quantum localisation on the circle - bulgarian academy of...

63
Quantum Localisation on the Circle XXth International Conference on Geometry, Integrability and Quantization Rodrigo Fresneda (UFABC - S˜ ao Paulo, Brasil) Varna, 6th of June of 2018 J. Math. Phys., 59(5), 52105 (2018), in collaboration with J.P. Gazeau (Univ. Paris-Diderot) and D. Noguera (CBPF, Rio de Janeiro) Rodrigo Fresneda (UFABC - S˜ ao Paulo, Brasil) Quantum Localisation on the Circle

Upload: others

Post on 13-Jun-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Quantum Localisation on the CircleXXth International Conference on Geometry, Integrability and

Quantization

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil)

Varna, 6th of June of 2018

J. Math. Phys., 59(5), 52105 (2018), in collaboration with J.P. Gazeau(Univ. Paris-Diderot) and D. Noguera (CBPF, Rio de Janeiro)

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 2: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Introduction and Motivation

If ψ(α) is the 2π-periodic wave function on the circle, thequantum angle α cannot be a multiplication operator,αψ(α) = αψ(α) without breaking periodicity.

Except if α stands for the 2π-periodic discontinuous anglefunction,

(αψ)(α) :=(α− 2π

⌊ α2π

⌋)ψ(α) . (1)

However, for α Self-Adjoint (SA), spec(α) ⊂ [0, 2π], the CCR[α, pα] = i~I does not hold for SA quantum angularmomentum pα = −i~ ∂

∂α .

Instead, one has

[α, pα] = i~I

[1− 2π

∑n

δ(α− 2nπ)

]. (2)

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 3: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Introduction and Motivation

If ψ(α) is the 2π-periodic wave function on the circle, thequantum angle α cannot be a multiplication operator,αψ(α) = αψ(α) without breaking periodicity.

Except if α stands for the 2π-periodic discontinuous anglefunction,

(αψ)(α) :=(α− 2π

⌊ α2π

⌋)ψ(α) . (1)

However, for α Self-Adjoint (SA), spec(α) ⊂ [0, 2π], the CCR[α, pα] = i~I does not hold for SA quantum angularmomentum pα = −i~ ∂

∂α .

Instead, one has

[α, pα] = i~I

[1− 2π

∑n

δ(α− 2nπ)

]. (2)

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 4: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Introduction and Motivation

If ψ(α) is the 2π-periodic wave function on the circle, thequantum angle α cannot be a multiplication operator,αψ(α) = αψ(α) without breaking periodicity.

Except if α stands for the 2π-periodic discontinuous anglefunction,

(αψ)(α) :=(α− 2π

⌊ α2π

⌋)ψ(α) . (1)

However, for α Self-Adjoint (SA), spec(α) ⊂ [0, 2π], the CCR[α, pα] = i~I does not hold for SA quantum angularmomentum pα = −i~ ∂

∂α .

Instead, one has

[α, pα] = i~I

[1− 2π

∑n

δ(α− 2nπ)

]. (2)

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 5: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Introduction and Motivation

If ψ(α) is the 2π-periodic wave function on the circle, thequantum angle α cannot be a multiplication operator,αψ(α) = αψ(α) without breaking periodicity.

Except if α stands for the 2π-periodic discontinuous anglefunction,

(αψ)(α) :=(α− 2π

⌊ α2π

⌋)ψ(α) . (1)

However, for α Self-Adjoint (SA), spec(α) ⊂ [0, 2π], the CCR[α, pα] = i~I does not hold for SA quantum angularmomentum pα = −i~ ∂

∂α .

Instead, one has

[α, pα] = i~I

[1− 2π

∑n

δ(α− 2nπ)

]. (2)

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 6: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

This is an old problem (dating back to Dirac ”The QuantumTheory of the Emission and Absorption of Radiation”).

Most approaches rely on replacing the angle operator by aquantum version of a smooth periodic function of the classicalangle at the cost of losing localisation.

We revisit the problem of the quantum angle throughcoherent state (CS) quantisation, which is a particular methodbelonging to covariant integral quantisation (S.T. Ali, J.-P.Antoine, and J.-P. Gazeau, Coherent States, Wavelets andtheir Generalizations).

Our approach is group theoretical, based on the unitaryirreducible representations of the (special) Euclidean groupE(2) = R2oSO(2) (see also S. De Bievre, Coherent statesover symplectic homogeneous spaces).

One of our aims is to build acceptable angle operators fromthe classical angle function through a consistent andmanageable quantisation procedure.

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 7: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

This is an old problem (dating back to Dirac ”The QuantumTheory of the Emission and Absorption of Radiation”).

Most approaches rely on replacing the angle operator by aquantum version of a smooth periodic function of the classicalangle at the cost of losing localisation.

We revisit the problem of the quantum angle throughcoherent state (CS) quantisation, which is a particular methodbelonging to covariant integral quantisation (S.T. Ali, J.-P.Antoine, and J.-P. Gazeau, Coherent States, Wavelets andtheir Generalizations).

Our approach is group theoretical, based on the unitaryirreducible representations of the (special) Euclidean groupE(2) = R2oSO(2) (see also S. De Bievre, Coherent statesover symplectic homogeneous spaces).

One of our aims is to build acceptable angle operators fromthe classical angle function through a consistent andmanageable quantisation procedure.

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 8: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

This is an old problem (dating back to Dirac ”The QuantumTheory of the Emission and Absorption of Radiation”).

Most approaches rely on replacing the angle operator by aquantum version of a smooth periodic function of the classicalangle at the cost of losing localisation.

We revisit the problem of the quantum angle throughcoherent state (CS) quantisation, which is a particular methodbelonging to covariant integral quantisation (S.T. Ali, J.-P.Antoine, and J.-P. Gazeau, Coherent States, Wavelets andtheir Generalizations).

Our approach is group theoretical, based on the unitaryirreducible representations of the (special) Euclidean groupE(2) = R2oSO(2) (see also S. De Bievre, Coherent statesover symplectic homogeneous spaces).

One of our aims is to build acceptable angle operators fromthe classical angle function through a consistent andmanageable quantisation procedure.

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 9: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

This is an old problem (dating back to Dirac ”The QuantumTheory of the Emission and Absorption of Radiation”).

Most approaches rely on replacing the angle operator by aquantum version of a smooth periodic function of the classicalangle at the cost of losing localisation.

We revisit the problem of the quantum angle throughcoherent state (CS) quantisation, which is a particular methodbelonging to covariant integral quantisation (S.T. Ali, J.-P.Antoine, and J.-P. Gazeau, Coherent States, Wavelets andtheir Generalizations).

Our approach is group theoretical, based on the unitaryirreducible representations of the (special) Euclidean groupE(2) = R2oSO(2) (see also S. De Bievre, Coherent statesover symplectic homogeneous spaces).

One of our aims is to build acceptable angle operators fromthe classical angle function through a consistent andmanageable quantisation procedure.

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 10: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

This is an old problem (dating back to Dirac ”The QuantumTheory of the Emission and Absorption of Radiation”).

