ∈ Act...∀α ∈ Act...∀α ∈ Act...∑s ′∈S

P(s, α, s ′)∑s ′∈S

P(s, α, s ′)∑s ′∈S

P(s, α, s ′) ∈ {0, 1}∈ {0, 1}∈ {0, 1}

• s0s0s0 initial state

• APAPAP set of atomic propositions

• labeling L : S → 2APL : S → 2APL : S → 2AP

• reward function rew : S × Act → Rrew : S × Act → Rrew : S × Act → R

↗↗↗α /∈ Act(s)α /∈ Act(s)α /∈ Act(s)

↖↖↖α ∈ Act(s)α ∈ Act(s)α ∈ Act(s)

16 / 124

Randomized mutual exclusion protocol mdp-05

• 222 concurrent processes P1P1P1, P2P2P2 with 333 phases:

ninini noncritical actions of process PiPiPi

wiwiwi waiting phase of process PiPiPi

cicici critical section of process PiPiPi

• competition of both processes are waiting

17 / 124

Randomized mutual exclusion protocol mdp-05

• 222 concurrent processes P1P1P1, P2P2P2 with 333 phases:

ninini noncritical actions of process PiPiPi

wiwiwi waiting phase of process PiPiPi

cicici critical section of process PiPiPi

• competition of both processes are waiting

• resolved by a randomized arbiter who tosses a coin

18 / 124

Randomized mutual exclusion protocol mdp-05

n1n2n1n2n1n2

w1n2w1n2w1n2 n1w2n1w2n1w2

w1w2w1w2w1w2c1n2c1n2c1n2 n1c2n1c2n1c2

c1w2c1w2c1w2 w1c2w1c2w1c2

MDP

request2

request2

request2

releas

e 1re

leas

e 1re

leas

e 1

enter1

enter1

enter1

reques

t1req

uest1

reques

t1 request2

request2

request2

request2

request2

request2 reques

t1req

uest1

reques

t1 enter2enter2enter2

reques

t1

reques

t1

reques

t1

release2

release2

release2

toss atoss atoss acoincoincoin

release2

release2

release2 re

leas

e 1

releas

e 1

releas

e 1

121212

121212

• interleaving of the request operations

• competition if both processes are waiting

• randomized arbiter tosses a coin if both are waiting

19 / 124

Randomized mutual exclusion protocol mdp-05

n1n2n1n2n1n2

w1n2w1n2w1n2 n1w2n1w2n1w2

w1w2w1w2w1w2c1n2c1n2c1n2 n1c2n1c2n1c2

c1w2c1w2c1w2 w1c2w1c2w1c2

n1n2n1n2n1n2

w1n2w1n2w1n2 n1w2n1w2n1w2

w1w2w1w2w1w2

MDP

request2

request2

request2

releas

e 1re

leas

e 1re

leas

e 1

enter1

enter1

enter1

reques

t1req

uest1

reques

t1 request2

request2

request2

request2

request2

request2 reques

t1req

uest1

reques

t1 enter2enter2enter2

reques

t1

reques

t1

reques

t1

release2

release2

release2

toss atoss atoss acoincoincoin

release2

release2

release2 re

leas

e 1

releas

e 1

releas

e 1

121212

121212

• interleaving of the request operations

• competition if both processes are waiting

• randomized arbiter tosses a coin if both are waiting

20 / 124

Randomized mutual exclusion protocol mdp-05

n1n2n1n2n1n2

w1n2w1n2w1n2 n1w2n1w2n1w2

w1w2w1w2w1w2c1n2c1n2c1n2 n1c2n1c2n1c2

c1w2c1w2c1w2 w1c2w1c2w1c2

w1w2w1w2w1w2

MDP

request2

request2

request2

releas

e 1re

leas

e 1re

leas

e 1

enter1

enter1

enter1

reques

t1req

uest1

reques

t1 request2

request2

request2

request2

request2

request2 reques

t1req

uest1

reques

t1 enter2enter2enter2

reques

t1

reques

t1

reques

t1

release2

release2

release2

toss atoss atoss acoincoincoin

release2

release2

release2 re

leas

e 1

releas

e 1

releas

e 1

121212

121212

• interleaving of the request operations

• competition if both processes are waiting

• randomized arbiter tosses a coin if both are waiting

21 / 124

Randomized mutual exclusion protocol mdp-05

n1n2n1n2n1n2

w1n2w1n2w1n2 n1w2n1w2n1w2

w1w2w1w2w1w2c1n2c1n2c1n2 n1c2n1c2n1c2

c1w2c1w2c1w2 w1c2w1c2w1c2

w1w2w1w2w1w2

c1w2c1w2c1w2 w1c2w1c2w1c2

MDP

request2

request2

request2

releas

e 1re

leas

e 1re

leas

e 1

enter1

enter1

enter1

reques

t1req

uest1

reques

t1 request2

request2

request2

request2

request2

request2 reques

t1req

uest1

reques

t1 enter2enter2enter2

reques

t1

reques

t1

reques

t1

release2

release2

release2

toss atoss atoss acoincoincoin

release2

release2

release2 re

leas

e 1

releas

e 1

releas

e 1

121212

121212

• interleaving of the request operations

• competition if both processes are waiting

• randomized arbiter tosses a coin if both are waiting

22 / 124

Reasoning about probabilities in MDP mdp-10

• requires resolving the nondeterminism by schedulers

23 / 124

Reasoning about probabilities in MDP mdp-10

• requires resolving the nondeterminism by schedulers

• a scheduler is a function D : S+ −→ ActD : S+ −→ ActD : S+ −→ Act s.t.action D (s0 . . . sn)D (s0 . . . sn)D (s0 . . . sn) is enabled in state snsnsn

24 / 124

Reasoning about probabilities in MDP mdp-10

• requires resolving the nondeterminism by schedulers

• a scheduler is a function D : S+ −→ ActD : S+ −→ ActD : S+ −→ Act s.t.action D (s0 . . . sn)D (s0 . . . sn)D (s0 . . . sn) is enabled in state snsnsn

• each scheduler induces an infinite Markov chain

MDP

βββ

γγγααα131313

232323

σσσ

δδδ

. . .. . .. . . . . .. . .. . . . . .. . .. . .

