quantum 9000 technical paper_tcm4-451434

36

Upload: nicoleta-buzatu

Post on 16-Aug-2016

10 views

Category:

Documents


1 download

DESCRIPTION

english

TRANSCRIPT

Copyright ©

 MAN Diesel &

 Turbo and DNV · S

ubject to modification in the interest of technical progress. 

MAN Diesel & Turbo

Teglholmsgade 41

2450 Copenhagen SV. Denmark

Phone +45 33 85 11 00

Fax  +45 33 85 10 30

[email protected]

www.mandieselturbo.com

Det Norske Veritas AS

NO-1322 Høvik, Norway

Phone +47 67 57 99 00

Fax: +47 67 57 99 11

www.dnv.com

A3_Cover_DNV_5510-0108-00ppr.indd 1 3/8/2011 14:57:18

3Quantum 9000

Contents

Introduction ......................................................................................................5

Concept Overview .............................................................................................6

Trade Route and Operational Profile ...................................................................8

The Engine ...................................................................................................... 11

Exhaust Gas Recirculation (EGR) ..................................................................... 16

Test Experience ............................................................................................... 19

Gas Supply System ......................................................................................... 20

LNG Tanks ...................................................................................................... 23

Class Requirements ........................................................................................ 24

Bunkering ....................................................................................................... 25

Hull Optimisation ............................................................................................. 26

General Arrangement ...................................................................................... 27

LNG Tank Arrangement ................................................................................... 28

Main Engine Room Safety ............................................................................... 28

Recommendations for the Utilisation of Available Energy from LNG .................. 29

Reduction of Power Need for Reefer Containers .............................................. 29

Cool Down Air Supply to Turbocharger ............................................................ 30

Other Cooling Needs ....................................................................................... 30

Ballast Water ................................................................................................... 31

Propeller Optimisation ..................................................................................... 32

Cost-benefit Calculations ................................................................................ 32

Conclusion ...................................................................................................... 34

References...................................................................................................... 34

4 Quantum 9000

5Quantum 9000

Introduction

The  need  for  seaborne  transportation 

will  increase  significantly  in  the  years 

to come. At the same time, the fuel oil 

price is increasing, stricter emission re-

quirements  are  coming  into  force,  and 

the public is becoming more concerned 

about  the  environmental  footprint  of 

shipping. As a result, the industry is in-

vestigating alternative fuels for shipping. 

Liquefied natural gas (LNG) is an attrac-

tive  option  since  it  reduces  the  emis-

sions,  and  is  expected  to  be  cheaper 

than fuel oil in the future because of the 

large world reserves of natural gas.

Background

The  use  of  liquefied  natural  gas  (LNG) 

as ship fuel is not a new idea. LNG has 

been used  for many years on gas car-

riers with boilers  (in  the case of  steam 

turbine  propulsion),  four-stroke  diesel 

mechanical  propulsion  or  diesel  elec-

tric propulsion  installed. All  these solu-

tions are based on consumption of the 

readily  available  LNG as  the  fuel,  and/

or  boil-off  gas  from  the  LNG  tanks.  In 

recent  years,  the  LNG  infrastructure, 

particularly  in  Norway,  has  developed 

to the extent that other ship types,  like 

Ro-Ro and smaller ferryboats, use LNG 

as the fuel, and it is now established as 

a  clean and  reliable  fuel  for propulsion 

and auxiliary power generation.

In April 2010, DNV presented the LNG-

fuelled  container  ship  concept  Quan-

tum. The Quantum concept  introduces 

a  number  of  innovative  solutions  to  

increase  efficiency  and  reduce  the  en-

vironmental  impact  of  container  ship 

operation. Based on  input  from the  in-

dustry,  flexibility  was  found  to  be  the 

answer  to  the many  uncertainties  fac-

ing  the  industry  in  the  years  to  come. 

The  machinery  arrangement  is  based 

on  electric  propulsion  and  dual  fuel 

gensets.  This  was  selected  with  the 

need for flexibility in mind, and is based 

on an assessment of the alternative so-

lutions available at the time. 

With  the  recent  technology  develop-

ment, MAN Diesel & Turbo can now offer 

both dual  fuel medium speed engines, 

and low speed MAN B&W LNG-burning 

ME-GI  type  engines  offering  propul-

sion  power  with  reduced  emissions. 

The development  of  the ME-GI  engine 

has made it possible to install a simple, 

yet  unique  propulsion  power  solution, 

with a  total system efficiency similar  to 

conventional vessels, but with reduced 

emissions. Hence, the further develop-

ment of the DNV Quantum project with 

a single propulsion line, using an ME-GI 

main engine as  the power source,  is a 

natural and obvious progression for fu-

ture container ship designs to obtain a 

reliable, energy efficient, and emission-

friendly LNG solution.

As  a  result  of  recent  market  trends,  it 

was  decided  to  increase  the  ship  size 

from  the 6,000-teu  range  to  the 9,000-

teu range. With the new Panama Canal, 

this ship size is very relevant for the Asia-

US trade through the Panama Canal. The 

hull  form  and  arrangement  has,  conse-

quently, been modified and optimised for 

the  new  machinery  arrangement,  ship 

size and trade.

Emission regulations

The ME-GI  engine will  fulfil  IMO Tier  III 

NOx  levels  when  combined  with  the 

exhaust  gas  recirculation  (EGR)  tech-

nology.  A  technology  developed  by 

MAN  Diesel  &  Turbo  for  the  complete 

low speed B&W engine programme for 

compliance with IMO Tier III NOx emis-

sion regulations. 

Quantum 9000

Fig. 1: Quantum 9000

6 Quantum 9000

Methane slip, a problem commonly as-

sociated with  dual  fuel  engines,  is  not 

an issue with the ME-GI engine, due to 

operation according to the Diesel cycle 

principle.  In  this  respect,  the ME-GI  is 

not  vulnerable  to  the  valve  overlap,  or 

localised  gas  fuel  pocket  formation  on 

the  cylinder  wall,  resulting  in  methane 

slip, and which may occur as a conse-

quence  of  operation  according  to  the 

Otto cycle principle.

Concept Overview

Quantum  9000  has  been  designed  to 

be  more  efficient  and  environmentally 

friendly  compared  with  existing  ships, 

without introducing major complications 

in the building and operation of the ship. 

The  new  solution  for  LNG  machinery, 

the  ME-GI  engine,  demonstrates  that 

improvements can be achieved on both 

the  machinery  and  hull  side,  by  using 

existing and well-proven technology. 

The  first  Quantum  concept  study  in-

troduced a diesel-electric  arrangement 

with  pod  propulsion.  This  is  a  proven 

system  in  the cruise  industry, but new 

to  the  container  ship market,  where  a 

single-screw low speed two-stroke so-

lution has been the predominant choice 

of propulsion. The Quantum 9000 intro-

duces  LNG  to  the  preferred  container 

ship propulsion system, making it more 

available to container ship owners.  

Twin island designs are common for big-

ger  ships  in  the  12-14,000  teu  range. 

Single island has been the common so-

lution  for 9,000 teu size. Benefits such 

as increased container loading and im-

proved vision from the bridge justifies a 

twin island solution also for the smaller 

size ship. Collisions and groundings are 

among the most common incidents for 

container  ships.  Highlights  of  the  new 

concept are outlined below: 

Main features

 � Gas-fuelled main engine – two-stroke 

ME-GI

 � Dual fuel auxiliary engines

 � Full fuel flexibility (HFO/DFO/LNG)

 � Full ECA compliance (Tier III)

 � Optimised  according  to  the  opera-

tional profile

 � Improved EEDI

 � Cost-efficient solutions.

Machinery

Efficiency  improvements  and  reduced 

emissions  are  obtained  with  the  MAN  

B&W two-stroke ME-GI gas engine. The 

benefits are:

 � Simple modifications

 � Conventional engine room

 � Proven performance

 � High fuel efficiency

 � High fuel flexibility

 � High reliability.

Hull design and arrangement

The  hull  design  and  arrangement  has 

been optimised for maximum space uti-

lisation, minimum hull fuel consumption, 

minimum need for ballast water, and in-

creased safety. The main benefits are:

 � Better  space  utilisation with  twin  is-

land

 � Greatly  improved  sightline  from  the 

bridge

 � Sufficient LNG capacity without  loss 

of cargo space

 � Pressurised  type-C  LNG  storage 

tanks for maximum reliability

 � Reduced need for ballast water

 � Increased ship beam, reduced block 

coefficient 

 � 4-blade propeller optimisation.

Fig. 3: The hull arrangement

Fig. 2: The ship hull performance

7Quantum 9000

CONTAINER VESSEL “QUANTUM 9000 CONCEPT” Class: DNV CONTAINER CARRIER NAUTICUS(Newbuilding) E0 DG-P TMON BIS LCS-SI

Optional notations: RC-1(1072/131) NAUT-AW CLEAN BWM-T COMF-V3 VIBR F-M

POOP DECK

MAIN DECK

B.L.D.B.

100 20 30 40 50 60 70 80 230 240 250 260 270 280 290 300 310

FORECASTLE DECK

320 330130 140 150 160

23456 179 8

90 100 110 120 220170 180 190 200 210 340 350 360 370 380

MAIN PARTICULARS: Length betw. perpendiculars, Lbp 297.979 m Length overall, Loa 313.845 m Breadth moulded, B 48.0 m Depth moulded, D 26.4 m Draught moulded, T 15.0 m Design draught, Td 13.5 m Min. design draught at AP 13.5 m Min. design draught at FP 13.5 m Block coefficient, Cb (@Td) 0.58 Waterplane area coefficient, Cwp 0.762

Deadweight, design 81,155 t Deadweight, scantling 98,618 t Lightship (esimated/preliminary) 34,432 t

Design speed 22.0 kn (at design draught, 85% MCR / 15% sea margin)

Crew 28 + 6 Suez

TANK CAPACITIES: Heavy Fuel Oil (HFO) 4,000 m3 Liquid Natural Gas (LNG) 6,500 m3 Marine Diesel/Gas Oil (MDO/MGO) 1,600 m3 Lubricating Oil 16 m3 Fresh Water 360 m3 Ballast Water 24,728 m3

All oil tanks according to “MARPOL Oil Tank Protection”

Cruising range approx. 16,000 nm

ENGINE PLANT: Main engine: MAN 9S80ME-C9.2-GI MCR: 40,590 kW @ 78.0 rpm

Propeller: Fixed pitch, 4 blades, dia. 10 m AUX engine/Gen Sets : 4 x 2,500 kW Emergency generator : 1 x 250 kW @ 1,800 rpm Bow Thrusters: 2 x 2000 kW WHR plant (ME @85% MCR ISO): 2,709 kW

CONTAINER STOWAGE: Container capacity (total) 8,708 TEU On deck: 5,570 TEU Below deck (cargo hold): 3,138 TEU

Reefer capacity (total) 1,203 FEU On deck: 1,072 FEU Below deck (cargo hold): 131 FEU

Rows (max) on deck / in cargo hold 19/17

Tiers (max) on deck / in cargo hold 9/9

Pontoon hatch covers (composite/light weight): Hatch 01C (1x): 12.97 x 24.27 m Hatch 02F PS & SB (2x): 12.97 x 10.85 m Hatch 02F C – 09A C (14x): 12.97 x 17.63 m Hatch 02A PS – 09A PS (13x): 12.97 x 13.38 m Hatch 02A SB – 09A SB (13x): 12.97 x 13.38 m

Stability:

14t/TEU, 8’6” high, 50% HcG 6,539 TEU

Fig. 4: Quantum 9000 concept – ship design data

8 Quantum 9000

Trade Route and Operational Profile

Based  on  recent  market  trends,  the 

9,000-teu  range  was  selected  as  the 

target  case  for  the  concept  develop-

ment,  together  with  the  Asia–US  east 

coast trade route through the new Pan-

ama Canal, see Fig 5.

For several years, since the building of 

the  first  Post-panamax  container  ves-

sel in 1988, the existing Panama Canal 

has been  too  small  for  the  larger  con-

tainer  vessels.  In  order  to  accommo-

date  a  larger  proportion  of  the  current 

and future fleet, and thereby the cargo 

carriage through the Panama Canal, the 

Panama  Canal  Authority  has  decided 

to extend the existing two lanes with a 

bigger third lane with a set of increased 

size of lock chambers. 

