quasiparticle breakdown in quantum spin liquid

25
ICNS – 2005, Sydney, ICNS – 2005, Sydney, Australia Australia Quasiparticle breakdown in quantum Quasiparticle breakdown in quantum spin liquid spin liquid Collaborators Collaborators M. B. Stone D. Reich, T. Hong C. Broholm Igor Zaliznyak Igor Zaliznyak Neutron Scattering Group, Brookhaven National Laboratory & & OAK RIDGE NATIONAL LABORATORY

Upload: alexa

Post on 11-Feb-2016

47 views

Category:

Documents


0 download

DESCRIPTION

O AK R IDGE N ATIONAL L ABORATORY. Quasiparticle breakdown in quantum spin liquid. Igor Zaliznyak Neutron Scattering Group, Brookhaven National Laboratory. Collaborators M. B. Stone D. Reich, T. Hong C. Broholm. &. What is liquid? no shear modulus - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Quasiparticle breakdown in quantum spin liquid

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

Quasiparticle breakdown in quantum spin liquidQuasiparticle breakdown in quantum spin liquid

CollaboratorsCollaborators

• M. B. Stone

• D. Reich, T. Hong

• C. Broholm

Igor ZaliznyakIgor Zaliznyak

Neutron Scattering Group, Brookhaven National Laboratory

&&

OAK RIDGE NATIONAL LABORATORY

Page 2: Quasiparticle breakdown in quantum spin liquid

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

What is quantum liquid?What is quantum liquid?• What is liquid?

− no shear modulus− no elastic scattering = no static correlation of density fluctuations

‹ρ(r1,0)ρ (r2,t)› → 0t → ∞

• What is quantum liquid? − all of the above at T → 0 (i.e. at temperatures much lower than inter-particle interactions in the system)

• Elemental quantum liquids:− H, He and their isotopes− made of light atoms strong quantum fluctuations

Page 3: Quasiparticle breakdown in quantum spin liquid

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

ε(q)

(Kel

vin)

q (Å-1)

phonon

roton

maxonwhatsgoingon?

Excitations in quantum Bose liquid: superfluid Excitations in quantum Bose liquid: superfluid 44HeHe

Woods & Cowley, Rep. Prog. Phys. 36 (1973)

Page 4: Quasiparticle breakdown in quantum spin liquid

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

The “cutoff point” of the quasiparticle spectrum in The “cutoff point” of the quasiparticle spectrum in the quantum Bose-liquidthe quantum Bose-liquid

Page 5: Quasiparticle breakdown in quantum spin liquid

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

Spectrum termination in Spectrum termination in 44He: experimentHe: experiment

Page 6: Quasiparticle breakdown in quantum spin liquid

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

What is quantum spin liquid?What is quantum spin liquid?

• Quantum liquid state for a system of Heisenberg spins

H = J|| SiSi+||+ JSiSi

• Exchange couplings J||, J through orbital overlaps may be different

− J||/J >> 1 (<<1) parameterize quasi-1D (quasi-2D) case

Coupled chains J||/J>> 1

Coupled planes J||/J<<1• no static spin correlations

‹Siα (0)Sj

β (t)› → 0, i.e. ‹Si

α (0)Sjβ (t)› = 0

• hence, no elastic scattering (e.g. no magnetic Bragg peaks)

t → ∞

Page 7: Quasiparticle breakdown in quantum spin liquid

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

Simple example: coupled S=1/2 dimersSimple example: coupled S=1/2 dimers

H = J0 S1S2J0/2 (S1 + S2)2 + const.