232323

13 α13 α13 α

δδδ βββ

γγγ σσσ

α 23

α 23α 23

131313 σσσ

25 / 124

Reasoning about probabilities in MDP mdp-10

• requires resolving the nondeterminism by schedulers

• a scheduler is a function D : S+ −→ ActD : S+ −→ ActD : S+ −→ Act s.t.action D (s0 . . . sn)D (s0 . . . sn)D (s0 . . . sn) is enabled in state snsnsn

• each scheduler induces an infinite Markov chain���yields a notion of probability measure PrDPrDPrD

on measurable sets of infinite paths

26 / 124

Reasoning about probabilities in MDP mdp-10

• requires resolving the nondeterminism by schedulers

• a scheduler is a function D : S+ −→ ActD : S+ −→ ActD : S+ −→ Act s.t.action D (s0 . . . sn)D (s0 . . . sn)D (s0 . . . sn) is enabled in state snsnsn

• each scheduler induces an infinite Markov chain���yields a notion of probability measure PrDPrDPrD

on measurable sets of infinite paths

typical task: given a measurable path event EEE ,

∗∗∗ check whether EEE holds almost surely, i.e.,

PrD(E ) = 1PrD(E) = 1PrD(E ) = 1 for all schedulers DDD

27 / 124

Reasoning about probabilities in MDP mdp-10

• requires resolving the nondeterminism by schedulers

• a scheduler is a function D : S+ −→ ActD : S+ −→ ActD : S+ −→ Act s.t.action D (s0 . . . sn)D (s0 . . . sn)D (s0 . . . sn) is enabled in state snsnsn

• each scheduler induces an infinite Markov chain���yields a notion of probability measure PrDPrDPrD

on measurable sets of infinite paths

typical task: given a measurable path event EEE ,

∗∗∗ check whether EEE holds almost surely

∗∗∗ compute the worst-case probability for EEE , i.e.,

supD

PrD(E )supD

PrD(E)supD

PrD(E ) or infD

PrD(E )infD

PrD(E)infD

PrD(E )28 / 124

Quantitative analysis of MDP mdp-15

given: MDPM = (S , Act, P, . . .)M = (S , Act, P, . . .)M = (S , Act, P, . . .) with initial state s0s0s0

ωωω-regular path event EEE ,e.g., given by an LTL formula

task: compute PrMmax(s0, E ) = supD

PrD(s0, E)PrMmax(s0, E ) = supD

PrD(s0, E)PrMmax(s0, E) = supD

PrD(s0, E )

29 / 124

Quantitative analysis of MDP mdp-15

given: MDPM = (S , Act, P, . . .)M = (S , Act, P, . . .)M = (S , Act, P, . . .) with initial state s0s0s0

ωωω-regular path event EEE ,e.g., given by an LTL formula

task: compute PrMmax(s0, E ) = supD

PrD(s0, E)PrMmax(s0, E ) = supD

PrD(s0, E)PrMmax(s0, E) = supD

PrD(s0, E )

method: compute xs = PrMmax(s, E)xs = PrMmax(s, E )xs = PrMmax(s, E) for all s ∈ Ss ∈ Ss ∈ S

via graph analysis and linear program

[Vardi/Wolper’86][Courcoubetis/Yannakakis’88][Bianco/de Alfaro’95][Baier/Kwiatkowska’98]

30 / 124

probabilisticsystem

“bad behaviors”

31 / 124

probabilisticsystem

“bad behaviors”

MDPMMM

32 / 124

probabilisticsystem

“bad behaviors”

MDPMMMLTL formula ϕϕϕ

deterministicautomaton AAA

33 / 124

probabilisticsystem

“bad behaviors”

MDPMMMLTL formula ϕϕϕ

deterministicautomaton AAA

quantitative analysisin the product-MDPM×AM×AM×A

PrMmax(s, ϕ)PrMmax(s, ϕ)PrMmax(s, ϕ) === PrM×Amax

(〈s, inits〉,PrM×Amax

(〈s , inits〉,PrM×Amax

(〈s , inits〉, acceptance

cond. of AAA)))

34 / 124

probabilisticsystem

“bad behaviors”

MDPMMMLTL formula ϕϕϕ

deterministicautomaton AAA

quantitative analysisin the product-MDPM×AM×AM×A

PrMmax(s, ϕ)PrMmax(s, ϕ)PrMmax(s, ϕ) === PrM×Amax

(〈s, inits〉,PrM×Amax

(〈s , inits〉,PrM×Amax

(〈s , inits〉, ♦accEC♦accEC♦accEC

)))

maximal probabililityfor reaching anaccepting endcomponent

35 / 124

probabilisticsystem

“bad behaviors”

MDPMMMLTL formula ϕϕϕ

deterministicautomaton AAA

probabilistic reachability analysisin the product-MDPM×AM×AM×A

linear program

PrMmax(s, ϕ)PrMmax(s, ϕ)PrMmax(s, ϕ) === PrM×Amax

(〈s, inits〉,PrM×Amax

(〈s , inits〉,PrM×Amax

(〈s , inits〉, ♦accEC♦accEC♦accEC

)))

maximal probabililityfor reaching anaccepting endcomponent

36 / 124

probabilisticsystem

“bad behaviors”

MDPMMMLTL formula ϕϕϕ

deterministicautomaton AAA

probabilistic reachability analysisin the product-MDPM×AM×AM×A

linear program

PrMmax(s, ϕ)PrMmax(s, ϕ)PrMmax(s, ϕ) === PrM×Amax

(〈s, inits〉,PrM×Amax

(〈s , inits〉,PrM×Amax

(〈s , inits〉, ♦accEC♦accEC♦accEC

)))

polynomialin |M| · |A||M| · |A||M| · |A|

37 / 124

2exp

probabilisticsystem

“bad behaviors”

MDPMMMLTL formula ϕϕϕ

deterministicautomaton AAA

probabilistic reachability analysisin the product-MDPM×AM×AM×A

linear program

PrMmax(s, ϕ)PrMmax(s, ϕ)PrMmax(s, ϕ) === PrM×Amax

(〈s, inits〉,PrM×Amax

(〈s , inits〉,PrM×Amax

(〈s , inits〉, ♦accEC♦accEC♦accEC

)))

polynomialin |M| · |A||M| · |A||M| · |A|

38 / 124

stateexplosionproblem

probabilisticsystem

“bad behaviors”

MDPMMMLTL formula ϕϕϕ

deterministicautomaton AAA

probabilistic reachability analysisin the product-MDPM×AM×AM×A

linear program

PrMmax(s, ϕ)PrMmax(s, ϕ)PrMmax(s, ϕ) === PrM×Amax

(〈s, inits〉,PrM×Amax

(〈s , inits〉,PrM×Amax

(〈s , inits〉, ♦accEC♦accEC♦accEC

)))

polynomialin |M| · |A||M| · |A||M| · |A|

39 / 124

Advanced techniques for PMC por-01-cs

••• symbolic model checking with variants of BDDse.g., in PRISM [Kwiatkowska/Norman/Parker]

••• state aggregation with bisimulatione.g., in MRMC [Katoen et al]

••• abstraction-refinemente.g., in RAPTURE [d’Argenio/Jeannet/Jensen/Larsen]

PASS [Hermanns/Wachter/Zhang]

••• partial order reductione.g., in LiQuor [Baier/Ciesinski/Großer]

40 / 124

Advanced techniques for PMC por-01-cs

••• symbolic model checking with variants of BDDse.g., in PRISM [Kwiatkowska/Norman/Parker]

randomized distributed algorithms,communication and multimedia protocols,power management, security, . . .. . .. . .

