quasi-exactly solvable models in quantum mechanics and lie algebras

30
Quasi-exactly solvable models in quantum mechanics and Lie algebras S. N. Dolya B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine S. N. Dolya JMP, 50 (2009) S. N. Dolya JMP, 49 (2008). S. N. Dolya O. B. Zaslavskii J. Phys. A: Math. Gen. 34 (2001) S. N. Dolya O. B. Zaslavskii J. Phys. A: Math. Gen. 34 (2001) S. N. Dolya O. B. Zaslavskii J. Phys. A: Math. Gen. 33 (2000)

Upload: evelia

Post on 11-Jan-2016

32 views

Category:

Documents


2 download

DESCRIPTION

Quasi-exactly solvable models in quantum mechanics and Lie algebras. S. N. Dolya B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine. S. N. Dolya JMP, 50 (2009) S. N. Dolya JMP, 49 (2008). - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Quasi-exactly solvable models in quantum mechanics and Lie algebras

Quasi-exactly solvable models in quantum mechanics and Lie

algebras

Quasi-exactly solvable models in quantum mechanics and Lie

algebras

S. N. DolyaB. Verkin Institute for Low Temperature Physics and Engineering

of the National Academy of Sciences of Ukraine

S. N. DolyaB. Verkin Institute for Low Temperature Physics and Engineering

of the National Academy of Sciences of Ukraine

S. N. Dolya JMP, 50 (2009)S. N. Dolya JMP, 49 (2008).S. N. Dolya O. B. Zaslavskii J. Phys. A: Math. Gen. 34 (2001)S. N. Dolya O. B. Zaslavskii J. Phys. A: Math. Gen. 34 (2001)S. N. Dolya O. B. Zaslavskii J. Phys. A: Math. Gen. 33 (2000)

Page 2: Quasi-exactly solvable models in quantum mechanics and Lie algebras

OutlineOutline

1. QES-extension (A)1. QES-extension (A)2. quadratic QES - Lie algebras2. quadratic QES - Lie algebras3. physical applications3. physical applications4. 4. QES-extension (B)QES-extension (B)5. 5. cubic QES - Lie algebrascubic QES - Lie algebras

Page 3: Quasi-exactly solvable models in quantum mechanics and Lie algebras

sl2(R)-Hamiltonians

Representation:

Invariantsubspace

Turbiner et al

0

2

2x

x

x

nJ x

J

J x nx

(partial algebraization)

Page 4: Quasi-exactly solvable models in quantum mechanics and Lie algebras

What is being studied?• Hamiltonians are formulated in terms of QES Lie algebras.

• eigenvalues and eigenfunctions when possible.

• Invariant subspaces:

How this is being studied?

• Nonlinear QES Lie algebras

1 2 1V = span{ ( ), ( ),..., ( ), ( )}n n nf x f x f x f x

pqsspqji

ijpqqp cXcXXcXX ,

Page 5: Quasi-exactly solvable models in quantum mechanics and Lie algebras

QES-QES-extension:extension:

0.our strategy

1) We find a general form of the operator of the second order P2 for which subspace M2 = span{f1, f2} is preserved.

2) We make extension of the subspace M2 → M4 = span{f1, f2, f3, f4}

3) We find a general form of the operator of the second order P4 for which subspace M4 is preserved.

4) we obtain the explicit form of operator P2(N+1) that acts on the elements of the subspace M2(N+1) = {f1,f2,…, f2(N+1)}

Page 6: Quasi-exactly solvable models in quantum mechanics and Lie algebras

QES-extension:QES-extension:2 0 0M ={ , }f f

2

2( ) ( ) ( ) ( ) ( ) ( ) = 0

d dq x f x p x f x r x f x

dxdx

0 ( ) = ( )f x f x0 ( ) = ( ) = ( )'df x f x f x

dx

;

I. Select the minimal invariant subspace

2

2 3 2 02= ( ) ( ) ( )

d dP a x a x a x

dxdx Select the invariant

operator

2 0 1 0 2 0=P f c f c f

2 0 3 0 4 0=P f c f c f

Condition for the subspace M2

Page 7: Quasi-exactly solvable models in quantum mechanics and Lie algebras

QES-QES-extension:extension:

2 0 0M ={ , }f f 4 0 1 0 1M ={ , , , }f f f f

4 0 01 0 02 0 03 1 04 1=P f c f c f c f c f

4 1 11 0 12 0 13 1 14 1

......................................................................

......................................................................