Most approaches rely on replacing the angle operator by aquantum version of a smooth periodic function of the classicalangle at the cost of losing localisation.

We revisit the problem of the quantum angle throughcoherent state (CS) quantisation, which is a particular methodbelonging to covariant integral quantisation (S.T. Ali, J.-P.Antoine, and J.-P. Gazeau, Coherent States, Wavelets andtheir Generalizations).

Our approach is group theoretical, based on the unitaryirreducible representations of the (special) Euclidean groupE(2) = R2oSO(2) (see also S. De Bievre, Coherent statesover symplectic homogeneous spaces).

One of our aims is to build acceptable angle operators fromthe classical angle function through a consistent andmanageable quantisation procedure.

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 11: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Covariant integral quantisation - general scheme

Let G be a Lie group with left Haar measure dµ(g) and g 7→ U(g) aUIR of G in H. For ρ ∈ B(H) , suppose the following operator isdefined in a weak sense:

R :=

∫Gρ (g)dµ (g) , ρ (g) := U (g) ρU† (g)

Then , R = cρI , since U (g0)RU† (g0) =∫G ρ (g0g)dµ (g) = R

That is, the family of operators ρ(g) provides a resolution of theidentity ∫

Gρ (g)

dµ (g)

cρ= I , cρ =

∫Gtr(ρ0ρ(g))dµ (g)

This allows an integral quantisation of complex-valued functions onthe group

f 7→ Af =

∫Gρ(g) f (g)

dµ (g)

cρ,

which is covariant in the sense that

U(g)Af U†(g) = AU(g)f , (U(g)f )(g ′) = f (g−1g ′)

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 12: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Covariant integral quantisation - general scheme

Let G be a Lie group with left Haar measure dµ(g) and g 7→ U(g) aUIR of G in H. For ρ ∈ B(H) , suppose the following operator isdefined in a weak sense:

R :=

∫Gρ (g)dµ (g) , ρ (g) := U (g) ρU† (g)

Then , R = cρI , since U (g0)RU† (g0) =∫G ρ (g0g)dµ (g) = R

That is, the family of operators ρ(g) provides a resolution of theidentity ∫

Gρ (g)

dµ (g)

cρ= I , cρ =

∫Gtr(ρ0ρ(g))dµ (g)

This allows an integral quantisation of complex-valued functions onthe group

f 7→ Af =

∫Gρ(g) f (g)

dµ (g)

cρ,

which is covariant in the sense that

U(g)Af U†(g) = AU(g)f , (U(g)f )(g ′) = f (g−1g ′)

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 13: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Covariant integral quantisation - general scheme

Let G be a Lie group with left Haar measure dµ(g) and g 7→ U(g) aUIR of G in H. For ρ ∈ B(H) , suppose the following operator isdefined in a weak sense:

R :=

∫Gρ (g)dµ (g) , ρ (g) := U (g) ρU† (g)

Then , R = cρI , since U (g0)RU† (g0) =∫G ρ (g0g)dµ (g) = R

That is, the family of operators ρ(g) provides a resolution of theidentity ∫

Gρ (g)

dµ (g)

cρ= I , cρ =

∫Gtr(ρ0ρ(g))dµ (g)

This allows an integral quantisation of complex-valued functions onthe group

f 7→ Af =

∫Gρ(g) f (g)

dµ (g)

cρ,

which is covariant in the sense that

U(g)Af U†(g) = AU(g)f , (U(g)f )(g ′) = f (g−1g ′)

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 14: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Covariant integral quantisation - general scheme

Let G be a Lie group with left Haar measure dµ(g) and g 7→ U(g) aUIR of G in H. For ρ ∈ B(H) , suppose the following operator isdefined in a weak sense:

R :=

∫Gρ (g)dµ (g) , ρ (g) := U (g) ρU† (g)

Then , R = cρI , since U (g0)RU† (g0) =∫G ρ (g0g)dµ (g) = R

That is, the family of operators ρ(g) provides a resolution of theidentity ∫

Gρ (g)

dµ (g)

cρ= I , cρ =

∫Gtr(ρ0ρ(g))dµ (g)

This allows an integral quantisation of complex-valued functions onthe group

f 7→ Af =

∫Gρ(g) f (g)

dµ (g)

cρ,

which is covariant in the sense that

U(g)Af U†(g) = AU(g)f , (U(g)f )(g ′) = f (g−1g ′)

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 15: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Covariant integral quantisation - general scheme

Let G be a Lie group with left Haar measure dµ(g) and g 7→ U(g) aUIR of G in H. For ρ ∈ B(H) , suppose the following operator isdefined in a weak sense:

R :=

∫Gρ (g)dµ (g) , ρ (g) := U (g) ρU† (g)

Then , R = cρI , since U (g0)RU† (g0) =∫G ρ (g0g)dµ (g) = R

That is, the family of operators ρ(g) provides a resolution of theidentity ∫

Gρ (g)

dµ (g)

cρ= I , cρ =

∫Gtr(ρ0ρ(g))dµ (g)

This allows an integral quantisation of complex-valued functions onthe group

f 7→ Af =

∫Gρ(g) f (g)

dµ (g)

cρ,

which is covariant in the sense that

U(g)Af U†(g) = AU(g)f , (U(g)f )(g ′) = f (g−1g ′)

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 16: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Covariant integral quantisation - homogeneous spaces

We consider the quantisation of functions on a homogeneousspace X , the left coset manifold X ∼ G/H for the action of aLie Group G , where the closed subgroup H is the stabilizer ofsome point of X .

The interesting case is when X is a symplectic manifold (e.g.,co-adjoint orbit of G ) and can be viewed as the phase spacefor the dynamics.

Given a quasi-invariant measure ν on X , one has for a globalBorel section σ : X → G a unique quasi-invariant measureνσ(x).

Let U be a square-integrable UIR, and ρ0 a density operatorsuch that cρ :=

∫X tr (ρ0 ρσ(x)) dνσ(x) <∞ with

ρσ(x) := U(σ(x))ρU(σ(x))†.

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 17: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Covariant integral quantisation - homogeneous spaces

We consider the quantisation of functions on a homogeneousspace X , the left coset manifold X ∼ G/H for the action of aLie Group G , where the closed subgroup H is the stabilizer ofsome point of X .

The interesting case is when X is a symplectic manifold (e.g.,co-adjoint orbit of G ) and can be viewed as the phase spacefor the dynamics.

Given a quasi-invariant measure ν on X , one has for a globalBorel section σ : X → G a unique quasi-invariant measureνσ(x).

Let U be a square-integrable UIR, and ρ0 a density operatorsuch that cρ :=

∫X tr (ρ0 ρσ(x)) dνσ(x) <∞ with

ρσ(x) := U(σ(x))ρU(σ(x))†.

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 18: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Covariant integral quantisation - homogeneous spaces

We consider the quantisation of functions on a homogeneousspace X , the left coset manifold X ∼ G/H for the action of aLie Group G , where the closed subgroup H is the stabilizer ofsome point of X .