••• state aggregation with bisimulatione.g., in MRMC [Katoen et al]

••• abstraction-refinemente.g., in RAPTURE [d’Argenio/Jeannet/Jensen/Larsen]

PASS [Hermanns/Wachter/Zhang]

••• partial order reductione.g., in LiQuor [Baier/Ciesinski/Großer]

41 / 124

Advanced techniques for PMC por-01-cs

••• symbolic model checking with variants of BDDse.g., in PRISM [Kwiatkowska/Norman/Parker]

randomized distributed algorithms,communication and multimedia protocols,power management, security, . . .. . .. . .

••• state aggregation with bisimulatione.g., in MRMC [Katoen et al]

••• abstraction-refinemente.g., in RAPTURE [d’Argenio/Jeannet/Jensen/Larsen]

PASS [Hermanns/Wachter/Zhang]

••• partial order reductione.g., in LiQuor [Baier/Ciesinski/Großer]

42 / 124

Partial order reduction por-02

technique for reducing the state space of concurrentsystems [Godefroid,Peled,Valmari, ca. 1990]

• attempts to analyze a sub-system by identifying“redundant interleavings”

• explores representatives of paths that agree up tothe order of independent actions

43 / 124

Partial order reduction por-02

technique for reducing the state space of concurrentsystems [Godefroid,Peled,Valmari, ca. 1990]

• attempts to analyze a sub-system by identifying“redundant interleavings”

• explores representatives of paths that agree up tothe order of independent actions

e.g., x := x+yx := x+yx := x+y︸ ︷︷ ︸action ααα

‖‖‖ z := z+3z := z+3z := z+3︸ ︷︷ ︸action βββ

has the same effect as α; βα; βα; β or β; αβ; αβ; α

44 / 124

Partial order reduction por-02

technique for reducing the state space of concurrentsystems [Godefroid,Peled,Valmari, ca. 1990]

• attempts to analyze a sub-system by identifying“redundant interleavings”

• explores representatives of paths that agree up tothe order of independent actions

DFS-based on-the-fly generation of a reduced system

for each expanded state sss

• choose an appropriate subset Ample(s)Ample(s)Ample(s) of Act(s)Act(s)Act(s)

• expand only the ααα-successors of sss for α ∈ Ample(s)α ∈ Ample(s)α ∈ Ample(s)(but ignore the actions in Act(s) \ Ample(s)Act(s) \ Ample(s)Act(s) \ Ample(s))

45 / 124

Ample-set method [Peled 1993] por-03

given: processes PiPiPi of a parallel system P1‖. . .‖PnP1‖. . .‖PnP1‖. . .‖Pn

with transition system T = (S , Act,→, . . .)T = (S , Act,→, . . .)T = (S , Act,→, . . .)

task: on-the-fly generation of a sub-system TrTrTr s.t.

(A1) stutter condition . . .. . .. . .(A2) dependency condition . . .. . .. . .

(A3) cycle condition . . .. . .. . .

46 / 124

Ample-set method [Peled 1993] por-03

given: processes PiPiPi of a parallel system P1‖. . .‖PnP1‖. . .‖PnP1‖. . .‖Pn

with transition system T = (S , Act,→, . . .)T = (S , Act,→, . . .)T = (S , Act,→, . . .)

task: on-the-fly generation of a sub-system TrTrTr s.t.

(A1) stutter condition(A2) dependency condition(A3) cycle condition

}π � πrπ � πrπ � πr

by permutations ofindependent actions

Each path πππ in TTT is represented by an “equivalent”path πrπrπr in TrTrTr

47 / 124

Ample-set method [Peled 1993] por-03

given: processes PiPiPi of a parallel system P1‖. . .‖PnP1‖. . .‖PnP1‖. . .‖Pn

with transition system T = (S , Act,→, . . .)T = (S , Act,→, . . .)T = (S , Act,→, . . .)

task: on-the-fly generation of a sub-system TrTrTr s.t.

(A1) stutter condition(A2) dependency condition(A3) cycle condition

}π � πrπ � πrπ � πr

by permutations ofindependent actions

Each path πππ in TTT is represented by an “equivalent”path πrπrπr in TrTrTr������

TTT and TrTrTr satisfy the same stutter-invariant events,e.g., next-free LTL formulas

48 / 124

Ample-set method for MDP por-04

given: processes PiPiPi of a probabilistic system P1‖. . .‖PnP1‖. . .‖PnP1‖. . .‖Pn

with MDP-semanticsM = (S , Act, P, . . .)M = (S , Act, P, . . .)M = (S , Act, P, . . .)

task: on-the-fly generation of a sub-MDPMrMrMr s.t.

MrMrMr andMMM have the same extremal probabilitiesfor stutter-invariant events

49 / 124

Ample-set method for MDP por-04

given: processes PiPiPi of a probabilistic system P1‖. . .‖PnP1‖. . .‖PnP1‖. . .‖Pn

with MDP-semanticsM = (S , Act, P, . . .)M = (S , Act, P, . . .)M = (S , Act, P, . . .)

task: on-the-fly generation of a sub-MDPMrMrMr s.t.

