quantum chaos and entanglement

50
Quantum chaos and entanglement Arul Lakshminarayan Department of Physics Indian Institute of Technology Madras Chennai, India. February 16, 2011 Collaborators: V. Subrahmanyam (IITK), J. Bandyopadhyay (NUS), J. Karthik (UC), A. Sharma (UCSC), S. Majumdar (Orsay), O. Bohigas (Orsay), Udaysinh Bhosale (IITM), Vikram S. Vijayaraghavan (UC Davis) Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 1 / 49

Upload: trinhdan

Post on 08-Feb-2017

243 views

Category:

Documents


6 download

TRANSCRIPT

Quantum chaos and entanglement

Arul Lakshminarayan

Department of PhysicsIndian Institute of Technology Madras

Chennai, India.

February 16, 2011

Collaborators: V. Subrahmanyam (IITK), J. Bandyopadhyay (NUS),J. Karthik (UC), A. Sharma (UCSC),S. Majumdar (Orsay), O. Bohigas (Orsay),Udaysinh Bhosale (IITM), Vikram S. Vijayaraghavan (UC Davis)

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 1 / 49

Contents

Quantum Chaos

Entanglement in quantum chaos

Random matrices and quantum chaos

Entanglement among random subsystems

Spin systems

Summary

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 2 / 49

Chaos on top of Einstein’s head

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 3 / 49

Einstein and Quantum Chaos

1913-1917 Bohr-Sommerfeld: Quantize ActionI =

∮p dq = 2π~ n. n = 1, 2, 3, . . .

Q

P

H(Q , P) = E

For separable d freedoms: Ij =∮

pj dqj = 2π~ nj , j = 1, . . . , d .

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 4 / 49

11 May 1917

Paper presented by AE at the meeting of the German Physical Society.”On the quantum theory of Sommerfeld and Epstein”.

The Sommerfeld-Epstein rules are not invariant under generalcoordinate transformations if the system is not separable.∮Cjp ·dq = nj~

one particle in a central force field: generally double-valuedmomentum field. Lift to a 2-torus.

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 5 / 49

Einstein-Brillioun-Keller quantization:∮Cjp ·dq = (nj + αj/4)~

What if at any point in space there exists an infinite number ofpossible momentum directions? Ergodic systems?

“If there exists fewer than d constants of the motion, for example,according to Poincare in the three-body problem, then the pj are notexpressible as functions of qj and the quantum condition ofSommerfeld-Epstein fails also in the slightly generalized form that hasbeen given here.”

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 6 / 49

Chaos

Poincare had found ”homoclinic chaos” in the restricted three-bodyproblem. 1900?

Period-3 implies Chaos: 1976 : Li and Yorke.

Chaos is exponential sensitivity to initial conditions even with a boundedphase space.

Implies linear growth of information with time: Kolmogorov Sinai Entropy.

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 7 / 49

Simplest quantum 3-body problem: Pauli’s thesis problem: H+2 stable?

More recent experiments with just the hydrogen atom:The hydrogen atom in a strong magnetic field.

”It turns out that an eerie type of chaos can lurk just behind a facade oforder - and yet, deep inside the chaos lurks an even eerier type of order.”–D. Hofstadter.

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 8 / 49

Quantum Chaos

The analysis of quantum systems whose classical limit corresponds to achaotic Hamiltonian system.

Eigenvalues: The Gutzwiller Trace Formula / Periodic orbit sumgeneralizes the EBK rules. (Gutzwiller, 1970, M V Berry, A Voros, 1980s)

Eigenfunctions: Analytical structure little known. ”Ergodic” (Schnirelman70s) ”Scarring” (Eric Heller 1984),

Statistical modelling: Random Matrix Theory.

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 9 / 49

Quantum Billiards

∇2ψ(x , y) + k2ψ(x , y) = 0; ψ(x , y) = 0 on billiard boundaryk2 = 2mE/~2

Scars Eric Heller (1984).

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 10 / 49

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 11 / 49

The baker’s map: A paradigm of classical chaos

On the lightly floured surface, flatten the dough slightly into a disk-shape.Use the heels of your hands to PUSH the dough away. Pick up the edgefurthest away from you and FOLD it toward you, sliding the dough back toits original spot on the counter. TURN the dough a quarter-turn.Vigorously repeat ”push, fold, and turn” steps. — Fromwww.baking911.com.