The interesting case is when X is a symplectic manifold (e.g.,co-adjoint orbit of G ) and can be viewed as the phase spacefor the dynamics.

Given a quasi-invariant measure ν on X , one has for a globalBorel section σ : X → G a unique quasi-invariant measureνσ(x).

Let U be a square-integrable UIR, and ρ0 a density operatorsuch that cρ :=

∫X tr (ρ0 ρσ(x)) dνσ(x) <∞ with

ρσ(x) := U(σ(x))ρU(σ(x))†.

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 19: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Covariant integral quantisation - homogeneous spaces

We consider the quantisation of functions on a homogeneousspace X , the left coset manifold X ∼ G/H for the action of aLie Group G , where the closed subgroup H is the stabilizer ofsome point of X .

The interesting case is when X is a symplectic manifold (e.g.,co-adjoint orbit of G ) and can be viewed as the phase spacefor the dynamics.

Given a quasi-invariant measure ν on X , one has for a globalBorel section σ : X → G a unique quasi-invariant measureνσ(x).

Let U be a square-integrable UIR, and ρ0 a density operatorsuch that cρ :=

∫X tr (ρ0 ρσ(x)) dνσ(x) <∞ with

ρσ(x) := U(σ(x))ρU(σ(x))†.

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 20: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

One has the resolution of the identity

I =1

∫Xρσ(x) dνσ(x) .

We then define the quantisation of functions on X as thelinear map

f 7→ Aσf =1

∫X

f (x) ρσ(x)dνσ(x) .

Covariance holds in the sense U(g)Aσf U(g)† = AσgUl (g)f , where

σg (x) = gσ(g−1x) with Ul(g)f (x) = f(g−1x

).

For ρ = |η〉〈η|, we are working with CS quantisation, wherethe CS’s are defined as |ηx〉 := |U(σg (x))η〉.

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 21: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

One has the resolution of the identity

I =1

∫Xρσ(x) dνσ(x) .

We then define the quantisation of functions on X as thelinear map

f 7→ Aσf =1

∫X

f (x) ρσ(x)dνσ(x) .

Covariance holds in the sense U(g)Aσf U(g)† = AσgUl (g)f , where

σg (x) = gσ(g−1x) with Ul(g)f (x) = f(g−1x

).

For ρ = |η〉〈η|, we are working with CS quantisation, wherethe CS’s are defined as |ηx〉 := |U(σg (x))η〉.

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 22: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

One has the resolution of the identity

I =1

∫Xρσ(x) dνσ(x) .

We then define the quantisation of functions on X as thelinear map

f 7→ Aσf =1

∫X

f (x) ρσ(x)dνσ(x) .

Covariance holds in the sense U(g)Aσf U(g)† = AσgUl (g)f , where

σg (x) = gσ(g−1x) with Ul(g)f (x) = f(g−1x

).

For ρ = |η〉〈η|, we are working with CS quantisation, wherethe CS’s are defined as |ηx〉 := |U(σg (x))η〉.

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 23: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Coherent states for semi-direct product groups

Let V , dimV = n, S ≤ GL(V ) and G = V o S

Given k0 ∈ V ∗ , one can show that

H0 = {g ∈ G |(k0, 0) = Ad#g (k0, 0)} = N0 o S0

for (k0, 0) ∈ g∗

Furthermore, X = G/H0 ' V0 ×O∗ ' T ∗O∗, V0 = T ∗k0O∗, is

a symplectic manifold with symplectic measure dµ(p,q) whichallows the construction of a sectionV0 ×O∗ 3 (p,q) 7→ σ(p,q) ∈ G

Finally, given a UIR χ of V and a UIR L of S , one canconstruct an irreducible representation (v , s) 7→ UχL (v , s) ofG induced by the representation χ⊗ L of V o S0.

Given η ∈ H = L2(O∗, dν), one constructs a family ηp,q:ηp,q(k) =

(UχL (σ(p,q))η

)(k)

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 24: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Coherent states for semi-direct product groups

Let V , dimV = n, S ≤ GL(V ) and G = V o S

Given k0 ∈ V ∗ , one can show that

H0 = {g ∈ G |(k0, 0) = Ad#g (k0, 0)} = N0 o S0

for (k0, 0) ∈ g∗

Furthermore, X = G/H0 ' V0 ×O∗ ' T ∗O∗, V0 = T ∗k0O∗, is

a symplectic manifold with symplectic measure dµ(p,q) whichallows the construction of a sectionV0 ×O∗ 3 (p,q) 7→ σ(p,q) ∈ G

Finally, given a UIR χ of V and a UIR L of S , one canconstruct an irreducible representation (v , s) 7→ UχL (v , s) ofG induced by the representation χ⊗ L of V o S0.

Given η ∈ H = L2(O∗, dν), one constructs a family ηp,q:ηp,q(k) =

(UχL (σ(p,q))η

)(k)

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 25: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Coherent states for semi-direct product groups

Let V , dimV = n, S ≤ GL(V ) and G = V o S

Given k0 ∈ V ∗ , one can show that

H0 = {g ∈ G |(k0, 0) = Ad#g (k0, 0)} = N0 o S0

for (k0, 0) ∈ g∗

Furthermore, X = G/H0 ' V0 ×O∗ ' T ∗O∗, V0 = T ∗k0O∗, is

a symplectic manifold with symplectic measure dµ(p,q) whichallows the construction of a sectionV0 ×O∗ 3 (p,q) 7→ σ(p,q) ∈ G

Finally, given a UIR χ of V and a UIR L of S , one canconstruct an irreducible representation (v , s) 7→ UχL (v , s) ofG induced by the representation χ⊗ L of V o S0.

Given η ∈ H = L2(O∗, dν), one constructs a family ηp,q:ηp,q(k) =

(UχL (σ(p,q))η

)(k)

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 26: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Coherent states for semi-direct product groups

Let V , dimV = n, S ≤ GL(V ) and G = V o S

Given k0 ∈ V ∗ , one can show that

H0 = {g ∈ G |(k0, 0) = Ad#g (k0, 0)} = N0 o S0

for (k0, 0) ∈ g∗

Furthermore, X = G/H0 ' V0 ×O∗ ' T ∗O∗, V0 = T ∗k0O∗, is

a symplectic manifold with symplectic measure dµ(p,q) whichallows the construction of a sectionV0 ×O∗ 3 (p,q) 7→ σ(p,q) ∈ G

Finally, given a UIR χ of V and a UIR L of S , one canconstruct an irreducible representation (v , s) 7→ UχL (v , s) ofG induced by the representation χ⊗ L of V o S0.

Given η ∈ H = L2(O∗, dν), one constructs a family ηp,q:ηp,q(k) =

(UχL (σ(p,q))η

)(k)

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 27: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Coherent states for semi-direct product groups

Let V , dimV = n, S ≤ GL(V ) and G = V o S

Given k0 ∈ V ∗ , one can show that

H0 = {g ∈ G |(k0, 0) = Ad#g (k0, 0)} = N0 o S0

for (k0, 0) ∈ g∗

Furthermore, X = G/H0 ' V0 ×O∗ ' T ∗O∗, V0 = T ∗k0O∗, is

a symplectic manifold with symplectic measure dµ(p,q) whichallows the construction of a sectionV0 ×O∗ 3 (p,q) 7→ σ(p,q) ∈ G

Finally, given a UIR χ of V and a UIR L of S , one canconstruct an irreducible representation (v , s) 7→ UχL (v , s) ofG induced by the representation χ⊗ L of V o S0.