For all schedulers DDD forMMM there is a scheduler DrDrDr forMrMrMr s.t. for all measurable, stutter-invariant events EEE :

PrDM(E) = PrDr

Mr(E)PrDM(E ) = PrDr

Mr(E )PrDM(E ) = PrDr

Mr(E )������

MrMrMr andMMM have the same extremal probabilitiesfor stutter-invariant events

50 / 124

Example: ample set method por-08-new

sss

ααα

βββ γγγ

βββ γγγααα ααα

δδδ δδδ

original system TTT

ααα independentfrom βββ and γγγ

51 / 124

Example: ample set method por-08-new

sss

ααα

βββ γγγ

βββ γγγααα ααα

δδδ δδδ

βββ γγγ

δδδ δδδ

P1 ‖ P2P1 ‖ P2P1 ‖ P2

ααα

original system TTT

ααα independentfrom βββ and γγγ

action ααα: x := 1x := 1x := 1

action δδδ:IF x > 0x > 0x > 0 THEN y := 1y := 1y := 1 FI

52 / 124

Example: ample set method por-08-new

sss

ααα

βββ γγγ

βββ γγγααα ααα

δδδ δδδ

sss

βββ γγγ

ααα ααα

δδδ δδδ

original system TTT reduced system TrTrTr

(A1)-(A3) are fulfilled

ααα independentfrom βββ and γγγ

53 / 124

Example: ample set method fails for MDP por-08-new

sss

121212

ααα

121212

βββ γγγ

βββ γγγγγγβββ

ααα

121212

121212

121212 1

21212

ααα

δδδ δδδ

sss

βββ γγγ

ααα

121212

121212

121212 1

21212

ααα

δδδ δδδ

original MDPMMM reduced MDPMrMrMr

(A1)-(A3) are fulfilled

ααα independentfrom βββ and γγγ

54 / 124

Example: ample set method fails for MDP por-08-new

sss

121212

ααα

121212

βββ γγγ

βββ γγγγγγβββ

ααα

121212

121212

121212 1

21212

ααα

δδδ δδδ

sss

βββ γγγ

ααα

121212

121212

121212 1

21212

ααα

δδδ δδδ

original MDPMMM reduced MDPMrMrMr

PrMmax(s,♦green) = 1PrMmax(s,♦green) = 1PrMmax(s,♦green) = 1 ♦♦♦ “eventually”

55 / 124

Example: ample set method fails for MDP por-08-new

sss

121212

ααα

121212

βββ γγγ

βββ γγγγγγβββ

ααα

121212

121212

121212 1

21212

ααα

δδδ δδδ

sss

βββ γγγ

ααα

121212

121212

121212 1

21212

ααα

δδδ δδδ

original MDPMMM reduced MDPMrMrMr

PrMmax(s,♦green) = 1PrMmax(s,♦green) = 1PrMmax(s,♦green) = 1 > 12 = PrMr

max(s,♦green)> 12 = PrMr

max(s,♦green)> 12 = PrMr

max(s,♦green)

56 / 124

Partial order reduction for MDP por-09

extend Peled’s conditions (A1)-(A3) for the ample-sets

(A1) stutter condition . . .. . .. . .

(A2) dependency condition . . .. . .. . .

(A3) cycle condition . . .. . .. . .

(A4) probabilistic condition

If there is a path sβ1−→ β2−→ . . .

βn−→ α−→sβ1−→ β2−→ . . .

βn−→ α−→sβ1−→ β2−→ . . .

βn−→ α−→ inMMM s.t.

β1, . . . , βn, α /∈ Ample(s)β1, . . . , βn, α /∈ Ample(s)β1, . . . , βn, α /∈ Ample(s) and ααα is probabilistic

then |Ample(s)| = 1|Ample(s)| = 1|Ample(s)| = 1.

57 / 124

Partial order reduction for MDP por-09

extend Peled’s conditions (A1)-(A3) for the ample-sets

(A1) stutter condition . . .. . .. . .

(A2) dependency condition . . .. . .. . .

(A3) cycle condition . . .. . .. . .

(A4) probabilistic condition

If there is a path sβ1−→ β2−→ . . .

βn−→ α−→sβ1−→ β2−→ . . .

βn−→ α−→sβ1−→ β2−→ . . .

βn−→ α−→ inMMM s.t.

β1, . . . , βn, α /∈ Ample(s)β1, . . . , βn, α /∈ Ample(s)β1, . . . , βn, α /∈ Ample(s) and ααα is probabilistic

then |Ample(s)| = 1|Ample(s)| = 1|Ample(s)| = 1.

If (A1)-(A4) hold thenMMM andMrMrMr have the sameextremal probabilities for all stutter-invariant properties.

58 / 124

Probabilistic model checking por-ifm-32

quantitativerequirements

LTL\©\©\© formula ϕϕϕ(path event)

probabilisticsystem

Markov decisionprocessMMM

quantitative analysisofMMM against ϕϕϕ

maximal/minimalprobability for ϕϕϕ

59 / 124

Probabilistic model checking, e.g., LiQuor por-ifm-32

quantitativerequirements

LTL\©\©\© formula ϕϕϕ(path event)

modeling languageP1‖. . .‖PnP1‖. . .‖PnP1‖. . .‖Pn

reducedMDPMrMrMr

partial order reduction

quantitative analysisofMrMrMr against ϕϕϕ

maximal/minimalprobability for ϕϕϕ

60 / 124

Probabilistic model checking, e.g., LiQuor por-ifm-32a

quantitativerequirements

LTL\©\©\© formula ϕϕϕ(path event)

modeling languageP1‖. . .‖PnP1‖. . .‖PnP1‖. . .‖Pn

reducedMDPMrMrMr

partial order reduction

quantitative analysisofMrMrMr against ϕϕϕ

maximal/minimalprobability for ϕϕϕ

}worst-case

analysis61 / 124

Example: extremal scheduler for MDP por-08-copy

sss

121212

ααα

121212

βββ γγγ

βββ γγγγγγβββ

ααα

121212

121212

121212 1

21212

ααα

δδδ δδδ

original MDPMMM

ααα independentfrom βββ and γγγ

62 / 124

Example: extremal scheduler for MDP por-08-copy

sss

121212

ααα

121212

βββ γγγ

βββ γγγγγγβββ

ααα

121212

121212

121212 1

21212

ααα

δδδ δδδ

βββ γγγ

δδδ δδδ

P1 ‖ P2P1 ‖ P2P1 ‖ P2

ααα

121212

121212

original MDPMMM

ααα independentfrom βββ and γγγ

action ααα: x := random(0, 1)x := random(0, 1)x := random(0, 1)

action δδδ:IF x > 0x > 0x > 0 THEN y := 1y := 1y := 1 FI

63 / 124

Example: extremal scheduler for MDP por-08-copy

sss

121212

ααα

121212

βββ γγγ

βββ γγγγγγβββ

ααα

121212

121212

121212 1

21212

ααα

δδδ δδδ

βββ γγγ

δδδ δδδ

P1 ‖ P2P1 ‖ P2P1 ‖ P2

ααα

121212

121212

scheduler chooses action βββ or γγγ of process P1P1P1,depending on P2P2P2’s internal probabilistic choice