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 12 / 49

The baker mixes chaotically

q → 2 q(mod) 1, p → (p + [2q])/2

The Left shift. ai = {0, 1}.

. . . a−3a−2a−1 • a0a1a2 . . . −→ . . . a−2a−1a0 • a1a2a3 . . .

������������������������������

������������������������������

���������������������������������

���������������������������������

��������������������������������������������

��������������������������������������������

����������������������

����������������������

����������������������

����������������������

0 1 2 3

Lyapunov exponent, Topological Entropy= ln(2). Completely hyperbolicand “as random as a coin toss”.

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 13 / 49

The quantum baker’s map

Balazs-Voros Baker (1989):

B = G−1N

(GN/2 0

0 GN/2

)(GN)mn = 〈pm|qn〉 =

1√N

exp (−2πi nm/N)

0 ≤ m, n ≤ N − 1, N = 1/h.

For L qubits, N = 2L.

Product of two non-commuting matrices.

Spectrum analytically unknown.

Semiclassical (N →∞) analysis implies Gutzwiller-like trace formula.

Has no degeneracies, spectral fluctuations close to RMT.

Efficient implementation on quantum computers, including recentexperimental implementation on a 3-qubit NMR processor(quant-ph/0201064).

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 14 / 49

(quant-ph/0305046)

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 15 / 49

(L = 8 qubits. Entanglement between 4+4 in Bn|00000000〉)

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 16 / 49

(Phys. Rev. E. 2001)

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 17 / 49

One kicked rotor

Standard Map: (q, p)→ (q + p, p + K sin(q + p))

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 18 / 49

Entanglement in two coupled kicked rotors

q′1 = q1 + p′1

p′1 = p1 +K1

2πsin(2πq1) +

b

2πsin(2π(q1 + q2))

q′2 = q2 + p′2

p′2 = p2 +K2

2πsin(2πq2) +

b

2πsin(2π(q1 + q2)).

Quantize this to get a Unitary operator U. What are the entanglementproperties of the eigenstates of U? What connection does it have toclassical chaos?

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 19 / 49

Use K1 = 0.1,K2 = 0.15 Left: N = 15, 20, 25. Right: N = 40, b = 0.2.

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 20 / 49

Two Eigenfunctions |〈q1q2|ψ〉|2 and their Principal Schmidt vectors.

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 21 / 49

Scarring and Schmidt vectors

Husimi of the principal Schmidt vector of the scarred state (orbit(0.5,0,0,0))(AL, Phys. Rev. E, vol. 64, 2001)

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 22 / 49

Why is chaos a friend of entanglement?

Classical chaos is ergodic and mixing.

Quantum chaos leads to eigenstates and time evolving states that are verywell modeled by generic or random states.

Generic random states have very large, nearly maximal, entanglement.

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 23 / 49

States, at Random

H = HN ⊗HM , M ≥ N. |ψ〉 =∑i

∑α

aiα|iα〉

Random states: choose uniformly from 2NM − 1 dimensional unit sphere.

P({aiα}) = C δ

(∑iα

|aiα|2 − 1

)

Measure: Unitarily invariant Haar measure: Usual geometric hypersurfacevolume on the unit sphere S2NM−1.

〈Tr(ρ2A)〉 =N + M

NM + 1≈ 1

N+

1

K

〈E 〉 ≈ log(N)− N2 − 1

2NM + 2, N � M ( Lubkin 1978)

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 24 / 49

Induced Measure on λ: spectrum of RDM

j.p.d.f. (β = 1, 2 for real, complex states)

Pβ(λ1, · · · , λN) = BM,Nδ

(N∑i=1

λi − 1

)N∏i=1

λβ2(M−N+1)−1

i

∏j<k

|λj − λk |β.