Given η ∈ H = L2(O∗, dν), one constructs a family ηp,q:ηp,q(k) =

(UχL (σ(p,q))η

)(k)

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 28: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Coherent-state quantisation for semi-simple Lie groups

If one can prove∫V0×O∗ dµ(p,q)〈φ |ηp,q 〉H〈ηp,q |ψ 〉H = cη〈φ |ψ 〉 whereφ, ψ : O∗ → C and 0 < cη <∞

we obtain the resolution of the identity1

∫V0×O∗ dµ(p,q)|ηp,q 〉〈ηp,q | = I

CS quantisation maps the classical functionf (p,q) ∈ V0 ×O∗ to the operator on HAf =

1

∫V0×O∗ dµ(p,q) |ηp,q〉 〈ηp,q | f (p,q)

The quantisation is covariant UχL (g)Af UχL (g)† =

AσgUl (g)f , A

σgf :=

1

∫V0×O∗ dµ(p,q)

∣∣ησgp,q⟩ ⟨ησgp,q∣∣ f (p,q) ,

with |ησgp,q 〉 = UχL (gσ(g−1(p,q)))|η 〉The semiclassical portrait of the operator Af is defined as

f (p,q) =1

∫V0×O∗ dµ(p′,q ′)f (p′,q ′)

∣∣⟨ηp′,q′ |ηp,q⟩∣∣2 .

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 29: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Coherent-state quantisation for semi-simple Lie groups

If one can prove∫V0×O∗ dµ(p,q)〈φ |ηp,q 〉H〈ηp,q |ψ 〉H = cη〈φ |ψ 〉 whereφ, ψ : O∗ → C and 0 < cη <∞we obtain the resolution of the identity1

∫V0×O∗ dµ(p,q)|ηp,q 〉〈ηp,q | = I

CS quantisation maps the classical functionf (p,q) ∈ V0 ×O∗ to the operator on HAf =

1

∫V0×O∗ dµ(p,q) |ηp,q〉 〈ηp,q | f (p,q)

The quantisation is covariant UχL (g)Af UχL (g)† =

AσgUl (g)f , A

σgf :=

1

∫V0×O∗ dµ(p,q)

∣∣ησgp,q⟩ ⟨ησgp,q∣∣ f (p,q) ,

with |ησgp,q 〉 = UχL (gσ(g−1(p,q)))|η 〉The semiclassical portrait of the operator Af is defined as

f (p,q) =1

∫V0×O∗ dµ(p′,q ′)f (p′,q ′)

∣∣⟨ηp′,q′ |ηp,q⟩∣∣2 .

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 30: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Coherent-state quantisation for semi-simple Lie groups

If one can prove∫V0×O∗ dµ(p,q)〈φ |ηp,q 〉H〈ηp,q |ψ 〉H = cη〈φ |ψ 〉 whereφ, ψ : O∗ → C and 0 < cη <∞we obtain the resolution of the identity1

∫V0×O∗ dµ(p,q)|ηp,q 〉〈ηp,q | = I

CS quantisation maps the classical functionf (p,q) ∈ V0 ×O∗ to the operator on HAf =

1

∫V0×O∗ dµ(p,q) |ηp,q〉 〈ηp,q | f (p,q)

The quantisation is covariant UχL (g)Af UχL (g)† =

AσgUl (g)f , A

σgf :=

1

∫V0×O∗ dµ(p,q)

∣∣ησgp,q⟩ ⟨ησgp,q∣∣ f (p,q) ,

with |ησgp,q 〉 = UχL (gσ(g−1(p,q)))|η 〉The semiclassical portrait of the operator Af is defined as

f (p,q) =1

∫V0×O∗ dµ(p′,q ′)f (p′,q ′)

∣∣⟨ηp′,q′ |ηp,q⟩∣∣2 .

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 31: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Coherent-state quantisation for semi-simple Lie groups

If one can prove∫V0×O∗ dµ(p,q)〈φ |ηp,q 〉H〈ηp,q |ψ 〉H = cη〈φ |ψ 〉 whereφ, ψ : O∗ → C and 0 < cη <∞we obtain the resolution of the identity1

∫V0×O∗ dµ(p,q)|ηp,q 〉〈ηp,q | = I

CS quantisation maps the classical functionf (p,q) ∈ V0 ×O∗ to the operator on HAf =

1

∫V0×O∗ dµ(p,q) |ηp,q〉 〈ηp,q | f (p,q)

The quantisation is covariant UχL (g)Af UχL (g)† =

AσgUl (g)f , A

σgf :=

1

∫V0×O∗ dµ(p,q)

∣∣ησgp,q⟩ ⟨ησgp,q∣∣ f (p,q) ,

with |ησgp,q 〉 = UχL (gσ(g−1(p,q)))|η 〉

The semiclassical portrait of the operator Af is defined as

f (p,q) =1

∫V0×O∗ dµ(p′,q ′)f (p′,q ′)

∣∣⟨ηp′,q′ |ηp,q⟩∣∣2 .

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 32: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Coherent-state quantisation for semi-simple Lie groups

If one can prove∫V0×O∗ dµ(p,q)〈φ |ηp,q 〉H〈ηp,q |ψ 〉H = cη〈φ |ψ 〉 whereφ, ψ : O∗ → C and 0 < cη <∞we obtain the resolution of the identity1

∫V0×O∗ dµ(p,q)|ηp,q 〉〈ηp,q | = I

CS quantisation maps the classical functionf (p,q) ∈ V0 ×O∗ to the operator on HAf =

1

∫V0×O∗ dµ(p,q) |ηp,q〉 〈ηp,q | f (p,q)

The quantisation is covariant UχL (g)Af UχL (g)† =

AσgUl (g)f , A

σgf :=

1

∫V0×O∗ dµ(p,q)

∣∣ησgp,q⟩ ⟨ησgp,q∣∣ f (p,q) ,

with |ησgp,q 〉 = UχL (gσ(g−1(p,q)))|η 〉The semiclassical portrait of the operator Af is defined as

f (p,q) =1

∫V0×O∗ dµ(p′,q ′)f (p′,q ′)

∣∣⟨ηp′,q′ |ηp,q⟩∣∣2 .Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 33: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

The Euclidean group E(2)

Now G = E(2), where V = R2 and S = SO(2), soE(2) = R2 o SO(2) = {(r , θ) , r ∈ R2 , θ ∈ [0, 2π)} , withcomposition (r , θ)(r ′, θ′) = (r +R(θ)r ′, θ + θ′).

