quantum metrology kills rayleigh’s...

26
1 / 26 Quantum Metrology Kills Rayleigh’s Criterion Ranjith Nair, Xiao-Ming Lu, Shan Zheng Ang, and Mankei Tsang [email protected] http://mankei.tsang.googlepages.com/ June 2016 * This work is supported by the Singapore National Research Foundation under NRF Award No. NRF-NRFF2011-07.

Upload: others

Post on 28-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • 1 / 26

    Quantum Metrology Kills Rayleigh’s Criterion ∗

    Ranjith Nair, Xiao-Ming Lu, Shan Zheng Ang, and Mankei Tsang

    [email protected]

    http://mankei.tsang.googlepages.com/

    June 2016

    ∗This work is supported by the Singapore National Research Foundation under NRF Award No. NRF-NRFF2011-07.

  • Summary

    2 / 26

    (a)

    (b)

  • Imaging of One Point Source

    3 / 26

  • Point-Spread Function of Hubble Space Telescope

    4 / 26

  • Inferring Position of One Point Source

    5 / 26

    ■ Classical source■ Given N detected photons, mean-square error:

    ∆X21 =σ2

    N, (1)

    σ ∼ λsinφ

    . (2)

    ■ Helstrom, Lindegren (astrometry), Bobroff, ...■ Full EM, full quantum: Tsang, Optica 2,

    646 (2015).

  • Superresolution Microscopy

    6 / 26

    ■ PALM, STED, STORM, etc.: isolate emitters.Locate centroids.

    ■ https://www.youtube.com/watch?v=2R2ll9SRCeo

    (25:45)■ Special fluorophores■ slow■ doesn’t work for stars■ e.g., Betzig, Optics Letters 20, 237

    (1995).

    ■ For a review, see Moerner, PNAS 104, 12596(2007).

    https://www.youtube.com/watch?v=2R2ll9SRCeo

  • Two Point Sources

    7 / 26

    (a)

    (b)

    ■ Rayleigh’s criterion (1879): requires θ2 &σ (heuristic)

  • Centroid and Separation Estimation

    8 / 26

    ■ Bettens et al., Ultramicroscopy 77,

    37 (1999); Van Aert et al., J. Struct.

    Biol. 138, 21 (2002); Ram, Ward, Ober,

    PNAS 103, 4457 (2006).

    ■ Incoherent sources, Poisson statistics■ X1 = θ1 − θ2/2, X2 = θ1 + θ2/2.■ Cramér-Rao bound for centroid:

    ∆θ21 ≥σ2

    N. (3)

    ■ CRB for separation estimation: two regimes

    ◆ θ2 ≫ σ:

    ∆θ22 ≥4σ2

    N, (4)

    ◆ θ2 ≪ σ:

    ∆θ22 →4σ2

    N×∞ (5)

    ◆ Rayleigh’s curse◆ PALM/STED/STORM: avoid Rayleigh

    (a)

    (b)

  • Rayleigh’s Curse

    9 / 26

    ■ Cramér-Rao bounds:

    ∆θ21 ≥1

    J (direct)11∆θ22 ≥

    1

    J (direct)22(6)

    J (direct) is Fisher information for CCD■ Gaussian PSF, similar behavior for other PSF

    θ2/σ0 2 4 6 8 10

    Fisher

    inform

    ation/(N

    /4σ

    2)

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4Classical Fisher information

    J(direct)11

    J(direct)22

    θ2/σ0 0.2 0.4 0.6 0.8 1

    Mean-squareerror/(4σ2/N

    )

    0

    20

    40

    60

    80

    100Cramér-Rao bound on separation error

    Direct imaging (1/J(direct)22 )

  • Quantum Information

    10 / 26

    ■ CCD is just one measurement method. Quantum mechanics allows infinite possibilities.■ Helstrom: For any measurement (POVM) of an optical state ρ⊗M (M here is number of copies)

    Σ ≥ J−1 ≥ K−1, (7)

    Kµν =M Re (trLµLνρ) , (8)∂ρ

    ∂θµ=

    1

    2(Lµρ+ ρLµ) . (9)

    ■ Ultimate amount of information in the photons■ Coherent sources: Tsang, Optica 2, 646 (2015).■ Mixed states:

    ρ =∑

    n

    Dn |en〉 〈en| , (10)

    Lµ = 2∑

    n,m;Dn+Dm 6=0

    〈en| ∂ρ∂θµ |em〉Dn +Dm

    |en〉 〈em| . (11)

  • Quantum Optics

    11 / 26

    ■ Mandel and Wolf, Optical Coherence and Quantum Optics ; Goodman, Statistical

    Optics

    ■ Thermal sources, e.g., stars, fluorescent particles.■ Coherence time ∼ 10 fs. Within each coher-

    ence time interval, average photon number ǫ≪ 1 at optical frequencies (visible, UV, X-ray, etc.).