The lock chambers will be 427 m long, 

55  m  wide  and  18.3  m  deep,  allow-

ing  passage  of  ships with  a maximum 

breadth  of  49  m,  maximum  passage 

draught  of  15 m  and  an  overall  maxi-

mum ship length of 366 m. The new ca-

nal is scheduled to open in 2014 at the 

100th anniversary of the existing canal, 

and to be fully in operation in 2015. 

When  serving  the  east  coast  of  USA, 

there is another limitation that needs to 

be observed. Ships entering the Newark 

container  terminal  in Port  of New York 

must  pass  under  the  Bayonne  bridge. 

The  air  draft  limitation  is  currently  151 

feet, which imposes a restriction on the 

bigger  ships.  There  has  been  news  in 

the press that the bridge may be raised, 

giving  a  new  air  draft  of  215  feet,  but 

this is yet to be confirmed.

Operational profile

In  order  to  achieve a high efficiency  in 

the  operational  phase,  it  is  necessary 

to understand the operational demands 

when  the  ship  is  designed.  An  opera-

tional profile must be made before opti-

misation of the hull and machinery can 

be started.

If  the  ship  is  to  operate  on  a  speci-

fied  trade,  the  operational  profile  can 

be  determined  on  the  basis  of  on  an 

optimisation  of  the  actual  trade  route. 

Optimising  the  hull  and  machinery  for 

a  wide  range  of  speeds  and  draughts 

is difficult. Therefore, the ideal situation 

is  to  define  the  route  so  that  the  ship 

can  operate  close  to  the  design  point 

for as much of the time as possible. Fig. 

7 shows the operational profile defined 

Yokohama

Shanghai

Hong KongKaohsiung

Newark

CharlestonSavannah

Panama

Oakland

Los AngelesYokohama

Shanghai

Hong KongKaohsiung

Newark

CharlestonSavannah

Panama

Oakland

Los Angeles

Fig. 5: Trade route

Time in operating state as percentage of total leg time

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

Leg 2 Leg 3 Leg 4 Leg 5 Leg 6 Leg 7 Leg 8 Leg 9 Leg 10 Leg 11 Leg 12 Leg 13

Voyage leg

Tim

e [%

] of

leg

tim

e

Saling 10 [kn]

Saling 12 [kn]

Saling 21,5 [kn]

Port man.

Load/unloading

Refuelling

Waiting

Fig. 7: Operational profile

Fig. 6: Panamax and Post-panamax vessel particulars

9Quantum 9000

for this concept, including all sailing legs 

and all operational modes. The required 

propulsion  power  and  electric  power 

demand  has  been  calculated  for  each 

leg and operational mode.

Trade  is  often  unknown  at  the  design 

stage,  or  it  is  expected  that  the  trade 

may change during the ship’s life. In that 

case,  it may be better  to establish  the 

operational profile using statistics  from 

operation. The example below is show-

ing  time  spent  at  various  speeds,  and 

time at various drafts and trims for one 

specific speed.  It should be noted that 

operational  patterns  from  the  past  are 

reflecting  market  conditions  and  fuel 

prices,  and  are  not  necessarily  repre-

sentative of the future.

Based  on  the  operational  profile  se-

lected,  the  hull  and  machinery  should 

be  optimised  to  give  the  highest  pos-

sible efficiency when the entire route  is 

considered, rather than only the design 

speed  and  draught.  For  the  hull,  this 

applies  especially  when  it  comes  to 

the main dimensions, block coefficient, 

centre of flotation and bulb design. 

For the machinery, it is the selection of 

main  engine  and  auxiliary  engines  so 

that  the  propulsion  power  and  electric 

power needed can be produced as ef-

ficiently  as  possible  in  all  the  different 

sailing  legs  and  different  operational 

modes.

Design according to the operational

profile

Container  ship  designers  have  opti-

mised the ship at the point of maximum 

fuel  consumption, which  is normally at 

maximum  speed  and  maximum  dwt/

draught. Any savings made at this point 

will probably yield the maximum gain.  

A design point or interval has to be se-

lected  for  optimisation,  as  it  is  difficult 

to optimise over a large range of condi-

tions. Savings can be made in one point 

at the expense of a loss in other points. 

So  it  is  important  to  understand  how 

the vessel is going to be operated, both 

with regard to speed and loading.

There  was  an  oversupply  of  ships  in 

the  market  during  the  financial  crisis 

in 2009,  and profitability  suffered.  Fuel 

could be saved by reducing speed, but 

the need for a regular service remained.  

More ships had to be added to the serv-

ice loop when average speed dropped.  

The  additional  ships  would  also  burn 

fuel, but  the net cost  reduction still  re-

mained substantial. The extra ships em-

ployed also reduced the number of idle 

ships during the crisis.

  The  slow  steaming  experience  led  to 

a  focused  interest  on  optimal  speed 

of  container  ships.  The  optimal  main 

dimensions  and  hull  lines will  vary  de-

pending the speed and draught. Could 

savings  in  fuel  and  emissions  be  in-

creased  if  the  speed  and  DWT  profile 

was taken into consideration when op-

timising?  We will illustrate how this can 

be done in the example below.

Fig. 10 shows the relationship between 

speed  and  power  for  three  different 

draughts. The graph illustrates that the 

maximum power  is consumed at max. 

draught and max. speed. Detailed pow-

er data are given in Table 1.

Speed distribution and dwt/draught dis-

tribution may be obtained  from  the  ex-

pected  operational  profile  coupled with 

actual recordings and past experience.  

0%

5%

10%

15%

20%

25%

30%

18 19 20 21 22 23 24 25SPEED [knots]

Time [weighed kw]

Fig. 8: Operational profile

7

Drafta [m]

8

9

10

Distance

Trim [m] 0.5

Trim [m] 1

Trim [m] 1.5

Trim [m] 2

Trim [m] 2.5

Trim [m] 3

Fig. 9: Operational profile

Fig. 10: Speed-power curves

P13 = 7,897V 2,6745

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

18 19 20 21 22 23 24 25SPEED [knots]

POWER [kw]

T=13

T=11

T=10

10 Quantum 9000

As  the  future operations are uncertain, 

a “probability distribution” of speed and 

loading may be a better term.  A typical 

example is shown in Table 2 where the 

percentage of operating time spent at a 

given draught and speed is given. 

The  weighted  power  consumption  is 

given in Table 3.

The percentage  time at  a  given  speed 

interval  is  presented  in  Table  4.  The 

power  consumed  at  different  draughts 

and speeds can now be weighted and 

combined  in a power curve  for various 

draughts  and  speed  intervals.  This  is 

shown in Table 5 and Fig. 11. From the 

graph  it  can be seen  that  the greatest 

weighted power consumption  is  in  the 

interval 19.5–22 knots.

This  information  can  then  be  used  for 

choice of optimising interval, which will 

give the highest probable saving for fu-

ture operations.

Fig. 11

0

1,000

2,000

3,000

4,000

6,000

7,000

18 19 20 21 22 23 24 25

SPEED [knots]

POWER profile [kW] at V and T

Biggest effect of optimisation

5,000

Weighted Power Consumption

             

Speed [knots] 18 19 20 21 22 23 24 25

Draft T10 13,799 16,192 18,867 21,751 24,927 28,540 32,313 36,459 

Draft T11 15,155  17,716 20,562 23,638 27,011 30,799 34,785 39,138

Draft T13  17,976 20,772 23,824 27,145 30,741 34,622 38,800 43,277

Table 1: Power [kW] at different drafts

Speed [knots] 18 19 20 21 22 23 24 25

Draft T10 37% 33% 17% 12% 13%  13% 5% 4% 

Draft T11 48% 45% 65% 68% 69% 69% 65% 35%

Draft T13 15% 22% 18% 20% 18% 18% 30% 61%

Table 2: Time [%] at different drafts

Speed [knots] 18 19 20 21 22 23 24 25

Draft T10 5,106 5,343 3,207 2,610 3,240 3,710 1,616 1,458

Draft T11 7,274 7,972 13,365 16,074 18,638 21,252 22,610 13,698

Draft T13 2,696 4,570 4,288 5,429 5,533 6,232 11,640 26,399

Table 3: Weighted power [kW] at different drafts

Speed [knots] 18 19 20 21 22 23 24 25

Speed time [%] at speed V 2% 15% 25% 24% 15% 10% 6% 3%

Table 4: Time [%] at different speeds

Speed [knots] 18 19 20 21 22 23 24 25

Power [kW] at T and V 302 2,683 5,215 5,787 4,112 3,119 2,152 1,247

Table 5: Power [kW] at different speeds and drafts

Data given in Tables 1 to 5 and Figs. 10 to 11 are for illustration purpose only, and does not reflect in detail the Quantum 9000 data

11Quantum 9000 11

The Engine

The ME-GI engine  is not a new engine 

in  technological  terms,  rather  a  natu-

ral  development of  the MAN B&W  low 

speed electronically controlled ME fam-

ily of engines.  In 1987,  the  first  testing 

of  the GI principles was carried out on 

one  cylinder  of  a  6L35MC  two-stroke 

engine in Japan and Denmark.

The  MC/ME/ME-B  engine  types  are 

well-proven  products  in  the  station-

ary  power  plant  industry,  Ref.  [1].  The 

GI  solution  was  developed  in  parallel 

with  standard  engine  types,  and  com-

pleted for testing in the early 1990s. In 

1994,  the  first  two-stroke GI engine, a 

12K80MC-GI-S, was put into service on 

a power plant at Chiba, Tokyo, Japan. 

So  far,  the Chiba engine has operated 

 � Ventilation  system  for  venting  the 

space  between  the  inner  and  outer 

pipe of the double-wall piping

 � Sealing oil system, delivering sealing 

oil to the gas valves separating con-

trol oil and gas

 � Control oil supply for actuation of gas 

injection valves

 � Inert  gas  system,  which  enables 

purging of the gas system on the en-

gine with inert gas.

The GI system also includes:

 � Control  and  safety  system,  com-

prising  a  hydrocarbon  analyser  for 

checking the hydrocarbon content of 

the air in the double-wall gas pipes.

The  control  and  safety  system  is  de-

signed to “fail to safe conditions”. All fail-

ures  detected during  gas  fuel  running, 

including  failures of  the control  system 

itself, will result in a gas fuel stop/shut-

down and a changeover to HFO opera-

tion. Blow-out and gas-freeing purging 

of  the  high-pressure  gas  pipes  and  of 

the complete gas supply system will fol-

low.  The  changeover  to  fuel  oil  mode 

is always done without any power  loss 

on the engine. The operation modes for 

gas are illustrated in Fig. 14. 

as a peak load plant for almost 20,000 

hours on high-pressure gas.

At  the  same  time,  in  1994,  all  major 

classification societies approved the GI 

concept  for  stationary  and marine  ap-

plications.  Technically,  there  is  only  a 

small difference between fuel and gas-

burning  engines.  The  gas  supply  line 

is designed with ventilated double-wall 

piping and HC sensors for safety shut-

down.  The  GI  control  and  safety  sys-

tems are add-on systems to the normal 

engine systems.

Apart from these systems on the engine, 

the engine and auxiliaries will comprise 

some  new  units.  The  most  important 

aspects, apart from the gas supply sys-

tem, are listed in the following:

Fig. 12: ME-GI engine

Fig. 13: ME-GI engine add-ons compared to the

standard ME engine

12 Quantum 9000

The ME-GI engine gives good flexibility 

in selecting the best  fuel. Based on an 

environmental  and  economic  perspec-

tive, the owner can choose a vessel de-

signed to accommodate fuel stores for 

both HFO and LNG. 

The pilot oil can be low-sulphur marine 

gas  oil  for  ignition  and  back-up  fuel, 

particularly useful when sailing in emis-

sion controlled areas (ECA). This means 

that the ECA sulphur emission require-

ments can be met even when the two-

stroke main engine has to switch off gas 

operation at very low loads.

Fuel-oil-only mode:

 � Operation profile as conventional engine

Gas-fuel-operation modes:

 � Gas mode “minimum fuel” 

 � Full operation profile

 � Full load acceptance 

 � Full power range 

 � Load variation by gas injection

 � Full pilot fuel oil flexibility

 � Minimum pilot fuel used

 � Increased pilot fuel at low loads 

 � Dynamic mix of gas and fuel oil

 � Mixed mode “Specified gas” 

 � Full operation profile

 � Gas fuel is specified on Gas MOP

 � Load variation by fuel oil injection

Gas

Gas

Fuel/Pilot oil

Fuel/Pilot oil

100%

1009590858757065605550454035302520151050

1009590858757065605550454035302520151050

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

Gas mode ‘Minimum fuel’

Mixed mode ‘Specified gas’

Fuel

inde

x %

Fuel

inde

x %

Engine load (%SMCR)

Engine load (%SMCR)

Automatic

Fig. 14: ME-GI engine operation modes

13Quantum 9000

Engine selection

The  ship  speed,  hull  lines  and  propel-

ler size selected  for  this container ship 

design  require a  two-stroke  low speed 

9S80ME-C9.2-GI engine to fulfil the re-

quirements, with  15%  sea margin  and  

10%  engine  operation margin.  Fig.  15 

shows a 3D model of the engine.

