quantum slit di raction in space and time and semi ... · from (dit)-(dis) theory to the...

52
Introduction From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion Quantum slit diffraction in space and time and semi-classical approximation Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS Collaborator : Prof. Tony Dorlas, STP-DIAS Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 1 / 52

Upload: others

Post on 30-Apr-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

Quantum slit diffraction in space and timeand semi-classical approximation

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS

Collaborator : Prof. Tony Dorlas, STP-DIAS

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 1 / 52

Page 2: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

I Summary1. Introduction : quantum diffraction and slit experiments2. From (DIT)-(DIS) theory to the semi-classical approximation3. Corrections to the truncation approximation4. Application to the cold atoms experiments5. Conclusion : remarks and discussions

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 2 / 52

Page 3: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

Young slit experiment : from light to massive particlesFeynman Slit experiment : the wave-particle dualityTruncation approximation - Feynman model

1. Introduction : quantum diffraction and slit experiments

I R.Feynman, A.Hibbs, Quantum Mechanics and Path Integrals3rd ed (New York :McGraw-Hill), 1965.

I R. P. Feynman, R. B. Leighton, M. L. Sands : The FeynmanLectures on Physics (Addison-Wesley, Reading, MA, 1965).

I A. Zecca, Int. J. Theo. Phys. 38(3), 911-918 (1999).

I A. O. Barut, S. Basri, Am. J. Phys. 60(10), 896 (1992).

I M.Beau, Eur.J.Phys 33 1023 (2012).

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 3 / 52

Page 4: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

Young slit experiment : from light to massive particlesFeynman Slit experiment : the wave-particle dualityTruncation approximation - Feynman model

History : outline

I 1801 : T.Young ⇒ double-slit Light interference

I 1897 : J.Thomson, experiment on cathode rays⇒ discovery of the electron

I 1924 : L.de Broglie, wave particle duality λ = hp

⇒ massive particles ∼ wave for m and v small enough

I 1925 : E.Schrodinger equation : Hψ = i~∂tψI 1927 : Davisson-Germer experiment : diffraction of electrons

by a crystalline nickel target, proof of de Broglie hypothesis

I 1927 : W.Heisenberg, uncertainty principle : ∆x∆p ≥ ~limit on the measurement accuracy

I 1961 : C. Jonsson ⇒ double-slit Electrons interference

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 4 / 52

Page 5: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

Young slit experiment : from light to massive particlesFeynman Slit experiment : the wave-particle dualityTruncation approximation - Feynman model

Figure: Feynman experiment - Roger Bach et al. 2013 New J. Phys.15, 033018 and Feynman Lecture 1965

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 5 / 52

Page 6: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

Young slit experiment : from light to massive particlesFeynman Slit experiment : the wave-particle dualityTruncation approximation - Feynman model

Figure: Mask movement - Roger Bach et al. 2013 New J. Phys. 15.

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 6 / 52

Page 7: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

Young slit experiment : from light to massive particlesFeynman Slit experiment : the wave-particle dualityTruncation approximation - Feynman model

Figure: Buildup of electron diffraction - A. Tonomura et al. Am. J.Phys. 1989 57

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 7 / 52

Page 8: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

Young slit experiment : from light to massive particlesFeynman Slit experiment : the wave-particle dualityTruncation approximation - Feynman model

Slit experiments :

I 1976 : P.G.Merli, G.F.Missiroli, G.Pozzi⇒ Single-electrons interference (biprism)

I 1988 : A. Zeilinger, R. Gahler, C. G. Shull, W. Treimer, W.Mampe ⇒ Cold neutrons slit experiment

I 1992 : F. Shimizu, K. Shimizu, H. Takuma⇒ Cold atoms slit experiment under gravity

I 2003 : O. Nairz, M. Arndt, A. Zeilinger⇒ Slit experiment for large molecules

I 2007 : S. Frabboni, C. Frigeri, G. C. Gazzadi, G. Pozzi⇒ Electrons (nano-slit)

I 2013 : R. Bach, D. Pope, S. -H. Liou, H. Batelaan⇒ Realization of the Feynman’s experiment (at last !)