Single dimer: antiferromagnetically coupled S=1/2 pair J0 > 0

0 = J0

singlet

triplet

Page 8: Quasiparticle breakdown in quantum spin liquid

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

Simple example: coupled S=1/2 dimersSimple example: coupled S=1/2 dimers(

q)

q/(2)

0 = J0

H = J0 S2iS2i+1J1 (S2i S2i+2)

Chain of weakly coupled dimers

Dispersion (q) ~ J0 + J1cos(q)

J0

J1

triplet

Page 9: Quasiparticle breakdown in quantum spin liquid

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

Dimers in 1D (aka alternating chain)Dimers in 1D (aka alternating chain)

Chains of weakly interacting dimers inCu(NO3)2x2.5D2O

CuCu2+2+ 3d9 S=1/2

E (m

eV)

Page 10: Quasiparticle breakdown in quantum spin liquid

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

Weakly interacting dimers in Cu(NOWeakly interacting dimers in Cu(NO33))22x2.5Dx2.5D22OO

D. A. Tennant, C. Broholm, et. al. PRB 67, 054414 (2003)

Spin excitations never cross into 2-particle continuum and

live happily ever after

Page 11: Quasiparticle breakdown in quantum spin liquid

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

weak interaction

2D quantum spin liquid: a lattice of frustrated 2D quantum spin liquid: a lattice of frustrated dimersdimers

M. B. Stone, I. Zaliznyak, et. al. PRB (2001)(C4H12N2)Cu2Cl6 (PHCC)

− singlet disordered ground state− gapped triplet spin excitation

strong interaction

CuCu2+2+ 3d9 S=1/2

h

l

Page 12: Quasiparticle breakdown in quantum spin liquid

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

PHCC: a two-dimensional quantum spin liquidPHCC: a two-dimensional quantum spin liquid

• gap = 1 meV• bandwidth = 1.8 meV

• Single dispersive mode along h

• Single dispersive mode along l

• Non-dispersive mode along k

Page 13: Quasiparticle breakdown in quantum spin liquid

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

Quasiparticle spectrum termination line in PHCCQuasiparticle spectrum termination line in PHCC

max{E2-particle (q)}

min{E2-particle (q)}

E1-particle(q)

Spectrum termination line

Page 14: Quasiparticle breakdown in quantum spin liquid

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

PHCC: dispersion along the diagonalPHCC: dispersion along the diagonal800

600

400

200

0

Q = (0.5,0,-1.5) resolution-corrected fit

400

300

200

100

0

Q = (0.25,0,-1.25)resolution-corrected fit

200

150

100

50

0

7654321

Q = (0.15,0,-1.15) resolution-corrected fit

Inte

nsity

(cou

nts

in 1

m

in)

200

150

100

50

0

Q = (0.15,0,-1.15) resolution-corrected fit

150

100

50

0

Q = (0.1,0,-1.1) resolution-corrected fit

120

80

40

0

7654321

Q = (0,0,1) resolution-corrected fit

E (meV) E (meV)

Page 15: Quasiparticle breakdown in quantum spin liquid

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

2D map of the spectrum along both directions2D map of the spectrum along both directions7

6

5

4

3

2

1

0

E (m

eV)

0.4 0.3 0.2 0.1 0

89

100

2

3

4

5

6

Inte

grat

ed in

t (ar

b.)

0.50.40.30.20.10

Total Triplon Continuum

3.02.52.01.51.0 log(intensity)

(0.5,0,-1-l) (h,0,-1-h)

0.20

0.15

0.10

0.05

0

(meV

)0.5 0.4 0.3 0.2 0.1 0

(h 0 -1-h)

•a

Page 16: Quasiparticle breakdown in quantum spin liquid

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

Compare: spectrum end point in helium-4Compare: spectrum end point in helium-4

4

3

2

1

0

(m

eV)

3210Q (Å-1)

a

2

qc

1.0

0.8

0.6

0.4

0.2

0

S(Q

,

) (1/

meV

)

0.150

S(Q

,

)

6420 (meV)

0.40.2

00.15

0

2.6 Å-1b1.3 K

1.85 K

2.25 K

Page 17: Quasiparticle breakdown in quantum spin liquid

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

Summary and conclusionsSummary and conclusions

• Quasiparticle breakdown at E > 2 is a generic property of quantum Bose (spin) fluids– observed in the superfluid 4He