This engine has the following main data:

 � Power: .......................... 40,590 kW

 � Speed: ................................ 78 rpm

 � Bore: ................................. 800 mm

 � Stroke: ..........................  3,450 mm

 � Length: ........................ 14,102 mm

 � Width: ..........................   5,280 mm

 � Height: ......................... 13,500 mm

 � Weight: ........................... 1,130 ton

The SFOC figures shown in Table 6 are 

based  on  an  engine  tuned  for  waste 

heat recovery. This means that the ex-

haust temperatures are slightly higher to 

support waste heat recovery utilisation.

Expected Pilot and Gas Fuel Consumptions and Heat Rates

Engine shaft power

Specific pilot fuel oil (re lcv 42,700 kJ/kg)

Pilot fuel oil con-sumption (re lcv 42,700 kJ/kg)

Specific gas fuel consumption (re lcv 50,000 kJ/kg)

Gas fuel consump-tion per day (re lcv 50,000 kJ/kg)

Total heat rate of fuel (re lcv)

Heat rate of pilot fuel oil (re lcv)

Heat rate of gas fuel (re lcv)

% SMCR g/kWh t/24h g/kWh t/24h kJ/kWh kJ/kWh kJ/kWh

100.0 8.5 8,294 138.4 134.867 7,285.8 363.6 6,922.2

95.0 8.8 8,154 137.2 126.943 7,234.7 376.2 6,858.5

90.0 9.1 8,008 136.0 119.279 7,192.4 390.0 6,802.4

85.0 9.5 7,857 135.1 111.849 7,159.1 405.2 6,753.9

80.0 9.9 7,700 134.3 104.632 7,134.8 421.9 6,712.9

75.0 10.3 7,536 133.6 97.603 7,119.9 440.4 6,679.4

70.0 10.8 7,365 133.1 90.742 7,114.6 461.2 6,653.5

65.0 11.3 7,185 132.9 84.141 7,128.5 484.5 6,644.0

60.0 12.0 6,996 132.9 77.689 7,156.9 511.1 6,645.8

55.0 12.7 6,796 133.1 71.302 7,195.6 541.6 6,654.0

50.0 13.5 6,583 133.3 64.936 7,243.0 577.1 6,665.9

* 45.0 14.5 6,356 131.6 57.700 7,200.3 619.1 6,581.2

* 40.0 15.7 6,111 131.9 51.380 7,262.6 669.7 6,592.9

* 35.0 17.1 5,845 132.0 45.002 7,331.5 732.0 6,599.4

* 30.0 19.0 5,552 131.9 38.549 7,406.5 811.3 6,595.3

* 25.0 21.5 5,225 131.4 32.008 7,487.5 916.1 6,571.3

Fig.15: 3D model of the selected

two-stroke 9S80ME-C9.2-GI engine

* The exhaust gas bypass valve is closed at engine loads below 50.0 %. The main engine is operating in fuel oil mode below 25.0% SMCR power.

Table 6: Two-stroke low speed 9S80ME-C9.2-GI engine and fuel SFOC figures

14 Quantum 9000

Waste Heat Recovery (WHR)

The most  efficient way  to  increase  the 

total  efficiency  of  a  ship  with  a  two-

stroke engine is to utilise the waste heat 

of  the  engine. Waste  heat  is  collected 

primarily  from  the  heat  energy  of  the 

engine  exhaust  gas.  Technology  with 

power  turbines,  i.e.  steam  turbines  in 

combination  with  high-efficiency  tur-

bochargers  and  boilers,  has  already 

shown total system efficiencies of 55%. 

This corresponds to a 10% increase  in 

efficiency over a standard engine instal-

lation without WHR and,  thereby, 10% 

lower fuel consumption and CO2 emis-

sions. The highest theoretical efficiency 

is close to 60%.

If  waste  heat  recovery  is  combined 

with NOx  reduction methods  and EGR 

(exhaust gas recirculation), the total ef-

ficiency can be raised to approximately 

58%. For overview, see Fig. 16.

A  limited  number  of  ships  have  been 

built with such systems over the past 25 

years. Shipowners’ interest in WHR sys-

tems has so far been heavily dependent 

on  the  cost  of  HFO,  the  expectations 

to the development  in the cost of HFO 

and, furthermore, the willingness of the 

shipyards to deliver ships designed and 

built for the WHR concept. From 2009, 

there has been an increasing interest in 

waste heat recovery systems, especial-

ly during times of rising fuel prices. They 

will be of particular  interest because of 

the Energy Efficient Design Index (EEDI) 

that is expected for future ship designs. 

The  most  used  waste  heat  recovery 

steam  system  is  a  dual  pressure  sys-

tem, as illustrated in Fig. 17.

Shaft poweroutput 49.3%

Fuel 100%(171 g/kWh)

12K98ME/MC Standard engine versionSMCR: 68,640 kW at 94.0 r/minISO ambient reference conditions

Lubricating oilcooler 2.9%

Jacket watercooler 5.2%

Exhaust gas25.5%

Air cooler16.5%

Heat radiation0.6%

Dual pressureexhaust gasboiler

LP steam

HP steam

Steam Turbine

Turbochargers

PTI

Main engine 27 - 80 MWmech Steam turbine 1.0 - 5.3 MWelPower turbine 0.5 - 2.7 MWelTotal power generation 1.5 - 8.0 MWel

GeneratorPower Turbine

AuxiliaryDieselEngines

CentralControlPanel

Exhaust Gas Receiver

Main Engine

WHR boosting cycle efficiency from 49.3%to approx. 55.0% (+11.5% recovery rate)

HP-steamfor heatingservices

Condenser

Feedwaterpump Condensater

pump

LP-steam drum

HP-steam drum

HP-circ. p.

LP-circ. p.LP-Evaporator

HP-Preheater

LP-Superheater

HP-Evaporator

HP-Superheater

Exhaust gas

HP

Turbine unit

LPHP

Exh. gas boilersections:

LP

Surplusvalve

HP

Jacket water

Exhaust gas receiver

Main engine

Scavenge air cooler

TC TC

Hot well

Powerturbine

Steamturbine

Fig. 16: Waste heat recovery possibilities

Fig. 17: Dual steam pressure and feed water diagram as normally used onboard

container ships of today

MAN B&W Diesel15Quantum 9000

This type of steam and feed water sys-

tem  secures  a  high  utilisation  of  the 

waste  energy  in  the  main  engine  ex-

haust.  Fig.  18  shows  where  the  heat 

transmission takes place

The steam generated is used to drive a 

steam turbine as offered by MAN Diesel 

& Turbo, an example of this unit can be 

seen in Fig. 19.

Fig. 19: Steam & power turbine unit

The  two-stroke  9S80ME-C9.2-GI  en-

gine with a waste heat recovery system 

will  be  able  to  produce  the  following 

electric  output  (Table  7)  depending  on 

the main  engine  load and  temperature 

conditions 

Engine ISO Tropical

load condition condition

% WHR output WHR output

– kWe – kWe

100  3,836  (9.5%)  4,460  (11.0%)

85  2,709  (6.7%)  3,218  (7.9%)

75  2,166  (5.3%)  2,613  (6.5%)

50  1,290  (3.2%)  1,584  (3.9%)

Table 7: Electric output from the WHRS based

on the selected ME-GI engine for this container

ship study

Installation of waste heat recovery sys-

tems on board container ships must be 

coordinated in detail by the shipyard, as 

these systems take space in the engine 

room and casing, see Fig. 20 showing 

all  main  components  relative  to  each 

other on a container vessels.

The  arrangement  of  a  waste  heat  re-

covery  system  must  be  planned  in 

detail  to support  the  functionality of all 

components  involved.  Nevertheless,  if 

correctly managed  and  integrated,  the 

shipowner will have an advantage with 

respect  to both  total  fuel  consumption 

and meeting future emission demands.

Temperature °

SuperheatedHp steam

SaturatedHp steam

Exhaust gas boiler sections:A: HP-superheaterB: PH-evaporator C: HP-preheaterD: Possible LP-superheaterE: LP-superheater

SuperheaterLP

Exhaust

Min. 20

10 bar abs/180

4 bar abs/144

Steam/water

Min. 15

EDCBA

Exhaust

Feedwater proheated be alternative WHR sources

% Heat transmission0 2 4 6 8 10

25

20

30

15

10

5

0Ambient

Fig.18: Temperature and heat transmission diagram for a dual steam pressure waste heat

recovery exhaust boiler

Fig. 20: Typical engine room and casing

arrangement including advanced high power

waste heat recovery system for a large con-

tainer vessel

16 Quantum 9000

Shut down valveScrubber

Prescrubber

Blower

SeaWMC

FW

Cooler

Sludgetank

Watercleaning

Polis

hing

Scrubber pump

NaOHtank

NaOHpump

Buffertank

Change over valve

Dischargecontrol valve

On/off valve

Stopvalve

Exhaust outlet

MixCoolerWMC

Fig 21: EGR process diagram

Exhaust Gas Recirculation (EGR)

EGR is one of many methods to cut NOx 

emissions  from  marine  diesel  engines. 

The method of EGR has been used on 

four-stroke  engines,  but  it  has  not  yet 

been  commercially  available  for  large 

two-stroke marine  engines.  By  recircu-

lating  part  of  the  exhaust  gas,  a minor 

part  of  the  oxygen  in  the  scavenge  air 

is replaced by the combustion products 

CO2 and H2O. Besides reducing the O2 

percentage in the combustion chamber, 

the heat capacity of the combustion air 

will be slightly increased and the temper-

ature peaks of the combustion will be re-

duced. Accordingly, the amount of NOx 

generated in the combustion chamber is 

reduced. The NOx reduction ratio is de-

pendent on the ratio of recirculation, but 

is also followed by a minor fuel penalty.

Fig. 22: EGR fore end arrangement on a

two-stroke B&W 5S60ME-C8.2 engine

The  EGR  system  on  this  ship  will  be 

integrated  with  the  main  engine,  an 

example  of  which  is  shown  in  Fig.  22 

below for a 5S60ME-C8.2 type engine. 

The  9S80ME-C9.2-GI  selected  in  this 

project  requires  two  turbochargers,  so 

the EGR system is therefore placed on 

the fore end of the engine.

The  principle  of  an  EGR  system  is 

shown  in  Fig.  21.  Part  of  the  exhaust 

gas is diverted from the exhaust gas re-

ceiver through a scrubber, which cleans 

the gas and reduces the temperature of 

the exhaust gas. The gas flows through 

a cooler, a water mist catcher and  the 

EGR blower, which raises the pressure 

to the right scavenge air pressure. The 

ratio of recirculation is controlled by the 

blower,  which  in  turn  is  controlled  by 

the  oxygen  content  ratio  of  scavenge 

air and exhaust. 

A water handling system  is  installed  in 

connection with the scrubber. This sys-

tem controls the function of the scrub-

ber  using  a  closed  loop  freshwater 

system  with  the  addition  of  an  active 

substance. 

