quaternion and clifford fourier transforms and wavelets

358
Trends in Mathematics Quaternion and Clifford Fourier Transforms and Wavelets Eckhard Hitzer Stephen J. Sangwine Editors

Upload: others

Post on 11-Sep-2021

6 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Quaternion and Clifford Fourier Transforms and Wavelets

Trends in Mathematics

Quaternion and Clifford Fourier Transforms and Wavelets

Eckhard HitzerStephen J. Sangwine Editors

Page 2: Quaternion and Clifford Fourier Transforms and Wavelets
Page 3: Quaternion and Clifford Fourier Transforms and Wavelets

Trends in Mathematics

Trends in Mathematics is a series devoted to the publication of volumes arisingfrom conferences and lecture series focusing on a particular topic from anyarea of mathematics. Its aim is to make current developments available to thecommunity as rapidly as possible without compromise to quality and to archivethese for reference.

Proposals for volumes can be submitted using the Online Book Project Submis-sion Form at our website www.birkhauser-science.com.

Material submitted for publication must be screened and prepared as follows:

All contributions should undergo a reviewing process similar to that carriedout by journals and be checked for correct use of language which, as a rule, isEnglish. Articles without proofs, or which do not contain any significantly newresults, should be rejected. High quality survey papers, however, are welcome.

We expect the organizers to deliver manuscripts in a form that is essentiallyready for direct reproduction. Any version of TEX is acceptable, but the entirecollection of files must be in one particular dialect of TEX and unified accordingto simple instructions available from Birkhauser.

Furthermore, in order to guarantee the timely appearance of the proceedings itis essential that the final version of the entire material be submitted no later thanone year after the conference.

For further volumes:http://www.springer.com/series/4961

Page 4: Quaternion and Clifford Fourier Transforms and Wavelets

Editors

Eckhard HitzerStephen J. Sangwine

Quaternion and Clifford FourierTransforms and Wavelets

Page 5: Quaternion and Clifford Fourier Transforms and Wavelets

Editors Eckhard Hitzer Stephen J. Sangwine Department of Material Science School of Computer Science International Christian University Tokyo, Japan

ISBN 978-3-0348-0602-2 ISBN 978-3-0348-0603-9 (eBook) DOI 10.1007/978-3-0348-0603-9 Springer Basel Heidelberg New York Dordrecht London Library of Congress Control Number: 2013939066 Mathematics Subject Classification (2010): 11R52, 15A66, 42A38, 65T60, 42C40, 68U10, 94A08, 94A12 ยฉ Springer Basel 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisherโ€™s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Springer Basel is part of Springer Science+Business Media (www.springer.com)

University of Essex Colchester, United Kingdom

and Electronic Engineering

Page 6: Quaternion and Clifford Fourier Transforms and Wavelets

Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

F. Brackx, E. Hitzer and S.J. SangwineHistory of Quaternion and Cliffordโ€“Fourier Transformsand Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Part I: Quaternions

1 T.A. EllQuaternion Fourier Transform: Re-tooling Image andSignal Processing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 E. Hitzer and S.J. SangwineThe Orthogonal 2D Planes Split of Quaternions andSteerable Quaternion Fourier Transformations . . . . . . . . . . . . . . . . . . . . . . . 15

3 N. Le Bihan and S.J. SangwineQuaternionic Spectral Analysis of Non-Stationary ImproperComplex Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 E.U. Moya-Sanchez and E. Bayro-CorrochanoQuaternionic Local Phase for Low-level Image ProcessingUsing Atomic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 S. Georgiev and J. MoraisBochnerโ€™s Theorems in the Framework of Quaternion Analysis . . . . . . 85

6 S. Georgiev, J. Morais, K.I. Kou and W. SproรŸigBochnerโ€“Minlos Theorem and Quaternion Fourier Transform . . . . . . . . 105

Part II: Clifford Algebra

7 E. Hitzer, J. Helmstetter and R. AblamowiczSquare Roots of โˆ’1 in Real Clifford Algebras . . . . . . . . . . . . . . . . . . . . . . . 123

8 R. Bujack, G. Scheuermann and E. HitzerA General Geometric Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Page 7: Quaternion and Clifford Fourier Transforms and Wavelets

vi Contents

9 T. Batard and M. BerthierCliffordโ€“Fourier Transform and Spinor Representationof Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

10 P.R. Girard, R. Pujol, P. Clarysse, A. Marion,R. Goutte and P. DelachartreAnalytic Video (2D + ๐‘ก) Signals Using Cliffordโ€“Fourier Transformsin Multiquaternion Grassmannโ€“Hamiltonโ€“Clifford Algebras . . . . . . . . . 197

11 S. Bernstein, J.-L. Bouchot, M. Reinhardt and B. HeiseGeneralized Analytic Signals in Image Processing: Comparison,Theory and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

12 R. Soulard and P. CarreColour Extension of Monogenic Wavelets with Geometric Algebra:Application to Color Image Denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

13 S. BernsteinSeeing the Invisible and Maxwellโ€™s Equations . . . . . . . . . . . . . . . . . . . . . . . . 269

14 M. BahriA Generalized Windowed Fourier Transform inReal Clifford Algebra ๐ถโ„“0,๐‘› . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

15 Y. Fu, U. Kahler and P. CerejeirasThe Balianโ€“Low Theorem for the WindowedCliffordโ€“Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

16 S. Li and T. QianSparse Representation of Signals in Hardy Space . . . . . . . . . . . . . . . . . . . . 321

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

Page 8: Quaternion and Clifford Fourier Transforms and Wavelets

Quaternion and Cliffordโ€“Fourier Transforms and Wavelets

Trends in Mathematics, viiโ€“xcโƒ 2013 Springer Basel

Preface

One hundred and seventy years ago (in 1843) W.R. Hamilton formally introducedthe four-dimensional quaternions, perceiving them as one of the major discoveriesof his life. One year later, in 1844, H. Grassmann published the first version of hisAusdehnungslehre, now known as Grassmann algebra, without any dimensionallimitations. Circa thirty years later (in 1876) W.K. Clifford supplemented theGrassmann product of vectors with an inner product, which fundamentally unifiedthe preceding works of Hamilton and Grassmann in the form of Cliffordโ€™s geometricalgebras or Clifford algebras. A Clifford algebra is a complete algebra of a vectorspace and all its subspaces, including the measurement of volumes and dihedralangles between any pair of subspaces.

To work in higher dimensions with quaternion and Clifford algebras allows usto systematically generalize known concepts of symmetry, phase, analytic signaland holomorphic function to higher dimensions. And as demonstrated in the cur-rent proceedings, it successfully generalizes Fourier and wavelet transformationsto higher dimensions. This is interesting both for the development of analysis inhigher dimensions, as well as for a broad range of applications in multi-dimensionalsignal, image and color image processing. Therefore a wide variety of readers frompure mathematicians, keen to learn about the latest developments in quaternionand Clifford analysis, to physicists and engineers in search of dimensionally ap-propriate and efficient tools in concrete applications, will find many interestingcontributions in this book.

The contributions in this volume originated as papers in a session on Quater-nion and Cliffordโ€“Fourier transforms and wavelets of the 9th International Con-ference on Clifford Algebras and their Applications (ICCA9), which took placefrom 15th to 20th July 2011 at the Bauhaus-University in Weimar, Germany. Thesession was organized by the editors of this volume.

After the conference we asked the contributors to prepare expanded versionsof their works for this volume, and many of them agreed to participate. The ex-panded submissions were subjected to a further round of reviews (in addition tothe original reviews for the ICCA9 itself) in order to ensure that each contributionwas clearly presented and worthy of publication. We are very grateful to all thosereviewers whose efforts contributed significantly to the quality of the final chaptersby asking the authors to revise, clarify or to expand on points in their drafts.

Page 9: Quaternion and Clifford Fourier Transforms and Wavelets

viii Preface

The contributions have been edited to achieve as much uniformity in presen-tation and notation as can reasonably be achieved across the somewhat differenttraditions that have arisen in the quaternion and Clifford communities. We hopethat this volume will contribute to a growing unification of ideas across the ex-panding field of hypercomplex Fourier transforms and wavelets.

The book is divided into two parts: Chapters 1 to 6 deal exclusively withquaternions โ„, while Chapters 7 to 16 mainly deal with Clifford algebras ๐ถโ„“๐‘,๐‘ž,but sometimes include high-dimensional complex as well as quaternionic resultsin several subsections. This is natural, since complex numbers (โ„‚ โˆผ= ๐ถโ„“0,1) andquaternions (โ„ โˆผ= ๐ถโ„“0,2) are low-dimensional Clifford algebras, and often appearas subalgebras, e.g., โ„‚ โˆผ= ๐ถ๐‘™+2,0, โ„

โˆผ= ๐ถ๐‘™+3,0, etc. The first chapter was writtenespecially for this volume to provide some background on the history of the subject,and to show how the contributions that follow relate to each other and to priorwork. We especially thank Fred Brackx (Ghent/Belgium) for agreeing to contributeto this chapter at a late stage in the preparation of the book.

The quaternionic part begins with an exploration by Ell (Chapter 1) of theevolution of quaternion Fourier transform (QFT) definitions as a framework forproblems in vector-image and vector-signal processing, ranging from NMR prob-lems to applications in colour image processing. Next, follows an investigation byHitzer and Sangwine (Chapter 2) into a steerable quaternion algebra split, whichleads to: a local phase rotation interpretation of the classical two-sided QFT, effi-cient fast numerical implementations and the design of new steerable QFTs.

Then Le Bihan and Sangwine (Chapter 3) perform a quaternionic spectralanalysis of non-stationary improper complex signals with possible correlation ofreal and imaginary signal parts. With a one-dimensional QFT they introduce ahyperanalytic signal closely linked to the geometric features of improper com-plex signals. In the field of low level image processing Moya-Sanchez and Bayro-Corrochano (Chapter 4) employ quaternionic atomic functions to enhance geo-metric image features and to analytically express image processing operations likelow-pass, steerable and multiscale filtering, derivatives, and local phase computa-tion.

In the next two chapters on quaternion analysis Georgiev and Morais (Chap-ter 5) characterize a class of quaternion Bochner functions generated via a quater-nion Fourierโ€“Stieltjes transform and generalize Bochnerโ€™s theorem to quaternionfunctions. In Chapter 6 Georgiev, Morais, Kou and SproรŸig study the asymptoticbehavior of the QFT, apply the QFT to probability measures, including positivedefinite measures, and extend the classical Bochnerโ€“Minlos theorem to the frame-work of quaternion analysis.

The Clifford algebra part begins with Chapter 7 by Hitzer, Helmstetter andAblamowicz, who establish a detailed algebraic characterization of the continuousmanifolds of (multivector) square roots of โˆ’1 in all real Clifford algebras ๐ถโ„“๐‘,๐‘ž,including as examples detailed computer generated tables of representative squareroots of โˆ’1 in dimensions ๐‘› = ๐‘+ ๐‘ž = 5, 7 with signature ๐‘  = ๐‘โˆ’ ๐‘ž = 3(mod 4).

Page 10: Quaternion and Clifford Fourier Transforms and Wavelets

Preface ix

Their work is fundamental for any form of Cliffordโ€“Fourier transform (CFT) usingmultivector square roots of โˆ’1 instead of the complex imaginary unit. Based onthis Bujack, Scheuermann and Hitzer (Chapter 8) introduce a general (Clifford)geometric Fourier transform covering most CFTs in the literature. They prove arange of standard properties and specify the necessary conditions in the transformdesign.

A series of four chapters on image processing begins with Batard and Ber-thierโ€™s (Chapter 9) on spinorial representation of images focusing on edge- andtexture detection based on a special CFT for spinor fields, that takes into accountthe Riemannian geometry of the image surface. Then Girard, Pujol, Clarysse, Mar-ion, Goutte and Delachartre (Chapter 10) investigate analytic signals in Cliffordalgebras of ๐‘›-dimensional quadratic spaces, and especially for three-dimensionalvideo (2D + ๐‘‡ ) signals in (complex) biquaternions (โˆผ= ๐ถโ„“3,0). Generalizing fromthe right-sided QFT to a rotor CFT in ๐ถโ„“3,0, which allows a complex fast Fouriertransform (FFT) decomposition, they investigate the corresponding analytic videosignal including its generalized six biquaternionic phases. Next, Bernstein, Bou-chot, Reinhardt and Heise (Chapter 11) undertake a mathematical overview of gen-eralizations of analytic signals to higher-dimensional complex and Clifford analysistogether with applications (and comparisons) for artificial and real-world imagesamples.

Soulard and Carre (Chapter 12) define a novel colour monogenic wavelettransform, leading to a non-marginal multiresolution colour geometric analysis ofimages. They show a first application through the definition of a full colour imagedenoising scheme based on statistical modeling of coefficients.

Motivated by applications in optical coherence tomography, Bernstein (Chap-ter 13) studies inverse scattering for Dirac operators with scalar, vector and quater-nionic potentials, by writing Maxwellโ€™s equations as Dirac equations in Cliffordalgebra (i.e., complex biquaternions). For that she considers factorizations of theHelmholtz equation and related fundamental solutions; standard- and Faddeevโ€™sGreen functions.

In Chapter 14 Bahri introduces a windowed CFT for signal functions ๐‘“ :โ„๐‘› โ†’ ๐ถโ„“0,๐‘›, and investigates some of its properties. For a different type of win-dowed CFT for signal functions ๐‘“ : โ„๐‘› โ†’ ๐ถโ„“๐‘›,0, ๐‘› = 2, 3(mod 4), Fu, Kahler andCerejeiras establish in Chapter 15 a Balianโ€“Low theorem, a strong form of Heisen-bergโ€™s classical uncertainty principle. They make essential use of Clifford framesand the Cliffordโ€“Zak transform.

Finally, Li and Qian (Chapter 16) employ a compressed sensing technique inorder to introduce a new kind of sparse representation of signals in a Hardy spacedictionary (of elementary wave forms) over a unit disk, together with examplesillustrating the new algorithm.

We thank all the authors for their enthusiastic participation in the projectand their enormous patience with the review and editing process. We further thankthe organizer of the ICCA9 conference K. Guerlebeck and his dedicated team for

Page 11: Quaternion and Clifford Fourier Transforms and Wavelets

x Preface

their strong support in organizing the ICCA9 session on Quaternion and Cliffordโ€“Fourier Transforms and Wavelets. We finally thank T. Hempfling and B. Hellriegelof Birkhauser Springer Basel AG for venturing to accept and skillfully accompanythis proceedings with a still rather unconventional theme, thus going one morestep in fulfilling the 170 year old visions of Hamilton and Grassmann.

Eckhard HitzerTokyo, Japan

Stephen SangwineColchester, United Kingdom

October 2012

Page 12: Quaternion and Clifford Fourier Transforms and Wavelets

Quaternion and Cliffordโ€“Fourier Transforms and Wavelets

Trends in Mathematics, xiโ€“xxviicโƒ 2013 Springer Basel

History of Quaternion and Cliffordโ€“FourierTransforms and Wavelets

Fred Brackx, Eckhard Hitzer and Stephen J. Sangwine

Abstract. We survey the historical development of quaternion and Cliffordโ€“Fourier transforms and wavelets.

Mathematics Subject Classification (2010). Primary 42B10; secondary 15A66,16H05, 42C40, 16-03.

Keywords. Quaternions, Clifford algebra, Fourier transforms, wavelet trans-forms.

The development of hypercomplex Fourier transforms and wavelets has taken placein several different threads, reflected in the overview of the subject presented inthis chapter. We present in Section 1 an overview of the development of quaternionFourier transforms, then in Section 2 the development of Cliffordโ€“Fourier trans-forms. Finally, since wavelets are a more recent development, and the distinctionbetween their quaternion and Clifford algebra approach has been much less pro-nounced than in the case of Fourier transforms, Section 3 reviews the history ofboth quaternion and Clifford wavelets.

We recognise that the history we present here may be incomplete, and thatwork by some authors may have been overlooked, for which we can only offer ourhumble apologies.