V ∗ = R2, O∗ = {k = R(θ)k0 ∈ R2 |R(θ) ∈ SO(2)} ' S1

The stabilizer under the coadjoint action Ad#E(2) is

H0 ={

(x , 0) ∈ E(2) | c · x = 0, c ∈ R2, ‖c‖ = 1, fixed}

.

The classical phase spaceX ≡ T ∗S1 ' (R2 o SO(2))/H0 ' R× S1 carries coordinates(p, q) and has symplectic measure dp ∧ dq.

The UIR of E(2) are L2(S1,dα) 3 ψ(α) 7→ (U(r , θ)ψ) (α) =e i(r1 cosα+r2 sinα)ψ(α− θ).

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 34: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

The Euclidean group E(2)

Now G = E(2), where V = R2 and S = SO(2), soE(2) = R2 o SO(2) = {(r , θ) , r ∈ R2 , θ ∈ [0, 2π)} , withcomposition (r , θ)(r ′, θ′) = (r +R(θ)r ′, θ + θ′).

V ∗ = R2, O∗ = {k = R(θ)k0 ∈ R2 |R(θ) ∈ SO(2)} ' S1

The stabilizer under the coadjoint action Ad#E(2) is

H0 ={

(x , 0) ∈ E(2) | c · x = 0, c ∈ R2, ‖c‖ = 1, fixed}

.

The classical phase spaceX ≡ T ∗S1 ' (R2 o SO(2))/H0 ' R× S1 carries coordinates(p, q) and has symplectic measure dp ∧ dq.

The UIR of E(2) are L2(S1,dα) 3 ψ(α) 7→ (U(r , θ)ψ) (α) =e i(r1 cosα+r2 sinα)ψ(α− θ).

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 35: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

The Euclidean group E(2)

Now G = E(2), where V = R2 and S = SO(2), soE(2) = R2 o SO(2) = {(r , θ) , r ∈ R2 , θ ∈ [0, 2π)} , withcomposition (r , θ)(r ′, θ′) = (r +R(θ)r ′, θ + θ′).

V ∗ = R2, O∗ = {k = R(θ)k0 ∈ R2 |R(θ) ∈ SO(2)} ' S1

The stabilizer under the coadjoint action Ad#E(2) is

H0 ={

(x , 0) ∈ E(2) | c · x = 0, c ∈ R2, ‖c‖ = 1, fixed}

.

The classical phase spaceX ≡ T ∗S1 ' (R2 o SO(2))/H0 ' R× S1 carries coordinates(p, q) and has symplectic measure dp ∧ dq.

The UIR of E(2) are L2(S1,dα) 3 ψ(α) 7→ (U(r , θ)ψ) (α) =e i(r1 cosα+r2 sinα)ψ(α− θ).

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 36: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

The Euclidean group E(2)

Now G = E(2), where V = R2 and S = SO(2), soE(2) = R2 o SO(2) = {(r , θ) , r ∈ R2 , θ ∈ [0, 2π)} , withcomposition (r , θ)(r ′, θ′) = (r +R(θ)r ′, θ + θ′).

V ∗ = R2, O∗ = {k = R(θ)k0 ∈ R2 |R(θ) ∈ SO(2)} ' S1

The stabilizer under the coadjoint action Ad#E(2) is

H0 ={

(x , 0) ∈ E(2) | c · x = 0, c ∈ R2, ‖c‖ = 1, fixed}

.

The classical phase spaceX ≡ T ∗S1 ' (R2 o SO(2))/H0 ' R× S1 carries coordinates(p, q) and has symplectic measure dp ∧ dq.

The UIR of E(2) are L2(S1,dα) 3 ψ(α) 7→ (U(r , θ)ψ) (α) =e i(r1 cosα+r2 sinα)ψ(α− θ).

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 37: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

The Euclidean group E(2)

Now G = E(2), where V = R2 and S = SO(2), soE(2) = R2 o SO(2) = {(r , θ) , r ∈ R2 , θ ∈ [0, 2π)} , withcomposition (r , θ)(r ′, θ′) = (r +R(θ)r ′, θ + θ′).

V ∗ = R2, O∗ = {k = R(θ)k0 ∈ R2 |R(θ) ∈ SO(2)} ' S1

The stabilizer under the coadjoint action Ad#E(2) is

H0 ={

(x , 0) ∈ E(2) | c · x = 0, c ∈ R2, ‖c‖ = 1, fixed}

.

The classical phase spaceX ≡ T ∗S1 ' (R2 o SO(2))/H0 ' R× S1 carries coordinates(p, q) and has symplectic measure dp ∧ dq.

The UIR of E(2) are L2(S1,dα) 3 ψ(α) 7→ (U(r , θ)ψ) (α) =e i(r1 cosα+r2 sinα)ψ(α− θ).

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 38: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Coherent states for E(2)

Theorem

Given the unit vector c ∈ R2 and the corresponding subgroup H0,there exists a family of affine sections σ : R× S1 → E(2) definedas σ(p, q) = (R(q)(κp + λ), q) , where κ,λ ∈ R2 are constantvectors, and c · κ 6= 0.

From the section σ(p, q), the representation U(r, θ), and a vectorη ∈ L2(S1, dα), we define the family of states|ηp,q〉 = U(σ(p, q))|η〉.Theorem

The vectors ηp,q form a family of coherent states for E(2) which

resolves the identity on L2(S1,dα), I =∫R×S1

dp dq

cη|ηp,q 〉〈ηp,q | ,

if η(α) is admissible in the sense that supp η ∈ (γ − π, γ)mod 2π,

and 0 < cη :=2π

κ

∫S1|η(q)|2

sin(γ − q)dq <∞.

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 39: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Coherent states for E(2)

Theorem

Given the unit vector c ∈ R2 and the corresponding subgroup H0,there exists a family of affine sections σ : R× S1 → E(2) definedas σ(p, q) = (R(q)(κp + λ), q) , where κ,λ ∈ R2 are constantvectors, and c · κ 6= 0.

From the section σ(p, q), the representation U(r, θ), and a vectorη ∈ L2(S1, dα), we define the family of states|ηp,q〉 = U(σ(p, q))|η〉.

Theorem

The vectors ηp,q form a family of coherent states for E(2) which

resolves the identity on L2(S1,dα), I =∫R×S1

dp dq

cη|ηp,q 〉〈ηp,q | ,

if η(α) is admissible in the sense that supp η ∈ (γ − π, γ)mod 2π,

and 0 < cη :=2π

κ

∫S1|η(q)|2

sin(γ − q)dq <∞.

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 40: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Coherent states for E(2)

Theorem

Given the unit vector c ∈ R2 and the corresponding subgroup H0,there exists a family of affine sections σ : R× S1 → E(2) definedas σ(p, q) = (R(q)(κp + λ), q) , where κ,λ ∈ R2 are constantvectors, and c · κ 6= 0.