MAN B&W Diesel17Quantum 9000

Specification of the EGR system for a B&W 9S80ME-C9.2-GI

Gas system

EGR scrubber  1 (or 2)      Integrated on engine

EGR pre-scrubber  1 (or 2)      Integrated on engine

EGR cooler  1 (or 2)    17,600 kW  Integrated on engine

EGR water mist catcher  1 (or 2)      Integrated on engine

EGR blower - frequency controlled  1 (or 2)    760 kW  Integrated on engine

Shutdown valve  1 (or 2)      Integrated on engine

Change-over valve  1 (or 2)      Integrated on engine

Compensators  2 (or 4)      Integrated on engine

Water treatment system

WMC drainers - placed below WMC  3 (or 6)      Integrated on engine

Scrubber drainers - placed below WMC  2 (or 4)      Integrated on engine

Dirty buffer tank - placed below drainers  2 m3  stainless    Water treatment unit

Clean buffer tank  2 m3  stainless    Water treatment unit

Sludge  tank  15 m3  stainless    Ship system

Water cleaning unit (WCU)  120 m3/h     120 kW  Water treatment unit

Clean water outlet valve  1      Ship system

Feed pump – frequency controlled  120 m3/h  3 bar  16 kW  Water treatment unit

Scrubber pump – frequency controlled  100 m3/h  10 bar  48 kW  Water treatment unit

NaOH storage tank - 50% NaOH solution  50 m3  stainless    Ship system

NaOH day tank - 50% NaOH solution  1 m3  stainless    Water treatment unit

NaOH dosing pump  250 l/h  2 bar  0.2 kW  Water treatment unit

Cooling water 

Cooling water for EGR Cooler  850 m3/h  2 bar    Ship system

Electrical system

Frequency converter – feed pump  1 (or 2)      In WTS cabinet

Frequency converter – scrubber pump  1 (or 2)      In WTS cabinet

Frequency converter – blower  1 (or 2)     

Brake resistance for blower  1 (or 2)     

Electrical cabinet – WTS  1      Water treatment unit

Control system 

EGR CU – MPC control system   1      Engine control room

EGR control display  1      Engine control room

Water handling CU – PLC control system  1      Engine control room

Water handling display  1      Engine control room

Table: 8

18 Quantum 9000

Emission data

The application benefits of the EGR sys-

tem are described in the emission data 

diagrams shown in Fig. 23 and Fig. 24.

Assumptions:

Liq: HFO, 3% S, 86.7%C, LCV 42,700

Gas: LNG, 74.97% C, LCV 50,000 

EGR system included for Tier III

Pilot fuel 5% at 100% load

Fig. 24: Emissions Main engine running on 100% HFO

Fig. 23: Emissions – Main engine running on LNG with pilot oil

405

410

415

420

425

430

435

440

445

450

455

460

0

2

4

6

8

10

12

14

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

CO2(g/kWh)NOx & SOx (g/kWh)

Engine Load (% SMCR)NOx - Tier II NOx - Tier III SOx CO2

540

545

550

555

560

565

570

575

0

2

4

6

8

10

12

14

16

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

CO2(g/kWh)NOx & SOx (g/kWh)

Engine Load (% SMCR)NOx - Tier II NOx - Tier III SOx CO2

MAN B&W Diesel19Quantum 9000

Test ExperienceEGR in Service on Alexander Maersk

From  August  2008  until  March  2010, 

MAN  Diesel  &  Turbo  has  developed, 

designed,  and  manufactured  the  very 

first  Exhaust  Gas  Recirculation  (EGR) 

system  for  a  two-stroke  marine  diesel 

engine for operation on a container ves-

sel in service.

In partnership with A. P. Moller - Maersk, 

the EGR prototype system has been in-

stalled, and commissioned, on the ves-

sel  Alexander Maersk.  The  1,092-teu 

container vessel was built in 1998, and 

it  is currently sailing between Southern 

Europe  and Northern Africa.  The main 

engine is a Hitachi B&W 7S50MC Mk 6, 

with  a  specified  maximum  continuous 

rating of 10,126 kW at 127 rpm, origi-

nally equipped with two turbochargers.

Service test objective

The main objective of the service test is 

to investigate the impact of running with 

EGR  on  the  main  engine,  i.e.  cylinder 

condition,  exhaust  system  condition, 

and  EGR  system  condition.  Besides 

performance,  settings  and  controlling, 

the software needs to be tested “in situ” 

in order  to  tune  the control  system  for 

best possible performance.

The  EGR  system  developed  for  Alex-

ander Maersk is designed for minimum 

20%  recirculation  of  the  exhaust  gas, 

which  corresponds  to  minimum  50% 

reduction of the NOx emitted, compared 

with the basis emission level.

Design of a retrofit EGR system

The  first  retrofit EGR system  is specifi-

cally  designed  for  installation  on Alex-

ander Maersk, using expertise obtained 

during years of testing on the 4T50ME-X 

research  engine  in  Copenhagen.  The 

main  EGR  components  are  the  scrub-

ber,  cooler, water mist  catcher, blower, 

shutdown and changeover valves, water 

treatment  plant  (WTP),  water  cleaning 

unit (WCU), control, and safety systems. 

The  exhaust  gas  is  drawn  through  the 

scrubber, cooler, and water mist catch-

er, by suction created from the blower. 

The exhaust  gas  is pressurised by  the 

blower, and then mixed with the charge 

air  in  a  unique  charge  air  pipe  before 

entering the main engine coolers. 

Within  the  scrubber,  the  exhaust  gas 

is  mixed  with  water,  which  then  be-

comes acidic due to the sulphur  in the 

exhaust  gas  dissolving  in  the  water. 

NaOH  dosing  is  therefore  required  to 

neutralise  the acidic scrubber water. A 

significant  amount  of  particulate  mat-

ter (PM) will also become suspended in 

the scrubber water, which will also need 

to  be  handled  in  the  water  treatment 

unit  (WTU). It is therefore necessary to 

have  a water  cleaning  unit  (WCU)  that 

can  remove  the PM  from  the scrubber 

water, and discharge it as concentrated 

sludge into the sludge tank on the ves-

sel. The WCU  is designed  for cleaning 

the scrubber water to enable discharge 

of  the  cleaned water  into  open  sea  in 

compliance with the IMO scrubber wa-

ter discharge criteria.

In order to make the EGR system easy 

to operate for the ship crew and to en-

sure  correct  and  fast  reactions  to  en-

gine  load  variations,  a  fully  automated 

EGR  control  system  was  developed. 

A  standard MAN Diesel  &  Turbo MPC 

controller is used as the main controller, 

and  as  a  secondary  system,  a  PLC  is 

used for controlling the WTU.

Installation of EGR

In July 2009, Alexander Maersk docked 

at Lisnave shipyard for 30 days, during 

which  all  the  large  EGR  components 

were  installed  and  the  majority  of  the 

installation work was completed.

The EGR unit  (consisting of  the scrub-

ber,  cooler,  water  mist  catcher,  and 

blower) was installed on the middle plat-

form,  adjacent  to  the  exhaust  receiver 

on  the  main  engine.  The  two  original  

turbochargers  were  removed,  and  a 

single high-efficiency turbocharger with 

variable  turbine  area  was  installed  in 

their place, with the new charge air pipe 

that  distributes  the  mixture  of  charge 

air  and  recirculated  gas  between  the 

two  existing main  engine  coolers.  The 

main  engine  cooler  elements  were  re-

placed with special nano-coated cooler 

elements  to  prevent  such  corrosion 

that might  otherwise  occur  due  to  the 

condensation of sulphuric acid caused 

by possible  carry-over  of SOx.  The  re-

maining  equipment  and  pipework  for 

the WTU was installed in the starboard 

corner of the engine room, on the main 

floor.

EGR in service

Commissioning  of  the  EGR  system 

on  Alexander Maersk commenced  in 

March  2010.  All  gas  and  water  pipe 

work  has  been  pressure-tested,  the 

system  functionality  has  been  estab-

lished,  and  an  initial  service  test  after 

500 hrs. has been scheduled to evalu-

ate  the  performance  of  the  EGR  sys-

tem. An additional 3,000 hrs. in service 

is then planned for further evaluation of 

the EGR. An important part of the serv-

ice  test  is  to assess  the effect of EGR 

on a main engine over a period with the 

engine running on heavy fuel oil (HFO).

20 Quantum 9000

The  preliminary  results  from  the  com-

missioning phase have met our expec-

tations to the EGR system performance. 

After some minor modifications, the sys-

tem is now fully functional. 

ME-GI

The  first  gas-fuelled  two-stroke engine 

went  into  operation  in  July  1994,  at 

the Chiba power station in Japan. This 

12K80MC-GI-S engine went on  to op-

erate  on  gas  fuel  for  20,000  hrs.  from 

1994 to 2001, successfully proving the 

technology  behind  the  MAN  Diesel  & 

Turbo  two-stroke  gas-fuelled  engine 

concept. The engine concept has been 

class approved, and all  the experience 

gained  from  Chiba  has  been  incorpo-

rated into the ME-GI engine design. 

In order to promote the ME-GI concept 

further,  MAN  Diesel  &  Turbo  has  de-

cided  to make  a  full-scale  demonstra-

tion and performance verification test of 

the gas injection principle for all kinds of 

marine applications on its R&D research 

engine, which was rebuilt to a 4T50ME-

GI  engine  ready  to  operate  on  natural 

gas at the beginning of 2011. 

MAN  Diesel  &  Turbo  sees  significant 

opportunities  arising  for  gas-fuelled 

tonnage, as fuel prices rise and exhaust 

emission  limits  tighten.  Indeed,  previ-

ous  research  indicates  that  the ME-GI 

engine,  when  combined  with  exhaust 

gas recirculation (EGR) and waste heat 

recovery  (WHR)  technologies,  delivers 

significant  reductions  in CO2, NOX and 

SOx  emissions  and,  thereby,  fulfilling 

Tier II and Tier III regulations. 

The test plan continues the momentum 

built up at a ceremony  in Copenhagen 

in  2010,  where  MAN  Diesel  &  Turbo 

signed an agreement with Korea’s Dae-

woo Shipbuilding & Marine Engineering 

Co., Ltd. (DSME) to jointly develop and 

exploit  the adaptation of DSME’s high-

pressure  cryogenic  gas-supply  system 

for installation with the ME-GI engine.

ME-GI  two-stroke  engines  features 

economical  and  operational  benefits 

compared with other low speed engine 

plants,  irrespective of ship size. Based 

on  the  successful  electronically  con-

trolled  ME  heavy-fuel-burning  diesel 

engines,  the ME-GI  design  accommo-

dates natural gas and liquid fuels. 

MAN  B&W  ME-C  and  ME-GI  engines 

are  broadly  similar,  and  essentially 

share  the  same  efficiency,  output  and 

dimensions.  In  comparison,  the  key 

components  of  the  ME-GI  engine  are 

its modified  exhaust  receiver, modified 

cylinder cover with gas  injection valves 

and gas control block, an enlarged top 

gallery platform, high-pressure fuel sup-

ply pipes, and gas control units.

Gas Supply System

Dual fuel operation with ME-GI requires 

the  injection of both pilot  fuel  and gas 

fuel  into  the combustion chamber. Dif-

ferent  types of  fuel valves are used  for 

this purpose, with two additional valves 

fitted for gas injection together with the 

two original HFO fuel valves, which are 

used for pilot fuel injection.

As  known  from  LNG  carriers,  the  ar-

rangement  of  LNG  systems  on  board 

ships  must  fulfil  class  rules  –  more 

about  this  in  the  section  titled  “Class 

requirements”.

The  fuel  gas  supply  (FGS)  system  for 

the  ME-GI  engine  requires  a  delivery 

pressure of 300 bar and a temperature 

of  45ºC  ±10ºC.  Today,  several  supply 

companies  can  deliver  high-pressure 

cryogenic  pumps  or  compressor  sys-

tems  to  fulfil  these  requirements,  see 

Fig. 25.

Fig. 25: LNG FGS unit suppliers

MAN B&W Diesel21Quantum 9000

These  suppliers  have  experience  with 

FGS  systems,  and  are  able  to  supply 

LNG tanks  for ME-GI projects  in some 

cases. In this project, the most relevant 

FGS system consists of a high-pressure 

cryogenic pump with capacity for BOG 

GCU *

No boil off gas pressurized tank

Fuel tanks

HP pumpLNG Drum

LNG damper

Cool down and mini flow line

LNG vaporizer

Supply system

ME-GI engine

Two-stroke engine

M

PCPC

* Optional

Fig. 26: LNG Fuel Gas Supply (FGS) system with high-pressure cryogenic pump (courtesy of

Cryostar)

ACCU

V5

V3

GAS BLOCK

GASVALVE

FUELVALVE

CONTROLOIL

PILOT OIL

FUELVALVE

GASVALVE

SEALING OIL

ELFI

XC6103

PT6110

PT6405

HYDRAULIC OIL DRAIN

FUEL OIL INLET

FUEL OIL DRAIN

ELGI

FUEL OILPRESSUREBOOSTER

HYDRAULIC OIL

SEALING OIL UNIT

ELWI

DRAIN

PT6104

621

620

421 420

6333XT

V4 625

FUEL GASSUPPLY SYSTEM

V1NC

V2NO

SILENCER

V7NC

ZSZSZS ZS

ZS

PT

ZS

SILENCER

PT

Gas controlsystem

601760116010

6013 6012

6015 60166006

Gas venting pipe

K3

INERT GASDELIVERING

UNIT

PT

V9

6321

6023

ZS

6022

ZS

NC

V6NC

AIR SUPPLY 7BAR

P9 P2

??????