=P f c f c f c f c f

II.extension for the minimal invariant subspace

Condition for the subspace M4

Page 8: Quasi-exactly solvable models in quantum mechanics and Lie algebras

QES-QES-extension:extension:

2 4 2(N+1)M M ... M

0 0 0 1 0 1 0 1 0 1{ , } { , , , } ... { , ,... , , ,..., }N Nf f f f f f f f f f f f

0 1 0 1, , , 0W f f f f

Conditions of the Conditions of the QES-QES-extension:extension:

2 4 2 1order ( ) order( ) ... order( ) 2.NP P P

1

2

Wronskian matrix

III.Extension for the minimal invariant subspace

Order of derivatives

Page 9: Quasi-exactly solvable models in quantum mechanics and Lie algebras

hypergeometric

function

2

021 ( ) = 0

d dx s f x

dxdx

0 0 1

0 0 1

_( ) = ;

_( ) = ;

1

f x F xs

f x F xs

Realization (special functions:

hypergeometric, Airy, Bessel ones)

2 0 0M ={ , }f f

Page 10: Quasi-exactly solvable models in quantum mechanics and Lie algebras

QES-extension:QES-extension:

2 4 2(N+1)M M ... M

0 0 0 1 0 1 0 1 0 1{ , } { , , , } ... { , ,... , , ,..., }N Nf f f f f f f f f f f f

1 0 1 0= = , = = ,n nn n n nf x f x f f x f x f

Particular choice of QES extension

act more

Page 11: Quasi-exactly solvable models in quantum mechanics and Lie algebras

QES-extension:QES-extension:Example 1Example 1

10 1 0 1= span{ , ,... , , ,..., }N N NR f f f f f f

= 0,1,2,...N 1dim = 2 1NR N

0 1

_= ;n

nf x F xs

0 1

_= ;

1n

nf x F xs

= 0,1,.., 1,n N N

2 2

21 12 2

= 1 , = 2d d d d

J x s J x s N x xdx dx dx dx

11

11

1 1

21

=1 2 1

1 2=

2

nn n nn

nn n n n

n n nn

nn n n

Bn A s f ff

J sf n s A f s B f

nf n n s f ff

J sf f n n s f ns f

= 2nA n N =nB n N

counter

Page 12: Quasi-exactly solvable models in quantum mechanics and Lie algebras

2

1 1 1 1 1 1 1 1

1 1

2 21

4 4 4

2 4 2 2

2 2 6 2 1

CasimirF S J J J S J J J

N s N s J J

s s N sN J s

QES-extension: QES-extension: The commutation relations of the operators The commutation relations of the operators

1 1 1

1 1 1 1 1 1 6 1 7

2

1 1 1 1

, =

, = 4 2 2

, = 2 2

J J S

J S J J S J c J c

J S J J

6 2 2 2c N s s N

7 1 2 2c s N s

Casimir Casimir operatoroperator::

Casimir invariant

Page 13: Quasi-exactly solvable models in quantum mechanics and Lie algebras

QES-extension:QES-extension:Example 2Example 2

20 1 0 1= span{ , ,... , , ,..., }N N NR f f f f f f

= 0,1,2,...N 2dim = 2 1NR N = 0,1,.., 1,n N N

= 2nA n N =nB n N

11= ;nnf t F t

s

11

1= ;

1n

nf t F ts

2 2

22 22 2

= 1 , = 2d d d d

J t s t J t s N t t t Ndt dt dt dt

1 12

1

12

1 1

1 2 /=

1 2 1

1 2 /=

1 2

n n n n n nn

n n n n n nn

n n nn

n n nn

n A s f B f B s ffJ

s n A f B f s B ff

n f n n s f n s ffJ

n f n n s f ns ff

counter

Page 14: Quasi-exactly solvable models in quantum mechanics and Lie algebras

QES-extension: QES-extension: The commutation relations of the operators The commutation relations of the operators

2 2 2

2 2 2 2 2 5 2 6 2 7

2

2 2 2 2 5 2

, =

, = 4 2

, = 2 1

J J S

J S J J S c J c J c

J S J J c J N s

5 2 1c s 6 2 2 2c N s s N 7 2 2 1c N N s s

Casimir invariant

Casimir Casimir operatoroperator::