1. Quaternion Fourier Transforms (QFT)

1.1. Major Developments in the History of the Quaternion Fourier Transform

Quaternions [51] were first applied to Fourier transforms by Ernst [49, ยง 6.4.2]and Delsuc [41, Eqn. 20] in the late 1980s, seemingly without knowledge of theearlier work of Sommen [90, 91] on Cliffordโ€“Fourier and Laplace transforms fur-ther explained in Section 2.2. Ernst and Delsucโ€™s quaternion transforms were two-dimensional (that is they had two independent variables) and proposed for ap-plication to nuclear magnetic resonance (NMR) imaging. Written in terms of two

Page 13: Quaternion and Clifford Fourier Transforms and Wavelets

xii F. Brackx, E. Hitzer and S.J. Sangwine

independent time variables1 ๐‘ก1 and ๐‘ก2, the forward transforms were of the followingform2:

โ„ฑ(๐œ”1, ๐œ”2) =

โˆžโˆซโˆ’โˆž

โˆžโˆซโˆ’โˆž

๐‘“(๐‘ก1, ๐‘ก2)๐‘’๐’Š๐œ”1๐‘ก1๐‘’๐’‹๐œ”2๐‘ก2d๐‘ก1d๐‘ก2 . (1.1)

Notice the use of different quaternion basis units ๐’Š and ๐’‹ in each of the two ex-ponentials, a feature that was essential to maintain the separation between thetwo dimensions (the prime motivation for using a quaternion Fourier transforma-tion was to avoid the mixing of information that occurred when using a complexFourier transform โ€“ something that now seems obvious, but must have been lessso in the 1980s). The signal waveforms/samples measured in NMR are complex, sothe quaternion aspect of this transform was essential only for maintaining the sep-aration between the two dimensions. As we will see below, there was some unusedpotential here.

The fact that exponentials in the above formulation do not commute (witheach other, or with the โ€˜signalโ€™ function ๐‘“), means that other formulations arepossible3, and indeed Ell in 1992 [45, 46] formulated a transform with the twoexponentials positioned either side of the signal function:

โ„ฑ(๐œ”1, ๐œ”2) =

โˆžโˆซโˆ’โˆž

โˆžโˆซโˆ’โˆž

๐‘’๐’Š๐œ”1๐‘ก1๐‘“(๐‘ก1, ๐‘ก2) ๐‘’๐’‹๐œ”2๐‘ก2 d๐‘ก1d๐‘ก2 . (1.2)

Ellโ€™s transform was a theoretical development, but it was soon applied to thepractical problem of computing a holistic Fourier transform of a colour image [84]in which the signal samples (discrete image pixels) had three-dimensional values(represented as quaternions with zero scalar parts). This was a major changefrom the previously intended application in nuclear magnetic resonance, becausenow the two-dimensional nature of the transform mirrored the two-dimensionalnature of the image, and the four-dimensional nature of the algebra used followednaturally from the three-dimensional nature of the image pixels.

Other researchers in signal and image processing have followed Ellโ€™s formu-lation (with trivial changes of basis units in the exponentials) [27, 24, 25], but aswith the NMR transforms, the quaternion nature of the transforms was appliedessentially to separation of the two independent dimensions of an image (Bulowโ€™swork [24, 25] was based on greyscale images, that is with one-dimensional pixelvalues). Two new ideas emerged in 1998 in a paper by Sangwine and Ell [86].These were, firstly, the choice of a general root ๐œ‡ of โˆ’1 (a unit quaternion withzero scalar part) rather than a basis unit (๐’Š, ๐’‹ or ๐’Œ) of the quaternion algebra,

1The two independent time variables arise naturally from the formulation of two-dimensionalNMR spectroscopy.2Note, that Georgiev et al. use this form of the quaternion Fourier transform (QFT) in Chapter 6to extend the Bochnerโ€“Minlos theorem to quaternion analysis. Moreover, the same form of QFTis extended by Georgiev and Morais in Chapter 5 to a quaternion Fourierโ€“Stieltjes transform.3See Chapter 1 by Ell in this volume with a systematic review of possible forms of quaternionFourier transformations.

Page 14: Quaternion and Clifford Fourier Transforms and Wavelets

Quaternion, Cliffordโ€“Fourier & Wavelet Transforms History xiii

and secondly, the choice of a single exponential rather than two (giving a choiceof ordering relative to the quaternionic signal function):

โ„ฑ(๐œ”1, ๐œ”2) =

โˆžโˆซโˆ’โˆž

โˆžโˆซโˆ’โˆž

๐‘’๐œ‡(๐œ”1๐‘ก1+๐œ”2๐‘ก2)๐‘“(๐‘ก1, ๐‘ก2)d๐‘ก1d๐‘ก2 . (1.3)

This made possible a quaternion Fourier transform of a one-dimensional signal:

โ„ฑ(๐œ”) =โˆžโˆซ

โˆ’โˆž๐‘’๐œ‡๐œ”๐‘ก๐‘“(๐‘ก)d๐‘ก . (1.4)

Such a transform makes sense only if the signal function has quaternion values,suggesting applications where the signal has three or four independent components.(An example is vibrations in a solid, such as rock, detected by a sensor with threemutually orthogonal transducers, such as a vector geophone.)

Very little has appeared in print about the interpretation of the Fourier coef-ficients resulting from a quaternion Fourier transform. One interpretation is com-ponents of different symmetry, as explained by Ell in Chapter 1. Sangwine and Ellin 2007 published a paper about quaternion Fourier transforms applied to colourimages, with a detailed explanation of the Fourier coefficients in terms of ellipticalpaths in colour space (the ๐‘›-dimensional space of the values of the image pixels ina colour image) [48].

1.2. Splitting Quaternions and the QFT

Following the earlier works of Ernst, Ell, Sangwine (see Section 1.1), and Bulow[24, 25], Hitzer thoroughly studied the quaternion Fourier transform (QFT) appliedto quaternion-valued functions in [54]. As part of this work a quaternion split

๐‘žยฑ =1

2(๐‘ž ยฑ ๐’Š๐‘ž๐’‹), ๐‘ž โˆˆ โ„, (1.5)

was devised and applied, which led to a better understanding of ๐บ๐ฟ(โ„2) trans-formation properties of the QFT spectrum of two-dimensional images, includingcolour images, and opened the way to a generalization of the QFT concept to afull spacetime Fourier transformation (SFT) for spacetime algebra ๐ถโ„“3,1-valuedsignals.

This was followed up by the establishment of a fully directional (opposedto componentwise) uncertainty principle for the QFT and the SFT [58]. Indepen-dently Mawardi et al. [77] established a componentwise uncertainty principle forthe QFT.

The QFT with a Gabor window was treated by Bulow [24], a study whichhas been continued by Mawardi et al. in [1].

Hitzer reports in [59] initial results (obtained in co-operation with Sangwine)about a further generalization of the QFT to a general form of orthogonal 2Dplanes split (OPS-) QFT, where the split (1.5) with respect to two orthogonalpure quaternion units ๐’Š, ๐’‹ is generalized to a steerable split with respect to any two

Page 15: Quaternion and Clifford Fourier Transforms and Wavelets

xiv F. Brackx, E. Hitzer and S.J. Sangwine

pure unit quaternions ๐‘“, ๐‘” โˆˆ โ„, ๐‘“2 = ๐‘”2 = โˆ’1. This approach is fully elaboratedupon in a contribution to the current volume (see Chapter 2). Note that theCayleyโ€“Dickson form [87] of quaternions and the related simplex/perplex split[47] are obtained for ๐‘“ = ๐‘” = ๐’Š (or more general ๐‘“ = ๐‘” = ๐œ‡), which is employed inChapter 3 for a novel spectral analysis of non-stationary improper complex signals.

2. Cliffordโ€“Fourier Transformations in Cliffordโ€™sGeometric Algebra

W.K. Clifford introduced (Clifford) geometric algebras in 1876 [28]. An introduc-tion to the vector and multivector calculus, with functions taking values in Cliffordalgebras, used in the field of Cliffordโ€“Fourier transforms (CFT) can be found in[53, 52]. A tutorial introduction to CFTs and Clifford wavelet transforms can befound in [55]. The Clifford algebra application survey [65] contains an up to datesection on applications of Clifford algebra integral transforms, including CFTs,QFTs and wavelet transforms4.

2.1. How Clifford Algebra Square Roots of โˆ’1 Lead to Cliffordโ€“FourierTransformations

In 1990 Jancewicz defined a trivector Fourier transformation

โ„ฑ3{๐‘”}(๐Ž) =โˆซโ„3

๐‘”(x)๐‘’โˆ’๐‘–3xโ‹…๐Ž๐‘‘3x, ๐‘–3 = ๐’†1๐’†2๐’†3, ๐‘” : โ„3 โ†’ ๐ถโ„“3,0, (2.1)

for the electromagnetic field5 replacing the imaginary unit ๐‘– โˆˆ โ„‚ by the centraltrivector ๐‘–3, ๐‘–

23 = โˆ’1, of the geometric algebra ๐ถโ„“3,0 of three-dimensional Euclidean

space โ„3 = โ„3,0 with orthonormal vector basis {๐’†1, ๐’†2, ๐’†3}.In [50] Felsberg makes use of signal embeddings in low-dimensional Clifford

algebras โ„2,0 and โ„3,0 to define his Cliffordโ€“Fourier transform (CFT) for one-dimensional signals as

โ„ฑ๐‘“๐‘’1 [๐‘“ ](๐‘ข) =

โˆซโ„

exp (โˆ’2๐œ‹๐‘–2๐‘ข๐‘ฅ) ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ, ๐‘–2 = ๐’†1๐’†2, ๐‘“ : โ„โ†’ โ„, (2.2)

where he uses the pseudoscalar ๐‘–2 โˆˆ ๐ถโ„“2,0, ๐‘–22 = โˆ’1. For two-dimensional signals6

he defines the CFT as

โ„ฑ๐‘“๐‘’2 [๐‘“ ](๐‘ข) =

โˆซโ„2

exp (โˆ’2๐œ‹๐‘–3 < ๐‘ข, ๐‘ฅ >) ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ, ๐‘“ : โ„2 โ†’ โ„2, (2.3)

4Fourier and wavelet transforms provide alternative signal and image representations. See Chap-

ter 9 for a spinorial representation and Chapter 16 by Li and Qian for a sparse representation ofsignals in a Hardy space dictionary (of elementary wave forms) over a unit disk.5Note also Chapter 11 in this volume, in which Bernstein considers optical coherence tomography,formulating the Maxwell equations with the Dirac operator and Clifford algebra.6Note in this context the spinor representation of images by Batard and Berthier in Chapter 9of this volume. The authors apply a CFT in ๐ถโ„“3,0 to the spinor represenation, which uses inthe exponential kernel an adapted choice of bivector, that belongs to the orthonormal frame

of the tangent bundle of an oriented two-dimensional Riemannian manifold, isometrically im-mersed in โ„3.

Page 16: Quaternion and Clifford Fourier Transforms and Wavelets

Quaternion, Cliffordโ€“Fourier & Wavelet Transforms History xv

where he uses the pseudoscalar ๐‘–3 โˆˆ ๐ถโ„“3,0. It is used amongst others to introducea concept of two-dimensional analytic signal. Together with Bulow and Sommer,Felsberg applied these CFTs to image stucture processing (key-notion: structuremultivector) [50, 24].

Ebling and Scheuermann [44, 43] consequently applied to vector signal pro-cessing in two- and three dimensions, respectively, the following two-dimensionalCFT

โ„ฑ2{๐‘“}(๐Ž) =โˆซโ„2

๐‘“(x)๐‘’โˆ’๐‘–2xโ‹…๐Ž๐‘‘2x, ๐‘“ : โ„2 โ†’ โ„2, (2.4)

with Cliffordโ€“Fourier kernel

exp (โˆ’๐’†1๐’†2(๐œ”1๐‘ฅ1 + ๐œ”2๐‘ฅ2)), (2.5)

and the three-dimensional CFT (2.1) of Jancewicz with Cliffordโ€“Fourier kernel

exp (โˆ’๐’†1๐’†2๐’†3(๐œ”1๐‘ฅ1 + ๐œ”2๐‘ฅ2 + ๐œ”3๐‘ฅ3)). (2.6)

An important integral operation defined and applied in this context by Eblingand Scheuermann was the Clifford convolution. These Cliffordโ€“Fourier transformsand the corresponding convolution theorems allow Ebling and Scheuermann foramongst others the analysis of vector-valued patterns in the frequency domain.

Note that the latter Fourier kernel (2.6) has also been used by Mawardi andHitzer in [78, 63, 78] to define their Cliffordโ€“Fourier transform of three-dimensionalmultivector signals: that means, they researched the properties of โ„ฑ3{๐‘”}(๐Ž) of(2.1) in detail when applied to full multivector signals ๐‘” : โ„3 โ†’ ๐ถโ„“3,0. This includedan investigation of the uncertainty inequality for this type of CFT. They subse-quently generalized โ„ฑ3{๐‘”}(๐Ž) to dimensions ๐‘› = 3(mod 4), i.e., ๐‘› = 3, 7, 11, . . .,

โ„ฑ๐‘›{๐‘”}(๐Ž) =โˆซโ„๐‘›

๐‘”(x)๐‘’โˆ’๐‘–๐‘›xโ‹…๐Ž๐‘‘๐‘›x, ๐‘” : โ„๐‘› โ†’ ๐ถโ„“๐‘›,0, (2.7)

which is straightforward, since for these dimensions the pseudoscalar ๐‘–๐‘› = ๐’†1 . . . ๐’†๐‘›squares to โˆ’1 and is central [64], i.e., it commutes with every other multivectorbelonging to ๐ถโ„“๐‘›,0. A little less trivial is the generalization of โ„ฑ2{๐‘“}(๐Ž) of (2.4) to

โ„ฑ๐‘›{๐‘“}(๐Ž) =โˆซโ„๐‘›

๐‘“(x)๐‘’โˆ’๐‘–๐‘›xโ‹…๐Ž๐‘‘๐‘›x, ๐‘“ : โ„๐‘› โ†’ ๐ถโ„“๐‘›,0, (2.8)

with ๐‘› = 2(mod 4), i.e., ๐‘› = 2, 6, 10 . . ., because in these dimensions the pseu-doscalar ๐‘–๐‘› = ๐’†1 . . .๐’†๐‘› squares to โˆ’1, but it ceases to be central. So the relativeorder of the factors in โ„ฑ๐‘›{๐‘“}(๐Ž) becomes important, see [66] for a systematicinvestigation and comparison.

In the context of generalizing quaternion Fourier transforms (QFT) via alge-bra isomorphisms to higher-dimensional Clifford algebras, Hitzer [54] constructeda spacetime Fourier transform (SFT) in the full algebra of spacetime ๐ถโ„“3,1, whichincludes the CFT (2.1) as a partial transform of space. Implemented analogously(isomorphicaly) to the orthogonal 2D planes split of quaternions, the SFT permitsa natural spacetime split, which algebraically splits the SFT into right and leftpropagating multivector wave packets. This analysis allows to compute the effect

Page 17: Quaternion and Clifford Fourier Transforms and Wavelets

xvi F. Brackx, E. Hitzer and S.J. Sangwine

of Lorentz transformations on the spectra of these wavepackets, as well as a 4Ddirectional spacetime uncertainty formula [58] for spacetime signals.

Mawardi et al. extended the CFT โ„ฑ2{๐‘“}(๐Ž) of (2.4) to a windowed CFT in[76]. Fu et al. establish in Chapter 15 a strong version of Heisenbergโ€™s uncertaintyprinciple for Gabor-windowed CFTs.

In Chapter 8 in this volume, Bujack, Scheuermann, and Hitzer, expand thenotion of Cliffordโ€“Fourier transform to include multiple left and right exponentialkernel factors, in which commuting (or anticommuting) blades, that square toโˆ’1, replace the complex unit ๐‘– โˆˆ โ„‚, thus managing to include most practicallyused CFTs in a single comprehensive framework. Based on this they have alsoconstructed a general CFT convolution theorem [23].

Spurred by the systematic investigation of (complex quaternion) biquater-nion square roots of โˆ’1 in ๐ถโ„“3,0 by Sangwine [85], Hitzer and Ablamowicz [62]systematically investigated the explicit equations and solutions for square roots ofโˆ’1 in all real Clifford algebras ๐ถโ„“๐‘,๐‘ž, ๐‘+ ๐‘ž โ‰ค 4. This investigation is continued inthe present volume in Chapter 7 by Hitzer, Helmstetter and Ablamowicz for allsquare roots of โˆ’1 in all real Clifford algebras ๐ถโ„“๐‘,๐‘ž without restricting the valueof ๐‘› = ๐‘ + ๐‘ž. One important motivation for this is the relevance of the Cliffordalgebra square roots of โˆ’1 for the general construction of CFTs, where the imagi-nary unit ๐‘– โˆˆ โ„‚ is replaced by a

โˆšโˆ’1 โˆˆ ๐ถโ„“๐‘,๐‘ž, without restriction to pseudoscalarsor blades.

Based on the knowledge of square roots of โˆ’1 in real Clifford algebras ๐ถโ„“๐‘,๐‘ž,[60] develops a general CFT in ๐ถโ„“๐‘,๐‘ž, wherein the complex unit ๐‘– โˆˆ โ„‚ is replacedby any square root of โˆ’1 chosen from any component and (or) conjugation classof the submanifold of square roots of โˆ’1 in ๐ถโ„“๐‘,๐‘ž, and details its properties, in-cluding a convolution theorem. A similar general approach is taken in [61] for theconstruction of two-sided CFTs in real Clifford algebras ๐ถโ„“๐‘,๐‘ž, freely choosing twosquare roots from any one or two components and (or) conjugation classes of thesubmanifold of square roots of โˆ’1 in ๐ถโ„“๐‘,๐‘ž. These transformations are thereforegenerically steerable.