XC6001

INERT GASDELIVERING

UNIT

XC6018

XC6014

XC6019

9BAR

XC6320

<0,1bar

6021

ZS

6020

ZS

PT6024

INSIDEENGINEROOM

OUTSIDEENGINEROOM

INERT GAS SYSTEM

GAS SUPPLY SYSTEMCYLINDER COVER

XT6231

XT6232

VENTINGAIRINTAKE

XC

XT

AIR SUCTION

FS6302

6332

FS6303

6312

VENTILATINGSYSTEM FORTHE ENGINE

SEALING OIL SYSTEM

HYDRAULIC OIL,PILOT OIL,SEALING OIL SYSTEM

Fig. 27: Diagram of ME-GI auxiliary systems

burn  off  in  a  gas  combustion  unit.  In 

fact, for all vessel types other than LNG 

tankers it would probably not (depend-

ing on tank size/route) be necessary to 

have  a  reliquefaction  system  installed 

on  board,  and  a  high-pressure  cryo-

genic pump would be the most energy 

efficient method of  gas  fuel  delivery  to 

the ME-GI engine. The energy required 

by the FGS system is very low, and cor-

responds to an approx. 0.5% reduction 

of  the  efficiency  of  the  ME-GI  engine 

compared with an ME-C engine.

The gas injection valve design is shown 

in Fig. 28. This valve complies with tra-

ditional  design  principles  of  the  com-

pact  design.  Gas  is  admitted  to  the 

gas injection valve through bores in the 

cylinder  cover.  To  prevent  a  gas  leak-

age  between  the  cylinder  cover/gas 

injection  valve  and  the  valve  housing/

spindle  guide,  sealing  rings  made  of 

temperature and gas  resistant material 

have  been  installed.  Any  gas  leakage 

through the gas sealing rings will be led 

through bores in the gas injection valve 

to the space between the inner and the 

outer shield pipe of the double-wall gas 

piping  system.  Such  a  leakage will  be 

detected by HC sensors.

Head – Gas valve

Housing

Spring

Spindle

Spindle guide

Holder

NozzleSealing ring

O-ring

Fig. 28: Gas injection valve

22 Quantum 9000

The gas acts continuously on the valve 

spindle  at  a  max.  pressure  of  about 

300  bar.  To  prevent  gas  from  entering 

the control oil actuation system via the 

clearance around the spindle, the spin-

dle is sealed by sealing oil at a pressure 

higher than the gas pressure (25-50 bar 

higher). The pilot oil valve is a standard 

ME  fuel oil  valve without any changes, 

except for the nozzle. The fuel oil pres-

sure  is constantly monitored by  the GI 

safety  system  in  order  to  detect  any 

malfunctioning of the valve. The fuel oil 

valve design allows operation solely on 

fuel  oil  up  to  SMCR, with  capacity  for 

10% above SMCR once every consec-

utive 12-hour period. In the gas engine 

mode, the ME-GI can be run on fuel oil 

at 100% load at any time, without stop-

ping the engine. However, for prolonged 

operation on fuel oil, it is recommended 

to  change  the nozzles  and gain  an  in-

crease in efficiency of around 1% when 

running at full engine load. 

As  can  be  seen  in  Fig.  29,  the ME-GI 

injection system consists of two fuel oil 

valves, FIVA  (fuel  injection valve actua-

tor) to control the injected fuel oil profile, 

and two fuel gas valves, ELGI (electron-

ic  gas  injection)  for  opening  and  clos-

ing of the fuel gas valves. Furthermore, 

it  consists  of  the  conventional  fuel  oil 

pressure  booster,  which  supplies  pilot 

oil in the dual fuel operation mode.  The 

fuel  oil  pressure  booster  is  equipped 

with a pressure sensor  to measure the 

pilot  oil  on  the  high-pressure  side.  As 

mentioned earlier,  this sensor monitors 

the  functioning  of  the  fuel  oil  valve.  If 

any deviation from a normal injection is 

found, the GI safety system will not al-

low  opening  for  the  control  oil  via  the 

ELGI valve.  In  this event, no gas  injec-

tion will take place.

Under normal operation where no mal-

functioning of the fuel oil valve is found, 

the fuel gas valve is opened at the cor-

800

600

400

200

00 5 10 15 20 30 3525 40 45

Deg. CA

Bar abs

Pilot oil pressure

Control oil pressure

Low pressure fuel supply

Fuel return

Inje

ctio

n

Gas supply

Position sensor

Measuring andlimiting device.Pressure booster(800-900 bar)

300 bar hydraulic oil.Common withexhaust valve actuator

The system provides:Pressure, timing, rate shaping, main, pre- & post-injection

FIVA valve

ELGI valve

Fig. 29: ME-GI fuel/gas injection system.

rect crank angle position, and gas is in-

jected. The gas is supplied directly into 

an ongoing combustion. Consequently, 

the risk of having unburnt gas, eventual-

ly slipping past the piston rings and into 

the scavenge air receiver, is considered  

very  low.  Monitoring  the  scavenge  air 

receiver pressure and combustion con-

dition safeguards against such a situa-

tion. In the event of too high a combus-

tion pressure, the gas mode is stopped, 

and  the  engine  returns  to  burning  fuel 

oil  only.  The  gas  flow  to  each  cylinder 

during  one  cycle  is  be  detected  by 

measuring the pressure drop in the ac-

cumulator.  By  this  system,  any  abnor-

mal gas flow, whether due to seized gas 

injection valves or blocked gas valves, is 

detected immediately. In this event, the 

gas supply is discontinued and the gas 

lines are purged with inert gas, and the 

engine continues running on fuel oil only 

without any loss of power.

MAN B&W Diesel23Quantum 9000

LNG Tanks

For  merchant  ships,  several  possibili-

ties of equipping the ship with an LNG 

tank  are  available.  For  smaller  ship 

sizes,  prefabricated  vacuum-isolated 

cryogenic tanks can be found in a wide 

range of sizes with an allowable work-

ing pressure of up  to 20 bar. Some of 

these tanks have been installed and are 

already in operation on ferries and sup-

ply vessels.

For  bigger  ships,  several  other  possi-

bilities  exist,  some  of  which  are  listed 

below:

 � Membrane tank design

Dominating for LNG carriers, but vul-

nerable to sloshing.

BOR range 0.14-0.2%/day.

 � Spherical tanks, i.e. Moss type

Self-supporting  and  invulnerable  to 

sloshing,  but  space  problems  and 

very few manufacturers.

BOR 0.14-0.2%/day.

 � IHI type B tanks

Self-supporting  and  invulnerable  to 

sloshing.  Low-pressure  tanks  and 

built on a licence in some yards.

BOR 0.14-0.2%/day.

 � TGE type C tanks

Single or bilobe design, 4 barg pres-

sure  vessel  tank  design  (up  to  50 

travelling  days),  self-supporting  and 

invulnerable to sloshing.

BOR 0.21-0.23%/day.

The  IHI B-type tank design and the C-

type design  from TGE seem  to be  the 

most  promising  for  larger  conventional 

ships.  Common  for  both  tank  designs 

is that it is possible to operate the ship 

with a partially filled tank, which is a ba-

sic requirement when using the tank for 

fuel  storage.  The  above  tank  designs 

have  advantages  and  disadvantages. 

For instance, in the IHI design it is pos-

sible  to  adapt  the  tank  form  to  follow 

the  shape  of  the  ship.  Practically  any 

tank size can be chosen. In the TGE de-

sign, the hull form can only be followed 

to some extent if the bilobe design. The 

max. tank size in the bilobe design is in 

the range of 20,000 cum.

The  space  required  for  the  LNG  tanks 

is almost 2.5  times  the size of an HFO 

tank  system,  due  to  lower  density  and 

the  heavy  insulation  required  to  keep 

the LNG cold – an area where shipyards 

need to develop new arrangement ideas.

An  advantage  of  the  TGE  tank  design 

is the ability to accumulate the BOG in 

the tank during operation, thanks to its 

allowable working  pressure  of  up  to  4 

barg.  If  a  non-pressurised  tank design 

is used, an alternative method  to han-

dle BOG has to be  incorporated  in the 

fuel  gas  supply  system.  Therefore,  the 

C-type  tank  has  been  chosen  for  this 

project, eliminating the need for any reli-

quefaction system. The pressure rise in 

the LNG storage tanks for this vessel is 

illustrated in Fig. 30. 

With  this  in mind,  it  can be concluded 

that  the  technology  for  a  gas  driven 

two-stroke ME-GI engine is available.

2,0

2,5

3,0

3,5

4,0

4,5

0,00 5 10 15 20 25 30 35 40 45

0,5

1,0

1,5

Tank pressure [bar g]

Sailing time [days]

Pressure increase estimation for type C tanks

  

 4 bar g designmax. level: 90.3%   

 

Tank volume: 2x2,500m3

Insulation: 300mm PS/PUInitial pressure: 140 mbar g

LNGcomposition:N2: 2%CO2: 0%C1: 89%C2: 5.5%C3: 2.5%C4: 1%

304L: 2.5 bar gmax. level:  92.6% 

Fig 30: Pressure rise in LNG storage tanks for Quantum vessel courtesy of TGE Marine Gas

Engineering

24 Quantum 9000

Class Requirements

The  gas  engine,  LNG  tanks  and  gas 

fuel  systems  are  designed  according 

to the requirements set out in the DNV 

class rules for gas-fuelled engine instal-

lations [2] and IMO's Interim Guidelines 

on safety for natural gas-fuelled engine 

installations in ships [3], as summarised 

in the following. 

Redundancy

The propulsion and  fuel supply system 

must be so designed that the remaining 

power for propulsion and power gener-

ation after any gas leakage with follow-

ing safety actions is in accordance with 

the  requirements  for  remaining  power 

and main functions after a single failure. 

The ME-GI main engine has full fuel flex-

ibility, meaning that the fuel oil is also a 

back-up fuel for the LNG.

Engine room and piping

The engine  room  is designed as an  in-

herently gas safe machinery space. This 

implies  that  the engine  room  is consid-

ered gas safe under all conditions, nor-

mal as well as abnormal conditions. 

All gas supply piping within the machinery 

space boundaries must be enclosed in a 

gas tight enclosure, i.e. double wall pip-

ing or ducting. Gas fuel piping must not 

be led through accommodation spaces, 

service  spaces or  control  stations. Gas 

pipes passing through enclosed spaces 

in the ship must be enclosed in a duct. 

This  duct must  be mechanically  under-

pressure ventilated.

Gas  piping  must  not  be  located  less 

than 760 mm  from  the  ship’s  side. An 

arrangement  for  purging  gas  bunker-

ing  lines and supply  lines with nitrogen 

must  be  installed.  The  double  piping 

between  the  forward  tank  room  and 

the  engine  room  is  fitted  in  the  dou-

ble  bottom, with  the  required distance 

from side and bottom. Gas supply lines 

passing through enclosed spaces must 

be  completely  enclosed  by  a  double 

pipe or duct.

The arrangement and installation of the 

high-pressure gas piping must provide 

the necessary flexibility for the gas sup-

ply piping to accommodate the oscillat-

ing movements  of  the  engine,  without 

running  the  risk  of  fatigue  problems. 

The  length  and  configuration  of  the 

branch  lines  are  important  factors  in 

this regard.

Storage tanks and tank room

The  tank  room  boundaries  must  be 

gas  tight.  The  tank  room must  not  be 

located  adjacent  to machinery  spaces 

of  category  A.  If  the  separation  is  by 

means  of  a  cofferdam,  then  additional 

insulation  to class A-60 standard must 

be fitted. Access to the tank room is as 

far  as  practicable  to  be  independent 

and direct from open deck. 

The storage tank used for liquefied gas 

must be an independent tank designed 

in accordance with  the Rules  for Clas-

sification  of  Ships,  Pt.5  Ch.5  Sec.5, 

which  is  in  accordance  with  the  IMO 

International  Gas  Carrier  Code  (IGC 

Code). The tank is to be either an IMO 

type A, B or C tank. Here, a type C tank 

is used. 

Pressure  relief  valves  must  be  fitted. 

The outlet from the pressure relief valves 

must  be  located  at  least  B/3  or  6  m, 

whichever is greater, above the weather 

deck and 6 m above  the working area 

and  gangways.  It must  be  possible  to 

empty,  inert  and  purge  bunker  tanks 

and associated gas piping systems.