From the section σ(p, q), the representation U(r, θ), and a vectorη ∈ L2(S1, dα), we define the family of states|ηp,q〉 = U(σ(p, q))|η〉.Theorem

The vectors ηp,q form a family of coherent states for E(2) which

resolves the identity on L2(S1,dα), I =∫R×S1

dp dq

cη|ηp,q 〉〈ηp,q | ,

if η(α) is admissible in the sense that supp η ∈ (γ − π, γ)mod 2π,

and 0 < cη :=2π

κ

∫S1|η(q)|2

sin(γ − q)dq <∞.

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 41: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Quantisation of classical variables

Given the family of coherent states |ηp,q〉, we apply the linear

map f 7→ Aσf =∫R×S1

dp dq

cηf (p, q) |ηp,q 〉〈ηp,q | to classical

observables f (p, q).

For f (p, q) = u(q) with u(q + 2π) = u(q), Au is themultiplication operator (Auψ)(α) = (Eη;γ ∗ u) (α)ψ(α) where

Eη;γ(α) := 2πκcη

|η(α)|2sin(γ−α) , suppEη;γ ⊂ (γ − π, γ) is a probability

distribution on the interval [−π, π].

In particular, for the Fourier exponential en(α) = e inα, n ∈ Z,the above expression is (Eη;γ ∗ en) (α) = 2πcn (Eη;γ) e inα.

For the momentum f (p, q) = p,

(Apψ) (α) =

(−i c2(η, γ)

κc1(η, γ)

∂α− λa

)ψ (α) for real η.

For a general polynomial f (q, p) =∑N

k=0 uk(q) pk one gets∑Nk=0 ak(α)(−i∂α)k .

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 42: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Quantisation of classical variables

Given the family of coherent states |ηp,q〉, we apply the linear

map f 7→ Aσf =∫R×S1

dp dq

cηf (p, q) |ηp,q 〉〈ηp,q | to classical

observables f (p, q).

For f (p, q) = u(q) with u(q + 2π) = u(q), Au is themultiplication operator (Auψ)(α) = (Eη;γ ∗ u) (α)ψ(α) where

Eη;γ(α) := 2πκcη

|η(α)|2sin(γ−α) , suppEη;γ ⊂ (γ − π, γ) is a probability

distribution on the interval [−π, π].

In particular, for the Fourier exponential en(α) = e inα, n ∈ Z,the above expression is (Eη;γ ∗ en) (α) = 2πcn (Eη;γ) e inα.

For the momentum f (p, q) = p,

(Apψ) (α) =

(−i c2(η, γ)

κc1(η, γ)

∂α− λa

)ψ (α) for real η.

For a general polynomial f (q, p) =∑N

k=0 uk(q) pk one gets∑Nk=0 ak(α)(−i∂α)k .

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 43: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Quantisation of classical variables

Given the family of coherent states |ηp,q〉, we apply the linear

map f 7→ Aσf =∫R×S1

dp dq

cηf (p, q) |ηp,q 〉〈ηp,q | to classical

observables f (p, q).

For f (p, q) = u(q) with u(q + 2π) = u(q), Au is themultiplication operator (Auψ)(α) = (Eη;γ ∗ u) (α)ψ(α) where

Eη;γ(α) := 2πκcη

|η(α)|2sin(γ−α) , suppEη;γ ⊂ (γ − π, γ) is a probability

distribution on the interval [−π, π].

In particular, for the Fourier exponential en(α) = e inα, n ∈ Z,the above expression is (Eη;γ ∗ en) (α) = 2πcn (Eη;γ) e inα.

For the momentum f (p, q) = p,

(Apψ) (α) =

(−i c2(η, γ)

κc1(η, γ)

∂α− λa

)ψ (α) for real η.

For a general polynomial f (q, p) =∑N

k=0 uk(q) pk one gets∑Nk=0 ak(α)(−i∂α)k .

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 44: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Quantisation of classical variables

Given the family of coherent states |ηp,q〉, we apply the linear

map f 7→ Aσf =∫R×S1

dp dq

cηf (p, q) |ηp,q 〉〈ηp,q | to classical

observables f (p, q).

For f (p, q) = u(q) with u(q + 2π) = u(q), Au is themultiplication operator (Auψ)(α) = (Eη;γ ∗ u) (α)ψ(α) where

Eη;γ(α) := 2πκcη

|η(α)|2sin(γ−α) , suppEη;γ ⊂ (γ − π, γ) is a probability

distribution on the interval [−π, π].

In particular, for the Fourier exponential en(α) = e inα, n ∈ Z,the above expression is (Eη;γ ∗ en) (α) = 2πcn (Eη;γ) e inα.

For the momentum f (p, q) = p,

(Apψ) (α) =

(−i c2(η, γ)

κc1(η, γ)

∂α− λa

)ψ (α) for real η.

For a general polynomial f (q, p) =∑N

k=0 uk(q) pk one gets∑Nk=0 ak(α)(−i∂α)k .

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 45: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Quantisation of classical variables

Given the family of coherent states |ηp,q〉, we apply the linear

map f 7→ Aσf =∫R×S1

dp dq

cηf (p, q) |ηp,q 〉〈ηp,q | to classical

observables f (p, q).

For f (p, q) = u(q) with u(q + 2π) = u(q), Au is themultiplication operator (Auψ)(α) = (Eη;γ ∗ u) (α)ψ(α) where

Eη;γ(α) := 2πκcη

|η(α)|2sin(γ−α) , suppEη;γ ⊂ (γ − π, γ) is a probability

distribution on the interval [−π, π].

In particular, for the Fourier exponential en(α) = e inα, n ∈ Z,the above expression is (Eη;γ ∗ en) (α) = 2πcn (Eη;γ) e inα.

For the momentum f (p, q) = p,

(Apψ) (α) =

(−i c2(η, γ)

κc1(η, γ)

∂α− λa

)ψ (α) for real η.

For a general polynomial f (q, p) =∑N

k=0 uk(q) pk one gets∑Nk=0 ak(α)(−i∂α)k .

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 46: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

the Angle operator: analytic and numerical results

For the 2π-periodic and discontinuous angle functiona(α) = α for α ∈ [0, 2π), we get the multiplication operator(Eη,γ ∗a)(α) = α+2π(1−

∫ α−π Eη;γ(q)dq)−

∫ γγ−π q Eη,γ(q)dq .

We choose a specific section with λ = 0, γ = π/2 and asfiducial vectors the family η(s,ε)(α) of periodic smooth evenfunctions, suppη = [−ε, ε] mod 2π, parametrized by s > 0 and0 < ε < π/2,

η(s,ε)(α) =1√εe2s

ωs

(αε

)where es :=

∫ 1

−1dx ωs(x) .

and

ωs(x) =

exp

(− s

1− x2

)0 ≤ |x | < 1 ,

0 |x | ≥ 1 ,

are smooth and compactly supported test functions.(η(s,ε)

)2(α)→ δ(α) as ε→ 0 or as s →∞.

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 47: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

the Angle operator: analytic and numerical results

For the 2π-periodic and discontinuous angle functiona(α) = α for α ∈ [0, 2π), we get the multiplication operator(Eη,γ ∗a)(α) = α+2π(1−

∫ α−π Eη;γ(q)dq)−

∫ γγ−π q Eη,γ(q)dq .

