quantum transport in gasb / inas tunneling fet

26
Network for Computational Nanotechnology (NCN) UC Berkeley, Univ.of Illinois, Norfolk State, Northwestern, Purdue, UTEP Quantum Transport in GaSb/InAs Tunneling FET Yu He, Zhengping Jiang, Daniel Mejia, Tillmann Kubis, Michael Povolotskyi, Jean Michel Sellier, Jim Fonseca, Gerhard Klimeck Network for Computational Nanotechnology (NCN) Electrical and Computer Engineering Purdue University, West Lafayette IN, USA Summer School 2012

Upload: sorcha

Post on 24-Feb-2016

57 views

Category:

Documents


2 download

DESCRIPTION

Quantum Transport in GaSb / InAs Tunneling FET . Yu He, Zhengping Jiang, Daniel Mejia, Tillmann Kubis , Michael Povolotskyi , Jean Michel Sellier , Jim Fonseca, Gerhard Klimeck - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Quantum Transport in  GaSb / InAs  Tunneling FET

Network for Computational Nanotechnology (NCN)UC Berkeley, Univ.of Illinois, Norfolk State, Northwestern, Purdue, UTEP

Quantum Transport in GaSb/InAs Tunneling FET

Yu He, Zhengping Jiang, Daniel Mejia, Tillmann Kubis, Michael Povolotskyi, Jean Michel Sellier, Jim Fonseca,

Gerhard KlimeckNetwork for Computational Nanotechnology (NCN)

Electrical and Computer EngineeringPurdue University, West Lafayette IN, USA

Summer School 2012

Page 2: Quantum Transport in  GaSb / InAs  Tunneling FET

Yu HeGaSb InAs

Conduction band

Conduction band

Valence bandValence band

L-shape GaSb-InAs tunneling FET Broken gap bandstructure – mixture of

electrons/holes 2D transport (nonlinear geometry)

TFET concept (taken from MIND)

What is GaSb-InAs TFETTFET is promising for low-power logic design -> low SS and high Ion/Ioff ratio.

Page 3: Quantum Transport in  GaSb / InAs  Tunneling FET

Yu He

Set up the simulation task

• We use Meta_nTFET.in

• We will use a sp3s* tight binding model

• GaSb will be p-type doped with density 4e18 cm-3

InAs will be n-type doped with density 5e17 cm-3

• A Lshaped structure is used

• It will produce an I-V curve and local DOS shown on left

(A/n

m)

1020

1018

1016

1014

cm-3

Page 4: Quantum Transport in  GaSb / InAs  Tunneling FET

Yu He

Details of simulation structure

15nm

Gate

Source

drainGaSb

InAsOxide

10nm

4nm

60nm

Periodic boundary in plane

Page 5: Quantum Transport in  GaSb / InAs  Tunneling FET

Yu He

Define a hetero-structureStructure{ Material {

tag = pGaSb

name = GaSbcrystal_structure = zincblendeBands:BandEdge:Ec = 1.531

Bands:BandEdge:Eg = Ec - Ev Bands:BandEdge:Ev = 0.4865

Bands:BandEdge:mstar_v_dos = 1.2523

regions = (1)doping_type = Pdoping_density = 4E18

} ......

• Define GaSb for regions (1)

• Bands:BandEdge define the necessary options for semiclassical density solver

• Doping_type defines the type of doping: P

• Doping_density defines the doping density as 4E18

Page 6: Quantum Transport in  GaSb / InAs  Tunneling FET

Yu He

Define a hetero-structureStructure{ Material {

tag = nInAs

name = InAscrystal_structure = zincblendeBands:BandEdge:Ec = 0.5337

Bands:BandEdge:Eg = Ec - Ev Bands:BandEdge:Ev = -0.1929

Bands:BandEdge:mstar_c_dos = 0.1455

regions = (2, 5)doping_type = Ndoping_density = 5E17

} ......