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 8 / 52

Page 9: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

Young slit experiment : from light to massive particlesFeynman Slit experiment : the wave-particle dualityTruncation approximation - Feynman model

2d

2a

x

(x,z)

x-x1x1

SourceSource

SlitsSlits ScreenScreen

z

yTruncation model: x>>d

Motion 1 Motion 2

Schematic representation of the apparatus.Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 9 / 52

Page 10: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

Young slit experiment : from light to massive particlesFeynman Slit experiment : the wave-particle dualityTruncation approximation - Feynman model

I Truncation assumption :Motion separated in two parts and x � d ,⇒ classical motion along x and v ∼ vx

⇒ tc ∼ x1x t

I Propagator

K(a)Trunc(z , t; 0, 0|tc) =

∫ a

−adz1

eim|z−z1|

2

2~(t−tc )

(2iπ~(t − tc)/m)1/2e i

mz212~tc

(2iπ~tc/m)1/2

I Intensity on the screen : (hypothesis : thin wave packet)

I (z , t) ∝ |K (a)Trunc(z , t)|

2

I Double-slit :

K (dble) = K (1) + K (2) ⇒ I (dble) ∝ I (1) + I (2) + I (12)

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 10 / 52

Page 11: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

Young slit experiment : from light to massive particlesFeynman Slit experiment : the wave-particle dualityTruncation approximation - Feynman model

Result :

K(a)Trunc(z , t) =

e iz2

2t

(2iπ~t/m)1/2Ft,tc (z , a)

where :

Ft,tc (z , a) ≡ C [αt,tc (z , a)] + C [αt,tc (z ,−a)]

+ iS [αt,tc (z , a)] + iS [αt,tc (z ,−a)]

αt,tc (z , a) ≡√γNF

(1− z

),

where γ = |x − x0|/|x1 − x0| and where the Fresnel number isdefined as

NF ≡ 2a2

λL

where L = |x − x1| and λ ≈ 2π~m(x/t) when x � a.

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 11 / 52

Page 12: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

Young slit experiment : from light to massive particlesFeynman Slit experiment : the wave-particle dualityTruncation approximation - Feynman model

Regimes :

I NF � 1 : Fraunhofer regime ⇒ fringes ∆z ∼ λL2a

I NF � 1 : Fresnel regime ⇒ shape of the aperture and fastoscillations

I NF ∼ 1 : Intermediate regime ⇒ transition between bothprevious regimes

Rem. For Nf � 1, since p = hλ ,

∆pp ∼ a

L , we obtain :

∆z∆p ∼ h

2

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 12 / 52

Page 13: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

Young slit experiment : from light to massive particlesFeynman Slit experiment : the wave-particle dualityTruncation approximation - Feynman model

-300 -200 -100 100 200 300x�a

1�����

2

1

H2aL

-7.5 -5 -2.5 2.5 5 7.5x�a

1�����

2

1

H2bL

-3 -2 -1 1 2 3x�a

0.5

1.3

H2cL

Figure: Interference patterns for single-slit. We have NF = 0.01 for (a),NF = 0.5 for (b) and NF = 100 for (c)

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 13 / 52

Page 14: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

Young slit experiment : from light to massive particlesFeynman Slit experiment : the wave-particle dualityTruncation approximation - Feynman model

-3000-2000-1000 1000 2000 3000x�a

1

H3aL

-150 -100 -50 50 100 150x�a

1

H3bL

-60 -40 -20 20 40 60x�a

1�����

2

1

H3cL

-30 -20 -10 10 20 30x�a

1�����

2

1

H3dL

Figure: Interference patterns for double-slit. We have d/a = 13 andNF = 0.001 for (a), 0.015 for (b) and 0.12 for (c) and 6 for (d).

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 14 / 52

Page 15: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

Young slit experiment : from light to massive particlesFeynman Slit experiment : the wave-particle dualityTruncation approximation - Feynman model

I Question :semi-classical regime x � λ (classical motion along x-axis)but a is not too small compare to x , is the truncation modelstill valid ?

I Problem :tc 7→ tc +∆tc , since we have to take into account theuncertainty along the axis y , z .⇒ diffraction in time model

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 15 / 52

Page 16: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

(DIT) : a brief introBrukner-Zeilinger (BZ) model : (DIT)-(DIS)Semi-classical approximation : new formulasPatterns

2. From diffraction in space (DIS) and in time (DIT) theoryto the semi-classical approximation

I M. Moshinsky, Phys. Rev. 88(3), 625-631 (1952).