We choose a specific section with λ = 0, γ = π/2 and asfiducial vectors the family η(s,ε)(α) of periodic smooth evenfunctions, suppη = [−ε, ε] mod 2π, parametrized by s > 0 and0 < ε < π/2,

η(s,ε)(α) =1√εe2s

ωs

(αε

)where es :=

∫ 1

−1dx ωs(x) .

and

ωs(x) =

exp

(− s

1− x2

)0 ≤ |x | < 1 ,

0 |x | ≥ 1 ,

are smooth and compactly supported test functions.

(η(s,ε)

)2(α)→ δ(α) as ε→ 0 or as s →∞.

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 48: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

the Angle operator: analytic and numerical results

For the 2π-periodic and discontinuous angle functiona(α) = α for α ∈ [0, 2π), we get the multiplication operator(Eη,γ ∗a)(α) = α+2π(1−

∫ α−π Eη;γ(q)dq)−

∫ γγ−π q Eη,γ(q)dq .

We choose a specific section with λ = 0, γ = π/2 and asfiducial vectors the family η(s,ε)(α) of periodic smooth evenfunctions, suppη = [−ε, ε] mod 2π, parametrized by s > 0 and0 < ε < π/2,

η(s,ε)(α) =1√εe2s

ωs

(αε

)where es :=

∫ 1

−1dx ωs(x) .

and

ωs(x) =

exp

(− s

1− x2

)0 ≤ |x | < 1 ,

0 |x | ≥ 1 ,

are smooth and compactly supported test functions.(η(s,ε)

)2(α)→ δ(α) as ε→ 0 or as s →∞.

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 49: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

α−0.6 −0.3 0 0.3 0.6

η(s,ε)

0

2.5

5

7.5

10

ε = 0.3s = 2

ε = 0.4s = 3.5555

(a) τ = 22.22

α−0.6 −0.3 0 0.3 0.6

η(s,ε)

0

2.5

5

7.5

10

ε = 0.45s = 16.5306

ε = 0.35s = 10

(b) τ = 81.63

Figure: Plots of η(s,ε) for various values of τ =s

ε2.

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 50: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

α0 π

23π2

2ππ

Eη(s,ε);π2∗ a

0

π2

π

3π2

ε = 0.3s = 2

ε = 0.4s = 3.5555

(a) τ = 22.22

α0 π

23π2

2ππ

Eη(s,ε);π2∗ a

0

π2

π

3π2

ε = 0.35s = 10

ε = 0.45s = 16.5306

(b) τ = 81.63

Figure: Plots of(Eη(s,ε);π2 ∗ a

)(α) for various values of τ =

s

ε2.

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 51: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

q0 π

23π2

2ππ

q

0

π2

π

3π2

ε = 0.3s = 2

ε = 0.4s = 3.5555

(a) τ = 22.22

q0 π

23π2

2ππ

q

0

π2

π

3π2

ε = 0.35s = 10

ε = 0.45s = 16.5306

(b) τ = 81.63

Figure: Plots of the lower symbol q(q) of the angle operator Aa for

various values of τ =s

ε2.

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 52: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Angle-angular momentum: commutation relations andHeisenberg inequality

For λ = 0 and ψ(α) ∈ L2(S1, dα), we find the non-canonicalCR ([Ap,Aa]ψ) (α) = −ic (1− 2πEη;γ(α))ψ(α) where

c := c2(η,γ)κc1(η,γ)

Since limε→0c2(η(s,ε),

π2)

c1(η(s,ε),π2)

= 1 and limε→0 Eη;γ(α) = δ(α), with

the choice κ = 1 one has, in the limit ε→ 0, for α ∈ [0, 2π)mod 2π, ([Ap,Aa]ψ) (α) = (−i + i2πδ(α))ψ(α).

The uncertainty relation for Ap and Aa, with the coherentstates ηp,q, is ∆Ap ∆Aa > 1

2 |〈ηp,q |[Ap,Aa]|ηp,q 〉|.

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 53: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Angle-angular momentum: commutation relations andHeisenberg inequality

For λ = 0 and ψ(α) ∈ L2(S1, dα), we find the non-canonicalCR ([Ap,Aa]ψ) (α) = −ic (1− 2πEη;γ(α))ψ(α) where

c := c2(η,γ)κc1(η,γ)

Since limε→0c2(η(s,ε),

π2)

c1(η(s,ε),π2)

= 1 and limε→0 Eη;γ(α) = δ(α), with

the choice κ = 1 one has, in the limit ε→ 0, for α ∈ [0, 2π)mod 2π, ([Ap,Aa]ψ) (α) = (−i + i2πδ(α))ψ(α).

The uncertainty relation for Ap and Aa, with the coherentstates ηp,q, is ∆Ap ∆Aa > 1

2 |〈ηp,q |[Ap,Aa]|ηp,q 〉|.

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 54: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Angle-angular momentum: commutation relations andHeisenberg inequality

For λ = 0 and ψ(α) ∈ L2(S1, dα), we find the non-canonicalCR ([Ap,Aa]ψ) (α) = −ic (1− 2πEη;γ(α))ψ(α) where

c := c2(η,γ)κc1(η,γ)

Since limε→0c2(η(s,ε),

π2)

c1(η(s,ε),π2)

= 1 and limε→0 Eη;γ(α) = δ(α), with

the choice κ = 1 one has, in the limit ε→ 0, for α ∈ [0, 2π)mod 2π, ([Ap,Aa]ψ) (α) = (−i + i2πδ(α))ψ(α).

The uncertainty relation for Ap and Aa, with the coherentstates ηp,q, is ∆Ap ∆Aa > 1

2 |〈ηp,q |[Ap,Aa]|ηp,q 〉|.

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 55: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

q0 π

23π2

2ππ

∆Aa

0

0.5

1

1.5

2

2.5

3

3.5

ε = 0.3

s = 2

ε = 0.4

τ = 3.5555

(a) τ = 22.22

q0 π

23π2

2ππ

∆Aa

0

0.5

1

1.5

2

2.5

3

3.5

ε = 0.35

s = 10

ε = 0.45

s = 16.5306

(b) τ = 81.63

p0 5 10 15 20 25

∆Ap

0

15

30

45

60

75

90

105

120

ε = 0.3

s = 2

ε = 0.4

s = 3.5555

(c) τ = 22.22

p0 5 10 15 20 25

∆Ap

0

15

30

45

60

75

90

105

120

ε = 0.35

s = 10

ε = 0.45

s = 16.5306

(d) τ = 81.63

Figure: Plots of the dispersions ∆Aa and ∆Ap with respect to the

coherent state |η(s,ε)p,q 〉 for various values of τ =s

ε2.

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 56: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

L.H.S.-R.H.S.

q0 π

23π2

2ππ0

0.5

1

1.5

2

s = 2; ε = 0.3

s = 3.5555; ε = 0.4

(a) τ = 22.22

L.H.S.-R.H.S.

q0 π

23π2

2ππ0

0.5

1

1.5

2

s = 10; ε = 0.35

s = 16.5306; ε = 0.45

(b) τ = 81.63

L.H.S.-R.H.S.