• Define InAs for regions (2,5)

• Bands:BandEdge define the necessary options for semiclassical density solver

• Doping_type defines the type of doping: N

• Doping_density defines the doping density as 5E17

Page 7: Quantum Transport in  GaSb / InAs  Tunneling FET

Yu He

Define an Oxide region

Structure{ Material {

tag = Oxide

name = SiO2crystal_structure = zincblendeLattice:epsilon_dc = 3.9 Lattice:cation = "Si"

Lattice:anion = "O"regions = (3, 4)

} ......

• Define SiO2 for regions (3,4)

• Lattice:epsilon_dc define the dielectric constant

Page 8: Quantum Transport in  GaSb / InAs  Tunneling FET

Yu He

Domains for transportDomain{

name = device……// names of leads domainleads = (source_contact, drain_contact)

}Domain{

name = source_contactlead_direction = -2……

}Domain{

name = drain_contactlead_direction = 1……

}

• Source_contact and drain_contact domains have to be defined, and lead_direction is defined for each lead

• In device domain, we have to specify the leads as source_contact, drain_contact

source

drain

x

y

oxide

GaSb

InAs

Page 9: Quantum Transport in  GaSb / InAs  Tunneling FET

Yu He

Domain{

name = continuumtype = finite_elementsmesh_from_domain = deviceneglect_periodicity = true

}

Domains for Poisson

• We have to define a continuum domain for poisson solver, whose type is finite_elements

• Finite element mesh is defined at device domain

• Periodic boundary condition is not applied to Poisson by setting neglect_periodicity as true

Page 10: Quantum Transport in  GaSb / InAs  Tunneling FET

Yu He

Define the Lshaped geometryGeometry{

Region // p-GaSb{

shape = cuboidregion_number = 1priority = 1min = (-100, -100, -100)max = (10.14, 15, 100)

}……

Domains (device, source ,drain)

Region 1

60nm

30nm

10.14 nm

15nm

x

y

Page 11: Quantum Transport in  GaSb / InAs  Tunneling FET

Yu He

Define the Lshaped geometryGeometry{

……Region // n-InAs{

shape = cuboid region_number = 2 priority = 2

min = (30, 15, -100) max = (300,19.1, 100)

}Region // n-InAs

{ shape = cuboid region_number = 5 priority = 2 min = (-100,15, -100) max = (30, 19.1, 100) }

……

Domains (device, source ,drain)

Region 1

Region 2 & 5 4.1 nm

x

y

Page 12: Quantum Transport in  GaSb / InAs  Tunneling FET

Yu He

Define the Lshaped geometryGeometry{

……Region //SiO2 {

shape = cuboid region_number = 3 priority = 1

min = (-100, 19.1, -100) max = (20.14,21, 100)

}……

Domains (device, source ,drain)

Region 1

Region 2 & 5Region 3 2 nm

x

y

Page 13: Quantum Transport in  GaSb / InAs  Tunneling FET

Yu He

Define the Lshaped geometryGeometry{

……Region{

shape = cuboid region_number = 4 priority = 1

min = (20.14, 19, -100) max = (30.14, 100, 100)

}

Domains (device, source ,drain)

Region 1

Region 2 & 5Region 3

Region 4

10nm

x

y

oxide

source

drain

GaSb

InAs

Page 14: Quantum Transport in  GaSb / InAs  Tunneling FET

Yu He

Define the gate for PoissonGeometry{

……Boundary_region // gate{

shape = cuboidregion_number = 1priority = 1min = (-100, 20, -100)max = (20.5, 100, 100)

}

Domains (device, source ,drain)

Region 1

Region 2 & 5Region 3

Region 4

gate

x

y

Page 15: Quantum Transport in  GaSb / InAs  Tunneling FET

Yu He

Ballistic simulation cannot fill triangular well quantum self-consistency not converge

Include phonon scattering numerically expensive

Semiclassical model: effective mass, quasi-fermi level, quantum corrections Simulation flow =>

Step1. Semiclassical

density + Poisson

Step2. Quantum transport (NEGF)

ElectrostaticPotential

Ballistic/PhononImpurity

Roughness, etc.

Due to high doping S/D, depleted channel and separation of conduction / valence band density, semiclassical model provides good

approximation and is much faster.