2

2 2 2 2 2 2 5 2 2

2

2 2 2

5 2 2 7 5 2

4 4 2

2 4 2 2

2 2 1 1 2 2

1 3 6

CasimirF S J J J S J c J J

J N s N s J J

c S s s N J c c J

s N N s N

Page 15: Quasi-exactly solvable models in quantum mechanics and Lie algebras

QES-extension:QES-extension:Example 3Example 3

30 1= span{ , ,... }N NR f f f

= 0,1,2,...N 3dim = 1NR N = 0,1,.., 1,n N N

=nB n N

11= ;n

nf F t

s

2 2

23 32 2

= , =d d d d

J t s t J t s N t t tdt dt dt dt

3

3 1 1

=

=

n n

n n n n n n n n

J f n f

J f s n C f B f n s f

=n n = 2n nC N n

counter

Page 16: Quasi-exactly solvable models in quantum mechanics and Lie algebras

QES-extension: QES-extension: The commutation relations of the operators The commutation relations of the operators

3 3 3

3 3 3 3 3 5 3 6 3 7

2

3 3 3 3 5 3

, =

, = 4 2

, = 2

J J S

J S J J S c J c J c

J S J J c J s

5 2c s N

6 2c N s N s

7 2c s N s

Page 17: Quasi-exactly solvable models in quantum mechanics and Lie algebras

Two-photon Rabi HamiltonianRabi Hamiltonian describes a two-level system (atom) coupled to a single mode of radiation via dipole interaction.

220R =

2 zH a a g a a

Page 18: Quasi-exactly solvable models in quantum mechanics and Lie algebras

Two-photon Rabi

Hamiltonian 220

R =2 zH a a g a a

00

1 0 0 0 1 4= , = , = ; , , .

0 1 0 1 0 2x y z

i g Eg E

i

0 1 1

0 2 2

= ,L

EL

2 2/2L a a g a a

Page 19: Quasi-exactly solvable models in quantum mechanics and Lie algebras

The two-photon Rabi

Hamiltonian

1 1

2 21 0

= 0

=

L

L L L E L L E

= , =2 2

x xx xa a

0 1 1

0 2 2

= ,L

EL

Page 20: Quasi-exactly solvable models in quantum mechanics and Lie algebras

The two-photon Rabi

Hamiltonian 22 2 2 2 2

1 2 2 2 2 0 0 2== 4 4 2 4c x c x

t xe L e g J g S g J J a

2= 3/4, = 1/2 (the parameters of subspace )Ns

1 1= (the parameter of gauge transformation)

2 1

gc

g

2= (the parameter of change of variable)

1

g

g

21= 2 1 1 (the energy of the Hamiltonian).

2E N g

2 20 = 3 4 4 1 3 5 /4a N N g g

Page 21: Quasi-exactly solvable models in quantum mechanics and Lie algebras

The two-photon Rabi

Hamiltonian 22 2 2 2

1 3 3 3 3 0 0 2== 4 4 2 4c x c x

t xe L e J g S g J J a

33= , = 1/2 (the parameters of subspaces )

4 2 N

Ns

1 1= (the parameter of gauge transformation)

2 1

gc

g

2= (the parameter of change of variable)

1

g

g

21= 1 1 (the energy of the Hamiltonian).

2E N g

2 20 = 1 2 2 1 1 3 /4a N N g g

Page 22: Quasi-exactly solvable models in quantum mechanics and Lie algebras

Example 20

2 2

0 0 3 61 1,

1 1 0 12 4J J

matrix representation

20

1 2 20

3 9/4 3 2 1

2 1 1/4 3 4

g g gL

g g g

2 2

0 0

0 00

4 9 1 4 1 3= , < < .

8 2 2g

condition det(L1) = 0

Page 23: Quasi-exactly solvable models in quantum mechanics and Lie algebras

QES-extension: continuationQES-extension: continuationExample 4 (Example 4 (QES qubic Lie algebra ))

= 0,1,2,...N

2dim = 2 1NV N

= 0,1,.., 1,n N N

3 2

2 26 6 3 2

= , = 2d d d d

J x J x x N x xdx dx dx dx

6 1

6 1 1

=

= 1

n n n

n n n n n n n n n

J f n f f

J f B f f n B f f

20 1 0 1= span{ , ,... , , ,..., }N N NV f f f f f f

1 11 1= ; ;1 1nf F x F x

n n

=nB n N= ;n n

Page 24: Quasi-exactly solvable models in quantum mechanics and Lie algebras

QES-extension: continuation QES-extension: continuation Example 4 (Example 4 (QES qubic Lie algebra ) ) The commutation relations of the operators The commutation relations of the operators