64 / 124

Outline overview-pomdp

• Markov decision processes (MDP) andquantitative analysis against path events

• partial order reduction for MDP

• partially-oberservable MDP ←−←−←−• conclusions

65 / 124

Monty-Hall problem pomdp-01

333 doorsinitially closed

candidateshowmaster

66 / 124

Monty-Hall problem pomdp-01

no prize prize no prize333 doorsinitially closed

candidateshowmaster

67 / 124

Monty-Hall problem pomdp-01

no prize prize no prize333 doorsinitially closed

candidateshowmaster

1. candidate chooses one of the doors

68 / 124

Monty-Hall problem pomdp-01

no prize prize no prize333 doorsinitially closed

candidateshowmaster

1. candidate chooses one of the doors

2. show master opens a non-chosen, non-winning door

69 / 124

Monty-Hall problem pomdp-01

no prize prize no prize333 doorsinitially closed

candidateshowmaster

1. candidate chooses one of the doors

2. show master opens a non-chosen, non-winning door

3. candidate has the choice:• keep the choice or• switch to the other (still closed) door

70 / 124

Monty-Hall problem pomdp-01

no prize 100.000100.000100.000Euro no prize

333 doorsinitially closed

candidateshowmaster

1. candidate chooses one of the doors

2. show master opens a non-chosen, non-winning door

3. candidate has the choice:• keep the choice or• switch to the other (still closed) door

4. show master opens all doors71 / 124

Monty-Hall problem pomdp-01

no prize 100.000100.000100.000Euro no prize

333 doorsinitially closed

candidateshowmaster

optimal strategy for the candidate:

initial choice of the door: arbitraryrevision of the initial choice (switch)

probability for getting the prize: 232323

72 / 124

MDP for the Monty-Hall problem pomdp-02

73 / 124

MDP for the Monty-Hall problem pomdp-02

no prize prize no prize333 doorsinitially closed

candidate’s actions1. choose one door3. keep or switch ?

show master’s actions2. opens a non-chosen,

non-winning door4. opens all doors

74 / 124

MDP for the Monty-Hall problem pomdp-02

no prize prize no prize333 doorsinitially closed

candidate’s actions1. choose one door3. keep or switch ?

show master’s actions2. opens a non-chosen,

non-winning door4. opens all doors������������������������������������������������������������������������������start

door111 door222 door333

lost won

131313 1

31313

131313

keep switch

keep switch

keep switch

75 / 124

MDP for the Monty-Hall problem pomdp-02

no prize prize no prize333 doorsinitially closed

candidate’s actions1. choose one door3. keep or switch ?

Prmax(start,♦won),♦won),♦won) = 1Prmax(start,♦won),♦won),♦won) = 1Prmax(start,♦won),♦won),♦won) = 1

optimal scheduler requirescomplete information

on the states

start

door111 door222 door333

lost won

131313 1

31313

131313

wonswitch

keep switch

76 / 124

MDP for the Monty-Hall problem pomdp-02

no prize prize no prize333 doorsinitially closed

candidate’s actions1. choose one door3. keep or switch ?

cannot be distinguishedby the candidate

start

door111 door222 door333

lost won

131313 1

31313

131313

wonswitch

keep switchkeep switch

keep77 / 124

MDP for the Monty-Hall problem pomdp-02

no prize prize no prize333 doorsinitially closed

candidate’s actions1. choose one door3. keep or switch ?

observation-based strategy:choose action switchin state dooriii

start

door111 door222 door333

lost won

131313 1

31313

131313

wonswitch

switchswitch

78 / 124

MDP for the Monty-Hall problem pomdp-02

no prize prize no prize333 doorsinitially closed

candidate’s actions1. choose one door3. keep or switch ?

observation-based strategy:choose action switchin state dooriii

probability for ♦won♦won♦won: 232323start

door111 door222 door333

lost wonwon

131313 1

31313

131313

switch

switchswitch

79 / 124

Partially-observable Markov decision process pomdp-05

A partially-observable MDP (POMDP for short)is an MDPM = (S , Act, P, . . .)M = (S , Act, P, . . .)M = (S , Act, P, . . .) together withan equivalence relation ∼∼∼ on SSS

80 / 124

Partially-observable Markov decision process pomdp-05

A partially-observable MDP (POMDP for short)is an MDPM = (S , Act, P, . . .)M = (S , Act, P, . . .)M = (S , Act, P, . . .) together withan equivalence relation ∼∼∼ on SSS���

if s1 ∼ s2s1 ∼ s2s1 ∼ s2 then s1, s2s1, s2s1, s2 cannot be distinguishedfrom outside (or by the scheduler)

observables: equivalence classes of states

81 / 124

Partially-observable Markov decision process pomdp-05

A partially-observable MDP (POMDP for short)is an MDPM = (S , Act, P, . . .)M = (S , Act, P, . . .)M = (S , Act, P, . . .) together withan equivalence relation ∼∼∼ on SSS���

if s1 ∼ s2s1 ∼ s2s1 ∼ s2 then s1, s2s1, s2s1, s2 cannot be distinguishedfrom outside (or by the scheduler)

observables: equivalence classes of states

observation-based scheduler:

scheduler D : S+ → ActD : S+ → ActD : S+ → Act such that for all π1, π2 ∈ S+π1, π2 ∈ S+π1, π2 ∈ S+:

D(π1) = D(π2)D(π1) = D(π2)D(π1) = D(π2) if obs(π1) = obs(π2)obs(π1) = obs(π2)obs(π1) = obs(π2)

where obs(s0 s1 . . . sn) = [s0] [s1] . . . [sn]obs(s0 s1 . . . sn) = [s0] [s1] . . . [sn]obs(s0 s1 . . . sn) = [s0] [s1] . . . [sn]82 / 124

Extreme cases of POMDP pomdp-11

extreme cases of an POMDP:

• s1 ∼ s2s1 ∼ s2s1 ∼ s2 iff s1 = s2s1 = s2s1 = s2

• s1 ∼ s2s1 ∼ s2s1 ∼ s2 for all s1s1s1, s2s2s2

83 / 124

Extreme cases of POMDP pomdp-11

extreme cases of an POMDP:

• s1 ∼ s2s1 ∼ s2s1 ∼ s2 iff s1 = s2s1 = s2s1 = s2 ←−←−←− standard MDP

• s1 ∼ s2s1 ∼ s2s1 ∼ s2 for all s1s1s1, s2s2s2

84 / 124

Probabilistic automata are special POMDP pomdp-11

extreme cases of an POMDP:

• s1 ∼ s2s1 ∼ s2s1 ∼ s2 iff s1 = s2s1 = s2s1 = s2 ←−←−←− standard MDP

• s1 ∼ s2s1 ∼ s2s1 ∼ s2 for all s1s1s1, s2s2s2 ←−←−←− probabilistic automata

note that for totally non-observable POMDP:

observation-basedscheduler

===function

D : N→ ActD : N→ ActD : N→ Act===

infinite wordover ActActAct

85 / 124

Undecidability results for POMDP pomdp-11

extreme cases of an POMDP:

• s1 ∼ s2s1 ∼ s2s1 ∼ s2 iff s1 = s2s1 = s2s1 = s2 ←−←−←− standard MDP

• s1 ∼ s2s1 ∼ s2s1 ∼ s2 for all s1s1s1, s2s2s2 ←−←−←− probabilistic automata

note that for totally non-observable POMDP:

observation-basedscheduler

===function

D : N→ ActD : N→ ActD : N→ Act===

infinite wordover ActActAct

undecidability results for PFA carry over to POMDP

maximum probabilisticreachability problem

“does Probsmax(♦F ) > pProbsmax(♦F ) > pProbsmax(♦F ) > p hold ?”

===non-emptinessproblem for

PFA86/124

Undecidability results for POMDP pomdp-30-new

• The model checking problem for POMDP andquantitative properties is undecidable, e.g.,probabilistic reachability properties.

87 / 124

Undecidability results for POMDP pomdp-30-new

• The model checking problem for POMDP andquantitative properties is undecidable, e.g.,probabilistic reachability properties.

• There is no even no approximation algorithm forreachability objectives.

[Paz’71], [Madani/Hanks/Condon’99], [Giro/d’Argenio’07]

88 / 124

Undecidability results for POMDP pomdp-30-new

• The model checking problem for POMDP andquantitative properties is undecidable, e.g.,probabilistic reachability properties.

�♦�♦�♦ === “infinitely often”

• There is no even no approximation algorithm forreachability objectives.

• The model checking problem for POMDP and severalqualitative properties is undecidable, e.g.,

repeated reachability with positive probability

“does Probsmax(�♦F )Probsmax(�♦F )Probsmax(�♦F ) > 0> 0> 0 hold ?”

89 / 124

Undecidability results for POMDP pomdp-30-new

• The model checking problem for POMDP andquantitative properties is undecidable, e.g.,probabilistic reachability properties.

• There is no even no approximation algorithm forreachability objectives.

• The model checking problem for POMDP and severalqualitative properties is undecidable, e.g.,

repeated reachability with positive probability

“does Probsmax(�♦F )Probsmax(�♦F )Probsmax(�♦F ) > 0> 0> 0 hold ?”

Many interesting verification problems for distributedprobabilistic multi-agent systems are undecidable.

90 / 124

Undecidability results for POMDP pomdp-30-new

• The model checking problem for POMDP andquantitative properties is undecidable, e.g.,probabilistic reachability properties.

• There is no even no approximation algorithm forreachability objectives.

• The model checking problem for POMDP and severalqualitative properties is undecidable, e.g.,

repeated reachability with positive probability

“does Probsmax(�♦F )Probsmax(�♦F )Probsmax(�♦F ) > 0> 0> 0 hold ?”

... already holds for totally non-observable POMDP︸ ︷︷ ︸probabilistic Buchi automata

91 / 124

Probabilistic Buchi automaton (PBA) pba-01

P = (Q, Σ, δ, µ, F )P = (Q, Σ, δ, µ, F )P = (Q, Σ, δ, µ, F )

• QQQ finite state space

• ΣΣΣ alphabet

• δ : Q × Σ× Q → [0, 1]δ : Q × Σ× Q → [0, 1]δ : Q × Σ× Q → [0, 1] s.t. for all q ∈ Qq ∈ Qq ∈ Q, a ∈ Σa ∈ Σa ∈ Σ:∑p∈Q

δ(q, a, p) ∈ {0, 1}∑p∈Q

δ(q, a, p) ∈ {0, 1}∑p∈Q

δ(q, a, p) ∈ {0, 1}• initial distribution µµµ

• set of final states F ⊆ QF ⊆ QF ⊆ Q

92 / 124

Probabilistic Buchi automaton (PBA) pba-01

POMDP where Σ = ActΣ = ActΣ = Actand ∼∼∼ === Q × QQ × QQ × Q

P = (Q, Σ, δ, µ, F )P = (Q, Σ, δ, µ, F )P = (Q, Σ, δ, µ, F ) ←−←−←−• QQQ finite state space

• ΣΣΣ alphabet

• δ : Q × Σ× Q → [0, 1]δ : Q × Σ× Q → [0, 1]δ : Q × Σ× Q → [0, 1] s.t. for all q ∈ Qq ∈ Qq ∈ Q, a ∈ Σa ∈ Σa ∈ Σ:∑p∈Q

δ(q, a, p) ∈ {0, 1}∑p∈Q

δ(q, a, p) ∈ {0, 1}∑p∈Q

δ(q, a, p) ∈ {0, 1}• initial distribution µµµ

• set of final states F ⊆ QF ⊆ QF ⊆ Q

93 / 124

Probabilistic Buchi automaton (PBA) pba-01

POMDP where Σ = ActΣ = ActΣ = Actand ∼∼∼ === Q × QQ × QQ × Q

P = (Q, Σ, δ, µ, F )P = (Q, Σ, δ, µ, F )P = (Q, Σ, δ, µ, F ) ←−←−←−• QQQ finite state space

• ΣΣΣ alphabet

• δ : Q × Σ× Q → [0, 1]δ : Q × Σ× Q → [0, 1]δ : Q × Σ× Q → [0, 1] s.t. for all q ∈ Qq ∈ Qq ∈ Q, a ∈ Σa ∈ Σa ∈ Σ:∑p∈Q

δ(q, a, p) ∈ {0, 1}∑p∈Q

δ(q, a, p) ∈ {0, 1}∑p∈Q

δ(q, a, p) ∈ {0, 1}• initial distribution µµµ

• set of final states F ⊆ QF ⊆ QF ⊆ Q

For each infinite word x ∈ Σωx ∈ Σωx ∈ Σω:

Pr(x) =Pr(x) =Pr(x) = probability for the accepting runs for xxx↑↑↑

accepting run: visits FFF infinitely often

94 / 124

Probabilistic Buchi automaton (PBA) pba-01

POMDP where Σ = ActΣ = ActΣ = Actand ∼∼∼ === Q × QQ × QQ × Q

P = (Q, Σ, δ, µ, F )P = (Q, Σ, δ, µ, F )P = (Q, Σ, δ, µ, F ) ←−←−←−• QQQ finite state space