Simulation flow1021

1020

1019

1018

1017

cm-3

Page 16: Quantum Transport in  GaSb / InAs  Tunneling FET

Yu He

Solver options: Option meaning:name = Transport Solver nametype = MetaTransportSemiPotential Solver type (NEMO5 will look for

“MetaTransportSemiPotential.py” in. / Meta)

Transport_type = transfer_matrix (optional) Default: NEGFdomain = device Area the solver will explicitly work onactive_regions = (1, 2, 5) Defines on which regions the solver works output_name = nTFET Prefix for all outputfile namescontact_domains = (source_contact, drain_contact,gate) Names of the lead domainssource_contact_voltages = (0.0, 0.0, …) List of voltages to applydrain_contact_voltages = (0.3, 0.3, …) List of voltages to applygate_voltages = (-0.1, 0.0, …) List of voltages to apply to the gate

(Boundary_region with region_number = 1)

Transport solver options

Page 17: Quantum Transport in  GaSb / InAs  Tunneling FET

Yu He

Solver options: Option meaning:use_Poisson_potential = true if true, Poisson potential is used (otherwise,Φ=0)tb_basis = sp3sstar Tight binding basis representationcharge_self_consistent = false if true, iterative solution (requires

use_potential=true)use_semiclassical_potential = true if true, use semiclassical densityrelative_maximum_energy = -0.9 Emax=max(Ef) - band_marginrelative_minimum_energy = 0.6 Emin=min(Ef) + bandgap_marginuse_adaptive_grid = false (optional) adaptive mesh for fixed number of

energy points use_adaptive_grid1 = false adaptive mesh for variable number

of energy pointsnumber_of_energy_points = 960 (optional) Number of points in energyadd_constant_potential = 0.0 Add a constant to the potential

Transport solver options

momentum_space_degeneracy = 2 degeneracy of k-space (inverse fraction of calculated Brillouin zone)

momentum_intervals = [(0, 0.2)] List of intervals of resolved k-spacenumber_of_momentum_points = 31 Number of momentum points for each k-interval

Page 18: Quantum Transport in  GaSb / InAs  Tunneling FET

Yu He

Write multidimensional data to disc: Poisson potential in 3D, space charge in cm-3 in 3D, transmission energy resolved, Spectral function energy resolved, electron LDOS in space and energy, hole LDOS in space and energy

output = (potential, free_charge_cm-3, transmission, spectral_density, ldosn1d, ldosp1d)

Write to disc data along a path:output_along_path = (cb_band, vb_band, potential, free_charge_cm-3)path_points = [(5, 0, 0), (9, 15, 0), (11, 17, 0), (70, 17, 0) ]

List of points on the path in nmnumber_of_path_points = (80, 16, 120) List of number of points between

two path pointsenable_structure = true Structure output is added

Transport solver options

oxide

source

drain

gate

Page 19: Quantum Transport in  GaSb / InAs  Tunneling FET

Yu He

Output files: File content:nTFET.log monitored output (defined in global sectionnTFET_potential_* preliminary results (overwritten by subsequent

bias points)For the first voltage point:nTFET_ramper_0.vtk all atomistic quantitiesnTFET_ramper_0.xynTFET_ramper_0_TRANS_0.dat transmissionnTFET_ramper_0_ldosn1d_0.dat electron LDOS along output path nTFET_ramper_0_ldosp1d_0.dat hole LDOS along output pathnTFET_ramper_0_nE_0.dat energy resolved charge density nTFET_ramper_0_potential.xy potentialFor the second voltage point…nTFET_ramper_1.vtknTFET_ramper_1.xy……nTFET_ramper_current.dat IV characteristicsnTFET_structure.vtk Structure output