6 6 6

3 2

6 6 6 6 6 6

6 6 6

, =

, = 8 6

, =

J J S

J S J N J c J

J S J

6 2 2c N N

4 2 32

6 6 6 6

2

6 6 6

4 4

4 2 0

CasimirF S J J N J

c J N J

Casimir invariant

Casimir Casimir operatoroperator::

Page 25: Quasi-exactly solvable models in quantum mechanics and Lie algebras

QES-extension: continuation

2 23M ={ ( ) , ( ) ( ), ( ) }f x f x f x f x

1) Select the minimal invariant subspace:

4M ={ ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( )}f x g x f x g x f x g x f x g x

2) Select the minimal invariant subspace:

2

2

( ) ( ) 0

( ) ( ) ( )

L f x L g x

d dL q x p x r x

dx dx

Condition for the functions f(x), g(x)

Page 26: Quasi-exactly solvable models in quantum mechanics and Lie algebras

QES-extension: continuationQES-extension: continuationExample 5 ( Example 5 ( QES Lie algebra )) = 0,1,2,...N

3dim = 3 1NV N

= 0,1,.., 1,n N N

3 * * *0 1 0 1 0 1= span{ , ,... , , ,..., , , ,..., }N N N NV f f f f f f f f f

2

211

1 11 1

2

* 1 2 111

= ( ) ;1/ 2

1= ( ) ( ) ; ;

1/ 2 3/ 2

1= ( ) ;

3 / 2

n nn

n nn

n nn

f x f x x F x

f x f x f x x F x F x

f x f x x F x

3NV

Page 27: Quasi-exactly solvable models in quantum mechanics and Lie algebras

3 22

10 03 2

4 3 22

10 1 04 3 2

20 1

9= 6 1 6 3 1 2

2 2

15= 5 2 14

4

276 4 , 2 2 , 9 6 8 10 2 ;

2

d x d N dJ x N x x x a x

dx dx dx

d d d dJ x x x x x a x a x

dx dx dx dx

N a x x N a x N x xN x

QES-extension: continuationQES-extension: continuationExample 5 ( Example 5 ( QES Lie algebra ))

3NV

10 1 2 1 3 1 4 2 5 2=n n n n n nJ C C C C C

5 4 4*

2 10 0

42 3

, 0, 0, 1 4 ;4

2 10 0

4

n

n n n

n

n

fn

f C C C

f n

1 2 1n n n n

Page 28: Quasi-exactly solvable models in quantum mechanics and Lie algebras

QES-extension: continuationQES-extension: continuationExample 6 ( Example 6 ( QES Lie algebra )) = 0,1,2,...N

4dim = 4 1NV N

= 0,1,.., 1,n N N40 1 0 1

* * *0 1 0 1

= span{ , ,... , , ,..., ,

, , ,..., , , ,..., }

N N N

N N

V f f f f f f

f f f f f f

1 11 1

11 11 1

*1 11 1

= ( ) ( ) ; ; ; 1/ 2 1/ 2

1 1 = ( ) ( ) ; ; ;

3 / 2 3/ 2

1= ( ) ( ) ; ; ;

1/ 2 3/ 2

= ( )

n nn

n nn

n nn

nn

f x f x g x x F x F x

f x x f x g x x F x F x

f x f x g x x F x F x

f x f x

1 11 1

1( ) ; ;

3 / 2 1/ 2ng x x F x F x

4NV

Page 29: Quasi-exactly solvable models in quantum mechanics and Lie algebras

QES-extension: continuationQES-extension: continuationExample 6 ( Example 6 ( QES Lie algebra ))

3 22 2

12 3 2

4 3 22 2

12 4 3 2

9 9= 1 3 4

4 2

15= 5 4 2 3 2

4

d d dJ x x N N x x xN

dx dx dx

d d d dJ x x x x x xN

dx dx dx dx

12 1 2 1 3 1 4 2 5 2=n n n n n nJ C C C C C

4NV

5 4 4*

2 10 0 0

42 1

0 0 04, 0, 0, 1 2 1 ;

2 31 4 0

42 3

1 4 04

n

nn

n

n

n

f nf

C C C n n nnf

fn

Page 30: Quasi-exactly solvable models in quantum mechanics and Lie algebras

Angular Momentum

ip

prL

kijkji LiLL ],[

0, 1, 2,......,lm l

QES quadratic Lie algebra 3NR

3 3 3, ,J J S

, ...ijp q pq i jX X c X X

0,1,2,....l = 0,1,2,....N

30,1,2,...,dim = 1N NR N

comparison

L L

CasimirF