– observed in the Haldane spin chains in CsNiCl3 (I. Zaliznyak, S.-H. Lee and S. V. Petrov, PRL 017202 (2001))

– observed in the 2D frustrated quantum spin liquid in PHCC

• A real physical alternative to the ad-hoc “excitation fractionalization” explanation of scattering continua

• Implications for the high-Tc cuprates: spin gap implies disappearance of coherent spin modes at high E

Page 18: Quasiparticle breakdown in quantum spin liquid

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

Temperature dependence in PHCCTemperature dependence in PHCC

40

20

0

6420 (meV)

60

30

0

Inte

nsity

(cou

nts

/ 2 m

in.)

180

120

60

0180

120

60

0

(0.5 0 -1)

a

6420 (meV)

(0.15 0 -1.15)

c T = 1.5 K T = 10 K T = 15 K T = 20 K

6420 (meV)

(0.5 0 -1.5)

b 800

400

0420

400

200

0420

Page 19: Quasiparticle breakdown in quantum spin liquid

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

Temperature dependence in copper nitrateTemperature dependence in copper nitrate

Page 20: Quasiparticle breakdown in quantum spin liquid

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

Dispersion along the side (Dispersion along the side (ll) in PHCC) in PHCC800

600

400

200

0

Q = (0.5,0,-1.5) resolution-corrected fit

300

200

100

0

Q = (0.5,0,-1.15) resolution-corrected fit

400

300

200

100

0

Q = (0.5,0,-1.1) resolution-corrected fit

400

300

200

100

0

7654321

Q = (0.5 0 -1) resolution-corrected fit

Inte

nsity

(cou

nts

in 1

m

in)

E (meV)

Page 21: Quasiparticle breakdown in quantum spin liquid

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

What would be a “spin solid”?What would be a “spin solid”?• Heisenberg antiferromagnet with classical spins, S >> 1S >> 1

− ground state has static Neel order (spin density wave with propagation vector q = )

− elastic magnetic Bragg scattering at q =

n n+1

SSnn = S = S0 0 cos(cos(n)n)

− quasiparticles are gapless Goldstone magnons

(q) ~ sin(q)

(q)

q/(2)

0.0 0.2 0.4 0.6 0.8 1.0

Page 22: Quasiparticle breakdown in quantum spin liquid

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

0.0 0.2 0.4 0.6 0.8 1.0

(q)

− quasiparticles with a gap ≈ 0.4J at q =

2 (q) = 2 + (cq)2

q/(2)

2

1D quantum spin liquid: Haldane spin chain1D quantum spin liquid: Haldane spin chain

− short-range-correlated “spin liquid” Haldane ground state

• Heisenberg antiferromagnetic chain with S = 1S = 1

Quantum Monte-Carlo for 128 spins. Regnault, Zaliznyak & Meshkov, J. Phys. C (1993)

Page 23: Quasiparticle breakdown in quantum spin liquid

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

Spin-quasiparticles in Haldane chains in CsNiClSpin-quasiparticles in Haldane chains in CsNiCl33

NiNi2+2+ 3d8

J = 2.3 meV = 26 K J = 0.03 meV = 0.37 K = 0.014 J

D = 0.002 meV = 0.023 K = 0.0009 J

3D magnetic order below TN = 4.84 Kunimportant for high energies

S=1 S=1 chains

Page 24: Quasiparticle breakdown in quantum spin liquid

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

Spin-quasiparticles in Haldane chains in CsNiClSpin-quasiparticles in Haldane chains in CsNiCl33

Page 25: Quasiparticle breakdown in quantum spin liquid

ICNS – 2005, Sydney, AustraliaICNS – 2005, Sydney, Australia

Spectrum termination point in CsNiClSpectrum termination point in CsNiCl33

I. A. Zaliznyak, S.-H. Lee, S. V. Petrov, PRL 017202 (2001)