• ΣΣΣ alphabet

• δ : Q × Σ× Q → [0, 1]δ : Q × Σ× Q → [0, 1]δ : Q × Σ× Q → [0, 1] s.t. for all q ∈ Qq ∈ Qq ∈ Q, a ∈ Σa ∈ Σa ∈ Σ:∑p∈Q

δ(q, a, p) ∈ {0, 1}∑p∈Q

δ(q, a, p) ∈ {0, 1}∑p∈Q

δ(q, a, p) ∈ {0, 1}• initial distribution µµµ

• set of final states F ⊆ QF ⊆ QF ⊆ Q

For each infinite word x ∈ Σωx ∈ Σωx ∈ Σω:

Pr(x) =Pr(x) =Pr(x) = probability for the accepting runs for xxx↑↑↑

probability measure in the infinite Markov chaininduced by xxx viewed as a scheduler

95 / 124

Accepted language of a PBA pba-03

P = (Q, Σ, δ, µ, F )P = (Q, Σ, δ, µ, F )P = (Q, Σ, δ, µ, F )

• QQQ finite state space, ΣΣΣ alphabet

• δ : Q × Σ× Q → [0, 1]δ : Q × Σ× Q → [0, 1]δ : Q × Σ× Q → [0, 1] s.t. . . .. . .. . .

• initial distribution µµµ

• set of final states F ⊆ QF ⊆ QF ⊆ Q

three types of accepted language:

L>0(P)L>0(P)L>0(P) ==={x ∈ Σω : Pr(x) > 0

}{x ∈ Σω : Pr(x) > 0

}{x ∈ Σω : Pr(x) > 0

}probable semantics

L=1(P)L=1(P)L=1(P) ==={x ∈ Σω : Pr(x) = 1

}{x ∈ Σω : Pr(x) = 1

}{x ∈ Σω : Pr(x) = 1

}almost-sure sem.

L>λ(P)L>λ(P)L>λ(P) ==={x ∈ Σω : Pr(x) > λ

}{x ∈ Σω : Pr(x) > λ

}{x ∈ Σω : Pr(x) > λ

}threshold semanticswhere 0 < λ < 10 < λ < 10 < λ < 1

96 / 124

Example for PBA pba-05

111 222aaa, 1

21212

bbbaaaaaa, 1

21212

initial state (probability 1)

final state

nonfinal state

97 / 124

Example for PBA pba-05

111 222aaa, 1

21212

bbbaaaaaa, 1

21212

accepted language:

L>0(P)L>0(P)L>0(P) === (a + b)∗aω(a + b)∗aω(a + b)∗aω

initial state (probability 1)

final state

nonfinal state

98 / 124

Example for PBA pba-05

111 222aaa, 1

21212

bbbaaaaaa, 1

21212

accepted language:

L>0(P)L>0(P)L>0(P) === (a + b)∗aω(a + b)∗aω(a + b)∗aω

L=1(P)L=1(P)L=1(P) === b∗aωb∗aωb∗aω

initial state (probability 1)

final state

nonfinal state

99 / 124

Example for PBA pba-05

111 222aaa, 1

21212

bbbaaaaaa, 1

21212

accepted language:

L>0(P)L>0(P)L>0(P) === (a + b)∗aω(a + b)∗aω(a + b)∗aω

L=1(P)L=1(P)L=1(P) === b∗aωb∗aωb∗aω

Thus: PBA>0>0>0 are strictly more expressive than DBA

100/124

Example for PBA pba-05

111 222aaa, 1

21212

bbbaaaaaa, 1

21212

accepted language:

L>0(P)L>0(P)L>0(P) === (a + b)∗aω(a + b)∗aω(a + b)∗aω

L=1(P)L=1(P)L=1(P) === b∗aωb∗aωb∗aω

Thus: PBA>0>0>0 are strictly more expressive than DBA

333222

111

a, 12

a, 12a, 12 a, 1

2a, 1

2a, 12

bbb

cccbbb

101 / 124

Example for PBA pba-05

111 222aaa, 1

21212

bbbaaaaaa, 1

21212

accepted language:

L>0(P)L>0(P)L>0(P) === (a + b)∗aω(a + b)∗aω(a + b)∗aω

L=1(P)L=1(P)L=1(P) === b∗aωb∗aωb∗aω

Thus: PBA>0>0>0 are strictly more expressive than DBA

333222

111

a, 12

a, 12a, 12 a, 1

2a, 1

2a, 12

bbb

cccbbb

NBA accepts ((ac)∗ab)ω((ac)∗ab)ω((ac)∗ab)ω

102 / 124

Example for PBA pba-05

111 222aaa, 1

21212

bbbaaaaaa, 1

21212

accepted language:

L>0(P)L>0(P)L>0(P) === (a + b)∗aω(a + b)∗aω(a + b)∗aω

L=1(P)L=1(P)L=1(P) === b∗aωb∗aωb∗aω

Thus: PBA>0>0>0 are strictly more expressive than DBA

333222

111

a, 12

a, 12a, 12 a, 1

2a, 1

2a, 12

bbb

cccbbb

accepted language:

L>0(P)L>0(P)L>0(P) === (ab + ac)∗(ab)ω(ab + ac)∗(ab)ω(ab + ac)∗(ab)ω

but NBA accepts ((ac)∗ab)ω((ac)∗ab)ω((ac)∗ab)ω

103 / 124

Example for PBA pba-05

111 222aaa, 1

21212

bbbaaaaaa, 1

21212

accepted language:

L>0(P)L>0(P)L>0(P) === (a + b)∗aω(a + b)∗aω(a + b)∗aω

L=1(P)L=1(P)L=1(P) === b∗aωb∗aωb∗aω

Thus: PBA>0>0>0 are strictly more expressive than DBA

333222

111

a, 12

a, 12a, 12 a, 1

2a, 1

2a, 12

bbb

cccbbb

accepted language:

L>0(P)L>0(P)L>0(P) === (ab + ac)∗(ab)ω(ab + ac)∗(ab)ω(ab + ac)∗(ab)ω

L=1(P)L=1(P)L=1(P) === (ab)ω(ab)ω(ab)ω

but NBA accepts ((ac)∗ab)ω((ac)∗ab)ω((ac)∗ab)ω

104 / 124

Expressiveness of PBA with probable semantics pba-10a

PBA>0>0>0 are strictly more expressive than NBA

105/124

Expressiveness of PBA with probable semantics pba-10a

PBA>0>0>0 are strictly more expressive than NBA

• from NBA to PBA: via deterministic-in-limit NBA

106 / 124

Expressiveness of PBA with probable semantics pba-10a

PBA>0>0>0 are strictly more expressive than NBA

• from NBA to PBA: via deterministic-in-limit NBA

• PBA can accept non-ωωω-regular languages

222111

aaa,121212

aaaaaa, 121212

bbb

107 / 124

Expressiveness of PBA with probable semantics pba-10a

PBA>0>0>0 are strictly more expressive than NBA

• from NBA to PBA: via deterministic-in-limit NBA

• PBA can accept non-ωωω-regular languages

222111

aaa,121212

aaaaaa, 121212

bbb

accepted language (probable semantics):

L>0(P) ={

ak1bak2bak3b. . . |L>0(P) ={

ak1bak2bak3b. . . |L>0(P) ={

ak1bak2bak3b. . . | . . .. . .. . .}}}

108 / 124

Expressiveness of PBA with probable semantics pba-10a

PBA>0>0>0 are strictly more expressive than NBA

• from NBA to PBA: via deterministic-in-limit NBA

• PBA can accept non-ωωω-regular languages

222111

aaa,121212

aaaaaa, 121212

bbb

accepted language (probable semantics):

L>0(P) ={

ak1bak2bak3b. . . |L>0(P) ={

ak1bak2bak3b. . . |L>0(P) ={

ak1bak2bak3b. . . |∞∏i=1

(1−

(12

)ki

)> 0

∞∏i=1

(1−

(12

)ki

)> 0

∞∏i=1

(1−

(12

)ki

)> 0

}}}109 / 124

Expressiveness of PBA pba-15

PBA>0>0>0

DBA

110/124

Expressiveness of PBA pba-15

PBA>0>0>0

DBA

NBA

111/124

Expressiveness of PBA pba-15

PBA>0>0>0

DBA

NBA

PBA with thresholds

112 / 124

Expressiveness of PBA pba-15

PBA>0>0>0

DBA

NBA

PBA with thresholds

PBA=1=1=1

almost-suresemantics

113 / 124

Expressiveness of PBA pba-15

PBA>0>0>0

DBA

NBA

PBA with thresholds

PBA=1=1=1

almost-suresemantics

(a + b)∗aω(a + b)∗aω(a + b)∗aω

114 / 124

Expressiveness of PBA pba-15

PBA>0>0>0

DBA

NBA

PBA with thresholds

PBA=1=1=1

almost-suresemantics

(a + b)∗aω(a + b)∗aω(a + b)∗aω

{ak1bak2b. . . :

∞∏i=1

(1− (12)ki) > 0

}{ak1bak2b. . . :

∞∏i=1

(1− (12)

ki) > 0}{

ak1bak2b. . . :∞∏i=1

(1− (12)ki) > 0

}

115 / 124

Expressiveness of PBA pba-15

PBA>0>0>0

DBA

NBA

PBA with thresholds

PBA=1=1=1

almost-suresemantics

(a + b)∗aω(a + b)∗aω(a + b)∗aω

{ak1bak2b. . . :

∞∏i=1

(1− (12)ki) > 0

}{ak1bak2b. . . :

∞∏i=1

(1− (12)

ki) > 0}{

ak1bak2b. . . :∞∏i=1

(1− (12)ki) > 0

}{ak1bak2b. . . :

∞∏i=1

(1− (12)

ki) = 0}{

ak1bak2b. . . :∞∏i=1

(1− (12)

ki) = 0}{

ak1bak2b. . . :∞∏i=1

(1− (12)

ki) = 0}

116 / 124

Expressiveness of PBA pba-15

PBA>0>0>0

DBA

NBA

PBA with thresholds

PBA=1=1=1

almost-suresemantics

(a + b)∗aω(a + b)∗aω(a + b)∗aω

emptiness problem: undecidable for PBA>0>0>0

decidable for PBA=1=1=1

117 / 124

Outline overview-conc

• Markov decision processes (MDP) andquantitative analysis against path events

• partial order reduction for MDP

• partially-oberservable MDP

• conclusions ←−←−←−

118 / 124

Conclusion conc

• worst/best-case analysis of MDP solvable by

∗∗∗ numerical methods for solving linear programs

∗∗∗ known techniques for non-probabilistic systems

graph algorithms, LTL-2-AUT translators, . . .. . .. . .techniques to combat the state explosion problem(such as partial order reduction)

119 / 124

Conclusion conc

• worst/best-case analysis of MDP solvable by

∗∗∗ numerical methods for solving linear programs

∗∗∗ known techniques for non-probabilistic systems

graph algorithms, LTL-2-AUT translators, . . .. . .. . .techniques to combat the state explosion problem(such as partial order reduction)

but: strongly simplified definition of schedulers���assumption “full knowledge of the history” is

inadequate, e.g., for agents of distributed systems

120 / 124

Conclusion conc

• worst/best-case analysis of MDP solvable by

∗∗∗ numerical methods for solving linear programs

∗∗∗ known techniques for non-probabilistic systems

• more realistic model: partially-observable MDPand multi-agents variants with distributed schedulers

121 / 124

Conclusion conc

• worst/best-case analysis of MDP solvable by

∗∗∗ numerical methods for solving linear programs

∗∗∗ known techniques for non-probabilistic systems

• more realistic model: partially-observable MDPand multi-agents variants with distributed schedulers

−−− many algorithms for “finite-horizon properties”

−−− few decidability results for qualitative properties

−−− undecidability for quantitative properties and, e.g.,repeated reachability with positive probability

122 / 124

Conclusion conc

• worst/best-case analysis of MDP solvable by

∗∗∗ numerical methods for solving linear programs

∗∗∗ known techniques for non-probabilistic systems

• more realistic model: partially-observable MDPand multi-agents variants with distributed schedulers

−−− many algorithms for “finite-horizon properties”

−−− few decidability results for qualitative properties

−−− undecidability for quantitative properties and, e.g.,repeated reachability with positive probability

���proof via probabilistic language acceptors (PFA/PBA)

123 / 124

Conclusion conc

• worst/best-case analysis of MDP solvable by

∗∗∗ numerical methods for solving linear programs

∗∗∗ known techniques for non-probabilistic systems

• more realistic model: partially-observable MDPand multi-agents variants with distributed schedulers

−−− many algorithms for “finite-horizon properties”

−−− few decidability results for qualitative properties

−−− undecidability for quantitative properties and, e.g.,repeated reachability with positive probability

• probabilistic Buchi automata interesting in their own . . .. . .. . .

124 / 124