I P. Szriftgiser, D. Guery-Odelin, M. Arndt, J. Dalibard, (1996).

I C. Brukner, A. Zeilinger, Phys. Rev. A. 56(5), 3804 (1997).

I G. Kalbermann, J. Phys. A : Math. Gen. 34, 6465 (2002).

I A. del Campo, G. Garcıa-Calderon, J.G. Mugad, Phys. Rep.476(1)-(3), 1-50 (2009).

I A. Goussev, Phys. Rev. A. 85(1), 013626 (2012) ; Phys. Rev.A. 87(5), 053621 (2013).

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 16 / 52

Page 17: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

(DIT) : a brief introBrukner-Zeilinger (BZ) model : (DIT)-(DIS)Semi-classical approximation : new formulasPatterns

x1=0

Shutter closed for t<0

�=exp(ikx) �=0

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 17 / 52

Page 18: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

(DIT) : a brief introBrukner-Zeilinger (BZ) model : (DIT)-(DIS)Semi-classical approximation : new formulasPatterns

x1=0

Shutter open at t>0

>� 0

x

Detector

ttc

QuantumClassical

Den

sity

pro

file

1

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 18 / 52

Page 19: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

(DIT) : a brief introBrukner-Zeilinger (BZ) model : (DIT)-(DIS)Semi-classical approximation : new formulasPatterns

Moshinsky model (1D) for perfectly absorbing shutter{ ~22m∂

2xψ(x , t) + i~ ∂

∂tψ(x , t) = 0 t > 0ψ(x , 0) = e ikxΘ(−x)

(1)

Solution :

ψ(x , t) =∫ +∞−∞ dx0

e im(x−x0)

2

2~t√2iπ~t/m

ψ(x0, 0) =∫ 0−∞ dx0

e im(x−x0)

2

2~t√2iπ~t/m

e ikx

|ψ(x , t)|2 = 1

2

{(1

2+ C [α]

)2

+

(1

2+ S [α]

)2}

(2)

where α =√

~tmπ (k − mx

~t ).

⇒ analogous to the Fresnel (near field) light diffraction and also toa stationary plane wave diffraction by a half plane.⇒ “diffraction in time” by an edge in time.

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 19 / 52

Page 20: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

(DIT) : a brief introBrukner-Zeilinger (BZ) model : (DIT)-(DIS)Semi-classical approximation : new formulasPatterns

-|x0| x1=0 x

(y,z)

Emission at t0=0

Shutter closed for t < t1 , (t1 � 0)

Detection at t2=t

=� �=0�

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 20 / 52

Page 21: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

(DIT) : a brief introBrukner-Zeilinger (BZ) model : (DIT)-(DIS)Semi-classical approximation : new formulasPatterns

-|x0| x1=0 x

(y,z)

Emission at t0=0 Shutter open

for t > t1 � 0

Detection at t2=t

0��

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 21 / 52

Page 22: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

(DIT) : a brief introBrukner-Zeilinger (BZ) model : (DIT)-(DIS)Semi-classical approximation : new formulasPatterns

I Schrodinger equation~22m∇2ψ(r, t) + i~ ∂

∂tψ(r, t) = 0 for x ≥ x1 and t ≥ t1ψ(r, t) = 0 for x > x1 and t < t1,ψ(r1, t) = φ(r1, t) for x = x1 and t ≥ t1.

(3)

I Comments :

1. (3) is a Schrodinger equation on a half spaceV = [0,+∞)× R2 i.e., on the r.h.s of the plane x1 = 0.

2. The surface term of the solution will be restricted to theaperture of the slit : ∂V = {x1 = 0} × [−b, b]× [−a, a].

3. Boundary conditions : (BZ) take a plane waveφ(r1, t) = e−iω0t . Here we take a Gaussian wave packet(details later on).

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 22 / 52

Page 23: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

(DIT) : a brief introBrukner-Zeilinger (BZ) model : (DIT)-(DIS)Semi-classical approximation : new formulasPatterns

I Solution of (3) via the point source method :

~2

2m∇2G (r, t, r′, τ) + i~

∂G (r, t, r′, τ)

∂t= i~δ3(r − r′)δ(t − τ) (4)

I Causality condition :

G (r, t < τ, r′, τ) = 0 ,

I General homogeneous boundary conditions (far fielddiffraction) :

G (r, t, r1, τ) = λ1G0(x−x1, r⊥−r⊥,1; t−τ)+λ2G0(x+x1, r⊥−r⊥,1; t−τ) .