S. Lloyd, H. Pagels, ”Complexity as Thermodynamic Depth” Ann. Phys.1988.K. Zyczkowski, H-J Sommers, J. Phys. A. 2001.Entanglement in Random States:

〈E 〉 = −∫

dλ1, .., dλN∑i

λi log(λi )P2(λ1, .., λN) = −N

∫λ log(λ)f (λ)dλ

f (λ) =

∫dλ2 · · ·

∫dλNP2(λ, λ2, · · · , λN)

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 25 / 49

Distribution of eigenvalues of RDM

Q = M/N. For large M and N and finite Q the distribution of f (λ) isthat of Marcenko and Pastur (1967).

f (λ) =Q

√(λ− λmin)(λmax − λ)

λ

λmax ,min =1

N(1±

√Q)2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2 2.5 3 3.5 4

p(λ)

λ 2L

Q=1Q=2Q=4Q=8

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 26 / 49

(Phys. Rev. Lett. 2002)

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 27 / 49

Two Coupled Quantum Chaotic Tops

Quantum chaos leads to universal bipartite pure state entanglement:

The entanglement is nearly maximal and S = ln(γN). ForN = M, S = ln(N)− 1/2. As M →∞, γ → 1.J Bandyopadhyay, AL PRL 02)

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 28 / 49

And it is seen in Nature

The ’butterfly effect’ has now been seen at the quantum level. They’vebrought together two sexy concepts in physics that are usually thought to

operate in completely different regimes. (Nature News, 7 Oct. 2009)

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 29 / 49

And it is seen in Nature

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 30 / 49

The minimum eigenvalue in a RDM ...

... of a typical pure state.

QN(x) = Prob [λmin ≥ x ] = Prob [λ1 ≥ x , λ2 ≥ x , . . . , λN ≥ x ] .

β = 2. Symmetric Case of M = N:

QN(x) = BN,N

∫ ∞x· · ·∫ ∞x

δ

(N∑i=1

λi − 1

)∏j<k

(λj − λk)2N∏i=1

dλi

Laplace transfrom, Change of variables, Selberg integral and an inverseLT: (Majumdar, Bohigas, AL, J. Stat. Phys. 2008.)

QN(x) = Prob [λN ≥ x ] = (1− Nx)N2−1 Θ (t − Nx) .

〈λN〉 = −∫ ∞0

xdQN(x)

dxdx =

∫ 1/N

0(1− Nx)N

2−1dx =1

N3,

first conjectured by Znidaric (J. Math. Phys., 2007).Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 31 / 49

Entanglement in RDM of a typical pure state

L qubits in a typical pure state. What is the entanglement between twoblocks having L1 and L2 number of qubits, when L1 + L2 < L?

If ρ12 is not entangled, then its PT is necessarily positive. Negative partialtranspose implies entanglement. If

ρ12 =∑m

pmρ(1)m ⊗ ρ(2)m , ρPT12 =

∑m

pmρ(1)m ⊗ ρ(2) Tm .

If L1 + L2 < L/2 then ρ12 has a minimum eigenvalue ∼ 1/N. IfL1 + L2 = L/2 the minimum eigenvalue ∼ 1/N3. If L1 + L2 > L/2 thereare zero eigenvalues. (N = 2L1+L2).

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 32 / 49

Digression: density of states of a random matrix

Wigner, Dyson, Mehta, ... 1950s, 60s, 70s.

Aij elements are random i.i.d.

If the distribution for a Hermitian matrix is gaussian, the Gaussian randomensembles result.

The density of states of such matrices have been known to be the “WignerSemicircle”.

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 33 / 49

Back to Entanglement in RDM of a typical pure state

If L1 = L2 the spectrum of the ρPT12 fits the Wigner semicircle law! ThePartial Transpose is NPT.

x = λPTN, p(λPT ) =1

√4− (x − 1)2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-1 -0.5 0 0.5 1 1.5 2 2.5 3

p(λ

PT’)

λPT’ = λPT N

L=16, L1=4, L2=4L=20, L1=5, L2=5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-1 -0.5 0 0.5 1 1.5 2 2.5 3

p(λ

PT’)

λPT’ = λPT N

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 34 / 49

L1 + L2 < L/2: PPT

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

p(λ

PT’)

λPT’ = λPT N

L=16, L1=3, L2=3

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 35 / 49

Negativity of sub-blocks of a random state

Log-Negativity = log2 (||ρ12||1) = log2

(∑i

|λPTi |

)

-0.5

0

0.5

1

1.5

2

2.5

3

2 3 4 5 6 7 8 9 10 11

log

(||ρ

||1)

Length of block of spins

L=12L=14

If the subsystem size is less than half of that of the system, it is typicallyPPT, else it is NPT and hence entangled. (Udaysinh Bhosale, AL, 2011)

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 36 / 49

Concurrence and other entanglement measures

Consider a pure state of N qubits or spin-1/2 particles.