    ■ Quantum state at image plane:

    ρ = (1− ǫ) |vac〉 〈vac|+ ǫ2(|ψ1〉 〈ψ1|+ |ψ2〉 〈ψ2|) +O(ǫ2) 〈ψ1|ψ2〉 6= 0, (12)

    |ψ1〉 =∫ ∞

    −∞

    dxψ(x−X1) |x〉 , |ψ2〉 =∫ ∞

    −∞

    dxψ(x−X2) |x〉 . (13)

    ■ derive from zero-mean Gaussian P function■ Multiphoton coincidence: rare, little information as ǫ≪ 1 (homeopathy)■ Similar model for stellar interferometry in Gottesman, Jennewein, Croke, PRL 109, 070503

    (2012); Tsang, PRL 107, 270402 (2011).

  • Plenty of Room at the Bottom

    12 / 26

    θ2/σ0 2 4 6 8 10

    Fisher

    inform

    ation/(N

    /4σ2)

    0

    1

    2

    3

    4Quantum and classical Fisher information

    K11

    J(direct)11

    K22

    J(direct)22

    θ2/σ0 0.2 0.4 0.6 0.8 1

    Mean-squareerror/(4σ2/N

    )

    0

    20

    40

    60

    80

    100Cramér-Rao bounds on separation error

    Quantum (1/K22)

    Direct imaging (1/J(direct)22 )

    ■ Tsang, Nair, and Lu, e-print arXiv:1511.00552

    ∆θ22 ≥1

    K22=

    1

    N∆k2. (14)

    ■ Nair and Tsang, e-print arXiv:1604.00937: thermal sources with arbitrary ǫ■ Hayashi ed., Asymptotic Theory of Quantum Statistical Inference ; Fujiwara JPA 39,

    12489 (2006): there exists a POVM such that ∆θ2µ → 1/Kµµ, M → ∞.

  • Hermite-Gaussian Basis

    13 / 26

    ■ project the photon in Hermite-Gaussian basis:

    E1(q) = |φq〉 〈φq | , (15)

    |φq〉 =∫ ∞

    −∞

    dxφq(x) |x〉 , (16)

    φq(x) =

    (

    1

    2πσ2

    )1/4

    Hq

    (

    x√2σ

    )

    exp

    (

    − x2

    4σ2

    )

    . (17)

    ■ Assume PSF ψ(x) is Gaussian (common).

    1

    J (HG)22=

    1

    K22=

    4σ2

    N. (18)

    ■ Maximum-likelihood estimator can saturate the classical bound asymptotically for large N .

  • Spatial-Mode Demultiplexing (SPADE)

    14 / 26

    image plane

    ...

    ...

    image plane

    ...

    ...

  • Binary SPADE

    15 / 26

    image plane

    image plane

    leaky modes

    leaky modes

    θ2/σ0 2 4 6 8 10

    Fisher

    inform

    ation/(N

    /4σ

    2)

    0

    0.2

    0.4

    0.6

    0.8

    1Classical Fisher information

    J(HG)22 = K22

    J(direct)22

    J(b)22

    θ2/W0 1 2 3 4 5

    Fisher

    inform

    ation/(π

    2N/3W

    2)

    0

    0.2

    0.4

    0.6

    0.8

    1Fisher information for sinc PSF

    K22

    J(direct)22

    J(b)22

  • Numerical Performance of Maximum-Likelihood Estimators

    16 / 26

    θ2/σ0 0.5 1 1.5 2

    Mean-squareerror/(4σ2/L

    )

    0

    0.5

    1

    1.5

    2Simulated errors for SPADE

    1/J′(HG)22 = 1/K

    ′22

    L = 10L = 20L = 100

    θ2/σ0 0.5 1 1.5 2

    Mean-squareerror/(4σ2/L

    )

    0

    0.5

    1

    1.5

    2Simulated errors for binary SPADE

    1/J′(b)22

    L = 10L = 20L = 100

    ■ L = number of detected photons■ biased, < 2×CRB.