I Free Green function (for infinite volume) :

G0(r − r′; t − τ) =

(m

2iπ~(t − τ)

)3/2

eim|r−r′|22~(t−τ) θ(t − τ)

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 23 / 52

Page 24: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

(DIT) : a brief introBrukner-Zeilinger (BZ) model : (DIT)-(DIS)Semi-classical approximation : new formulasPatterns

I General solution : sum over point sources solutions

ψ(r, t) =

∫Vd3r′G (r, t, r

′, t1)ψ(r

′, t1)+

i~2m

∫ t

t1

∫∂V

dS1 [G (r, t, r1, τ)∇r1ψ(r1, τ)]x1=0

− i~2m

∫ t

t1

∫∂V

dS1 [ψ(r1, τ)∇r1G (r, t, r1, τ)]x1=0 (5)

I Particular cases :1. λ1 = 1λ2 = −1 : Dirichlet conditions, G (r, t, r1, τ)|x1=0 = 0

⇒ perfectly reflective2. λ1 = 1λ2 = 0 : free Green’s function G0(r − r1; t − τ)

⇒ perfectly absorbing3. λ1 = 1λ2 = 1 : Neumann conditions, ∂x1G (r, t, r1, τ)|x1=0 = 0

⇒ partially absorbing

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 24 / 52

Page 25: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

(DIT) : a brief introBrukner-Zeilinger (BZ) model : (DIT)-(DIS)Semi-classical approximation : new formulasPatterns

I Boundary conditions (wave function)

Gaussian wave packet :

ψ(r1, τ) =

∫R3

dR G0(r1 − R; τ)φ(R)θ(τ − t1) , (6)

where the normalized Gaussian wave packet φ is given by :

φ(R) =1

(2πσ2)3/4e−

|R−r0|2

4σ2 , (7)

such that |φ(R, 0)|2 → δ3(R− r′) when σ → 0n.b. Validity of this assumption : σ � |r0|

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 25 / 52

Page 26: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

(DIT) : a brief introBrukner-Zeilinger (BZ) model : (DIT)-(DIS)Semi-classical approximation : new formulasPatterns

I Solution for the slit model (Now we take t1 = t0 = 0)

By (5) and (6), we get the following formula :

ψ(r, t) =

∫R3

dR K (a,b)(r, t,R, 0)φ(R) (8)

where the single-slit propagator is defined by :

K (a,b)(r, t,R, 0) =∫ t

0dτ

∫ a

−adz1

∫ b

−bdy1

[−X

τη1 +

x

t − τη2

]G0(r−r1, t−τ)G0(r1−R, τ)

(9)

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 26 / 52

Page 27: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

(DIT) : a brief introBrukner-Zeilinger (BZ) model : (DIT)-(DIS)Semi-classical approximation : new formulasPatterns

I Explicit integral formulan.b. Since σ � |r0|, ψ(r, t) ∝ K (a,b)(r, t)

We rewrite (9) :

K (a,b)(r, t, r0, 0) =

∫ a

−adz1

∫ b

−bdy1K (r, t; r0, 0|r1) , (10)

where the three-dimensional one-point source propagator is :

K (r, t; r0, 0|r1) ≡∫ t

0dτ

[−x0τη1 +

x

t − τη2

]G0(r−r1, t−τ)G0(r1−r0, τ)

(11)

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 27 / 52

Page 28: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

(DIT) : a brief introBrukner-Zeilinger (BZ) model : (DIT)-(DIS)Semi-classical approximation : new formulasPatterns

By direct calculus we get :

K (r, t; r0, 0|r1) = At(r; r0|r1)e iϕt(r;r0|r1) (12)

With the phase and the amplitude given by :

ϕt(r, r0|r1) ≡m

2~t(|r − r1|+ |r1 − r0|)2 (13)

At(r, r1 − r0) ≡ η1A(N)t (r, r1 − r0) + η2A

(D)t (r, r1 − r0). (14)

Dirichlet part :

A(D)t (r, r0|r1) =

x

(2iπ~t/m)3/2

(m

2iπ~t(|r − r1|+ |r1 − r0|)2

|r − r1|2|r1 − r0|+

1

2π|r − r1|3

).