1. Concurrence between any 2 spins A and BIf Spec{ ρAB σy ⊗ σyρ∗ABσy ⊗ σy} ={λ1, λ2, λ3, λ4},Concurrence CAB = max

(√λ1 −

√λ2 −

√λ3 −

√λ4, 0

).

0 ≤ CAB ≤ 1, entanglement of formation of the two qubits is knownto be a monotonic function of CAB (Hill, Wootters, 1997)

2. Residual tangle :Concurrence in a pure state: |〈ψAB |σy ⊗ σy |ψ∗AB〉|. Tangle :τAB = C 2

AB .We can also define the tangle between one spin (say the k-th) andthe rest: τk,(rest) = 4 det(ρk).This was used to define a purely three-way entanglement measure in apure state of three qubits as τ1,(23) − τ1,2 − τ1,3. (Coffman, Kundu,Wootters, 2000).

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 37 / 49

3. n-tangle: multipartite measure|〈Ψ|σy ⊗N |Ψ∗〉|2. This is evidently the tangle for N = 2, for N = 3this is the residual tangle, while for N > 3 and odd this vanishes.(Wong, Christensen, 2001)

4. The Meyer, Wallach and Brennen Q measure: multipartitemeasure

Q(ψ) = 2

(1− 1

L

L∑k=1

Tr(ρ2k)

)=

1

L

L∑k=1

τk .

1− Tr(ρ2k) = 2 det(ρk)

Entanglement measures must not increase under LOCC and must vanishfor separable states.

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 38 / 49

Tilted magnetic field: Nonintegrability

U = exp

(−i

J

4

L∑k=1

σxkσxk+1

)exp

(−i

B

2

L∑k=1

(cos(θ)σxk + sin(θ)σzk)

).

|ψL(n)〉 = Un|11 · · · 1〉

For J,B 6= 0 integrable only for θ = 0 or π/2. Evidence of quantum chaosfor intermediate angles of tilt. Jordan-Wigner fermions are interacting.

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 39 / 49

Q vs time. J = 0.1, B = 0.1, L = 10.

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500

Time

Q

θ=0

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500

Time

Q

θ=0 θ=π/16

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500

Time

Q

θ=0 θ=π/16

θ=π/8

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500

Time

Q

θ=0 θ=π/16

θ=π/8 θ=π/2

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 40 / 49

Concurrence or Tangle

0

0.1

0.2

0 100 200 300 400 500

Time

Σj C

2i,j

θ=0

0

0.1

0.2

0 100 200 300 400 500

Time

Σj C

2i,j

θ=0 θ=π/16

0

0.1

0.2

0 100 200 300 400 500

Time

Σj C

2i,j

θ=0 θ=π/16

θ=π/8

0

0.1

0.2

0 100 200 300 400 500

Time

Σj C

2i,j

θ=0 θ=π/16

θ=π/8 θ=π/2

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 41 / 49

It pays to tilt. θ = π/4. L = 10 J = 0.1.

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300 350 400 450 500

Q(t

)

time

B=0B=0.05B=0.1B=0.5B=π/4B=π/2

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 42 / 49

L = 6. J = π/4. Average Q and tangle,

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 43 / 49

Ising Model in a tilted field: Autonomous

H(J,B, θ) = JL−1∑n=1

σznσzn+1 + B

L∑n=1

(sin(θ)σxn + cos(θ)σzn)

Direct correlation between quantum chaos markers and entanglement.

Stationary states.

Transport of entanglement.

Avoided crossings and entanglement.(L∏

i=1

⊗σyi

)H(J,B, θ)

(L∏

i=1

⊗σyi

)= −H(−J,B, θ).