This algebraically motivated approach may in the future be favorably com-bined with group theoretic, operator theoretic and spinorial approaches, to bediscussed in the following.

2.2. The Cliffordโ€“Fourier Transform in the Light of Clifford Analysis

Two robust tools used in image processing and computer vision for the analysisof scalar fields are convolution and Fourier transformation. Several attempts havebeen made to extend these methods to two- and three-dimensional vector fieldsand even multi-vector fields. Let us give an overview of those generalized Fouriertransforms.

In [25] Bulow and Sommer define a so-called quaternionic Fourier transformof two-dimensional signals ๐‘“(๐‘ฅ1, ๐‘ฅ2) taking their values in the algebra โ„ of realquaternions. Note that the quaternion algebra โ„ is nothing else but (isomorphicto) the Clifford algebra ๐ถโ„“0,2 where, traditionally, the basis vectors are denoted

Page 18: Quaternion and Clifford Fourier Transforms and Wavelets

Quaternion, Cliffordโ€“Fourier & Wavelet Transforms History xvii

by ๐’Š and ๐’‹, with ๐’Š2 = ๐’‹2 = โˆ’1, and the bivector by ๐’Œ = ๐’Š๐’‹. In terms of these basisvectors this quaternionic Fourier transform takes the form

โ„ฑ๐‘ž[๐‘“ ](๐‘ข1, ๐‘ข2) =

โˆซโ„2

exp (โˆ’2๐œ‹๐’Š๐‘ข1๐‘ฅ1) ๐‘“(๐‘ฅ1, ๐‘ฅ2) exp (โˆ’2๐œ‹๐’‹๐‘ข2๐‘ฅ2) ๐‘‘๐‘ฅ. (2.9)

Due to the non-commutativity of the multiplication in โ„, the convolution theoremfor this quaternionic Fourier transform is rather complicated, see also [23].

This is also the case for its higher-dimensional analogue, the so-called Clif-fordโ€“Fourier transform7 in ๐ถโ„“0,๐‘š given by

โ„ฑ๐‘๐‘™[๐‘“ ](๐‘ข) =

โˆซโ„๐‘š

๐‘“(๐‘ฅ) exp (โˆ’2๐œ‹๐’†1๐‘ข1๐‘ฅ1) . . . exp (โˆ’2๐œ‹๐’†๐‘š๐‘ข๐‘š๐‘ฅ๐‘š) ๐‘‘๐‘ฅ. (2.10)

Note that for ๐‘š = 1 and interpreting the Clifford basis vector ๐’†1 as the imaginaryunit ๐‘–, the Cliffordโ€“Fourier transform (2.10) reduces to the standard Fourier trans-form on the real line, while for ๐‘š = 2 the quaternionic Fourier transform (2.9) isrecovered when restricting to real signals.

Finally Bulow and Sommer also introduce a so-called commutative hyper-complex Fourier transform given by

โ„ฑโ„Ž[๐‘“ ](๐‘ข) =

โˆซโ„๐‘š

๐‘“(๐‘ฅ) exp(โˆ’2๐œ‹โˆ‘๐‘š

๐‘—=1๏ฟฝ๏ฟฝ๐‘—๐‘ข๐‘—๐‘ฅ๐‘—

)๐‘‘๐‘ฅ (2.11)

where the basis vectors (๏ฟฝ๏ฟฝ1, . . . , ๏ฟฝ๏ฟฝ๐‘š) obey the commutative multiplication rules๏ฟฝ๏ฟฝ๐‘— ๏ฟฝ๏ฟฝ๐‘˜ = ๏ฟฝ๏ฟฝ๐‘˜๏ฟฝ๏ฟฝ๐‘— , ๐‘—, ๐‘˜ = 1, . . . ,๐‘š, while still retaining ๏ฟฝ๏ฟฝ2

๐‘— = โˆ’1, ๐‘— = 1, . . . ,๐‘š. Thiscommutative hypercomplex Fourier transform offers the advantage of a simpleconvolution theorem.

The hypercomplex Fourier transforms โ„ฑ๐‘ž, โ„ฑ๐‘๐‘™ and โ„ฑโ„Ž enable Bulow andSommer to establish a theory of multi-dimensional signal analysis and in partic-ular to introduce the notions of multi-dimensional analytic signal8, Gabor filter,instantaneous and local amplitude and phase, etc.

In this context the Cliffordโ€“Fourier transformations by Felsberg [50] for one-and two-dimensional signals, by Ebling and Scheuermann for two- and three-dimensional vector signal processing [44, 43], and by Mawardi and Hitzer for gen-eral multivector signals in ๐ถโ„“3,0 [78, 63, 78], and their respective kernels, as alreadyreviewed in Section 2.1, should also be considered.

The above-mentioned Cliffordโ€“Fourier kernel of Bulow and Sommer

exp (โˆ’2๐œ‹๐’†1๐‘ข1๐‘ฅ1) โ‹… โ‹… โ‹… exp (โˆ’2๐œ‹๐’†๐‘š๐‘ข๐‘š๐‘ฅ๐‘š) (2.12)

was in fact already introduced in [19] and [89] as a theoretical concept in theframework of Clifford analysis. This generalized Fourier transform was furtherelaborated by Sommen in [90, 91] in connection with similar generalizations ofthe Cauchy, Hilbert and Laplace transforms. In this context also the work of Li,McIntosh and Qian should be mentioned; in [72] they generalize the standard

7Note that in this volume Mawardi establishes in Chapter 14 a windowed version of the CFT

(2.10).8See also Chapter 10 by Girard et al. and Chapter 11 by Bernstein et al. in this volume.

Page 19: Quaternion and Clifford Fourier Transforms and Wavelets

xviii F. Brackx, E. Hitzer and S.J. Sangwine

multi-dimensional Fourier transform of a function in โ„๐‘š, by extending the Fourierkernel exp

(๐‘–โŸจ๐œ‰, ๐‘ฅโŸฉ)

to a function which is holomorphic in โ„‚๐‘š and monogenic9

in โ„๐‘š+1.In [15, 16, 18] Brackx, De Schepper and Sommen follow another philoso-

phy in their construction of a Cliffordโ€“Fourier transform. One of the most funda-mental features of Clifford analysis is the factorization of the Laplace operator.Indeed, whereas in general the square root of the Laplace operator is only a pseudo-differential operator, by embedding Euclidean space into a Clifford algebra, onecan realize

โˆšโˆ’ฮ”๐‘š as the Dirac operator โˆ‚๐‘ฅ. In this way Clifford analysis sponta-neously refines harmonic analysis. In the same order of ideas, Brackx et al. decidedto not replace nor to improve the classical Fourier transform by a Clifford analysisalternative, since a refinement of it automatically appears within the language ofClifford analysis. The key step to making this refinement apparent is to interpretthe standard Fourier transform as an operator exponential:

โ„ฑ = exp(โˆ’๐‘–

๐œ‹

2โ„‹)=

โˆžโˆ‘๐‘˜=0

1

๐‘˜!

(โˆ’๐‘–

๐œ‹

2

)๐‘˜โ„‹๐‘˜ , (2.13)

where โ„‹ is the scalar operator

โ„‹ =1

2

(โˆ’ฮ”๐‘š + ๐‘Ÿ2 โˆ’๐‘š). (2.14)

This expression links the Fourier transform with the Lie algebra ๐”ฐ๐”ฉ2 generated

by ฮ”๐‘š and ๐‘Ÿ2 = โˆฃ๐‘ฅโˆฃ2 and with the theory of the quantum harmonic oscillatordetermined by the Hamiltonian โˆ’ 1

2

(ฮ”๐‘š โˆ’ ๐‘Ÿ2

). Splitting the operator โ„‹ into a

sum of Clifford algebra-valued second-order operators containing the angular Diracoperator ฮ“, one is led, in a natural way, to a pair of transforms โ„ฑโ„‹ยฑ , the harmonicaverage of which is precisely the standard Fourier transform:

โ„ฑโ„‹ยฑ = exp

(๐‘–๐œ‹๐‘š

4

)exp

(โˆ“ ๐‘–๐œ‹ฮ“

2

)exp

(๐‘–๐œ‹

4

(ฮ”๐‘š โˆ’ ๐‘Ÿ2

)). (2.15)

For the special case of dimension two, Brackx et al. obtain a closed form forthe kernel of the integral representation of this Cliffordโ€“Fourier transform leadingto its internal representation

โ„ฑโ„‹ยฑ [๐‘“ ](๐œ‰) = โ„ฑโ„‹ยฑ [๐‘“ ](๐œ‰1, ๐œ‰2) =1

2๐œ‹

โˆซโ„2

exp(ยฑ๐’†12(๐œ‰1๐‘ฅ2 โˆ’ ๐œ‰2๐‘ฅ1)

)๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ , (2.16)

which enables the generalization of the calculation rules for the standard Fouriertransform both in the ๐ฟ1 and in the ๐ฟ2 context. Moreover, the Cliffordโ€“Fouriertransform of Ebling and Scheuermann

โ„ฑ๐‘’[๐‘“ ](๐œ‰) =

โˆซโ„2

exp (โˆ’๐’†12(๐‘ฅ1๐œ‰1 + ๐‘ฅ2๐œ‰2)) ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ , (2.17)

9See also in this volume Chapter 4 by Moya-Sanchez and Bayro-Corrochano on the applicationof atomic function based monogenic signals.

Page 20: Quaternion and Clifford Fourier Transforms and Wavelets

Quaternion, Cliffordโ€“Fourier & Wavelet Transforms History xix

can be expressed in terms of the Cliffordโ€“Fourier transform:

โ„ฑ๐‘’[๐‘“ ](๐œ‰) = 2๐œ‹โ„ฑโ„‹ยฑ [๐‘“ ](โˆ“๐œ‰2,ยฑ๐œ‰1) = 2๐œ‹โ„ฑโ„‹ยฑ [๐‘“ ](ยฑ๐’†12๐œ‰) , (2.18)

taking into account that, under the isomorphism between the Clifford algebras๐ถโ„“2,0 and ๐ถโ„“0,2, both pseudoscalars are isomorphic images of each other.

The question whether โ„ฑโ„‹ยฑ can be written as an integral transform is an-swered positively in the case of even dimension by De Bie and Xu in [39]. Theintegral kernel of this transform is not easy to obtain and looks quite complicated.In the case of odd dimension the problem is still open.

Recently, in [35], De Bie and De Schepper have studied the fractional Cliffordโ€“Fourier transform as a generalization of both the standard fractional Fourier trans-form and the Cliffordโ€“Fourier transform. It is given as an operator exponential by

โ„ฑ๐›ผ,๐›ฝ = exp

(๐‘–๐›ผ๐‘š

2

)exp (๐‘–๐›ฝฮ“) exp

(๐‘–๐›ผ

2

(ฮ”๐‘š โˆ’ ๐‘Ÿ2

)). (2.19)

For the corresponding integral kernel a series expansion is obtained, and, in thecase of dimension two, an explicit expression in terms of Bessel functions.

The above, more or less chronological, overview of generalized Fourier trans-forms in the framework of quaternionic and Clifford analysis, gives the impressionof a medley of ad hoc constructions. However there is a structure behind some ofthese generalizations, which becomes apparent when, as already slightly touchedupon above, the Fourier transform is linked to group representation theory, inparticular the Lie algebras ๐”ฐ๐”ฉ2 and ๐”ฌ๐”ฐ๐”ญ(1โˆฃ2). This unifying character is beautifullydemonstrated by De Bie in the overview paper [34], where, next to an extensivebibliography, also new results on some of the transformations mentioned belowcan be found. It is shown that using realizations of the Lie algebra ๐”ฐ๐”ฉ2 one is leadto scalar generalizations of the Fourier transform, such as:

(i) the fractional Fourier transform, which is, as the standard Fourier transform,invariant under the orthogonal group; this transform has been reinventedseveral times as well in mathematics as in physics, and is attributed to Namias[81], Condon [30], Bargmann [2], Collins [29], Moshinsky and Quesne [80];for a detailed overview of the theory and recent applications of the fractionalFourier transform we refer the reader to [82];

(ii) the Dunkl transform, see, e.g., [42], where the symmetry is reduced to thatof a finite reflection group;

(iii) the radially deformed Fourier transform, see, e.g., [71], which encompassesboth the fractional Fourier and the Dunkl transform;

(iv) the super Fourier transform, see, e.g., [33, 31], which is defined in the contextof superspaces and is invariant under the product of the orthogonal with thesymplectic group.

Realizations of the Lie algebra ๐”ฌ๐”ฐ๐”ญ(1โˆฃ2), on the contrary, need the framework ofClifford analysis, and lead to:

Page 21: Quaternion and Clifford Fourier Transforms and Wavelets

xx F. Brackx, E. Hitzer and S.J. Sangwine

(v) the Cliffordโ€“Fourier transform and the fractional Cliffordโ€“Fourier transform,both already mentioned above; meanwhile an entire class of Cliffordโ€“Fouriertransforms has been thoroughly studied in [36];

(vi) the radially deformed hypercomplex Fourier transform, which appears as aspecial case in the theory of radial deformations of the Lie algebra ๐”ฌ๐”ฐ๐”ญ(1โˆฃ2),see [38, 37], and is a topic of current research, see [32].

3. Quaternion and Clifford Wavelets

3.1. Clifford Wavelets in Clifford Analysis

The interest of the Ghent Clifford Research Group for generalizations of the Fouriertransform in the framework of Clifford analysis, grew out from the study of the mul-tidimensional Continuous Wavelet Transform in this particular setting. Clifford-wavelet theory, however restricted to the continuous wavelet transform, was initi-ated by Brackx and Sommen in [20] and further developed by N. De Schepper in herPhD thesis [40]. The Clifford-wavelets originate from a mother wavelet not only bytranslation and dilation, but also by rotation, making the Clifford-wavelets appro-priate for detecting directional phenomena. Rotations are implemented as specificactions on the variable by a spin element, since, indeed, the special orthogonalgroup SO(๐‘š) is doubly covered by the spin group Spin(๐‘š) of the real Cliffordalgebra ๐ถโ„“0,๐‘š. The mother wavelets themselves are derived from intentionally de-vised orthogonal polynomials in Euclidean space. It should be noted that theseorthogonal polynomials are not tensor products of one-dimensional ones, but gen-uine multidimensional ones satisfying the usual properties such as a Rodriguesformula, recurrence relations, and differential equations. In this way multidimen-sional Clifford wavelets were constructed grafted on the Hermite polynomials [21],Laguerre polynomials [14], Gegenbauer polynomials [13], Jacobi polynomials [17],and Bessel functions [22].

Taking the dimension ๐‘š to be even, say๐‘š = 2๐‘›, introducing a complex struc-ture, i.e., an SO(2๐‘›)-element squaring up to โˆ’1, and considering functions withvalues in the complex Clifford algebra โ„‚2๐‘›, so-called Hermitian Clifford analysisoriginates as a refinement of standard or Euclidean Clifford analysis. It should benoticed that the traditional holomorphic functions of several complex variables ap-pear as a special case of Hermitian Clifford analysis, when the function values arerestricted to a specific homogeneous part of spinor space. In this Hermitian settingthe standard Dirac operator, which is invariant under the orthogonal group O(๐‘š),is split into two Hermitian Dirac operators, which are now invariant under theunitary group U(๐‘›). Also in this Hermitian Clifford analysis framework, multidi-mensional wavelets have been introduced by Brackx, H. De Schepper and Sommen[11, 12], as kernels for a Hermitian Continuous Wavelet Transform, and (general-ized) Hermitian Cliffordโ€“Hermite polynomials have been devised to generate thecorresponding Hermitian wavelets [9, 10].

Page 22: Quaternion and Clifford Fourier Transforms and Wavelets

Quaternion, Cliffordโ€“Fourier & Wavelet Transforms History xxi

3.2. Further Developments in Quaternion and Clifford Wavelet Theory

Clifford algebra multiresolution analysis (MRA) has been pioneered by M. Mitrea[79]. Important are also the electromagnetic signal application oriented develop-ments of Clifford algebra wavelets by G. Kaiser [70, 67, 68, 69].

Quaternion MRA Wavelets with applications to image analysis have beendeveloped in [92] by Traversoni. Clifford algebra multiresolution analysis has beenapplied by Bayro-Corrochano [5, 3, 4] to: Clifford wavelet neural networks (infor-mation processing), also considering quaternionic MRA, a quaternionic waveletphase concept, as well as applications to (e.g., robotic) motion estimation andimage processing.