(15)

Neumann part : similar (with |r1 − r0| ↔ |r − r1|).Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 28 / 52

Page 29: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

(DIT) : a brief introBrukner-Zeilinger (BZ) model : (DIT)-(DIS)Semi-classical approximation : new formulasPatterns

I Semi-classical approximation

Semi-classical condition :

µ ≡ m|r|2

~t� 1 ⇔ |r| � λ0 ≡

√2π~tm

(16)

⇒ Stationary phase approximation in (11) :∫ t

0dτ f (τ)e iµφ(τ) ≈ f (τsc)e

iµφ(τsc )

∫ t

0dτ e

iµ2φ′′(τsc )(τ−τsc )2 , µ� 1

(17)

with :

f (τ) = 1((2iπ~/m)2(t−τ)τ)3/2

(−x0τ η1 +

x(t−τ)η2

)φ(τ) = |r−r1|2

|r|2(1−τ/t)+ |r1−r0|2

|r|2τ/t

(18)

and where the saddle point τsc is the solution of φ′(τ) = 0.

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 29 / 52

Page 30: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

(DIT) : a brief introBrukner-Zeilinger (BZ) model : (DIT)-(DIS)Semi-classical approximation : new formulasPatterns

K(a,b)sc (r, t; r0, 0) =

eimx2

2~t

(2iπ~t/m)1/2

∫ a

−adz1

∫ b

−bdy1 σt,τsc (x , x0)

eim[(y−y1)

2+(z−z1)2]

2~(t−τsc )

2iπ~(t − τsc)/m

eim[y21+z21 ]

2~τsc

2iπ~τsc/m(19)

where the boundary condition characteristic function is :

σt,τsc (x , x0) ≡λ20ρ

(−mx02π~τsc

η1 +mx

2π~(t − τsc)η2

)(20)

and where the semi-classical time is :

τsc = |r1−r0||r−r1|+|r1−r0| t (21)

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 30 / 52

Page 31: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

(DIT) : a brief introBrukner-Zeilinger (BZ) model : (DIT)-(DIS)Semi-classical approximation : new formulasPatterns

����� ���� �

�����

���

� ��������������

��������������������

�����������������

�����������

���������

�����������

��������������������

Schematic representation of the apparatus.Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 31 / 52

Page 32: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

(DIT) : a brief introBrukner-Zeilinger (BZ) model : (DIT)-(DIS)Semi-classical approximation : new formulasPatterns

I Interpretation

Conservation of the classical energy of the particle :

E (r1, τsc) = E (r, t) ⇔ m

2

∣∣∣∣ r1 − r0τsc − t0

∣∣∣∣2 = m

2

∣∣∣∣ r − r1t − τsc

∣∣∣∣2leads to (21).However : the classical momentum is not conserved.Rem. If x � a, b we find τsc ≈ |x1−x0|

|x−x1|+|x1−x0| t = tc .

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 32 / 52

Page 33: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

(DIT) : a brief introBrukner-Zeilinger (BZ) model : (DIT)-(DIS)Semi-classical approximation : new formulasPatterns

-40 -20 0 20 40z

0.2

0.4

0.6

0.8

1.0

H2.1aL

-40 -20 0 20 40z

0.2

0.4

0.6

0.8

1.0

H2.1bL

-2 -1 0 1 2z

0.2

0.4

0.6

0.8

1.0

H2.1cL

-1000 -500 0 500 1000z

0.2

0.4

0.6

0.8

1.0

H2.2aL

-40 -20 0 20 40z

0.2

0.4

0.6

0.8

1.0

H2.2bL

-2 -1 0 1 2z

0.2

0.4

0.6

0.8

1.0

H2.2cL

Figure: We take x = 1, x1 = 0, x0 = −1, a = 0.01, b = 0.1(~ = m = 1). Dirichlet (Fig.2.1a-2.1c) and Neumann (Fig.2.3a-2.3c)boundary conditions with t = 1 (µ ∼ 1) for the figures at the left (a),t = 0.05 (µ ∼ 20) at the middle (b) and t = 0.005 (µ ∼ 200) at theright (c).