  • Minimax/Bayesian

    17 / 26

    Van Trees inequality for any biased/unbiased estimator (e-print arXiv:1605.03799)

    Quantum/SPADE: supθ

    Σ22(θ) ≥4σ2

    N, Direct imaging: sup

    θΣ

    (direct)22 (θ) ≥

    σ2√N. (19)

    θ/σ0 0.2 0.4 0.6 0.8 1

    MSE

    /(4σ2/L)

    0

    0.5

    1

    1.5

    2(a) SPADE with ML

    CRBL = 100L = 200L = 500L = 1000

    θ/σ0 0.2 0.4 0.6 0.8 1

    MSE

    /(4σ2/L)

    0

    0.5

    1

    1.5

    2(b) SPADE with modified ML

    CRBL = 100L = 200L = 500L = 1000

    θ/σ0 0.2 0.4 0.6 0.8 1

    MSE

    /(4σ2/L)

    0

    5

    10

    15

    20(c) Direct imaging with ML

    CRBL = 100L = 200L = 500L = 1000

    Photon Number L102 103

    supθMSE

    /σ2

    10−2

    10−1

    (d) Worst-case error

    Quantum/SPADE limitSPADE (ML)SPADE (modified ML)Direct-imaging limitDirect imaging (ML)

  • SLIVER

    18 / 26

    E � � i m � � o �

    I m � � e

    Inversion

    ■ SuperLocalization via Image-inVERsion interferometry■ Nair and Tsang, Opt. Express 24, 3684 (2016).

    ■ Laser Focus World, Feb 2016 issue.■ Classical theory/experiment of image-inversion interferometer: Wicker, Heintzmann,

    Opt. Express 15, 12206 (2007); Wicker, Sindbert, Heintzmann, Opt. Express 17,

    15491 (2009)

  • 2D SPADE and SLIVER

    19 / 26

    Ang, Nair, Tsang, e-print arXiv:1606.00603

  • Misalignment

    20 / 26

    photon-counting

    array

    image

    plane

    image

    plane

    object

    plane

    ■ ξ ≡ |θ̌1 − θ|/σ ≪ 1■ Overhead photons N1 ∼ 1/ξ2■ ξ = 0.1, N1 ∼ 100.■ CRB for Xs = θ1 ± θ2/2

    θ2/σ0 2 4 6 8 10

    Fisher

    inform

    ation/(N

    /4σ2)

    0

    0.2

    0.4

    0.6

    0.8

    1Fisher information for misaligned SPADE

    J(HG)22 (ξ = 0)

    J(HG)22 (ξ = 0.1)

    J(HG)22 (ξ = 0.2)

    J(HG)22 (ξ = 0.3)

    J(HG)22 (ξ = 0.4)

    J(HG)22 (ξ = 0.5)

    J(direct)22

    θ2/σ0 0.5 1 1.5 2

    mean-square

    error/(4σ2/L)

    0

    2

    4

    6

    8

    10

    12Simulated errors for misaligned binary SPADE

    1/J′(b)22 (ξ = 0.1)

    1/J′(direct)22

    L = 10L = 100L = 1000

    10−1 100 101

    Mean-square

    error/(2σ2/N

    )

    100

    101

    102Cramér-Rao bounds on localization error

    Hybrid (ξ = 0)Hybrid (ξ = 0.1)Hybrid (ξ = 0.2)Hybrid (ξ = 0.3)Hybrid (ξ = 0.4)Hybrid (ξ = 0.5)Direct imaging

  • Follow-up

    21 / 26

    Dimensions Sources Theory Experimental pro-posals

    1. Tsang, Nair,and Lu, e-printarXiv:1511.00552

    1D Weak thermal(optical frequen-cies and above)

    Quantum SPADE

    2. Nair and Tsang,Optics Express24, 3684 (2016)

    2D Thermal (any fre-quency)

    Semiclassical SLIVER

    3. Tsang, Nair,and Lu, e-printarXiv:1602.04655

    1D Weak thermal,lasers

    Semiclassical SPADE, SLIVER

    4. Nair andTsang, e-printarXiv:1604.00937

    1D Thermal Quantum SLIVER

    5. Ang, Nair, andTsang, e-printarXiv:1606.00603

    2D Weak thermal Quantum SPADE, SLIVER

    ■ Lupo and Pirandola, e-print arXiv:1604.07367.■ Bayesian/minimax: M. Tsang, e-print arXiv:1605.03799.■ More to come!

  • Experiments

    22 / 26

    ■ Tang, Durak, and Ling (CQT Singapore), “Fault-tolerant and finite-error localization for pointemitters within the diffraction limit,” e-print arXiv:1605.07297 (2016).