Beyond this Zhao and Peng [94] established a theory of quaternion-valuedadmissible wavelets. Zhao [93] studied Clifford algebra-valued admissible (continu-ous) wavelets using the complex Fourier transform for the spectral representation.Mawardi and Hitzer [74, 75] extended this to continuous Clifford and Cliffordโ€“Gabor wavelets in ๐ถโ„“3,0 using the CFT of (2.1) for the spectral representation.They also studied a corresponding Clifford wavelet transform uncertainty prin-ciple. Hitzer [56, 57] generalized this approach to continous admissible Cliffordalgebra wavelets in real Clifford algebras ๐ถโ„“๐‘›,0 of dimensions ๐‘› = 2, 3(mod 4),i.e., ๐‘› = 2, 3, 6, 7, 10, 11, . . .. Restricted to ๐ถโ„“๐‘›,0 of dimensions ๐‘› = 2(mod 4) thisapproach has also been taken up in [73].

Kahler et al. [26] treated monogenic (Clifford) wavelets over the unit ball.Bernstein studied Clifford continuous wavelet transforms in ๐ฟ0,2 and ๐ฟ0,3 [6], aswell as monogenic kernels and wavelets on the three-dimensional sphere [7]. Bern-stein et al. [8] further studied Clifford diffusion wavelets on conformally flat cylin-ders and tori. In the current volume Soulard and Carre extend in Chapter 12 thetheory and application of monogenic wavelets to colour image denoising.

References

[1] M. Bahri, E. Hitzer, R. Ashino, and R. Vaillancourt. Windowed Fourier transformof two-dimensional quaternionic signals. Applied Mathematics and Computation,216(8):2366โ€“2379, June 2010.

[2] V. Bargmann. On a Hilbert space of analytic functions and an associated integraltransform. Communications on Pure and Applied Mathematics, 14(3):187โ€“214, Aug.1961.

[3] E. Bayro-Corrochano. Multi-resolution image analysis using the quaternion wavelettransform. Numerical Algorithms, 39(1โ€“3):35โ€“55, 2005.

[4] E. Bayro-Corrochano. The theory and use of the quaternion wavelet transform. Jour-nal of Mathematical Imaging and Vision, 24:19โ€“35, 2006.

[5] E. Bayro-Corrochano and M.A. de la Torre Gomora. Image processing using the qua-ternion wavelet transform. In Proceedings of the Iberoamerican Congress on PatternRecognition, CIARPโ€™ 2004, pages 612โ€“620, Puebla, Mexico, October 2004.

[6] S. Bernstein. Clifford continuous wavelet transforms in ๐‘™0,2 and ๐‘™0,3. In T.E. Simos,G. Psihoyios, and C. Tsitouras, editors, NUMERICAL ANALYSIS AND APPLIED

Page 23: Quaternion and Clifford Fourier Transforms and Wavelets

xxii F. Brackx, E. Hitzer and S.J. Sangwine

MATHEMATICS: International Conference on Numerical Analysis and AppliedMathematics, volume 1048 of AIP Conference Proceedings, pages 634โ€“637, Psalidi,Kos, Greece, 16โ€“20 September 2008.

[7] S. Bernstein. Spherical singular integrals, monogenic kernels and wavelets on the 3Dsphere. Advances in Applied Clifford Algebras, 19(2):173โ€“189, 2009.

[8] S. Bernstein, S. Ebert, and R.S. Krausshar. Diffusion wavelets on conformally flatcylinders and tori. In Simos et al. [88], pages 773โ€“776.

[9] F. Brackx, H. De Schepper, N. De Schepper, and F. Sommen. The generalized Her-mitean Cliffordโ€“Hermite continuous wavelet transform. In T.E. Simos, G. Psihoyios,and C. Tsitouras, editors, NUMERICAL ANALYSIS AND APPLIED MATHE-MATICS: International Conference of Numerical Analysis and Applied Mathemat-ics, volume 936 of AIP Conference Proceedings, pages 721โ€“725, Corfu, Greece, 16โ€“20September 2007.

[10] F. Brackx, H. De Schepper, N. De Schepper, and F. Sommen. Generalized HermiteanCliffordโ€“Hermite polynomials and the associated wavelet transform. MathematicalMethods in the Applied Sciences, 32(5):606โ€“630, 2009.

[11] F. Brackx, H. De Schepper, and F. Sommen. A Hermitian setting for wavelet analysis:the basics. In Proceedings of the 4th International Conference on Wavelet Analysisand Its Applications, 2005.

[12] F. Brackx, H. De Schepper, and F. Sommen. A theoretical framework for waveletanalysis in a Hermitean Clifford setting. Communications on Pure and Applied Anal-ysis, 6(3):549โ€“567, 2007.

[13] F. Brackx, N. De Schepper, and F. Sommen. The Cliffordโ€“Gegenbauer polynomialsand the associated continuous wavelet transform. Integral Transforms and SpecialFunctions, 15(5):387โ€“404, 2004.

[14] F. Brackx, N. De Schepper, and F. Sommen. The Cliffordโ€“Laguerre continuouswavelet transform. Bulletin of the Belgian Mathematical Society โ€“ Simon Stevin,11(2):201โ€“215, 2004.

[15] F. Brackx, N. De Schepper, and F. Sommen. The Cliffordโ€“Fourier transform. Journalof Fourier Analysis and Applications, 11(6):669โ€“681, 2005.

[16] F. Brackx, N. De Schepper, and F. Sommen. The two-dimensional Cliffordโ€“Fouriertransform. Journal of Mathematical Imaging and Vision, 26(1):5โ€“18, 2006.

[17] F. Brackx, N. De Schepper, and F. Sommen. Cliffordโ€“Jacobi polynomials and theassociated continuous wavelet transform in Euclidean space. In Qian et al. [83], pages185โ€“198.

[18] F. Brackx, N. De Schepper, and F. Sommen. The Fourier transform in Cliffordanalysis. Advances in Imaging and Electron Physics, 156:55โ€“201, 2009.

[19] F. Brackx, R. Delanghe, and F. Sommen. Clifford Analysis, volume 76. Pitman,Boston, 1982.

[20] F. Brackx and F. Sommen. The continuous wavelet transform in Clifford analysis.In F. Brackx, J.S.R. Chisholm, and V. Soucek, editors, Clifford Analysis and itsApplications, pages 9โ€“26. Kluwer, 2001.

[21] F. Brackx and F. Sommen. The generalized Cliffordโ€“Hermite continuous wavelettransform. Advances in Applied Clifford Algebras, 11(S1):219โ€“231, Feb. 2001.

Page 24: Quaternion and Clifford Fourier Transforms and Wavelets

Quaternion, Cliffordโ€“Fourier & Wavelet Transforms History xxiii

[22] F. Brackx and F. Sommen. Cliffordโ€“Bessel wavelets in Euclidean space.MathematicalMethods in the Applied Sciences, 25(16โ€“18):1479โ€“1491, Nov./Dec. 2002.

[23] R. Bujack, G. Scheuermann, and E. Hitzer. A general geometric Fourier transformconvolution theorem. Advances in Applied Clifford Algebras, 23(1):15โ€“38, 2013.

[24] T. Bulow. Hypercomplex Spectral Signal Representations for the Processing and Anal-ysis of Images. PhD thesis, University of Kiel, Germany, Institut fur Informatik undPraktische Mathematik, Aug. 1999.

[25] T. Bulow and G. Sommer. Hypercomplex signals โ€“ a novel extension of the ana-lytic signal to the multidimensional case. IEEE Transactions on Signal Processing,49(11):2844โ€“2852, Nov. 2001.

[26] P. Cerejeiras, M. Ferreira, and U. Kahler. Monogenic wavelets over the unit ball.Zeitschrift fur Analysis und ihre Anwendungen, 24(4):841โ€“852, 2005.

[27] V.M. Chernov. Discrete orthogonal transforms with data representation in compo-sition algebras. In Proceedings Scandinavian Conference on Image Analysis, pages357โ€“364, Uppsala, Sweden, 1995.

[28] W.K. Clifford. On the classification of geometric algebras. In R. Tucker, editor,Math-ematical Papers (1882), pages 397โ€“401. Macmillian, London, 1876. Found amongstCliffordโ€™s notes, of which the forewords are the abstract that he communicated tothe London Mathematical Society on 10th March 1876 (see A. Diek, R. Kantowski,www.nhn.ou.edu/หœski/papers/Clifford/history.ps).

[29] S.A. Collins. Lens-system diffraction integral written in terms of matrix optics. Jour-nal of the Optical Society of America, 60:1168โ€“1177, 1970.

[30] E.U. Condon. Immersion of the Fourier transform in a continuous group of functionaltransformations. Proceedings of the National Academy of Sciences USA, 23:158โ€“164,1937.

[31] K. Coulembier and H. De Bie. Hilbert space for quantum mechanics on superspace.Journal of Mathematical Physics, 52, 2011. 063504, 30 pages.

[32] H. De Bie. The kernel of the radially deformed Fourier transform. PreprintarXiv.org/abs/1303.2979, Mar. 2013.

[33] H. De Bie. Fourier transform and related integral transforms in superspace. Journalof Mathematical Analysis and Applications, 345:147โ€“164, 2008.

[34] H. De Bie. Clifford algebras, Fourier transforms and quantum mechanics. Mathe-matical Methods in the Applied Sciences, 35(18):2198โ€“2225, 2012.

[35] H. De Bie and N. De Schepper. The fractional Cliffordโ€“Fourier transform. ComplexAnalysis and Operator Theory, 6(5):1047โ€“1067, 2012.

[36] H. De Bie, N. De Schepper, and F. Sommen. The class of Cliffordโ€“Fourier transforms.Journal of Fourier Analysis and Applications, 17:1198โ€“1231, 2011.

[37] H. De Bie, B. ร˜rsted, P. Somberg, and V. Soucek. The Clifford deformation ofthe Hermite semigroup. Symmetry, integrability and geometry-methods and appli-cations, vol. 9, 010, 2013. doi: 10.3482/SIGMA.2013.010

[38] H. De Bie, B. ร˜rsted, P. Somberg, and V. Soucek. Dunkl operators and a fam-ily of realizations of ๐”ฌ๐”ฐ๐”ญ(1โˆฃ2). Transactions of the American Mathematical Society,364:3875โ€“3902, 2012.

Page 25: Quaternion and Clifford Fourier Transforms and Wavelets

xxiv F. Brackx, E. Hitzer and S.J. Sangwine

[39] H. De Bie and Y. Xu. On the Cliffordโ€“Fourier transform. International MathematicsResearch Notices, 2011(22):5123โ€“5163, 2011.

[40] N. De Schepper. Multidimensional Continuous Wavelet Transforms and GeneralizedFourier Transforms in Clifford Analysis. PhD thesis, Ghent University, Belgium,2006.

[41] M.A. Delsuc. Spectral representation of 2D NMR spectra by hypercomplex numbers.Journal of magnetic resonance, 77(1):119โ€“124, Mar. 1988.

[42] C.F. Dunkl. Differential-difference operators associated to reflection groups. Trans-actions of the American Mathematical Society, 311:167โ€“183, 1989.

[43] J. Ebling and G. Scheuermann. Clifford Fourier transform on vector fields. IEEETransactions on Visualization and Computer Graphics, 11(4):469โ€“479, July 2005.

[44] J. Ebling and J. Scheuermann. Clifford convolution and pattern matching on vectorfields. In Proceedings IEEE Visualization, volume 3, pages 193โ€“200, Los Alamitos,CA, 2003. IEEE Computer Society.

[45] T.A. Ell. Hypercomplex Spectral Transformations. PhD thesis, University of Min-nesota, June 1992.

[46] T.A. Ell. Quaternion-Fourier transforms for analysis of 2-dimensional linear time-invariant partial-differential systems. In Proceedings of the 32nd Conference on De-cision and Control, pages 1830โ€“1841, San Antonio, Texas, USA, 15โ€“17 December1993. IEEE Control Systems Society.

[47] T.A. Ell and S.J. Sangwine. Decomposition of 2D hypercomplex Fourier transformsinto pairs of complex Fourier transforms. In M. Gabbouj and P. Kuosmanen, editors,Proceedings of EUSIPCO 2000, Tenth European Signal Processing Conference, vol-ume II, pages 1061โ€“1064, Tampere, Finland, 5โ€“8 Sept. 2000. European Associationfor Signal Processing.

[48] T.A. Ell and S.J. Sangwine. Hypercomplex Fourier transforms of color images. IEEETransactions on Image Processing, 16(1):22โ€“35, Jan. 2007.

[49] R.R. Ernst, G. Bodenhausen, and A. Wokaun. Principles of Nuclear Magnetic Res-onance in One and Two Dimensions. International Series of Monographs on Chem-istry. Oxford University Press, 1987.

[50] M. Felsberg. Low-Level Image Processing with the Structure Multivector. PhD thesis,Christian-Albrechts-Universitat, Institut fur Informatik und Praktische Mathematik,Kiel, 2002.

[51] W.R. Hamilton. On a new species of imaginary quantities connected with a theory ofquaternions. Proceedings of the Royal Irish Academy, 2:424โ€“434, 1843. Online: http://www.maths.tcd.ie/pub/HistMath/People/Hamilton/Quatern1/Quatern1.html.

[52] E. Hitzer. Multivector differential calculus. Advances in Applied Clifford Algebras,12(2):135โ€“182, 2002.

[53] E. Hitzer. Vector differential calculus. Memoirs of the Faculty of Engineering, FukuiUniversity, 50(1):109โ€“125, 2002.

[54] E. Hitzer. Quaternion Fourier transform on quaternion fields and generalizations.Advances in Applied Clifford Algebras, 17(3):497โ€“517, May 2007.

[55] E. Hitzer. Tutorial on Fourier transformations and wavelet transformations in Clif-ford geometric algebra. In K. Tachibana, editor, Lecture Notes of the International

Page 26: Quaternion and Clifford Fourier Transforms and Wavelets

Quaternion, Cliffordโ€“Fourier & Wavelet Transforms History xxv

Workshop for โ€˜Computational Science with Geometric Algebraโ€™ (FCSGA2007), pages65โ€“87, Nagoya University, Japan, 14โ€“21 February 2007.

[56] E. Hitzer. Clifford (geometric) algebra wavelet transform. In V. Skala and D. Hilden-brand, editors, Proceedings of GraVisMa 2009, pages 94โ€“101, Plzen, Czech Repub-lic, 2โ€“4 September 2009. Online: http://gravisma.zcu.cz/GraVisMa-2009/Papers_2009/!_2009_GraVisMa_proceedings-FINAL.pdf.

[57] E. Hitzer. Real Clifford algebra ๐‘๐‘™(๐‘›, 0), ๐‘› = 2, 3(mod 4) wavelet transform. In Simoset al. [88], pages 781โ€“784.

[58] E. Hitzer. Directional uncertainty principle for quaternion Fourier transforms. Ad-vances in Applied Clifford Algebras, 20(2):271โ€“284, 2010.

[59] E. Hitzer. OPS-QFTs: A new type of quaternion Fourier transforms based on theorthogonal planes split with one or two general pure quaternions. In T.E. Simos,G. Psihoyios, C. Tsitouras, and Z. Anastassi, editors, NUMERICAL ANALYSISAND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Nu-merical Analysis and Applied Mathematics, volume 1389 of AIP Conference Proceed-ings, pages 280โ€“283, Halkidiki, Greece, 19โ€“25 September 2011.

[60] E. Hitzer. The Clifford Fourier transform in real Clifford algebras. In K. Guerlebeck,T. Lahmer, and F. Werner, editors, Proceedings 19th International Conference onthe Application of Computer Science and Mathematics in Architecture and CivilEngineering, Weimar, Germany, 4โ€“6 July 2012.

[61] E. Hitzer. Two-sided Clifford Fourier transform with two square roots of โˆ’1 in ๐ถโ„“๐‘,๐‘ž.In Proceedings of the 5th Conference on Applied Geometric Algebras in ComputerScience and Engineering (AGACSE 2012), La Rochelle, France, 2โ€“4 July 2012.

[62] E. Hitzer and R. Ablamowicz. Geometric roots of โˆ’1 in Clifford algebras ๐ถโ„“๐‘,๐‘ž with๐‘ + ๐‘ž โ‰ค 4. Advances in Applied Clifford Algebras, 21(1):121โ€“144, 2010. Publishedonline 13 July 2010.

[63] E. Hitzer and B. Mawardi. Uncertainty principle for the Clifford geometric alge-bra ๐‘๐‘™(3, 0) based on Clifford Fourier transform. In T.E. Simos, G. Sihoyios, andC. Tsitouras, editors, International Conference on Numerical Analysis and AppliedMathematics 2005, pages 922โ€“925, Weinheim, 2005. Wiley-VCH.