Gas  in  a  liquid  state  with  a  maximum 

acceptable working pressure of 10 bar 

can be stored in enclosed spaces. The 

gas storage tank(s) must be located as 

close as possible to the centreline and:

 � minimum, the lesser of B/5 and 11.5 

m from the ship side

 � minimum, the lesser of B/15 and 2 m 

from the bottom plating

 � not less than 760 mm from the shell 

plating. 

In  the current concept,  the distance to 

side and bottom satisfies the above re-

quirements. For vessels other than pas-

senger  vessels,  a  tank  location  closer 

than B/5 from the ship side may be ac-

cepted  and  approved  by  the  Society, 

on a case by case basis. 

The storage tank and associated valves 

and piping must be  located in a space 

designed to act as a secondary barrier 

in case of a liquid gas leakage. Alterna-

tively,  pressure  relief  venting  to  a  safe 

location  (mast)  can  be  provided.  The 

space  must  be  capable  of  containing 

leakage  and  be  isolated  thermally,  so 

that the surrounding hull is not exposed 

to  unacceptable  cooling  in  the  event 

of  a  liquid  gas  leakage.  This  second-

ary barrier space  is called  “tank  room” 

in other parts of this chapter. When the 

tank  is  double-walled  and  the  outer 

tank shell is made of cold resistant ma-

terial, a tank room could be arranged as 

a box  fully welded to the outer shell of 

the tank, covering all  tank connections 

and valves, but not necessarily all of the 

outer tank shell.

MAN B&W Diesel25Quantum 9000

Bunkering station

The bunkering station must be  located 

so  that  sufficient  natural  ventilation  is 

provided. Stainless steel drip trays must 

be  fitted  below  liquid  gas  bunkering 

connections  and  where  leakages  may 

occur. The drip trays should be drained 

over the ship’s side by a pipe that pref-

erably  leads  down  near  the  sea.  The 

surrounding  hull  or  deck  structures 

must not be exposed  to unacceptable 

cooling in case of leakage of liquid gas.

The  bunkering  system must  be  so  ar-

ranged that no gas is discharged to the 

air  during  filling  of  the  storage  tanks. 

A manually  operated  stop  valve  and  a 

remote operated shutdown valve in se-

ries, or a combined manually operated 

and remote valve must be fitted in every 

bunkering  line  close  to  the  shore  con-

necting  point.  It  must  be  possible  to 

release  the  remotely  operated  valve  in 

the  control  location  for  bunkering  op-

erations and/or another safe location.

Means  must  be  provided  for  draining 

the  liquid  from  the  bunkering  pipes  at 

bunkering  completion.  Bunkering  lines 

must  be  arranged  for  inerting  and gas 

freeing.  The  bunkering  pipes  must  be 

gas-free during operation of the vessel.

In  addition  to  the  above  requirements, 

the  rules contain specific  requirements 

to  ventilation,  gas  detection  and  fire 

protection  of  tank  room,  engine  room 

and bunkering station.

Bunkering

The  availability  of  LNG  and  how  to 

bunker  it  is  often  put  forward  as  the 

main  challenge when  it  comes  to  run-

ning  large  ocean-going  ships  on  LNG. 

A  number  of  LNG  terminals  exists 

around  the world, and more are under 

construction,  but  so  far  only  Northern 

Europe has infrastructure for LNG bun-

kering ready.

The  most  realistic  bunkering  option  in 

the  short  term  is  taking  LNG  directly 

from  the  international  trading  network 

for  LNG. Here,  there  are  three different 

sources of bunker; import terminals, ex-

port terminals and LNG carriers. Bunker-

ing directly from an LNG import or export 

facility would represent no major techni-

cal barriers. However, the container ship 

has to sail to the terminal location, which 

could represent a substantial cost. 

A  better  option  is  to  take  LNG  from 

import/export  terminals  via  dedicated 

LNG carriers or bunkering barges  to a 

suitable  bunkering  location.  The  con-

tainer  ship  would  dock  alongside  the 

carrier/barge, or the LNG carrier/barge 

could dock alongside vessel while  it  is 

loading/unloading. 

This solution is flexible with the possibil-

ity of low investment cost in the case of 

the existing LNG carrier option. Bunker-

ing from a LNG barge to a ship is not a 

technical challenge, since LNG transfer 

between LNG carriers  is  already being 

done today. However, when it comes to 

LNG  fuel  bunkering,  there  is  a  regula-

tory gap that needs to be filled to cover 

this type of operation.

In order to limit the need for bunker ca-

pacity on the ship, it is proposed to re-

fuel LNG once in Asia and once in US. 

There  are  currently  terminals  in  both 

places  that  could  be  suitable  for  bun-

kering. Fig. 32 shows a map of existing, 

proposed,  approved  and  under  con-

struction  liquefaction and regasification 

facility stations  in Japan.  It  is assumed 

that refuelling would take place at a sta-

tion close to Yokohama.

In the US, refuelling is assumed to take 

place on the West Cost, at Port Dolphin 

outside of  Los Angeles. This  is  an ap-

proved LNG terminal not yet built. 

The refuelling time is currently estimated 

to  8  hours,  but  it  is  expected  that  the 

bunkering  rate  can  be  increased  in  the 

future, so that the refuelling time can be 

reduced.  Ship-to-ship  transfer  of  LNG 

is  done  with  several  thousand  cbm/h 

so,  technically, high bunkering rates are 

achievable.  However,  as  bunker  supply 

infrastructure  is  not  yet  in  place,  there 

are no supply vessels available with large 

diameter connections and high capacity 

pumps.  A  bunkering  rate  of  about  800 

cbm/h is considered realistic to start with. 

If the ship must go to a dedicated bun-

kering  site,  some  time  will  have  to  be 

added  for  this  operation.  In  principle, 

the bunkering could also  take place  in 

the container terminal while loading and 

unloading cargo, which would eliminate 

the extra bunkering  time  for LNG refu-

elling. However,  this would  have  to be 

approved by the port authorities in each 

relevant port.

Fig. 31: LNG transfer from LNG carrier to LNG

bunker barge

26 Quantum 9000

In  preparation  for  bunkering,  the  fuel 

tank  pressure  should  be  lowered  as 

far as possible by use of spray pumps, 

shutdown of “pressure build-units” and 

– if available – switching compressors to 

direct suction  from vapour phase. Fur-

ther, the bunker piping must be cooled 

down by circulating LNG.

Hull Optimisation

The ship hull has to be designed for op-

timal efficiency according to the opera-

tional profile defined. The design speed 

for  Quantum  9000  is  22  knots,  which 

is  lower  than  the normal design speed 

for  modern  large  container  ships.  In 

addition,  containerships  are  in  the  fu-

ture likely to operate at a wide range of 

speeds. Modern engines and propulsion 

systems are designed with great flexibil-

ity and are capable of running at various 

power settings. However, the ship, as a 

system, will operate at a high efficiency 

level only  if also the hull  is designed to 

operate at off-design conditions. A flex-

ible hull design with respect to the op-

erating  speed  and  displacements  will 

translate  into  a  reduction  of  fuel  costs 

and  emissions  to  air,  thus making  the 

ship more profitable and greener. Vari-

ous hull parameters have been studied 

to arrive at the optimal main dimensions 

and  hull  lines.  The  resulting  hull  has  a 

wider  beam  and  a  lower  block  coeffi-

cient than conventional designs. 

The new Panama Canal dimensions give 

designers  more  freedom  when  deter-

mining the hull length and breadth, while 

the maximum  draught  is  still  restricted 

by port limitations. Several hull parame-

ters need to be evaluated in order to op-

timise the hull efficiency: length, breadth, 

block  coefficient,  longitudinal  centre  of 

floatation  and bulb  shape,  among oth-

ers. Computational Fluid Dynamic (CFD) 

tools are used to optimise the main hull 

dimensions. The wave patterns and the 

pressure distribution on the hull can be 

estimated  and  used  to  compare  differ-

ent possible design alternatives

Fig.  33  shows  the  difference  in  wave 

pattern  at  design  draught  and  design 

speed for a hull with two different block 

coefficients.  Here  it  can  be  seen  that 

the hull with the higher block coefficient 

has more pronounced forward shoulder 

and aft shoulder waves in addition to a 

more prominent stern wave system. 

Fig. 33: 1 Wave pattern at design draft, 22

knots: Cb=0.58 (top) vs Cb=0.62 (bottom)

A study has been carried out to assess 

the  length/breadth  ratio.  The  breadth 

of  a  container  ship  can  only  be  varied 

in  steps  determined  by  the  container 

width. Starting with a beam of 45.5 m, 

the breadth was increased to 48 m and 

50.5 m. The latter is over the maximum 

breadth  of  49  m  allowed  by  the  new 

Panama Canal, but  it was  included  for 

comparison purposes. The effect of the 

change of breadth on the hull resistance 

is illustrated in Fig. 34. The figure covers 

a speed range from 16 to 24 knots. The 

resistance is shown relative to a breadth 

of 48 m.  It can be seen that  the effect 

of  breadth  is  negligible  at  the  design 

speed, while at  lower  speeds  the wid-

er  hulls  have  lower  resistance.  Hence, 

a wider beam  is  likely  to  have  a  lower 

resistance  in average, and allows  for a 

reduction in ship length at the same dis-

placement.

Fig. 32: Existing, proposed, approved and under construction liquefaction and regasification facil-

ity stations in Japan

MAN B&W Diesel27Quantum 9000

Fig. 34: Hull resistance for different vessel

breadths shown as ratio to the 48 m hull

Having selected the beam, a study was 

carried  out  to  determine  the  optimum 

block coefficient. A block variation from 

0.58 to 0.62 was investigated, as seen 

in Fig. 35. Typically, the block coefficient 

for  similar  container  ships  is  higher.  It 

can be seen  that  the penalty  in  resist-

ance of increasing the block coefficient 

at higher speeds is heavy. However, at 

speeds  lower  than  21  knots,  a  higher 

Cb would  give  higher  hull  efficiency.  It 

should also be remembered that a cer-

tain increase in resistance at high speed 

would  result  in  a  heavier  fuel  penalty 

than  the  same  reduction  in  resistance 

at lower speeds.

Fig. 35 Hull resistance for different block coef-

ficients shown as ratio to the Cb=0.58 hull.

General Arrangement

The main target  for the arrangement  is 

to have maximum loading capacity tak-

ing  into account  the space needed  for 

LNG  tanks. A  twin  island  arrangement 

is  found  to  have  clear  benefits  in  this 

respect. 

Midship section

In  the  Quantum  6000-teu  design,  the 

deck has been made wide with a nar-

row  ship  side  to maximise  the  loading 

capacity in the hold and on deck. How-

ever,  for  the  larger Quantum  9000-teu 

the wide  deck  solution  is  not  possible 

due  to  the  New  Panama Canal  limita-

tion.  For  the  same  reason,  a  narrow 

ship side does also not give any benefit, 

as  illustrated  in Fig. 36. Hence, a con-

ventional midship section is chosen.

Twin vs single island

The twin and single island options were 

investigated and compared.  It became 

clear  that  a  twin  island  solution  gives 

the  best  loading  capacity,  in  addition 

to  a  number  of  other  benefits.  This  is 

mainly  due  to  the  SOLAS  visibility  line 

requirement, shown in Fig. 37, which for 

a twin-island concept allows higher teu 

stacks forward in the ship. 

The  twin  island solution  is  also benefi-

cial when space is needed for the LNG 

tanks. As a  result,  the  teu capacity  in-

creased by over 10% compared with a 

conventional single island design. 

The main advantages with a twin island 

solution are:

 � Maximizing carrying capacity

 � Possible  to  place  LNG  tanks  in  the  

area below fwd wheelhouse

 � Achieve  better  crew  comfort  thanks 

to lower vibration levels

 � Reduce hatch cover deformations fwd

 � Less shaft length since E/R more aft

 � Better load distribution, reduced trim 

and need for ballast water

 � Increased safety by better visibility

 � Better  load distribution,  giving  lower 

bending moment and reduced trim

 � Better sight, giving  reduced collision 

risk when maneouvering in port

The  disadvantage  of  the  twin  island  is 

somewhat increased building cost, and 

some operational challenges due to the 

large  distance  between  superstructure 

and engine room.

The final general arrangement is shown 

in Fig. 36.