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 33 / 52

Page 34: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

(DIT) : a brief introBrukner-Zeilinger (BZ) model : (DIT)-(DIS)Semi-classical approximation : new formulasPatterns

-1000 -500 0 500 1000z

0.2

0.4

0.6

0.8

1.0

H2.3aL

-40 -20 0 20 40z

0.2

0.4

0.6

0.8

1.0

H2.3bL

-2 -1 0 1 2z

0.2

0.4

0.6

0.8

1.0

H2.3cL

-1000 -500 0 500 1000z

0.2

0.4

0.6

0.8

1.0

2.4a

-40 -20 0 20 40z

0.2

0.4

0.6

0.8

1.0

2.4b

-3 -2 -1 0 1 2 3z

0.2

0.4

0.6

0.8

1.0

2.4c

Figure: Free condition (Fig.2.3a-2.3c) and truncation approximation(Fig.2.4a-2.4c), with t = 1 (µ ∼ 1) for the figures at the left (a), t = 0.05(µ ∼ 20) at the middle (b) and t = 0.005 ((µ ∼ 200)) at the right (c).

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 34 / 52

Page 35: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

Second order approximation : truncationFourth order approximation : correctionsPatternsDouble-slit

3. Corrections to the truncation approximation

I Conditions :1. semi-classical regime : µ� 12. elongated apparatus : |x |, |x0| � a, b, |z |, |y |

I ⇒ Semi-classical time :

τsc =|r1 − r0|t

|r − r1|+ |r1 − r0|≈ |x0|

|x − x0|t ≡ tc . (22)

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 35 / 52

Page 36: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

Second order approximation : truncationFourth order approximation : correctionsPatternsDouble-slit

I Second order : truncation approximation

Keeping the order O(z2/x2), O(y2/x2), O(a2/x2), O(b2/x2) :

K(a,b)t (r, r0) ≈

∫ a

−adz1

∫ b

−bdy1

{

σt,tc (x , x0)e im

(x−x0)2

2~t√2iπ~t/m

eim

(y−y1)2+(z−z1)

2

2~(t−tc )

2iπ~(t − tc)/m

e imy21+z212~tc

2iπ~tc/m

}. (23)

⇒ Truncation approximation + mult. factorRem. Result does not depend on the boundary condition.

Distance between two fringes : ∆z ≈ λL2a

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 36 / 52

Page 37: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

Second order approximation : truncationFourth order approximation : correctionsPatternsDouble-slit

I Fourth order : correction to the truncation approximation

Additional conditions :

NF (a) =2a2

λL� 1, NF (b) =

2b2

λL� 1

where L = |x | and λ = 2π~/(mv), with v ≈ vx = |x − x0|/t.

b � a ⇒ ∆z � ∆y � b

⇒ We keep the orderO(z4/x4), O(z2a2/x4), O(y2/x2), O(b2/x2)⇒ neglect terms of the orderO(y4/x4), O(y41 /x

4).

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 37 / 52

Page 38: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

Second order approximation : truncationFourth order approximation : correctionsPatternsDouble-slit

We get a similar formula to the second order approx. but with :

τ′= τ

(1− z2

|x |2tct

), a

′= a

(1− z2

2|x |2tct

)And so the distance between two fringes is about :

∆z ′ ≈ ∆z(1 + z2

2γL2

)(24)

where ∆z = λL/(2a) and γ = |x1 − x0|/|x − x1|.

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 38 / 52

Page 39: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

Second order approximation : truncationFourth order approximation : correctionsPatternsDouble-slit

-600 -400 -200 0 200 400 600z

0.2

0.4

0.6

0.8

1.0

H3.1aL

-20 -10 0 10 20z

0.2

0.4

0.6

0.8

1.0

H3.1bL

-3 -2 -1 0 1 2 3z

0.2

0.4

0.6

0.8

1.0

H3.1cL

-600 -400 -200 0 200 400 600z

0.2

0.4

0.6

0.8

1.0

H3.2aL

-20 -10 0 10 20z

0.2

0.4

0.6

0.8

1.0

H3.2bL

-3 -2 -1 0 1 2 3z

0.2

0.4

0.6

0.8

1.0

H3.2cL

Figure: We take x = 50, x1 = 0, x0 = −50, a = 0.01, b = 0.1(~ = m = 1). Dirichlet (Fig.3.1a-3.1c) and Neumann (Fig.3.3a-3.3c)boundary conditions with t = 1 (µ ∼ 104) for the figures at the left (a),t = 0.05 (µ ∼ 2× 105) at the middle (b) and t = 0.005 (µ ∼ 2× 106) atthe right (c).