[64] E. Hitzer and B. Mawardi. Uncertainty principle for Clifford geometric algebras๐ถโ„“๐‘›,0, ๐‘› = 3(mod 4) based on Clifford Fourier transform. In Qian et al. [83], pages47โ€“56.

[65] E. Hitzer, T. Nitta, and Y. Kuroe. Applications of Cliffordโ€™s geometric algebra.Advances in Applied Clifford Algebras, 2013. accepted.

[66] E.M.S. Hitzer and B. Mawardi. Clifford Fourier transform on multivector fields anduncertainty principles for dimensions ๐‘› = 2(mod 4) and ๐‘› = 3(mod 4). Advances inApplied Clifford Algebras, 18(3-4):715โ€“736, 2008.

[67] G. Kaiser. Communications via holomorphic Green functions. In Clifford Analysisand its Applications, Kluwer NATO Science Series, 2001.

[68] G. Kaiser. Complex-distance potential theory, wave equations, and physical wavelets.Mathematical Methods in the Applied Sciences, 25:1577โ€“1588, 2002. Invited paper,Special Issue on Clifford Analysis in Applications.

[69] G. Kaiser. Huygensโ€™ principle in classical electrodynamics: a distributional approach.Advances in Applied Clifford Algebras, 22(3):703โ€“720, 2012.

Page 27: Quaternion and Clifford Fourier Transforms and Wavelets

xxvi F. Brackx, E. Hitzer and S.J. Sangwine

[70] G. Kaiser, E. Heyman, and V. Lomakin. Physical source realization of complex-source pulsed beams. Journal of the Acoustical Society of America, 107:1880โ€“1891,2000.

[71] T. Kobayashi and G. Mano. Integral formulas for the minimal representation of๐‘œ(๐‘, 2). Acta Applicandae Mathematicae, 86:103โ€“113, 2005.

[72] X. Li. On the inverse problem for the Dirac operator. Inverse Problems, 23:919โ€“932,2007.

[73] B. Mawardi, S. Adji, and J. Zhao. Clifford algebra-valued wavelet transform onmultivector fields. Advances in Applied Clifford Algebras, 21(1):13โ€“30, 2011.

[74] B. Mawardi and E. Hitzer. Clifford algebra ๐ถ๐‘™(3, 0)-valued wavelets and uncertaintyinequality for Clifford Gabor wavelet transformation. Preprints of Meeting of theJapan Society for Industrial and Applied Mathematics, 16โ€“18 September 2006.

[75] B. Mawardi and E. Hitzer. Clifford algebra ๐ถ๐‘™(3, 0)-valued wavelet transformation,Clifford wavelet uncertainty inequality and Clifford Gabor wavelets. InternationalJournal of Wavelets, Multiresolution and Information Processing, 5(6):997โ€“1019,2007.

[76] B. Mawardi, E. Hitzer, and S. Adji. Two-dimensional Clifford windowed Fouriertransform. In E. Bayro-Corrochano and G. Scheuermann, editors, Applied GeometricAlgebras in Computer Science and Engineering, pages 93โ€“106. Springer, London,2010.

[77] B. Mawardi, E. Hitzer, A. Hayashi, and R. Ashino. An uncertainty principlefor quaternion Fourier transform. Computers and Mathematics with Applications,56(9):2411โ€“2417, 2008.

[78] B. Mawardi and E.M.S. Hitzer. Clifford Fourier transformation and uncertainty prin-ciple for the Clifford algebra ๐ถโ„“3,0. Advances in Applied Clifford Algebras, 16(1):41โ€“61, 2006.

[79] M. Mitrea. Clifford Wavelets, Singular Integrals, and Hardy Spaces, volume 1575 ofLecture notes in mathematics. Springer, Berlin, 1994.

[80] M. Moshinsky and C. Quesne. Linear canonical transformations and their unitaryrepresentations. Journal of Mathematical Physics, 12:1772โ€“1780, 1971.

[81] V. Namias. The fractional order Fourier transform and its application to quantummechanics. IMA Journal of Applied Mathematics, 25(3):241โ€“265, 1980.

[82] H. Ozaktas, Z. Zalevsky, and M. Kutay. The Fractional Fourier Transform. Wiley,Chichester, 2001.

[83] T. Qian, M.I. Vai, and Y. Xu, editors. Wavelet Analysis and Applications, Appliedand Numerical Harmonic Analysis. Birkhauser Basel, 2007.

[84] S.J. Sangwine. Fourier transforms of colour images using quaternion, or hypercom-plex, numbers. Electronics Letters, 32(21):1979โ€“1980, 10 Oct. 1996.

[85] S.J. Sangwine. Biquaternion (complexified quaternion) roots of -1. Advances in Ap-plied Clifford Algebras, 16(1):63โ€“68, June 2006.

[86] S.J. Sangwine and T.A. Ell. The discrete Fourier transform of a colour image. In J.M.Blackledge and M.J. Turner, editors, Image Processing II Mathematical Methods, Al-gorithms and Applications, pages 430โ€“441, Chichester, 2000. Horwood Publishing forInstitute of Mathematics and its Applications. Proceedings Second IMA Conferenceon Image Processing, De Montfort University, Leicester, UK, September 1998.

Page 28: Quaternion and Clifford Fourier Transforms and Wavelets

Quaternion, Cliffordโ€“Fourier & Wavelet Transforms History xxvii

[87] S.J. Sangwine and N. Le Bihan. Quaternion polar representation with a complexmodulus and complex argument inspired by the Cayleyโ€“Dickson form. Advances inApplied Clifford Algebras, 20(1):111โ€“120, Mar. 2010. Published online 22 August2008.

[88] T.E. Simos, G. Psihoyios, and C. Tsitouras, editors. NUMERICAL ANALYSIS ANDAPPLIED MATHEMATICS: International Conference on Numerical Analysis andApplied Mathematics 2009, volume 1168 of AIP Conference Proceedings, Rethymno,Crete (Greece), 18โ€“22 September 2009.

[89] F. Sommen. A product and an exponential function in hypercomplex function theory.Applicable Analysis, 12:13โ€“26, 1981.

[90] F. Sommen. Hypercomplex Fourier and Laplace transforms I. Illinois Journal ofMathematics, 26(2):332โ€“352, 1982.

[91] F. Sommen. Hypercomplex Fourier and Laplace transforms II. Complex Variables,1(2โ€“3):209โ€“238, 1983.

[92] L. Traversoni. Quaternion wavelet problems. In Proceedings of 8th International Sym-posium on Approximation Theory, Texas A& M University, Jan. 1995.

[93] J. Zhao. Clifford algebra-valued admissible wavelets associated with admissiblegroup. Acta Scientarium Naturalium Universitatis Pekinensis, 41(5):667โ€“670, 2005.

[94] J. Zhao and L. Peng. Quaternion-valued admissible wavelets associated with the 2DEuclidean group with dilations. Journal of Natural Geometry, 20(1/2):21โ€“32, 2001.

Fred BrackxDepartment of Mathematical AnalysisFaculty of EngineeringGhent UniversityGalglaan 2B-9000 Gent, Belgiume-mail: [email protected]

Eckhard HitzerCollege of Liberal ArtsDepartment of Material ScienceInternational Christian University181-8585 Tokyo, Japane-mail: [email protected]

Stephen J. SangwineSchool of Computer Science

and Electronic EngineeringUniversity of EssexWivenhoe ParkColchester, CO4 3SQ, UKe-mail: [email protected]

Page 29: Quaternion and Clifford Fourier Transforms and Wavelets

Part I

Quaternions

Page 30: Quaternion and Clifford Fourier Transforms and Wavelets

Quaternion and Cliffordโ€“Fourier Transforms and Wavelets

Trends in Mathematics, 3โ€“14cโƒ 2013 Springer Basel

1 Quaternion Fourier Transform: Re-toolingImage and Signal Processing Analysis

Todd Anthony Ell

โ€˜Did you ask a good question today?โ€™ โ€“ Janet Teig

Abstract. Quaternion Fourier transforms (QFTโ€™s) provide expressive powerand elegance in the analysis of higher-dimensional linear invariant systems.But, this power comes at a cost โ€“ an overwhelming number of choices in theQFT definition, each with consequences. This chapter explores the evolutionof QFT definitions as a framework from which to solve specific problems invector-image and vector-signal processing.

Mathematics Subject Classification (2010). Primary 11R52; secondary 42B10.

Keywords. Quaternion, Fourier transform.

1. Introduction

In recent years there has been an increasing recognition on the part of engineersand investigators in image and signal processing of holistic vector approaches tospectral analysis. Generally speaking, this type of spectral analysis treats the vec-tor components of a system not in an iterated, channel-wise fashion but insteadin a holistic, gestalt fashion. The Quaternion Fourier transform (QFT) is one suchanalysis tool.

One of the earliest documented attempts (1987) at describing this type ofspectral analysis was in the area of two-dimensional nuclear magnet resonance.Ernst, et al. [6, pp. 307โ€“308] briefly discusses using a hypercomplex Fourier trans-form as a method to independently adjust phase angles with respect to two fre-quency variables in two-dimensional spectroscopy. After introducing the conceptthey immediately fall back to an iterated approach leaving the idea unexplored.For similar reasons, Ell [2] in 1992 independently explored the use of QFTs as atool in the analysis of linear time-invariant systems of partial differential equations(PDEs). Ell specifically โ€˜designedโ€™ a quaternion Fourier transform whose spectral

Page 31: Quaternion and Clifford Fourier Transforms and Wavelets

4 T.A. Ell

operators allowed him to disambiguate partial derivatives with respect to two dif-ferent independent variables. Ellโ€™s original QFT was given by

๐ป [๐’‹๐œ”,๐’Œ๐œˆ] =

โˆซโ„2

๐‘’โˆ’๐’‹๐œ”๐‘กโ„Ž (๐‘ก, ๐œ) ๐‘’โˆ’๐’Œ๐œˆ๐œ๐‘‘๐‘ก๐‘‘๐œ , (1.1)

where ๐ป [๐’‹๐œ”,๐’Œ๐œˆ] โˆˆ โ„ (the set of quaternions), ๐’‹ and ๐’Œ are Hamiltonโ€™s hypercom-plex operators, and โ„Ž (๐‘ก, ๐œ) : โ„ร— โ„โ†’ โ„ (the set of reals). The partial-differentialequivalent spectral operators for this transform are given by

โˆ‚

โˆ‚๐‘กโ„Ž (๐‘ก, ๐œ)โ‡” ๐’‹๐œ”๐ป [๐’‹๐œ”,๐’Œ๐œˆ] ,

โˆ‚

โˆ‚๐œโ„Ž (๐‘ก, ๐œ)โ‡” ๐ป [๐’‹๐œ”,๐’Œ๐œˆ]๐’Œ๐œˆ. (1.2)

These two differentials have clearly different spectral signatures in contrast to thetwo-dimensional iterated complex Fourier transform where

โˆ‚

โˆ‚๐‘กโ„Ž (๐‘ก, ๐œ )โ‡” ๐’‹๐œ”๐ป [๐’‹๐œ”, ๐’‹๐œˆ] ,

โˆ‚

โˆ‚๐œโ„Ž (๐‘ก, ๐œ )โ‡” ๐’‹๐œˆ๐ป [๐’‹๐œ”, ๐’‹๐œˆ] , (1.3)

especially when ๐œ” = ๐œˆ, at which point the complex spectral domain responses areindistinguishable. This was the first step towards stability analysis in designingcontrollers for systems described by PDEs.

The slow adoption of QFTs at the present time by the engineering communityis due in part to their lack of practical understanding of its properties. This slowadoption is further exacerbated by the variety of transform definitions available.But, in the middle of difficulty lies opportunity. Instead of attempting to find thesingle best QFT (which cannot meet every design engineerโ€™s needs) we provideinstead the means to allow the designer to select the definition most appropriateto his specific problem. That means, allow him to re-tool for the analysis problemat hand.

For example, when QFTs were later applied to colour-image processing [4],where each colour pixel in an image is treated as a 3-vector with basis {๐’Š, ๐’‹,๐’Œ} โˆˆ โ„,it became apparent that there was no preferential association of colour-space axeswith either the basis or the QFTโ€™s exponential-kernel axis. This lead to the nextgeneralization of the QFT defined as

โ„ฑ+ [๐œ”, ๐œˆ] =

โˆซโ„2

๐‘’โˆ’๐(๐œ”๐‘ก+๐œˆ๐œ)๐‘“ (๐‘ก, ๐œ ) ๐‘‘๐‘ก๐‘‘๐œ , (1.4)

where the transform kernel axis ๐ is any pure unit quaternion, i.e.,

๐ โˆˆ {๐’Š๐‘ฅ+ ๐’‹๐‘ฆ + ๐’Œ๐‘ง โˆˆ โ„ โˆฃ ๐‘ฅ2 + ๐‘ฆ2 + ๐‘ง2 = 1}

so that ๐2 = โˆ’1. Still later it was realized [9] that since there is no preferreddirection of indexing the imageโ€™s pixels then the sign on the transform kernel isalso arbitrary, so that a forward QFT could also be defined as

โ„ฑโˆ’ [๐œ”, ๐œˆ] =

โˆซโ„2

๐‘’+๐(๐œ”๐‘ก+๐œˆ๐œ)๐‘“ (๐‘ก, ๐œ ) ๐‘‘๐‘ก๐‘‘๐œ , (1.5)

and the two definitions could be intermixed without concern of creating a non-causal set of image processing filters. This led to several simplifications of a spectralform of the vector correlation operation on two images [8].

Page 32: Quaternion and Clifford Fourier Transforms and Wavelets

1. Quaternion Fourier Transform 5

Bearing in mind such diverse application of various QFTs, the focus of thiswork is to detail as broad a set of QFT definitions as possible, and where known,some of the issues associated with applying them to problems in signal and im-age processing. It also includes a review of approaches taken to define the inter-relations between the various QFT definitions.

2. Preliminaries

To provide a basis for discussion this section gives nomenclature, basic facts onquaternions, and some useful subsets and algebraic equations.

2.1. Just the Facts

The quaternion algebra over the reals โ„, denoted by

โ„ = {๐‘ž = ๐‘Ÿ0 + ๐’Š๐‘Ÿ1 + ๐’‹๐‘Ÿ2 + ๐’Œ๐‘Ÿ3 โˆฃ ๐‘Ÿ0, ๐‘Ÿ1, ๐‘Ÿ2, ๐‘Ÿ3 โˆˆ โ„} , (2.1)

is an associative non-commutative four-dimensional algebra, which obeys Hamil-tonโ€™s multiplication rules

๐’Š๐’‹ = ๐’Œ = โˆ’๐’‹๐’Œ, ๐’‹๐’Œ = ๐’Š = โˆ’๐’Œ๐’‹, ๐’Œ๐’Š = ๐’‹ = โˆ’๐’Š๐’Œ, (2.2)

๐’Š2 = ๐’‹2 = ๐’Œ2 = ๐’Š๐’‹๐’Œ = โˆ’1. (2.3)

The quaternion conjugate is defined by

๐‘ž = ๐‘Ÿ0 โˆ’ ๐’Š๐‘Ÿ1 โˆ’ ๐’‹๐‘Ÿ2 โˆ’ ๐’Œ๐‘Ÿ3 , (2.4)

which is an anti-involution, i.e., ๐‘ž = ๐‘ž, ๐‘+ ๐‘ž = ๐‘ + ๐‘ž, and ๐‘ž๐‘ = ๐‘ ๐‘ž. The norm ofa quaternion is defined as

โˆฃ๐‘žโˆฃ = โˆš๐‘ž๐‘ž =โˆš

๐‘Ÿ20 + ๐‘Ÿ21 + ๐‘Ÿ22 + ๐‘Ÿ23 . (2.5)

Using the conjugate and norm of ๐‘ž, one can define the inverse of ๐‘ž โˆˆ โ„ โˆ– {0} as

๐‘žโˆ’1 = ๐‘ž/โˆฃ๐‘žโˆฃ2. (2.6)

Two classical operators on quaternions are the vector- and scalar-part, ๐‘‰ [.] and๐‘†[.], respectively; these are defined as

๐‘‰ [๐‘ž] = ๐’Š๐‘Ÿ1 + ๐’‹๐‘Ÿ2 + ๐’Œ๐‘Ÿ3, ๐‘† [๐‘ž] = ๐‘Ÿ0. (2.7)

2.2. Useful Subsets

Various subsets of the quaternions are of interest and used repeatedly throughoutthis work. The 3-vector subset of โ„ is the set of pure quaternions defined as

๐‘‰ [โ„] = {๐‘ž = ๐’Š๐‘Ÿ1 + ๐’‹๐‘Ÿ2 + ๐’Œ๐‘Ÿ3 โˆˆ โ„ } . (2.8)

The set of pure, unit length quaternions is denoted ๐•Š3โ„, i.e.,

๐•Š3โ„ =

{๐ = ๐’Š๐‘Ÿ1 + ๐’‹๐‘Ÿ2 + ๐’Œ๐‘Ÿ3 โˆˆ โ„ โˆฃ ๐‘Ÿ21 + ๐‘Ÿ22 + ๐‘Ÿ23 = 1

}. (2.9)

Page 33: Quaternion and Clifford Fourier Transforms and Wavelets

6 T.A. Ell

Each element of ๐•Š3โ„creates a distinct copy of the complex numbers because ๐2 =

โˆ’1, that is, each creates an injective ring homomorphism from โ„‚ to โ„. So, foreach ๐ โˆˆ ๐•Š3

โ„, we associate a complex sub-field of โ„ denoted

โ„‚๐ ={๐›ผ+ ๐›ฝ๐; โˆฃ ๐›ผ, ๐›ฝ โˆˆ โ„,๐ โˆˆ ๐•Š3

โ„

}. (2.10)

2.3. Useful Algebraic Equations

In various quaternion equations the non-commutativity of the multiplication causesdifficulty, however, there are algebraic forms which assist in making simplifications.The following three defined forms appear to be the most useful.