0.90

0.95

1.00

1.05

1.10

14 16 18 20 22 24 26

Rt [ratio to Rt 48]

V [knots]

B = 45.5 mB = 48.0 mB = 50.5 m

0.90

0.95

1.00

1.05

1.10

1.15

14 16 18 20 22 24 26

Rt [ratio to Rt 0.58]

V [knots]

Cb = 0.58Cb = 0.60Cb = 0.62Cb = 0.64

Fig.36: Midship section

28 Quantum 9000

LNG Tank Arrangement

The  Quantum  9000-teu  has  an  LNG 

storage  capacity  of  approximately 

6,500 m3 LNG, divided on two tanks of 

2,500 m3 below the forward deckhouse 

and an LNG day tank next to the engine 

room  with  storage  capacity  of  1,500 

m3. The  tank arrangement  is  shown  in 

Fig. 38 and 39. The fuel oil is located in 

cofferdam bulkheads with a capacity of 

4,000 tons, giving the ship full flexibility 

to run on HFO or LNG. As the concept 

is  focusing  on  available  technology, 

the  LNG  fuel  tanks  chosen  are  of  the 

C type, which is state of the art today. 

These  are  standard  reliable  tanks with 

long service experience. They are capa-

ble of pressure build-up in case of zero 

consumption,  and  can  accommodate 

high bunkering rates. Installation is also 

quick and easy. The main disadvantage 

is  the  space  requirement,  which  may 

lead  to development of  new, prismatic 

tank types in the future.

Main Engine Room Safety

A recently completed investigation, initi-

ated by a group of players  in  the LNG 

market,  questioned  the  use  of  a  250-

bar  gas  supply  in  the  engine  room. 

Especially  if  located  under  the  ship’s 

accommodation  area,  where  the  crew 

is working and  living. Even  though  the 

risk of full rupture of both the inner and 

outer pipe at  the same  time  is consid-

ered close to negligible, and in spite of 

the  precautions  introduced  in  the  sys-

tem design, MAN Diesel & Turbo found 

it necessary to  investigate the effect of 

such  an  accident,  as  the  question  re-

mains in parts of the industry; what if a 

double-wall pipe fully ruptures and gas 

is released from a full opening and is ig-

nited?

As  specialists  in  the  offshore  industry, 

DNV  was  commissioned  to  simulate 

such a worst-case situation,  study  the 

consequences and point  to the appro-

priate  countermeasures.  DNV’s  work 

comprised  a  CFD  (computational  fluid 

dynamics)  simulation  of  the  hazard  of 

an explosion and subsequent  fire,  and 

an investigation of the risk of this event 

ever  occurring  and  at  what  scale.  As 

input  for  the  simulation,  the  volume of 

the  engine  room  space,  the  location 

of  major  equipment,  the  air  ventilation 

rate,  and  the  location  of  the  gas  pipe 

and  control  room  were  the  key  input 

parameters.

Realistic  gas  leakage  scenarios  were 

defined,  assuming  a  full  breakage  of 

the outer pipe and a large or small hole 

in  the  inner  fuel pipe. Actions  from the 

closure  of  the  gas  shutdown  valves, 

the  ventilation  system  and  the  ventila-

tion conditions prior to and after detec-

tion were  included  in  the analysis. The 

amount of gas in the fuel pipe limits the 

duration  of  the  leak.  Ignition  of  a  leak 

causing an explosion or a fire is further-

more  factored  in,  due  to  possible  hot 

spots  or  electrical  equipment  that  can 

give sparks in the engine room.Fig. 38: LNG tank section frame

Fig. 39: LNG tank illustration

Fig. 37: Difference in “line of sight” between single and twin island

MAN B&W Diesel29Quantum 9000

Calculations of the leak rate as a func-

tion  of  time,  and  the  ventilation  flow 

rates  were  performed  and  applied  as 

input to the explosion and fire analyses.

Recommendations for the Utilisation of Available Energy from LNG

When bunkering LNG, you also bunker 

available  energy  (exergy)  that  can  be 

used  for  cooling  purposes.  Today  this 

potential  is  not  utilised;  instead  most 

systems  use  extra  energy  to  pump 

heating  fluids  like seawater and glycol/

water to the LNG fuel systems.

When  this  “added  cooling  value”  for 

LNG is utilised,  it will  improve the LNG 

cost picture, although it is not taken into 

consideration  in  the  final  cost-benefit 

assessment in this paper.

The  Quantum  9000  concept  operates 

at a load of 85 % MCR most of the time, 

using LNG and a small amount of pilot 

fuel:

 � Gas  consumption  (from  LNG)  at  85 

% MCR: 134,1 g/kWh

 � Pilot fuel consumption at 85 % MCR: 

10 g/kWh 

The heating capacity needed for regasi-

fication  of  LNG  to NG  is  approximately 

3.5-4 % of  the engine capacity  running 

on  natural  gas  (or  LNG  percentage); 

two-stroke  low  speed  engines  like  the 

ME-GI engine is located in the lower in-

terval due to temperature rise in the LNG 

during  compression  to  300 bar  (~10°C 

rise).

Based  on  the  main  engine  gas  con-

sumption  at  85  %  load  and  the  need 

for heat exchange for regasification, we 

have approximately 1,000 kW available 

for cooling purposes. The upper part of 

this heat exchange (to raise the natural 

gas to 45°C) has to be done against a 

heat  source with  a matching  tempera-

ture  interval,  like  the main  engine  high 

temperature  cooling  circuit.  The  quest 

is  to minimise  the  net  heat  transfer  to 

the surroundings (air & sea).

First priority should be to utilise cooling 

needs  close  to  the  engine  room  (cold 

box/room) for reasons of feasibility and 

the costs involved. The air conditioning 

system,  engine  related  measures  and 

cargo holds near  the engine room and 

cargo holds with reefers are good can-

didates for this purpose.

The available energy (exergy) from LNG 

regasification  varies  with  engine  load 

(SFOC),  for  engine  loads  below  25 % 

the engine runs on fuel oil only  (engine 

limitation).

It is therefore clear that the system de-

sign and flexibility is currently restricted, 

and the easiest way to exploit the cold 

LNG  that  needs  to  be  vaporized  is  to 

modify  the  systems  that  have  to  cope 

with  “normal”  conditions  without  LNG 

available for cooling. 

The  available  energy  for  cooling  pur-

poses could be utilised to:

1. Reduce  power  consumption  for 

reefer  containers.  Shave  off  peak 

air  temperatures  in  the  cargo  hold 

2. Aproximately 7°C is achievable when 

running  in  gas mode  at  85 % MCR 

(5-10 % reduction in power need for 

reefer containers)

3. Cool  down  the  air  supply  to  turbo-

charger or main engine. Potential  to 

cool down air supply to turbocharger 

or main engine which results in a gain 

in main engine efficiency

4. Other  cooling  needs.  ~20-30%  ad-

ditional  reduction  in  power  need  for 

seawater cooling pumps when used 

in  combination  with  frequency  con-

verters

Peak  temperatures  in  air  and  seawa-

ter  tend  to  increase  the  power  need 

per  degree  more  than  at  lower  ambi-

ent temperatures; overall gain might be 

best if measures are combined.

Reduction of Power need for Reefer Containers

The  Quantum  9000  concept  has  131 

reefer  containers  below  deck  in  cargo 

holds. Reefer containers are the second 

largest  power  consumer  after  propul-

sion;  they  need a  lot  of  power  and air 

changes.

To control  the peak  temperature  in  the 

cargo holds with reefer containers would 

result in a reduction in power consump-

tion. It might also lead to a reduction in 

power  need  for  cargo  hold  fans  if  the 

available cooling capacity results in the 

use of a  lower air  ratio per  reefer con-

tainer, today this might vary from 60 to 

100 m3/h per reefer container.

If  we  study  different  datasheets  from 

producers  of  reefer machines,  we  see 

that  the  power  curves  are  steeper  at 

high  ambient  temperatures;  rise  in 

power need from 40 to 45°C is approxi-

mately  twice  the  rise  in  power  need 

from 30 to 35°C.

30 Quantum 9000

For the Quantum 9000 concept the po-

tential to cool down the air supply to the 

cargo hold is approximately 7°C, based 

on  the  main  engine  LNG  use  at  85% 

load:

 � The air supply temperature to the car-

go hold is reduced from 35 to 28°C, 

and  the  power  need  for  reefer  con-

tainers is reduced by ~5% (~350,000 

kWh saved per year)

 � The air supply temperature to the car-

go hold is reduced from 45 to 38°C, 

and  the  power  need  for  reefer  con-

tainers is reduced by ~8% (~490,000 

kWh saved per year)

 � The  air  supply  temperature  to  the 

cargo  hold  is  reduced  from  50  to 

43°C,  and  the  power  need  for  reef-

er  containers  is  reduced  by  ~10% 

(~650,000 kWh saved per year)

Lowering the supply air temperature to 

cargo holds with reefer containers gives 

a moderate direct saving. Spin-off sav-

ings  like  maintenance  reductions  and 

fewer  “problems”  with  temperature-

sensitive  goods  might  further  improve 

the potential savings. Conservative de-

sign values for air changes and ambient 

temperatures  also  put  restrictions  on 

the savings potential. 

The  cargo  mix  and  the  type  of  reefer 

containers affect  the potential  savings. 

A  state-of-the-art  reefer  container  has 

advanced automatic controls and soft-

ware that adjust air changes, tempera-

ture  and,  thereby,  power  consump-

tion in a way that 25-50 % savings are 

achievable.  With  such  state-of-the-art 

reefers  in  the  cargo  hold,  the  gain  of 

controlled air  temperature to the cargo 

hold could be further improved.

Real  life  data  for  reefer  power  con-

sumption at different ambient tempera-

tures  is  not  easily  available  and  also 

varies with type and quality (baseline vs. 

state of the art); an old reefer container 

may  need  two  times  as  much  power 

as  state-of-the-art  reefer  containers. 

Future  work  together  with  shipown-

ers/operators of container ships, reefer 

makers and other manufacturers would 

be the best way to  improve the overall 

energy  efficiency  and  gain  experience 

while maintaining the  flexibility  to oper-

ate under all conditions (with or without 

the energy available from LNG).

Cool Down Air Supply to Turbocharger

Utilising  the  low-temperature  LNG  to 

lower the inlet air or charge air tempera-

ture increases the power and torque of 

the main engine; keeping the inlet air or 

charge air temperature as low as possi-

ble, but not below the minimum allowed 

temperature  specified  by  the  engine 

maker improves the energy efficiency of 

the engine.

Based on the main engine air need and 

LNG  use  at  85%  load,  the  available 

cooling energy from the LNG regasifica-

tion has the potential to cool down the 

air supply to the turbocharger with ap-

proximately  12-13°C;  a  maximum  0.7 

% gain in energy efficiency of the main 

engine  could  be  achieved  in  this  case 

dependent  on  the  main  engine  tun-

ing  characteristics,  however,  there  are 

some technical challenges to overcome 

in order to accomplish this.

Another  option  is  to  cool  down  the 

charge  air,  using  a medium  to  transfer 

the cooling effect from LNG vaporisation 

to the main engine coolers; a maximum 

of 0.6% gain  in energy efficiency could 

be achieved  in  this case dependent on 

the main engine tuning characteristics.

Other Cooling Needs

Maximum savings are achieved for heat 

exchange against direct cooling needs 

like  air  conditioning  where  the  power 

input  is  about  one  third  of  the  cooling 

need.  If  the  Quantum  9000  concept 

needed  1000  kW  for  air  condition-

ing  (cooling),  then  the  potential  sav-

ing  would  be  approximately  330  kW 

(~30%).  Designing  the  air  conditioning 

needs for Quantum 9000 was not part 

of the scope, so these values are given 

to illustrate potential savings.

Another  energy  efficiency  candidate  is 

the  seawater  cooling  system, where  it 

is  important  for  the  engine maker  that 

the system delivers the cooling capacity 

needed at any condition.

For a water pump, a 50% volume flow 

gives an 87.5% reduction in power con-

sumption with speed reduction instead 

of throttle regulation (affinity laws).

1

1

22 Q

nnQ ×

1

3

1

22 P

nnP ×

The use of frequency converter for sea-

water pumps  to optimise pump speed 

according  to  ambient  seawater  tem-

perature is deemed to be a low-hanging 

fruit for energy efficiency improvements 

and,  typically,  saves  approximately 

50%. This figure varies according to the 

operational profile and sailing pattern.