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 39 / 52

Page 40: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

Second order approximation : truncationFourth order approximation : correctionsPatternsDouble-slit

-600 -400 -200 0 200 400 600z

0.2

0.4

0.6

0.8

1.0

H3.3aL

-20 -10 0 10 20z

0.2

0.4

0.6

0.8

1.0

H3.3bL

-3 -2 -1 0 1 2 3z

0.2

0.4

0.6

0.8

1.0

H3.3cL

-600 -400 -200 0 200 400 600z

0.2

0.4

0.6

0.8

1.0

H3.4aL

-20 -10 0 10 20z

0.2

0.4

0.6

0.8

1.0

H3.4bL

-3 -2 -1 0 1 2 3z

0.2

0.4

0.6

0.8

1.0

H3.4cL

Figure: We take x = 50, x1 = 0, x0 = −50, a = 0.01, b = 0.1(~ = m = 1). Free condition (Fig.3.3a-3.3c) and truncationapproximation (Fig.3.4a-3.4c), with t = 1 (µ ∼ 104) for the figures at theleft (a), t = 0.05 (µ ∼ 2× 105) at the middle (b) and t = 0.005(µ ∼ 2× 106) at the right (c).

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 40 / 52

Page 41: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

Second order approximation : truncationFourth order approximation : correctionsPatternsDouble-slit

-600 -400 -200 0 200 400 600

0.2

0.4

0.6

0.8

1.0

H4.1aL

-600 -400 -200 0 200 400 600

0.2

0.4

0.6

0.8

1.0

H4.2aL

-600 -400 -200 0 200 400 600

0.2

0.4

0.6

0.8

1.0

H4.3aL

-20 -10 0 10 20z

0.2

0.4

0.6

0.8

1.0

H4.1bL

-20 -10 0 10 20z

0.2

0.4

0.6

0.8

1.0

H4.2bL

-20 -10 0 10 20z

0.2

0.4

0.6

0.8

1.0

H4.3bL

Figure: We take x = 50, x1 = 0, x0 = −50,a = 0.01, b = 0.1, d = 0.1 (~ = m = 1). Dirichlet (left) and Neumann(middle) and free boundary conditions (right) with t = 1 for the figureson the top (a) and t = 0.005 on the bottom (b).

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 41 / 52

Page 42: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

Experiment and modelInterpretation

4. Application to the cold atoms experiments

I F. Shimizu, K. Shimizu, H. Takuma, “Double-slit interferencewith ultracold metastable neon atoms”, Phys. Rev. A. 46(1),R17-R20 (1992).

I M. Gondran, A. Gondran, “Numerical simulation of thedouble slit interference with ultracold atoms”, Am. J. Phys.73(6), 507-515 (2005).

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 42 / 52

Page 43: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

Experiment and modelInterpretation

g

z

z1

0

b

a

d

yx

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 43 / 52

Page 44: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

Experiment and modelInterpretation

Figure: Buildup of atoms diffraction [Gondran, 2005] fortmin ≤ t ≤ tmax , tmin = 175ms, tmax = 208ms and forz1 = 76mm, z − z1 = 116mm, a = 2µm, b = 2.8mm, d = 6µm.Numerical results (a)-(c) and Shimizu experiment for (d).

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 44 / 52

Page 45: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

Experiment and modelInterpretation

I Model [Gondran] :- Truncation approximation- Initial condition : ’narrow’ Gaussian wave packet- Initial velocity along z-axis : v0,z = 0 ⇒ t1 =

√2z1/g

- Integration of the propagator tmin ≤ t ≤ tmax

I Problem :Imagine we perform the same experiment with z1, z ≤ 1mm.Then : t1 =

√2z1/g is then not valid ⇔ uncertainty on v0z

⇒ semi-classical model taking into account (DIT).

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 45 / 52

Page 46: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

Experiment and modelInterpretation

Model :Schrodinger equation :

(− ~2

2m∇2 +mgz)ψ(r, t) = i~ ∂

∂tψ(r, t) for x ≥ x1 and t ≥ t1

ψ(r, t) = 0 for x > x1 and t < t1,

ψ(r1, t) =∫R3 dR Gg (r1, t;R, 0)

e−|R|2

2σ2

(2πσ2)1/4for x = x1 and t ≥ t1.