Definition 2.1 (Even-Odd Form). Every ๐‘“ : โ„2 โ†’ โ„ can be split into even andodd parts along the ๐‘ฅ- and ๐‘ฆ-axis as

๐‘“ (๐‘ฅ, ๐‘ฆ) = ๐‘“ee (๐‘ฅ, ๐‘ฆ) + ๐‘“eo (๐‘ฅ, ๐‘ฆ) + ๐‘“oe (๐‘ฅ, ๐‘ฆ) + ๐‘“oo (๐‘ฅ, ๐‘ฆ) (2.11)

where ๐‘“eo denotes the part of ๐‘“ that is even with respect to ๐‘ฅ and odd with respectto ๐‘ฆ, etc., given as

๐‘“ee (๐‘ฅ, ๐‘ฆ) =14 (๐‘“ (๐‘ฅ, ๐‘ฆ) + ๐‘“ (โˆ’๐‘ฅ, ๐‘ฆ) + ๐‘“ (๐‘ฅ,โˆ’๐‘ฆ) + ๐‘“ (โˆ’๐‘ฅ,โˆ’๐‘ฆ)) ,

๐‘“eo (๐‘ฅ, ๐‘ฆ) =14 (๐‘“ (๐‘ฅ, ๐‘ฆ) + ๐‘“ (โˆ’๐‘ฅ, ๐‘ฆ)โˆ’ ๐‘“ (๐‘ฅ,โˆ’๐‘ฆ)โˆ’ ๐‘“ (โˆ’๐‘ฅ,โˆ’๐‘ฆ)) ,

๐‘“oe (๐‘ฅ, ๐‘ฆ) =14 (๐‘“ (๐‘ฅ, ๐‘ฆ)โˆ’ ๐‘“ (โˆ’๐‘ฅ, ๐‘ฆ) + ๐‘“ (๐‘ฅ,โˆ’๐‘ฆ)โˆ’ ๐‘“ (โˆ’๐‘ฅ,โˆ’๐‘ฆ)) ,

๐‘“oo (๐‘ฅ, ๐‘ฆ) =14 (๐‘“ (๐‘ฅ, ๐‘ฆ)โˆ’ ๐‘“ (โˆ’๐‘ฅ, ๐‘ฆ)โˆ’ ๐‘“ (๐‘ฅ,โˆ’๐‘ฆ) + ๐‘“ (โˆ’๐‘ฅ,โˆ’๐‘ฆ)) .

(2.12)

Definition 2.2 (Symplectic Form [3]). Every ๐‘ž = ๐‘Ÿ0 + ๐’Š๐‘Ÿ1 + ๐’‹๐‘Ÿ2 + ๐’Œ๐‘Ÿ3 โˆˆ โ„ can berewritten in terms of a new basis of operators {๐1,๐2,๐3} as

๐‘ž = ๐‘Ÿโ€ฒ0 + ๐1๐‘Ÿโ€ฒ1 + ๐2๐‘Ÿ

โ€ฒ2 + ๐3๐‘Ÿ

โ€ฒ3 = (๐‘Ÿโ€ฒ0 + ๐1๐‘Ÿ

โ€ฒ1) + (๐‘Ÿโ€ฒ2 + ๐1๐‘Ÿ

โ€ฒ3)๐2 , (2.13)

where ๐1๐2 = ๐3, ๐1,2,3 โˆˆ ๐•Š3โ„, hence they form an orthogonal triad.

Remark 2.3. The mapping {๐‘Ÿ1, ๐‘Ÿ2, ๐‘Ÿ3} โ†’ {๐‘Ÿโ€ฒ1, ๐‘Ÿโ€ฒ2, ๐‘Ÿโ€ฒ3} is a change in basis from{๐’Š, ๐’‹,๐’Œ} to {๐1,๐2,๐3} via

๐‘Ÿโ€ฒ0 = ๐‘Ÿ0, ๐‘Ÿโ€ฒ๐‘› = โˆ’ 12 (๐‘‰ [๐‘ž]๐๐‘› + ๐๐‘›๐‘‰ [๐‘ž]) , ๐‘› = {1, 2, 3} . (2.14)

Remark 2.4. The symplectic form essentially decomposes a quaternion with re-spect to a specific complex sub-field. That is

๐‘ž = (๐‘Ÿโ€ฒ0 + ๐1๐‘Ÿโ€ฒ1) + (๐‘Ÿโ€ฒ2 + ๐1๐‘Ÿ

โ€ฒ3)๐2 = ๐‘1 + ๐‘2๐2 , (2.15)

where ๐‘1,2 โˆˆ โ„‚๐1. The author coined the terms simplex and perplex parts of ๐‘ž, for

๐‘1 and ๐‘2, respectively.

Remark 2.5. The symplectic form works for any permutation of the basis{๐1,๐2,๐3} so that the simplex and complex parts can be taken from any complexsub-field โ„‚๐๐‘›

Further, the swap rule applies to the last term, i.e., ๐‘2๐2 = ๐2๐‘2,where the over bar denotes both quaternion and complex sub-field conjugation.

Page 34: Quaternion and Clifford Fourier Transforms and Wavelets

1. Quaternion Fourier Transform 7

Definition 2.6 (Split Form [7]). Every ๐‘ž โˆˆ โ„ can be split as

๐‘ž = ๐‘ž+ + ๐‘žโˆ’, ๐‘žยฑ = 12 (๐‘ž ยฑ ๐1๐‘ž๐2) , (2.16)

where ๐1๐2 = ๐3, and ๐1,2,3 โˆˆ ๐•Š3โ„.

Remark 2.7. The split form allows for the explicit ordering of factors with respectto the operators. So, for example, ๐‘ž = ๐‘Ÿ0 + ๐1๐‘Ÿ1 + ๐2๐‘Ÿ2 + ๐3๐‘Ÿ3 becomes

๐‘žยฑ = {(๐‘Ÿ0 ยฑ ๐‘Ÿ3) + ๐1 (๐‘Ÿ1 ยฑ ๐‘Ÿ2)} 1ยฑ ๐3

2

=1ยฑ ๐3

2{(๐‘Ÿ0 ยฑ ๐‘Ÿ3)โˆ’ ๐2 (๐‘Ÿ1 ยฑ ๐‘Ÿ2)} . (2.17)

Eulerโ€™s formula holds for quaternions, so any unit length quaternion can bewritten as cos ๐‘Ž+๐ sin ๐‘Ž = ๐‘’๐๐‘Ž, for ๐‘Ž โˆˆ โ„ and ๐ โˆˆ ๐•Š3

โ„. Here ๐ is referred to as the

(Eigen-) axis and ๐‘Ž as the (Eigen-) phase angle. Although in general ๐‘’๐‘ž ๐‘’๐‘ โˆ•= ๐‘’๐‘ž+๐‘

for ๐‘, ๐‘ž โˆˆ โ„, their exponential product is a linear combination of exponentials ofthe sum and difference of their phase angles. This can be written in two ways asshown in the following two propositions.

Proposition 2.8 (Exponential Split). Let ๐1,2 โˆˆ ๐•Š3โ„and ๐‘Ž, ๐‘ โˆˆ โ„, then

๐‘’๐1๐‘Ž๐‘’๐2๐‘ = ๐‘’๐1(๐‘Žโˆ’๐‘) 1 + ๐3

2+ ๐‘’๐1(๐‘Ž+๐‘) 1โˆ’ ๐3

2(2.18)

and

๐‘’๐1๐‘Ž๐‘’๐2๐‘ =1 + ๐3

2๐‘’๐2(๐‘โˆ’๐‘Ž) +

1โˆ’ ๐3

2๐‘’๐2(๐‘+๐‘Ž) , (2.19)

where ๐1๐2 = ๐3 and ๐3 โˆˆ ๐•Š3โ„.

Proof. Application of split form to the exponential product. โ–ก

Proposition 2.9 (Exponential Modulation). Let ๐1,2 โˆˆ ๐•Š3โ„and ๐‘Ž, ๐‘ โˆˆ โ„, then

๐‘’๐1๐‘Ž๐‘’๐2๐‘ = 12

(๐‘’๐1(๐‘Ž+๐‘) + ๐‘’๐1(๐‘Žโˆ’๐‘)

)โˆ’ 1

2๐1

(๐‘’๐1(๐‘Ž+๐‘) โˆ’ ๐‘’๐1(๐‘Žโˆ’๐‘)

)๐2 (2.20)

and

๐‘’๐1๐‘Ž๐‘’๐2๐‘ = 12

(๐‘’๐2(๐‘+๐‘Ž) + ๐‘’๐2(๐‘โˆ’๐‘Ž)

)โˆ’ 1

2๐1

(๐‘’๐2(๐‘+๐‘Ž) โˆ’ ๐‘’๐2(๐‘โˆ’๐‘Ž)

)๐2 . (2.21)

Proof. Direct application of Eulerโ€™s formula and trigonometric identities. โ–ก

Remark 2.10. The sandwich terms (i.e., ๐1(.)๐2) in the exponential equationsintroduce 4-space rotations into the interpretation of the product [1]. For if ๐‘ =๐1๐‘ž๐2, then ๐‘ is a rotated version of ๐‘ž about the (๐1,๐2)-plane by ๐œ‹

2 .

Page 35: Quaternion and Clifford Fourier Transforms and Wavelets

8 T.A. Ell

3. Quaternion Fourier Transforms

The purpose of this section is to enumerate a list of possible definitions for a quater-nion Fourier transform. This is followed by a discussion regarding various operatorproperties used in the engineering fields that require simple Fourier transform pairsbetween the non-transformed operation and the equivalent Fourier domain oper-ation, i.e., the so-called operator pairs as seen in most engineering textbooks onFourier analysis. Finally, a discussion on how the inter-relationship between QFTdefinitions are explored, not so as to reduce them to a single canonical form, butto provide the investigator a tool to cross between definitions when necessary soas to gain insight into operator properties.

3.1. Transform Definitions

Although there has been much use of the QFT forms currently in circulation, thereare however more available. Not all โ€˜degrees-of-freedomโ€™ have been exploited. Thenon-commutativity of the quaternion multiplication gave rise to the left- and right-handed QFT kernels. The infinite number of square-roots of โˆ’1 (the cardinality of๐•Šโ„) gave rise to the two-sided, or sandwiched kernel. One concept left unexploredis the implication of the exponential product of two quaternions, i.e., ๐‘’๐‘๐‘’๐‘ž โˆ•= ๐‘’๐‘+๐‘ž.When this is also taken into account, the list expands to eight distinct QFTs asenumerated in Table 1.

Table 1. QFT kernel definitions for ๐‘“ : โ„2 โ†’ โ„.

Left Right Sandwich

Single-axis ๐‘’โˆ’๐1(๐œ”๐‘ฅ+๐‚๐‘ฆ) ๐‘“(.) ๐‘“(.) ๐‘’โˆ’๐1(๐œ”๐‘ฅ+๐‚๐‘ฆ) ๐‘’โˆ’๐1๐œ”๐‘ฅ ๐‘“(.) ๐‘’โˆ’๐1๐‚๐‘ฆ

Dual-axis ๐‘’โˆ’(๐1๐œ”๐‘ฅ+๐2๐‚๐‘ฆ) ๐‘“(.) ๐‘“(.) ๐‘’โˆ’(๐1๐œ”๐‘ฅ+๐2๐‚๐‘ฆ) โ€“

Factored ๐‘’โˆ’๐1๐œ”๐‘ฅ๐‘’โˆ’๐2๐‚๐‘ฆ ๐‘“(.) ๐‘“(.) ๐‘’โˆ’๐1๐œ”๐‘ฅ๐‘’โˆ’๐2๐‚๐‘ฆ ๐‘’โˆ’๐1๐œ”๐‘ฅ ๐‘“(.) ๐‘’โˆ’๐2๐‚๐‘ฆ

Depending on the value space of ๐‘“(๐‘ฅ, ๐‘ฆ), the available number of distinctQFT forms changes. Table 1 shows the options when ๐‘“ : โ„2 โ†’ โ„. However, if๐‘“ : โ„2 โ†’ โ„, then all chirality options (left, right, and sandwiched) collapse to thesame form, leaving three distinct choices: single-axis and factored and un-factoreddual-axis forms.

If neither ๐‘ฅ nor ๐‘ฆ are time-like, so that causality of the solution is not afactor, then the number of given QFTs doubles. Variations created by conjugat-ing the quaternion-exponential kernel of both the forward and inverse transformare usually a matter of convention โ€“ the signs must be opposites. For non-causalsystems, however, the sign on the kernel can be taken both ways; each definingits own forward transform from the spatial to spatial-frequency domain. To dis-tinguish the two versions of the forward transform, one is called forward the other

Page 36: Quaternion and Clifford Fourier Transforms and Wavelets

1. Quaternion Fourier Transform 9

reverse. Of course, the inverse transform is still obtained by conjugating the cor-responding forward (or reverse) kernel. Hence, one may define the single-axis, left-and right-sided, forward and reverse transforms as follows1.

Definition 3.1 (Single-axis, Left-sided QFT). The single-axis, left-sided, forward(โ„ฑ+๐ฟ) and reverse (โ„ฑโˆ’๐ฟ) QFTs are defined as

โ„ฑยฑ๐ฟ [๐‘“ (๐‘ฅ, ๐‘ฆ)] =

โˆซโˆซโ„2

๐‘’โˆ“๐1(๐œ”๐‘ฅ+๐œˆ๐‘ฆ)๐‘“ (๐‘ฅ, ๐‘ฆ) ๐‘‘๐‘ฅ๐‘‘๐‘ฆ =๐นยฑ๐ฟ [๐œ”, ๐œˆ] . (3.1)

Definition 3.2 (Single-axis, Right-sided QFT). The single-axis, right-sided, forward(โ„ฑ+๐‘…) and reverse (โ„ฑโˆ’๐‘…) QFTs are defined as

โ„ฑยฑ๐‘… [๐‘“ (๐‘ฅ, ๐‘ฆ)] =

โˆซโˆซโ„2

๐‘“ (๐‘ฅ, ๐‘ฆ) ๐‘’โˆ“๐1(๐œ”๐‘ฅ+๐œˆ๐‘ฆ)๐‘‘๐‘ฅ๐‘‘๐‘ฆ =๐นยฑ๐‘… [๐œ”, ๐œˆ] . (3.2)

All of the entries in Table 1 exploit the fact that unit length complex numbersact as rotation operators within the complex plane. There is, however, anotherrotation operator โ€“ the 3-space rotation operator for which quaternions are famous.Table 2 lists additional definitions under the provision that ๐‘“ takes on valuesrestricted to ๐‘‰ [โ„]. Note the factor of 1

2 in the kernel exponent, this is included sothat the frequency scales between the various definitions align.

Table 2. QFT kernel definitions exclusively for ๐‘“ : โ„2 โ†’ ๐‘‰ [โ„].

3-Space Rotator

Single-axis ๐‘’โˆ’๐1๐œ”๐‘ฅ/2 ๐‘“(.) ๐‘’+๐1๐œˆ๐‘ฆ/2

Dual-axis ๐‘’โˆ’(๐1๐œ”๐‘ฅ+๐2๐œˆ๐‘ฆ)/2 ๐‘“(.) ๐‘’+(๐1๐œ”๐‘ฅ+๐2๐œˆ๐‘ฆ)/2

Dual-axis, factored ๐‘’โˆ’๐1๐œ”๐‘ฅ/2๐‘’โˆ’๐2๐œˆ๐‘ฆ/2 ๐‘“(.) ๐‘’+๐2๐œˆ๐‘ฆ/2๐‘’+๐1๐œ”๐‘ฅ/2

Taking all these permutations in mind, one arrives at 22 unique QFT defini-tions.