Transport solver – output list

Page 20: Quantum Transport in  GaSb / InAs  Tunneling FET

Yu He

Understand the output filesnTFET_ramper_current.dat : % V_0; I_0; V_1; I_1; ...0 -4.73015e-10 0.3 4.73015e-10 -0.1 00 -1.97807e-23 0.3 1.97807e-23 0 00 -8.14723e-27 0.3 8.14723e-27 0.1 00 -1.56303e-18 0.3 1.56303e-18 0.2 00 -1.3812e-15 0.3 1.3812e-15 0.3 0……

source source current drain drain current gate gate currentbias bias bias

Page 21: Quantum Transport in  GaSb / InAs  Tunneling FET

Yu He

Understand the output files

nTFET_ramper_x.xy:% NEMO5 1D-interpolated atomistic data:0 0.985862 -0.0586379 0.545138 1.25433e+19 0.194052 0.985862 -0.0586379 0.545138 1.25433e+19 0.388104 0.985862 -0.0586379 0.545138 1.25433e+19 0.582157 0.985862 -0.0586379 0.545138 1.25433e+19 0.776209 0.98568 -0.0588204 0.54532 1.24054e+19……distance; CB_band[eV]; VB_band[eV]; potential[V]; free_charge_cm-3;

Page 22: Quantum Transport in  GaSb / InAs  Tunneling FET

Yu He

Understand the output files

nTFET_ramper_x_ldosp1d.dat; nTFET_ramper_x_ldosn1d;-0.6 3.44E+11 3.44E+11 3.44E+11 3.44E+11 ……-0.599062 3.59E+11 3.59E+11 3.59E+11 3.59E+11 ……-0.598123 3.78E+11 3.78E+11 3.78E+11 3.78E+11 ……-0.597185 3.94E+11 3.94E+11 3.94E+11 3.94E+11 ……-0.596246 4.07E+11 4.07E+11 4.07E+11 4.07E+11 …………Energy (eV) position resolved LDOS at each energy point

Page 23: Quantum Transport in  GaSb / InAs  Tunneling FET

Yu He

Exercise I: Plot I-V curve• NEMO5 will produce

nTFET_ramper_current.dat

• Start MATLAB on your workspace

• Load nTFET_ramper_current.dat file into matlab workspace, enter the following script:xlabel('Voltage (V)' )ylabel(‘Current (A/nm)' )Semilogy(nTFET_ramper_current(:,1), nTFET_ramper_current(:,2), ‘rx—’)

• You will have the figure on the left

(A/n

m)

Page 24: Quantum Transport in  GaSb / InAs  Tunneling FET

Yu He

Exercise II: Plot I-V curve• NEMO5 will produce nTFET_ramper_13_ldosp1d.dat

nTFET_ramper_13_ldosn1d.dat nTFET_ramper_13.xy

• Load the three above files into matlab workspace, enter the following script:pos = nTFET_ramper_13(:,1);egrid = nTFET_ramper_13_ldosn1d(:,1);meshgrid(pos,egrid);[hC hC] = contourf(pos,egrid, log10(nTFET_ramper_13_ldosn1d(:,2:end)+ nTFET_ramper_13_ldosp1d(:,2:end)+1e-3),50);set(hC,'LineStyle','none');hold on, plot(nTFET_ramper_13(:,1),nTFET_ramper_13(:,2),'k');hold on, plot(nTFET_ramper_13(:,1),nTFET_ramper_13(:,3),'k');xlabel('Position (nm)' )ylabel('Energy (eV)' )caxis([13 21]);

• You will have the figure on the right

1020

1018

1016

1014

cm-3

Page 25: Quantum Transport in  GaSb / InAs  Tunneling FET

Yu He

1020

1018

1016

1014

cm-3

(A/n

m)

How to interpret your results?

GaSb InAs

Ec

Ec

EvEv

GaSb InAs

1020

1018

1016

1014

cm-3

Page 26: Quantum Transport in  GaSb / InAs  Tunneling FET

Yu He

ConclusionTransport calculations

−Calculate quantum transport using NEGF or transfer matrix method

−Self-consistently iterate with Poisson, or use a semiclassical density to speed up

−Can handle arbitrary geometries;−Can be used to study complicated structures like Band-to-

Band tunneling device

Thank you.

We have more than that …−Random alloy−Surface and interface roughness−…