Green function (in infinite volume) :

Gg (r, t; r′, t ′) = G0(r, t; r

′, t ′) eim2~

(g(z+z ′)(t−t′)− g2

12(t−t′)3

)

Slit propagator :

K (g)(r, t; 0, 0) =

i~2m

∫ t

0dτ

∫ a

−adz1

∫ b

−bdy1 χt,τ (z , z1)Gg (r, t; r1, τ)Gg (r1, t; 0, τ)

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 46 / 52

Page 47: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

Experiment and modelInterpretation

Semi-classical approximation :

Similarly, for µ ≡ mr2/(2~t) � 1, we obtain :

K(g)sc (r, t; 0, 0) ≈

∫ a

−adx1

∫ b

−bdy1 Asc(r, t; 0, 0|r1) e iφsc (r,t;0,0|r1)

The semi-classical time is the (real and ∈ (0, t)) solution of :

|r−r1|2τ2−|r1|2(t−τ)2 = gz(t−τ)2τ2+g2

4τ4(t−τ)2−g2

4τ2(t−τ)4

(25)

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 47 / 52

Page 48: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

Experiment and modelInterpretation

Broken parabolic trajectories :(1) parabolic trajectory from r0 = 0 at the time t0 = 0 to r1 at thetime τ :{

Energy : E0 =m2 v

20

Velocity : v0 =x1−x0τ−t0

ex +y1−y0τ−t0

ey + ( z1−z0τ−t0

− g2 (τ − t0))ez

(2) parabolic trajectory from r1 at the time τ to r at the time t.{Energy : E1 =

m2 v

21 −mgz1

Velocity : v1 =x−x1t−τ ex +

y−y1t−τ ey + ( z−z1

t−τ − g2 (t − τ))ez

Conservation of energy :

E0 = E1 ⇔1

2|v0|2 =

1

2|v1|2 − gz1

⇒ equation (25).

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 48 / 52

Page 49: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

Experiment and modelInterpretation

gz1

z-z1

(0,0)

(x1,z1)(x'1,z1)

v0

v1

(x,z)

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 49 / 52

Page 50: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

Concluding remarksDiscussion

5. Conclusion

5.1. Concluding remarks

I Summary :

1. We obtained a correction to the semi-classical formula andsome prediction to the shift of the fringes positions

2. We gave an interpretation to this approach mixing thetruncation model and the (DIT) one.

3. This approach works for any homogeneous B.C. and for aninitial Gaussian wave packet

I We mention :

1. Valid for general shape of slit (e.g., circle)2. Two-dimensional case : we got a semi-classical formula3. Initial condition : plane wave along the x-axis ⇒ Fourier

transform of our propagator w.r.t. x0.4. for σ > 0 : numerical computation

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 50 / 52

Page 51: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

Concluding remarksDiscussion

5.2. Discussion 1 : realistic experimental situation

I Semi-classical parameter µ in the experiments :∼ 1010 in [Zeilinger, 1988] : Cold Neutrons∼ 1010 in [Bach, 2013] : Electrons∼ 1013 in [Zeilinger, 2003] : Large molecule (C60)∼ 107 in [Takuma, 1992] : Cold Atoms (Neon)

⇒ truncation approximation fits very well.

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 51 / 52

Page 52: Quantum slit di raction in space and time and semi ... · From (DIT)-(DIS) theory to the semi-classical approximation Corrections to the truncation approximation Cold atoms Conclusion

IntroductionFrom (DIT)-(DIS) theory to the semi-classical approximation

Corrections to the truncation approximationCold atomsConclusion

Concluding remarksDiscussion

5.3. Discussion 2 : Future investigationsI Conditions :

1. apparatus : mesoscopic scale ∼ 10−6 − 10−3m⇒ µ ∼ 102 − 105.

2. high statistics⇒ fourth order corrections + variation of the amplitude

⇒ mesoscopic slit experiment is a challenge !I Further investigations :

1. atoms diffractions for mesoscopic slit (analytic and numericalcomputations → new predictions)

2. time-diffraction with cold atom under gravity : correctformulas for the propagator

Dr. Mathieu Beau, Postdoctoral researcher, STP-DIAS 52 / 52