3.2. Functional Relationships

There are several properties used in complex Fourier transform (CFT) analysis thatone hopes will carry over to the QFT in some fashion. These are listed in Table3 from which we will discuss the challenges which arise in QFT analysis. In whatfollows let ๐‘“ (๐‘ฅ, ๐‘ฆ)โ‡” ๐น [๐œ”, ๐œˆ] denote transform pairs, i.e., โ„ฑ [๐‘“ (๐‘ฅ, ๐‘ฆ)] = ๐น [๐œ”, ๐œˆ] isthe forward (or reverse) transform and โ„ฑโˆ’1 [๐น (๐œ”, ๐œˆ)] = ๐‘“ (๐‘ฅ, ๐‘ฆ) is its inversion.

Inversion. Every transform should be invertible. Although this seems obvious,there are instances where a given transform is not. For example, if the re-striction of ๐‘“ : โ„2 โ†’ ๐‘‰ [โ„] were not imposed on the inputs of Table 2, then

1Note, that in (3.1) and (3.2) the arguments ๐‘ฅ and ๐‘ฆ of ๐‘“ in โ„ฑยฑ๐ฟ,๐‘… [๐‘“ (๐‘ฅ, ๐‘ฆ)] are shown for clarity,

but are actually dummy arguments, which are integrated out. A more mathematical notationwould be โ„ฑยฑ๐ฟ,๐‘…{๐‘“}(๐œ”, ๐œˆ) = ๐นยฑ๐ฟ,๐‘…(๐œ”, ๐œˆ).

Page 37: Quaternion and Clifford Fourier Transforms and Wavelets

10 T.A. Ell

Table 3. Fourier transform โ„ฑ properties. [๐›ผ, ๐›ฝ, ๐›พ, ๐›ฟ โˆˆ โ„]

Property Definition

Inversion โ„ฑโˆ’1 [โ„ฑ [๐‘“ (๐‘ฅ, ๐‘ฆ)]] = ๐‘“ (๐‘ฅ, ๐‘ฆ)

Linearity ๐›ผ๐‘“(๐‘ฅ, ๐‘ฆ) + ๐›ฝ๐‘”(๐‘ฅ, ๐‘ฆ)

Complex Degenerate (๐1 = ๐’Š and ๐‘“ : โ„2 โ†’ โ„‚๐’Š) โ†’ (QFTโˆผ=CFT)

Convolution ๐‘“ โˆ˜ ๐‘”(๐‘ฅ, ๐‘ฆ) = (?)

Correlation ๐‘“ โ˜… ๐‘”(๐‘ฅ, ๐‘ฆ) = (?)

Modulation ๐‘’๐1๐œ”0๐‘ฅ๐‘“(.), ๐‘’๐2๐œ”0๐‘ฅ๐‘“(.), ๐‘“(.)๐‘’๐1๐œˆ0๐‘ฆ, ๐‘“(.)๐‘’๐2๐œˆ0๐‘ฆ, etc.

Scaling ๐‘“(๐‘ฅ/๐›ผ, ๐‘ฆ/๐›ฝ)

Translation ๐‘“(๐‘ฅโˆ’ ๐‘ฅ0, ๐‘ฆ โˆ’ ๐‘ฆ0)

Rotation ๐‘“(๐‘ฅ cos๐›ผโˆ’ ๐‘ฆ sin๐›ผ, ๐‘ฅ sin๐›ผ+ ๐‘ฆ cos๐›ผ)

Axis-reversal ๐‘“(โˆ’๐‘ฅ, ๐‘ฆ), ๐‘“(๐‘ฅ,โˆ’๐‘ฆ), ๐‘“(โˆ’๐‘ฅ,โˆ’๐‘ฆ)

Re-coordinate ๐‘“(๐›ผ๐‘ฅ+ ๐›ฝ๐‘ฆ, ๐›พ๐‘ฅ+ ๐›ฟ๐‘ฆ)

Conjugation ๐‘“(๐‘ฅ, ๐‘ฆ)

Differentials โˆ‚โˆ‚๐‘ฅ ,

โˆ‚โˆ‚๐‘ฆ ,

โˆ‚2

โˆ‚๐‘ฅโˆ‚๐‘ฆ , etc.

every transform of that table would cease to be invertible. This is because anyreal-valued function, or the scalar part of full quaternion valued functions,commute with the kernel factors which then vanish from under the integral.

Linearity. ๐›ผ๐‘“(๐‘ฅ, ๐‘ฆ)+๐›ฝ๐‘”(๐‘ฅ, ๐‘ฆ)โ‡” ๐›ผ๐น [๐œ”, ๐œˆ]+๐›ฝ๐บ[๐œ”, ๐œˆ] where ๐›ผ, ๐›ฝ โˆˆ โ„. A quick checkverifies that this property holds for all proposed QFT definitions.

Complex Degenerate. For the single-axis transforms, if ๐1 = ๐’Š and ๐‘“ : โ„2 โ†’ โ„‚๐’Š,then the QFT should ideally degenerate to the twice iterated complex Fouriertransform. This degenerate property cannot apply to the dual axis, factoredforms of Tables 1 and 2 since if ๐1 = ๐2 = ๐’Š, these forms reduce to theirsingle-axis versions.

Convolution (Faltung) theorem. Rarely does the standard, complex transform typepair ๐‘“ โˆ˜ ๐‘” (๐‘ฅ, ๐‘ฆ) โ‡” ๐น [๐œ”, ๐œˆ]๐บ [๐œ”, ๐œˆ] exist in such a simple form for the QFT.Even the very definition of convolution needs an update since ๐‘“ โˆ˜ ๐‘” โˆ•= ๐‘” โˆ˜ ๐‘“when ๐‘“ and ๐‘” are โ„-valued. The definition is altered again based on which ofthe two functions is translated, i.e., is the integrand ๐‘“(๐‘ฅ โˆ’ ๐‘ฅโ€ฒ, ๐‘ฆ โˆ’ ๐‘ฆโ€ฒ)๐‘”(๐‘ฅ, ๐‘ฆ)or ๐‘“(๐‘ฅ, ๐‘ฆ)๐‘”(๐‘ฅโˆ’๐‘ฅโ€ฒ, ๐‘ฆโˆ’ ๐‘ฆโ€ฒ). This gives rise to at least four distinct convolutiondefinitions. This will also alter the spectral operator pair.

Further, if ๐‘“ is an input function, then ๐‘” is typically related to theimpulse response of a system. But, if ๐‘” : โ„2 โ†’ ๐‘‰ [โ„], is a single impulseresponse sufficient to describe such a system? Or does it take at least twoorthogonally oriented impulses, say ๐1๐›ฟ(๐‘ฅ, ๐‘ฆ) and ๐2๐›ฟ(๐‘ฅ, ๐‘ฆ), where ๐1 โŠฅ ๐2

and ๐›ฟ(๐‘ฅ, ๐‘ฆ) is the Dirac delta function?

Page 38: Quaternion and Clifford Fourier Transforms and Wavelets

1. Quaternion Fourier Transform 11

Correlation. Consider the correlation definition of two โ„-valued functions ๐‘“ and๐‘” (let ๐‘“, ๐‘” : โ„โ†’ โ„ for simplicity of discussion)

๐‘“ โ˜… ๐‘” (๐‘ก) =

โˆซโ„

๐‘“ (๐œ) ๐‘” (๐œ โˆ’ ๐‘ก) ๐‘‘๐œ =

โˆซโ„

๐‘“ (๐œ + ๐‘ก) ๐‘” (๐œ) ๐‘‘๐œ, (3.3)

where substituting ๐œ โˆ’ ๐‘ก = ๐œ โ€ฒ yields the second form. For the correlation ofreal-valued functions this is entirely sufficient.

However, for โ„‚-valued functions a conjugation operation is required toensure the relation of the autocorrelation functions (๐‘“ โ˜… ๐‘“) to the powerspectrum as required by the Wiener-Khintchine theorem. This effectivelyensures that the power spectrum of a complex auto-correlation is โ„-valued.The complex extension to the cross-correlation function can then be given as

๐‘“ โ˜… ๐‘” (๐‘ก) =

โˆซโ„

๐‘“ (๐œ) ๐‘” (๐œ โˆ’ ๐‘ก) ๐‘‘๐œ , (3.4)

or alternatively as

๐‘“ โ˜… ๐‘” (๐‘ก) =

โˆซโ„

๐‘“ (๐œ) ๐‘” (๐œ + ๐‘ก) ๐‘‘๐œ . (3.5)

In general, the literature does not give significance to the direction of theshifted signal (๐œ ยฑ ๐‘ก). However, in the case of vector correlation matchingproblems, such as colour image registration, direction is fundamental.

Taking this into consideration, for โ„-valued functions the equivalentcorrelation could be either

๐‘“ โ˜… ๐‘” (๐‘ฅ, ๐‘ฆ) =

โˆซโ„2

๐‘“ (๐‘ฅโ€ฒ, ๐‘ฆโ€ฒ) ๐‘” (๐‘ฅโ€ฒ โˆ’ ๐‘ฅ, ๐‘ฆโ€ฒ โˆ’ ๐‘ฆ)๐‘‘๐‘ฅโ€ฒ๐‘‘๐‘ฆโ€ฒ, (3.6)

or

๐‘“ โ˜… ๐‘” (๐‘ฅ, ๐‘ฆ) =

โˆซโ„2

๐‘“ (๐‘ฅโ€ฒ + ๐‘ฅ, ๐‘ฆโ€ฒ + ๐‘ฆ) ๐‘” (๐‘ฅโ€ฒ, ๐‘ฆโ€ฒ)๐‘‘๐‘ฅโ€ฒ๐‘‘๐‘ฆโ€ฒ, (3.7)

depending on which shift direction is required. For more details see [9, 4].Note that the correlation result is not necessarily โ„-valued.

Modulation. There are multiple types of frequency modulation that need to beaddressed. The modulating exponential can be applied from the left or right,can be driven as a function of either input parameter (i.e., ๐‘ฅ or ๐‘ฆ), andbe pointing along one of the kernel axes (i.e., ๐1 or ๐2). Some options aredetailed in the Karnaugh map of Table 4.

In summary, when addressing the QFT operator properties one often needsto regress back to the basic operator definitions and their underlying assumptions,then verify they are still valid for generalization to quaternion forms. Either theoperator definition itself needs to be modified (as in the case of correlation) orthe number of permutations on the definition increases (as in convolution andmodulation).

Page 39: Quaternion and Clifford Fourier Transforms and Wavelets

12 T.A. Ell

Table 4. Frequency Modulations

Left Right

๐‘ฅ๐‘’๐2๐œ”0๐‘ฅ๐‘“(.) ๐‘“(.)๐‘’๐2๐œ”0๐‘ฅ ๐2

๐‘’๐1๐œ”0๐‘ฅ๐‘“(.) ๐‘“(.)๐‘’๐1๐œ”0๐‘ฅ

๐1

๐‘ฆ๐‘’๐1๐‚0๐‘ฆ๐‘“(.) ๐‘“(.)๐‘’๐1๐‚0๐‘ฆ

๐‘’๐2๐‚0๐‘ฆ๐‘“(.) ๐‘“(.)๐‘’๐2๐‚0๐‘ฆ ๐2

3.3. Relationships between Transforms

At the heart of all methods for determining inter-relationships between variousQFTs is a decomposing process, of either the input function ๐‘“(.) or the exponential-kernel, so that their parts can be commuted into an alternate QFT form. Ell andSangwine [5] used the symplectic form to link the single-axis, left and right, forwardand reverse forms of the QFT via simplex and perplex complex sub-fields. Yeh[10] reworked these relationships and made further connections to the dual-axis,factored form QFT, but instead used even-odd decomposition of the input function.This approach essentially split each QFT into cosine and sine QFTs. Hitzerโ€™s [7]approach was to use the split form to factor the input function and kernel intofactors with respect to the hypercomplex operators, so as to manipulate the resultto an alternate QFT.

The inter-relationships between the various transform definitions not onlygive insight into the subsequent Fourier analysis, they are also used to simplifyoperator pairs. For example, the inter-relationships between the single-axis formsas given in Definitions 3.2 and 3.1 were used with the symplectic form (Def. 2.2)by Ell and Sangwine [5] to arrive at operator pairs for the convolution operator.Let the single-sided convolutions be defined as follows.

Definition 3.3 (Convolution [5]). The left- and right-sided convolution are defined,respectively, as

โ„Ž๐ฟ โˆ˜ ๐‘“ (๐‘ฅ, ๐‘ฆ) =

โˆซโˆซโ„2

โ„Ž๐ฟ (๐‘ฅโ€ฒ, ๐‘ฆโ€ฒ) ๐‘“ (๐‘ฅโˆ’ ๐‘ฅโ€ฒ, ๐‘ฆ โˆ’ ๐‘ฆโ€ฒ) ๐‘‘๐‘ฅโ€ฒ๐‘‘๐‘ฆโ€ฒ,

๐‘“ โˆ˜ โ„Ž๐‘… (๐‘ฅ, ๐‘ฆ) =

โˆซโˆซโ„2

๐‘“ (๐‘ฅโˆ’ ๐‘ฅโ€ฒ, ๐‘ฆ โˆ’ ๐‘ฆโ€ฒ)โ„Ž๐‘… (๐‘ฅโ€ฒ, ๐‘ฆโ€ฒ) ๐‘‘๐‘ฅโ€ฒ๐‘‘๐‘ฆโ€ฒ.(3.8)

Now, let the QFT of the input function ๐‘“ be symplectically decomposed withrespect to ๐1 as

โ„ฑยฑ๐ฟ [๐‘“ (๐‘ฅ, ๐‘ฆ)] = ๐นยฑ๐ฟ1 [๐œ”, ๐œˆ] + ๐นยฑ๐ฟ2 [๐œ”, ๐œˆ]๐2

and

โ„ฑยฑ(๐ฟ,๐‘…) [โ„Ž๐‘… (๐‘ฅ, ๐‘ฆ)] = ๐ปยฑ(๐ฟ,๐‘…)๐‘… [๐œ”, ๐œˆ] ,

Page 40: Quaternion and Clifford Fourier Transforms and Wavelets

1. Quaternion Fourier Transform 13

then the right-convolution operator can be written as

โ„ฑยฑ๐ฟ [๐‘“ โˆ˜ โ„Ž๐‘…] (๐œ”, ๐œˆ) = ๐นยฑ๐ฟ1 [๐œ”, ๐œˆ]๐ปยฑ๐ฟ๐‘… [๐œ”, ๐œˆ] + ๐นยฑ๐ฟ2 [๐œ”, ๐œˆ]๐2๐ป

โˆ“๐ฟ๐‘… [๐œ”, ๐œˆ] .

Note the use of both forward and reverse QFT transforms. Such a compact oper-ator formula would not be possible without the intermixing of QFT definitions.

4. Conclusions

The three currently defined quaternion Fourier transforms have been shown tobe incomplete. By careful consideration of the underlying reasons for those threeforms, this list has been extended to no less than twenty-two unique definitions.Future work may show that some of these definitions hold little of practical valueor, without loss of generality, they may be reduced to but a few. The shift fromiterated, channel-wise vector analysis to gestalt vector-image and vector-signalanalysis shows promise. This promise raises several challenges:

1. Are there other, more suitable quaternion Fourier transform definitions?2. Can these transforms be reduced to a salient few?3. Are there additional decomposition methods, like the even-odd, split, and

symplectic discussed herein, which can be used?4. All the decomposition methods used to simplify the operator formulas are

at odds with the very gestalt, holistic approach espoused, can this be doneotherwise?

These questions will be the focus of future efforts.

Acknowledgment

Many thanks to Iesus propheta a Nazareth Galilaeae.

References

[1] H.S.M. Coxeter. Quaternions and reflections. The American Mathematical Monthly,53(3):136โ€“146, Mar. 1946.

[2] T.A. Ell. Hypercomplex Spectral Transformations. PhD thesis, University of Min-nesota, June 1992.

[3] T.A. Ell and S.J. Sangwine. Decomposition of 2D hypercomplex Fourier transformsinto pairs of complex Fourier transforms. In M. Gabbouj and P. Kuosmanen, editors,Proceedings of EUSIPCO 2000, Tenth European Signal Processing Conference, vol-ume II, pages 1061โ€“1064, Tampere, Finland, 5โ€“8 Sept. 2000. European Associationfor Signal Processing.

[4] T.A. Ell and S.J. Sangwine. Hypercomplex Wiener-Khintchine theorem with ap-plication to color image correlation. In IEEE International Conference on ImageProcessing (ICIP 2000), volume II, pages 792โ€“795, Vancouver, Canada, 11โ€“14 Sept.2000. IEEE.