τ5 30 60 90 110

0

0.05

0.1

0.15

0.2

ε = 0.3

ε = 0.4

(c) q = 1

L.H.S.-R.H.S.

τ5 30 60 90 110

0

0.05

0.1

0.15

0.2

ε = 0.35

ε = 0.45

(d) q = 1

Figure: Plots of the difference L.H.S.-R.H.S. of the uncertainty relation

with respect to the coherent state |η(s,ε)p,q 〉 for various values of τ = sε2 .

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 57: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Conclusions

We have presented a picture of a quantisation based on the resolutionof the identity provided by coherent states for the special Euclideangroup E(2).

The cylinder R× S1 depicts the classical phase space of the motion ofa particle on a circle, and is mathematically realized as the left cosetE(2)/H, where H is a stabilizer subgroup under the coadjoint actionof E(2).The coherent states for E(2) are constructed from a UIR ofE(2) = R2 o SO(2) restricted to an affine sectionR× S1 3 (p, q) 7→ σ(p, q) ∈ E(2).For functions on the cylindric phase space, the correspondingoperators and lower symbols are determined . For periodic functionsf (q) of the angular coordinate q, the operators Af are multiplicationoperators whose spectra are given by periodic functions.The angle function a(α) = α is mapped to a SA multiplication angleoperator Aa with continuous spectrum.For a particular family of coherent states, it is shown that thespectrum is [π −m(s, ε), π + m(s, ε)], where m(s, ε)→ π as ε→ 0 ors →∞.

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 58: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Conclusions

We have presented a picture of a quantisation based on the resolutionof the identity provided by coherent states for the special Euclideangroup E(2).The cylinder R× S1 depicts the classical phase space of the motion ofa particle on a circle, and is mathematically realized as the left cosetE(2)/H, where H is a stabilizer subgroup under the coadjoint actionof E(2).

The coherent states for E(2) are constructed from a UIR ofE(2) = R2 o SO(2) restricted to an affine sectionR× S1 3 (p, q) 7→ σ(p, q) ∈ E(2).For functions on the cylindric phase space, the correspondingoperators and lower symbols are determined . For periodic functionsf (q) of the angular coordinate q, the operators Af are multiplicationoperators whose spectra are given by periodic functions.The angle function a(α) = α is mapped to a SA multiplication angleoperator Aa with continuous spectrum.For a particular family of coherent states, it is shown that thespectrum is [π −m(s, ε), π + m(s, ε)], where m(s, ε)→ π as ε→ 0 ors →∞.

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 59: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Conclusions

We have presented a picture of a quantisation based on the resolutionof the identity provided by coherent states for the special Euclideangroup E(2).The cylinder R× S1 depicts the classical phase space of the motion ofa particle on a circle, and is mathematically realized as the left cosetE(2)/H, where H is a stabilizer subgroup under the coadjoint actionof E(2).The coherent states for E(2) are constructed from a UIR ofE(2) = R2 o SO(2) restricted to an affine sectionR× S1 3 (p, q) 7→ σ(p, q) ∈ E(2).

For functions on the cylindric phase space, the correspondingoperators and lower symbols are determined . For periodic functionsf (q) of the angular coordinate q, the operators Af are multiplicationoperators whose spectra are given by periodic functions.The angle function a(α) = α is mapped to a SA multiplication angleoperator Aa with continuous spectrum.For a particular family of coherent states, it is shown that thespectrum is [π −m(s, ε), π + m(s, ε)], where m(s, ε)→ π as ε→ 0 ors →∞.

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 60: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Conclusions

We have presented a picture of a quantisation based on the resolutionof the identity provided by coherent states for the special Euclideangroup E(2).The cylinder R× S1 depicts the classical phase space of the motion ofa particle on a circle, and is mathematically realized as the left cosetE(2)/H, where H is a stabilizer subgroup under the coadjoint actionof E(2).The coherent states for E(2) are constructed from a UIR ofE(2) = R2 o SO(2) restricted to an affine sectionR× S1 3 (p, q) 7→ σ(p, q) ∈ E(2).For functions on the cylindric phase space, the correspondingoperators and lower symbols are determined . For periodic functionsf (q) of the angular coordinate q, the operators Af are multiplicationoperators whose spectra are given by periodic functions.

The angle function a(α) = α is mapped to a SA multiplication angleoperator Aa with continuous spectrum.For a particular family of coherent states, it is shown that thespectrum is [π −m(s, ε), π + m(s, ε)], where m(s, ε)→ π as ε→ 0 ors →∞.

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 61: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Conclusions

We have presented a picture of a quantisation based on the resolutionof the identity provided by coherent states for the special Euclideangroup E(2).The cylinder R× S1 depicts the classical phase space of the motion ofa particle on a circle, and is mathematically realized as the left cosetE(2)/H, where H is a stabilizer subgroup under the coadjoint actionof E(2).The coherent states for E(2) are constructed from a UIR ofE(2) = R2 o SO(2) restricted to an affine sectionR× S1 3 (p, q) 7→ σ(p, q) ∈ E(2).For functions on the cylindric phase space, the correspondingoperators and lower symbols are determined . For periodic functionsf (q) of the angular coordinate q, the operators Af are multiplicationoperators whose spectra are given by periodic functions.The angle function a(α) = α is mapped to a SA multiplication angleoperator Aa with continuous spectrum.

For a particular family of coherent states, it is shown that thespectrum is [π −m(s, ε), π + m(s, ε)], where m(s, ε)→ π as ε→ 0 ors →∞.

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 62: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

Conclusions

We have presented a picture of a quantisation based on the resolutionof the identity provided by coherent states for the special Euclideangroup E(2).The cylinder R× S1 depicts the classical phase space of the motion ofa particle on a circle, and is mathematically realized as the left cosetE(2)/H, where H is a stabilizer subgroup under the coadjoint actionof E(2).The coherent states for E(2) are constructed from a UIR ofE(2) = R2 o SO(2) restricted to an affine sectionR× S1 3 (p, q) 7→ σ(p, q) ∈ E(2).For functions on the cylindric phase space, the correspondingoperators and lower symbols are determined . For periodic functionsf (q) of the angular coordinate q, the operators Af are multiplicationoperators whose spectra are given by periodic functions.The angle function a(α) = α is mapped to a SA multiplication angleoperator Aa with continuous spectrum.For a particular family of coherent states, it is shown that thespectrum is [π −m(s, ε), π + m(s, ε)], where m(s, ε)→ π as ε→ 0 ors →∞.

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle

Page 63: Quantum Localisation on the Circle - Bulgarian Academy of ...obzor.bio21.bas.bg/conference/Conference_files/sa18... · Rodrigo Fresneda (UFABC - S~ao Paulo, Brasil) Quantum Localisation

obrigado!

Figure: UFABC Campus in Santo Andre, Sao Paulo

Rodrigo Fresneda (UFABC - Sao Paulo, Brasil) Quantum Localisation on the Circle