B|s1s2 . . . sN〉 = |sN . . . s2s1〉, [H, B] = 0

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 44 / 49

Quantum Chaos: tilted field . J = B = 1

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Energ

y

Angle of tilt

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

P(s

)

Spacing s

θ=99π/200θ=15π/32

θ=7π/16

θ=π/6PoissonWigner

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Tilt angle

10 <τ >

SL/2

0

0.05

0.1

0.15

0.2

1.2 1.3 1.4 1.5

KS statistic

10 <τ >

SL/2

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6

Sl

l

θ=99π/200

θ=15π/32

θ=5π/8

θ= π/6

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 45 / 49

Entanglement Transport: Heisenberg chain

|ψe (t = 0)〉 =1√2| (11 + 00) 111111111111111111〉

2 6 10 14 18

l

30

60

90

120

t

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 46 / 49

Entanglement Transport: Ising chains

|ψe (t = 0)〉 =1√2| (11 + 00) 11111111〉 L = 10, J = B = 1,

θ

π= 1/2, 5/12, 1/3, 1/6

0 2 4 6 80

50

100

150

200

250

0 2 4 6 80

50

100

150

200

250

0 2 4 6 80

50

100

150

200

250

0 2 4 6 80

50

100

150

200

250

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 47 / 49

Summary

There is a “complex link” between quantum entanglement and classicalchaos.

In the case of two coupled high-dimensional quantum chaotic systemsin a pure state, chaos leads to nearly maximal entanglement via thevon Neumann entropy.Multipartite entanglement can be enhanced with increasingnonitegrability often it seems at the expense of bipartiteentanglement.Studied spin models such as the Ising model in a tilted magnetic fieldand showed that quantum chaos arises for even small longitudinalfields. Avoided crossings can lead to local enhanced multipartiteentanglement.In “single-particle” states of many qubits there is an enhancedtwo-spin correlation (concurrence) with chaos. This is describablewith RMT and leads to universal concurrence distributions. TRviolating states are more entangled. Two-particle states haveconcurrence 1/L2, three and more exp(−L log(L)), exponentially smallconcurrence.Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 48 / 49

Some Relevant Publications

1 Entangling Power of Quantized Chaotic Systems,AL, Phys. Rev. E., 64 (2001) 036207.

2 Testing Statistical Bounds on Entanglement Using Quantum Chaos,J. N. Bandyopadhyay, AL, Phys. Rev. Lett. 89 (2002) 060402.

3 Entanglement sharing in one particle statesAL, V. Subrahmanyam, Phys. Rev. A 67 (2003) 052304.

4 Entanglement Production in Coupled Chaotic Systems: Case of thekicked tops,J. N. Bandyopadhyay, AL, Phys. Rev. E, 69 (2004) 016201.

5 Multipartite Entanglement in a One-Dimensional Time DependentIsing Model,AL, V. Subrahmanyam, Phys. Rev. A., 71, 062334 (2005).

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 49 / 49

6 Transport of Entanglement Through a Heisenberg-XY Spin Chain,V. Subrahmanyam, AL, Phys. Lett. A 349, 164 (2006).

7 Quantum chaos in the spectrum of operators used in Shor’s algorithm,Krishnendu Maity, AL, Phys. Rev. E. 74, 035203 (Rapid Comm.)(2006).

8 Entanglement, avoided crossings, and quantum chaos in an Isingmodel with a tilted magnetic fieldJ. Karthik, A. Sharma, and AL, Phys. Rev. A 75, 022304 (2007).

9 Modular multiplication operator and quantized baker’s mapsAL, Phys. Rev. A 76, 042330 (2007).

10 Exact Minimum Eigenvalue Distribution of an Entangled RandomPure State,Satya N. Majumdar, Oriol Bohigas, AL, J. Stat. Phys. 131, 33(2008).

11 Effect of classical bifurcations on the quantum entanglement of twocoupled quartic oscillatorsM. S. Santhanam, V. B. Sheorey, AL, Phys. Rev. E. 77, 026213(2008).

Arul (IIT Madras) Quantum chaos and entanglement February 16, 2011 50 / 49