    ◆ SLIVER◆ Laser, classical noise

    ■ Yang, Taschilina, Moiseev, Simon, Lvovsky (Calgary), “Far-field linear optical superresolution viaheterodyne detection in a higher-order local oscillator mode,” e-print arXiv:1606.02662 (2016).

    ◆ Mode heterodyne◆ Laser

    ■ Tham, Ferretti, Steinberg (Toronto), “Beating Rayleigh’s Curse by Imaging Using PhaseInformation,” e-print arXiv:1606.02666 (2016).

    ◆ SPADE◆ single-photon sources, quantum

  • Quantum Computational Imaging

    23 / 26

    ■ Design quantum computer to

    ◆ Maximize information extraction◆ Reduce classical computational complexity

  • Quantum Metrology with Classical Sources

    24 / 26

    ■ Thermal/fluorescent/laser sources, linear optics, photon counting■ Compare with other QIP applications:

    ◆ QKD (Bennett et al.)◆ Nonclassical-state metrology (Yuen, Caves)◆ Shor’s algorithm◆ Quantum simulations (Feynman, Lloyd)◆ Boson sampling (Aaronson)

    ■ Microscopy (physics, chemistry, biology, engineering), telescopy (astronomy), radar/lidar(military), etc.

    ■ Classical sources are more robust to losses.■ Current microscopy limited by photon shot noise in EMCCD (see, e.g., Pawley ed., Handbook of

    Biological Confocal Microscopy).■ Ground telescopes limited by atmospheric turbulence, space telescopes are

    diffraction/shot-noise-limited.■ Linear optics/photon-counting technology is mature

    Although any given scheme can be explained by a semiclassical model, quantum metrologyremains a powerful tool for exploring the ultimate performance.

  • Quantum Metrology Kills Rayleigh’s Criterion

    25 / 26

    θ2/σ0 0.2 0.4 0.6 0.8 1

    Mean-squareerror/(4σ2/N

    )

    0

    20

    40

    60

    80

    100Cramér-Rao bounds on separation error

    Quantum (1/K22)

    Direct imaging (1/J(direct)22 )

    image plane

    ...

    ...

    Estimator

    � � � � e

    � ersion

    ■ FAQ: https://sites.google.com/site/mankeitsang/news/rayleigh/faq■ email: [email protected]

    [email protected]

  • ǫ ≪ 1 Approximation

    26 / 26

    ■ Chap. 9, Goodman, Statistical Optics:

    “If the count degeneracy parameter is much less than 1, it is highly probable that there will be either zero or

    one counts in each separate coherence interval of the incident classical wave. In such a case the classical

    intensity fluctuations have a negligible ”bunching” effect on the photo-events, for (with high probability) the

    light is simply too weak to generate multiple events in a single coherence cell.

    ■ Zmuidzinas (https://pma.caltech.edu/content/jonas-zmuidzinas), JOSA A 20, 218 (2003):

    “It is well established that the photon counts registered by the detectors in an optical instrument follow

    statistically independent Poisson distributions, so that the fluctuations of the counts in different detectors are

    uncorrelated. To be more precise, this situation holds for the case of thermal emission (from the source, the

    atmosphere, the telescope, etc.) in which the mean photon occupation numbers of the modes incident on the

    detectors are low, n ≪ 1. In the high occupancy limit, n ≫ 1, photon bunching becomes important in that it

    changes the counting statistics and can introduce correlations among the detectors. We will discuss only the

    first case, n ≪ 1, which applies to most astronomical observations at optical and infrared wavelengths.”

    ■ Hanbury Brown-Twiss (post-selects on two-photon coincidence): poor SNR, obsolete fordecades in astronomy.

    ■ See also Labeyrie et al., An Introduction to Optical Stellar Interferometry, etc.■ Fluorescent particles: Pawley ed., Handbook of Biological Confocal Microscopy, Ram, Ober,

    Ward (2006), etc., may have antibunching, but Poisson model is fine because of ǫ ≪ 1.

    SummaryImaging of One Point SourcePoint-Spread Function of Hubble Space TelescopeInferring Position of One Point SourceSuperresolution MicroscopyTwo Point SourcesCentroid and Separation EstimationRayleigh's CurseQuantum InformationQuantum OpticsPlenty of Room at the BottomHermite-Gaussian BasisSpatial-Mode Demultiplexing (SPADE)Binary SPADENumerical Performance of Maximum-Likelihood EstimatorsMinimax/BayesianSLIVER2D SPADE and SLIVERMisalignmentFollow-upExperimentsQuantum Computational ImagingQuantum Metrology with Classical SourcesQuantum Metrology Kills Rayleigh's Criterion1 Approximation