With  LNG  available  for  cooling  this 

saving  will  be  improved  and  amplified 

(constant cooling at reduced flow gives 

increased  temperature  difference);  we 

can  control  and  lower  the  seawater 

temperature to the central cooler most 

MAN B&W Diesel31Quantum 9000

of the time without tampering too much 

with the system. When LNG is not avail-

able,  the  frequency converter will  opti-

mise the power use based on ambient 

conditions.

Additional  20-30%  reduction  in  power 

need  for  seawater  cooling  is  expected 

when  used  in  combination  with  fre-

quency-converter-controlled  seawater 

pumps.

Although  the  potential  savings  of  uti-

lising  the  cryogenic  LNG  energy  avail-

able  are  moderate,  the  costs  involved 

to achieve  this savings are small com-

pared with many other possible meas-

ures  considered  today.  To  utilise  the 

available  energy  (exergy)  in  LNG  for 

cooling  purposes  leads  to  increased 

savings instead of increased costs.

Ballast Water

Sailing with ballast water comes with a 

cost, both due to the significant amount 

of  energy  necessary  to  transport  the 

seawater  across  the  oceans,  and  due 

to  the cost of  treating  it. Eliminating or 

reducing  the  amount  of  ballast  water 

needed  in  future  ship  designs  offers  a 

large potential gain.

With the wider beam, the need for bal-

last  water  for  stability  is  eliminated  for 

most  loading  conditions. However,  the 

trim  and  longitudinal  bending  moment 

may  be  an  issue  for  some  conditions, 

depending on the weight distribution of 

the containers.

In  principle,  the  trim  and bending mo-

ment  can  be  controlled  by  using  an 

intelligent  loading  system,  hence  dis-

tributing the weight properly in the lon-

gitudinal  direction.  In  this  case,  ballast 

water is not needed, which means that 

fuel  can  be  saved  and  ballast  water 

treatment can be avoided.

Due  to  logistics,  it may  not  always  be 

possible to load the ship in the preferred 

manner, and ballast water may then be 

needed.  However,  also  in  the  design 

phase there are options for reducing the 

need for ballast water for trimming and 

bending moment reduction: 

1.   The  shorter  and  wider  ship  has  a 

smaller  bending moment  compared 

with  the  longer  ship,  for  a  compa-

rable  loading  condition.  Hence,  the 

need for ballast water to control the 

bending moment is reduced.

2.   By increasing the design draught, the 

ship will  have more  buoyancy  in  the 

fore and aft part. This also contributes 

to reducing the bending moment, and 

reducing the need for ballast water.

3.   By using a twin-island arrangement, 

as shown in Fig. 40, the ship will have 

a  more  even  loading  of  containers, 

which gives a more beneficial trim. In 

addition,  the sightline  is better, both 

of which reduce the need for ballast 

water  for  trimming purposes. A  tra-

ditional  single-island  container  ship 

comparison resulted in a 20% reduc-

tion  in  ballast  water  for  homogene-

ous loading conditions.

4.   In  addition,  modifying  the  hull  lines 

to change  the  longitudinal  centre of 

flotation, may give a better trim char-

acteristics.  However,  this  may  lead 

to a larger wave resistance. The two 

effects  need  to  be weighed  against 

each  other  to  determine  the  opti-

mal hull  shape. For Quantum 9000, 

it  was  found  that  there  is  a  penalty 

in  moving  the  LCB  away  from  the 

original location for all the conditions 

where ballast water is not required to 

achieve the required trim. The added 

hull  resistance  varies  according  to 

the loading condition and speed, but 

it can be up to 5%. As a result, mov-

ing the LCB aft,  to reduce the need 

for ballast water, would not be ben-

eficial for this project.

The actual cost of carrying ballast wa-

ter with respect to added engine power 

needed  has  been  investigated.  The 

study showed that carrying 5000 tons, 

in average, of extra ballast water could 

potentially increase the fuel bill by about 

USD  250,000  annually.  Furthermore, 

there would be additional costs related 

to the ballast water treatment system.Fig. 40: Loading condition example

32 Quantum 9000

Propeller Optimisation

In  general,  a  large  propeller  diameter 

(and low rpm), low blade area ratio and 

fewer blades, give  a high efficiency.  In 

this respect, it has been considered that 

the lowest engine speed available at the 

optimising point is about 75 rpm.

The  lowest possible blade area  ratio  is 

chosen  using  the  Burril/Keller  criteria, 

which in general ensures an acceptable 

cavitation performance. 

The  operating  data  for  the  propeller  is 

as follows: 

Optim. point MCR

Ship speed:   22 knots  Abt. 23 knots

Engine power:   32 MW  41 MW

Engine speed:  75 rpm  78 rpm

Compared  with  many  other  container 

ships, the optimising point for this pro-

peller  corresponds  to  a  relatively  low 

propeller  loading.  Also,  a  somewhat 

higher  propeller-induced  noise  and  aft 

ship  vibration will  be  acceptable  com-

pared to reference ships because of the 

location of the superstructure.

An  optimising  procedure,  evaluating 

propellers with 4, 5, and 6 blades result-

ed in the following propeller alternatives:

Blades: 4 5 6

Optimum diameter:  10.0 m  9.6 m  9.2 m

Open water efficiency:  0.671  0.664  0.659

Necessary blade area ratio:  0.50  0.57  0.63

Pitch ratio:  0.94  1.00  1.08

Based on  the above, a preliminary de-

sign was worked  out  for  the  4-bladed 

propeller alternative, which results in the 

highest efficiency. Additional (indicated) 

main data for the 4-bladed propeller ar-

rangement is as follows:

Propeller blade skew angle: 35 deg.

Propeller shaft diameter:  0.90 m

Hub diameter:   1.6 m

Hub length:  1.8 m

Propeller weight:  102 ton

  (scantlings acc. to DNV rules)

The propeller weight is about 9% lower 

than for a 6-blade propeller.

The quite highly skewed propeller is ex-

pected  to ensure a  reasonable  level of 

pressure pulses (mainly 1st order blade 

frequency) transmitted into the hull, tak-

ing  the  relative  propeller  loading  into 

consideration. 

The influence of the propeller on the aft 

stern  tube  bearing  working  conditions 

has been  considered,  based on  expe-

rience,  and  found  to  be  manageable, 

with  respect  to  both  nominal  bearing 

load,  the  load  distribution  in  bearing, 

and the possible load dynamics (mainly 

at blade frequency).

Cost-benefit Calculations Cost-benefit assessment

The economic performance of the ship 

concept  should be evaluated by com-

paring  the  additional  investment  costs 

against  the  future  savings,  as  com-

0.645

0.650

0.655

0.660

0.665

0.670

0.675

8.8 9.0 9.2 9.4 9.6 9.8 10.0 10.2 10.4 10.6 10.80.20

0.40

0.60

1.80

1.00

1.20

1.40

11.0

Area and Pitsh ratiosEfficiency

Propeller diameter (m)Efficiency, 6 BladesEfficiency, 4 Blades

Area ratio, 6 BladesArea ratio, 4 Blades

Pitch ratio, 6 BladesPitch ratio, 4 Blades

Fig. 41: Propeller efficiency vs. diameter – diagrams

Fig. 42: Propeller design (illustrative)

MAN B&W Diesel33Quantum 9000

pared with a conventional  ship. Future 

savings  have  been  calculated  by  con-

sidering  different  fuel  price  scenarios. 

Two  reference  scenarios  for  fuel  price 

development have been considered, as 

shown  in Fig. 43 and Fig. 44.  In addi-

tion,  the  performance  is  measured  in 

terms  of  the  energy  efficiency  design 

index  (EEDI).  Fig  46  shows  that  the 

proposed concept has a very low EEDI 

value compared with the baseline. This 

is mainly  the  result  of  the  use  of  LNG 

as  fuel,  combined with waste  heat  re-

covery,  reduced  speed,  and  optimal 

hull form. 

The payback time shown in Fig. 45 for 

the additional  investments  is  very  sen-

sitive  to  the  future  fuel  prices.  For  the 

gas main  engine, with  LNG  tanks  and 

fuel  supply  system,  the  payback  time 

will  be  5-10  years  depending  on  the 

fuel  price  development.  For  the  dual 

fuel auxiliary engines, the payback time 

is  shorter,  because  it  is  assumed  that 

the LNG tanks and system are already 

in  place  for  the  main  engine.  For  the 

waste  heat  recovery  system  and  shaft 

generator, the payback time is between 

7  to 10 years. An  improved hull shape 

and  arrangement  has  a  relatively  low 

additional  investment cost and a short 

payback time.

It  should be emphasised  that  the  cost 

estimates  for LNG  tanks and systems, 

and for the WHR, are based on today’s 

prices,  which  are  a  result  of  relatively 

low production volumes.  It  is expected 

that the cost of these systems could be 

significantly reduced in the future, when 

more  gas-fuelled  ships  are  built  and 

the  production  volume  of  the  systems 

becomes larger. Especially on the LNG 

tank side, it is expected that many new 

tank  types  will  get  on  the market  and 

press prices down.

It is also important to notice that the LNG 

prices  include some additional cost  for 

distribution,  but  this will  be  very much 

dependent on the future LNG bunkering 

infrastructure,  way  of  bunkering,  loca-

tion of bunkering, etc. It is assumed that 

LNG will  be  delivered  from  large-scale 

LNG terminals, so that expensive small-

scale production of LNG is avoided. 

0

200

400

600

800

1,000

1,200

1,400

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2008$/tonne

Residual Fuel Price Distillate fuel Natural gas (per metric tonne)

Fig. 43: US EIA Annual Energy Outlook 2010: reference scenario

0

500

1,000

1,500

2,000

2,500

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2008$/tonne

Residual Fuel Price Distillate fuel Natural gas (per metric tonne)

Fig. 44: US EIA Annual Energy Outlook 2010: high scenario

34 Quantum 9000

Conclusion

The  Quantum  9000  concept  demon-

strates the commercial viability of vessel 

optimisation using a realistic trading pro-

file  and  operational  characteristics.  The 

Quantum  9000  ship  design  has  been 

through  iterative optimisation processes 

to  achieve  improved  performance,  par-

ticularly  concerning  the  hull  profile  and 

propeller  design.  And  a  twin-island  de-

sign  is  chosen  for  maximum  container 

capacity.  In  addition  to  optimisation  of 

0

5

10

15

20

25

Hull andcargo

LNG engine,system and tank

Dual auxengines

Waste heatrecovery

Shaftgenerator

Years Pay back time, 8% discount rate

High price scenario Reference scenario

Fig. 45: Calculated pay back time of additional investments, with 8% discount rate

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

0 50.000 100.000 150.000 200.000

Grams per tonne*nm

Dwt

Container(>=400 gt, built 1998-2007)

Baseline samples IMO EEDI Baseline Quantum 9000

Fig. 46: Calculated Energy Efficiency Design Index (EEDI)

design parameters, the study has includ-

ed practical information relating to vessel 

operation such as bunkering of LNG and 

class requirements.

The chosen MAN B&W two-stroke dual 

fuel ME-GI  engine  further  enhances  the 

desirability of the Quantum 9000, by  in-

troducing a degree of  fuel  flexibility pre-

viously unexploited by  industry.  In these 

times  of  fuel  price  volatility,  the  ME-GI 

should be considered to mitigate the risk. 

Furthermore,  the  use  of  LNG  as  a  fuel 

has the environmental benefit of reduced 

emissions,  which  plays  an  increasingly 

important role in the selection of the type 

of transportation of goods.

The cost benefit analysis of five different 

investments shows that each investment 

will increase the profitability of the vessel 

over its 25-year lifetime, both in the refer-

ence and in the high HFO price scenario, 

and it should therefore be of the utmost 

interest to shipowners.

References

[1]   Two-stroke  Low  Speed  Diesel  En-

gines – for Independent Power Pro-

ducers and Captive Power Plants

[2]   DNV Rules  Pt.6 Ch.13 Gas  fuelled 

engine installations 

[3]   IMO  Res.  MSC.285(86);  Interim 

Guidelines on safety for natural gas-

fuelled engine installations in ships 

Copyright ©

 MAN Diesel &

 Turbo and DNV · S

ubject to modification in the interest of technical progress. 

MAN Diesel & Turbo

Teglholmsgade 41

2450 Copenhagen SV. Denmark

Phone +45 33 85 11 00

Fax  +45 33 85 10 30

[email protected]

www.mandieselturbo.com

Det Norske Veritas AS

NO-1322 Høvik, Norway

Phone +47 67 57 99 00

Fax: +47 67 57 99 11

www.dnv.com

A3_Cover_DNV_5510-0108-00ppr.indd 1 3/8/2011 14:57:18