[5] T.A. Ell and S.J. Sangwine. Hypercomplex Fourier transforms of color images. IEEETransactions on Image Processing, 16(1):22โ€“35, Jan. 2007.

Page 41: Quaternion and Clifford Fourier Transforms and Wavelets

14 T.A. Ell

[6] R.R. Ernst, G. Bodenhausen, and A. Wokaun. Principles of Nuclear Magnetic Res-onance in One and Two Dimensions. International Series of Monographs on Chem-istry. Oxford University Press, 1987.

[7] E. Hitzer. Quaternion Fourier transform on quaternion fields and generalizations.Advances in Applied Clifford Algebras, 17(3):497โ€“517, May 2007.

[8] C.E. Moxey, S.J. Sangwine, and T.A. Ell. Vector phase correlation. Electronics Let-ters, 37(25):1513โ€“1515, Dec. 2001.

[9] C.E. Moxey, S.J. Sangwine, and T.A. Ell. Hypercomplex correlation techniques forvector images. IEEE Transactions on Signal Processing, 51(7):1941โ€“1953, July 2003.

[10] M.-H. Yeh. Relationships among various 2-D quaternion Fourier transforms. IEEESignal Processing Letters, 15:669โ€“672, Nov. 2008.

Todd Anthony EllEngineering FellowGoodrich, Sensors and Integrated Systems14300 Judicial RoadBurnsville, MN 55306, USAe-mail: [email protected]

Page 42: Quaternion and Clifford Fourier Transforms and Wavelets

Quaternion and Cliffordโ€“Fourier Transforms and Wavelets

Trends in Mathematics, 15โ€“39cโƒ 2013 Springer Basel

2 The Orthogonal 2D Planes Split ofQuaternions and Steerable QuaternionFourier Transformations

Eckhard Hitzer and Stephen J. Sangwine

Abstract. The two-sided quaternionic Fourier transformation (QFT) was in-troduced in [2] for the analysis of 2D linear time-invariant partial-differentialsystems. In further theoretical investigations [4, 5] a special split of quater-nions was introduced, then called ยฑsplit. In the current chapter we analyzethis split further, interpret it geometrically as an orthogonal 2D planes split(OPS), and generalize it to a freely steerable split of โ„ into two orthogonal2D analysis planes. The new general form of the OPS split allows us to findnew geometric interpretations for the action of the QFT on the signal. Thesecond major result of this work is a variety of new steerable forms of theQFT, their geometric interpretation, and for each form, OPS split theorems,which allow fast and efficient numerical implementation with standard FFTsoftware.

Mathematics Subject Classification (2010). Primary 16H05; secondary 42B10,94A12, 94A08, 65R10.

Keywords. Quaternion signals, orthogonal 2D planes split, quaternion Fouriertransformations, steerable transforms, geometric interpretation, fast imple-mentations.

1. Introduction

The two-sided quaternionic Fourier transformation (QFT) was introduced in [2] forthe analysis of 2D linear time-invariant partial-differential systems. Subsequentlyit has been applied in many fields, including colour image processing [8]. This ledto further theoretical investigations [4, 5], where a special split of quaternions wasintroduced, then called the ยฑsplit. An interesting physical consequence was thatthis split resulted in a left and right travelling multivector wave packet analysis,when generalizing the QFT to a full spacetime Fourier transform (SFT). In thecurrent chapter we investigate this split further, interpret it geometrically and

Page 43: Quaternion and Clifford Fourier Transforms and Wavelets

16 E. Hitzer and S.J. Sangwine

generalize it to a freely steerable1 split of โ„ into two orthogonal 2D analysis planes.For reasons to become obvious we prefer to call it from now on the orthogonal 2Dplanes split (OPS).

The general form of the OPS split allows us to find new geometric interpre-tations for the action of the QFT on the signal. The second major result of thiswork is a variety of new forms of the QFT, their detailed geometric interpretation,and for each form, an OPS split theorem, which allows fast and efficient numericalimplementation with standard FFT software. A preliminary formal investigationof these new OPS-QFTs can be found in [6].

The chapter is organized as follows. We first introduce in Section 2 severalproperties of quaternions together with a brief review of the ยฑ-split of [4, 5].In Section 3 we generalize this split to a freely steerable orthogonal 2D planessplit (OPS) of quaternions โ„. In Section 4 we use the general OPS of Section 3 togeneralize the two-sided QFT to a new two-sided QFT with freely steerable analysisplanes, complete with a detailed local geometric transformation interpretation. Thegeometric interpretation of the OPS in Section 3 further allows the construction ofa new type of steerable QFT with a direct phase angle interpretation. In Section 5we finally investigate new steerable QFTs involving quaternion conjugation. Theirlocal geometric interpretation crucially relies on the notion of 4D rotary reflections.

2. Orthogonal Planes Split of Quaternions withTwo Orthonormal Pure Unit Quaternions

Gauss, Rodrigues and Hamiltonโ€™s four-dimensional (4D) quaternion algebra โ„ isdefined over โ„ with three imaginary units:

๐’Š๐’‹ = โˆ’๐’‹๐’Š = ๐’Œ, ๐’‹๐’Œ = โˆ’๐’Œ๐’‹ = ๐’Š, ๐’Œ๐’Š = โˆ’๐’Š๐’Œ = ๐’‹,

๐’Š2 = ๐’‹2 = ๐’Œ2 = ๐’Š๐’‹๐’Œ = โˆ’1. (2.1)

Every quaternion can be written explicitly as

๐‘ž = ๐‘ž๐‘Ÿ + ๐‘ž๐‘–๐’Š+ ๐‘ž๐‘—๐’‹ + ๐‘ž๐‘˜๐’Œ โˆˆ โ„, ๐‘ž๐‘Ÿ, ๐‘ž๐‘–, ๐‘ž๐‘—, ๐‘ž๐‘˜ โˆˆ โ„, (2.2)

and has a quaternion conjugate (equivalent2 to Clifford conjugation in ๐ถโ„“+3,0 and

๐ถโ„“0,2)

๐‘ž = ๐‘ž๐‘Ÿ โˆ’ ๐‘ž๐‘–๐’Šโˆ’ ๐‘ž๐‘—๐’‹ โˆ’ ๐‘ž๐‘˜๐’Œ, ๐‘๐‘ž = ๐‘ž ๐‘, (2.3)

which leaves the scalar part ๐‘ž๐‘Ÿ unchanged. This leads to the norm of ๐‘ž โˆˆ โ„

โˆฃ๐‘žโˆฃ =โˆš

๐‘ž๐‘ž =โˆš

๐‘ž2๐‘Ÿ + ๐‘ž2๐‘– + ๐‘ž2๐‘— + ๐‘ž2๐‘˜, โˆฃ๐‘๐‘žโˆฃ = โˆฃ๐‘โˆฃ โˆฃ๐‘žโˆฃ . (2.4)

The part V(๐‘ž) = ๐‘ž โˆ’ ๐‘ž๐‘Ÿ = 12 (๐‘ž โˆ’ ๐‘ž) = ๐‘ž๐‘–๐’Š+ ๐‘ž๐‘—๐’‹ + ๐‘ž๐‘˜๐’Œ is called a pure quaternion,

and it squares to the negative number โˆ’(๐‘ž2๐‘– +๐‘ž2๐‘— +๐‘ž2๐‘˜). Every unit quaternion (i.e.,

1Compare Section 3.4, in particular Theorem 3.5.2This may be important in generalisations of the QFT, such as to a space-time Fourier transformin [4], or a general two-sided Cliffordโ€“Fourier transform in [7].

Page 44: Quaternion and Clifford Fourier Transforms and Wavelets

2. Orthogonal 2D Planes Split 17

โˆฃ๐‘žโˆฃ = 1) can be written as:

๐‘ž = ๐‘ž๐‘Ÿ + ๐‘ž๐‘–๐’Š+ ๐‘ž๐‘—๐’‹ + ๐‘ž๐‘˜๐’Œ = ๐‘ž๐‘Ÿ +โˆš

๐‘ž2๐‘– + ๐‘ž2๐‘— + ๐‘ž2๐‘˜ ๐(๐‘ž)

= cos๐›ผ+ ๐(๐‘ž) sin๐›ผ = ๐‘’๐›ผ๐(๐‘ž),(2.5)

where

cos๐›ผ = ๐‘ž๐‘Ÿ, sin๐›ผ =โˆš

๐‘ž2๐‘– + ๐‘ž2๐‘— + ๐‘ž2๐‘˜,

๐(๐‘ž) =V(๐‘ž)

โˆฃ๐‘žโˆฃ =๐‘ž๐‘–๐’Š+ ๐‘ž๐‘—๐’‹ + ๐‘ž๐‘˜๐’Œโˆš

๐‘ž2๐‘– + ๐‘ž2๐‘— + ๐‘ž2๐‘˜

, and ๐(๐‘ž)2= โˆ’1. (2.6)

The inverse of a non-zero quaternion is

๐‘žโˆ’1 =๐‘ž

โˆฃ๐‘žโˆฃ2 =๐‘ž

๐‘ž๐‘ž. (2.7)

The scalar part of a quaternion is defined as

S(๐‘ž) = ๐‘ž๐‘Ÿ =1

2(๐‘ž + ๐‘ž), (2.8)

with symmetries

S(๐‘๐‘ž) = S(๐‘ž๐‘) = ๐‘๐‘Ÿ๐‘ž๐‘Ÿ โˆ’ ๐‘๐‘–๐‘ž๐‘– โˆ’ ๐‘๐‘—๐‘ž๐‘— โˆ’ ๐‘๐‘˜๐‘ž๐‘˜, S(๐‘ž) = S(๐‘ž) , โˆ€๐‘, ๐‘ž โˆˆ โ„, (2.9)

and linearity

S(๐›ผ๐‘+ ๐›ฝ๐‘ž) = ๐›ผ S(๐‘) + ๐›ฝ S(๐‘ž) = ๐›ผ๐‘๐‘Ÿ + ๐›ฝ๐‘ž๐‘Ÿ , โˆ€๐‘, ๐‘ž โˆˆ โ„, ๐›ผ, ๐›ฝ โˆˆ โ„. (2.10)

The scalar part and the quaternion conjugate allow the definition of the โ„4 innerproduct3 of two quaternions ๐‘, ๐‘ž as

S(๐‘๐‘ž) = ๐‘๐‘Ÿ๐‘ž๐‘Ÿ + ๐‘๐‘–๐‘ž๐‘– + ๐‘๐‘—๐‘ž๐‘— + ๐‘๐‘˜๐‘ž๐‘˜ โˆˆ โ„. (2.11)

Definition 2.1 (Orthogonality of quaternions). Two quaternions ๐‘, ๐‘ž โˆˆ โ„ are or-thogonal ๐‘ โŠฅ ๐‘ž, if and only if the inner product S(๐‘๐‘ž) = 0.

The orthogonal4 2D planes split (OPS) of quaternions with respect to theorthonormal pure unit quaternions ๐’Š, ๐’‹ [4, 5] is defined by

๐‘ž = ๐‘ž+ + ๐‘žโˆ’, ๐‘žยฑ =1

2(๐‘ž ยฑ ๐’Š๐‘ž๐’‹). (2.12)

Explicitly in real components ๐‘ž๐‘Ÿ, ๐‘ž๐‘–, ๐‘ž๐‘— , ๐‘ž๐‘˜ โˆˆ โ„ using (2.1) we get

๐‘žยฑ = {๐‘ž๐‘Ÿ ยฑ ๐‘ž๐‘˜ + ๐’Š(๐‘ž๐‘– โˆ“ ๐‘ž๐‘—)}1ยฑ ๐’Œ

2=

1ยฑ ๐’Œ

2{๐‘ž๐‘Ÿ ยฑ ๐‘ž๐‘˜ + ๐’‹(๐‘ž๐‘— โˆ“ ๐‘ž๐‘–)}. (2.13)

This leads to the following new Pythagorean modulus identity [5]

Lemma 2.2 (Modulus identity). For ๐‘ž โˆˆ โ„

โˆฃ๐‘žโˆฃ2 = โˆฃ๐‘žโˆ’โˆฃ2 + โˆฃ๐‘ž+โˆฃ2 . (2.14)

3Note that we do not use the notation ๐‘ โ‹… ๐‘ž, which is unconventional for full quaternions.4Compare Lemma 2.3.

Page 45: Quaternion and Clifford Fourier Transforms and Wavelets

18 E. Hitzer and S.J. Sangwine

Lemma 2.3 (Orthogonality of OPS split parts). Given any two quaternions ๐‘, ๐‘ž โˆˆ โ„

and applying the OPS of (2.12) the resulting parts are orthogonal

S(๐‘+๐‘žโˆ’) = 0, S(๐‘โˆ’๐‘ž+) = 0, (2.15)

i.e., ๐‘+ โŠฅ ๐‘žโˆ’ and ๐‘โˆ’ โŠฅ ๐‘ž+.

In Lemma 2.3 (proved in [5]) the second identity follows from the first byS(๐‘ฅ) = S(๐‘ฅ) , โˆ€๐‘ฅ โˆˆ โ„, and ๐‘โˆ’๐‘ž+ = ๐‘ž+๐‘โˆ’.

It is evident, that instead of ๐’Š, ๐’‹, any pair of orthonormal pure quaternionscan be used to produce an analogous split. This is a first indication, that the OPS of(2.12) is in fact steerable. We observe, that ๐’Š๐‘ž๐’‹ = ๐‘ž+โˆ’๐‘žโˆ’, i.e., under the map ๐’Š( )๐’‹the ๐‘ž+ part is invariant, the ๐‘žโˆ’ part changes sign. Both parts are according to (2.13)two-dimensional, and by Lemma 2.3 they span two completely orthogonal planes.The ๐‘ž+-plane is spanned by the orthogonal quaternions {๐’Š โˆ’ ๐’‹, 1 + ๐’Š๐’‹ = 1 + ๐’Œ},whereas the ๐‘žโˆ’-plane is, e.g., spanned by {๐’Š+ ๐’‹, 1โˆ’ ๐’Š๐’‹ = 1โˆ’ ๐’Œ}, i.e., we have thetwo 2D subspace bases

๐‘ž+-basis: {๐’Šโˆ’ ๐’‹, 1 + ๐’Š๐’‹ = 1 + ๐’Œ}, ๐‘žโˆ’-basis: {๐’Š+ ๐’‹, 1โˆ’ ๐’Š๐’‹ = 1โˆ’ ๐’Œ}. (2.16)

Note that all basis vectors of (2.16)

{๐’Šโˆ’ ๐’‹, 1 + ๐’Š๐’‹, ๐’Š+ ๐’‹, 1โˆ’ ๐’Š๐’‹} (2.17)

together form an orthogonal basis of โ„ interpreted as โ„4.The map ๐’Š( )๐’‹ rotates the ๐‘žโˆ’-plane by 180โˆ˜ around the 2D ๐‘ž+ axis plane. Note

that in agreement with its geometric interpretation, the map ๐’Š( )๐’‹ is an involution,because applying it twice leads to identity

๐’Š(๐’Š๐‘ž๐’‹)๐’‹ = ๐’Š2๐‘ž๐’‹2 = (โˆ’1)2๐‘ž = ๐‘ž. (2.18)

3. General Orthogonal 2D Planes Split

We will study generalizations of the OPS split by replacing ๐’Š, ๐’‹ by arbitrary unitquaternions ๐‘“, ๐‘”. Even with this generalization, the map ๐‘“( )๐‘” continues to be aninvolution, because ๐‘“2๐‘ž๐‘”2 = (โˆ’1)2๐‘ž = ๐‘ž. For clarity we study the cases ๐‘“ โˆ•= ยฑ๐‘”,and ๐‘“ = ๐‘” separately, though they have a lot in common, and do not always needto be distinguished in specific applications.

3.1. Orthogonal 2D Planes Split Using Two Linearly IndependentPure Unit Quaternions

Our result is now, that all these properties hold, even if in the above considerationsthe pair ๐’Š, ๐’‹ is replaced by an arbitrary pair of linearly independent nonorthogonalpure quaternions ๐‘“, ๐‘”, ๐‘“2 = ๐‘”2 = โˆ’1, ๐‘“ โˆ•= ยฑ๐‘”. The OPS is then re-defined withrespect to the linearly independent pure unit quaternions ๐‘“, ๐‘” as

๐‘žยฑ =1

2(๐‘ž ยฑ ๐‘“๐‘ž๐‘”). (3.1)

Page 46: Quaternion and Clifford Fourier Transforms and Wavelets

2. Orthogonal 2D Planes Split 19

Equation (2.12) is a special case with ๐‘“ = ๐’Š, ๐‘” = ๐’‹. We observe from (3.1), that๐‘“๐‘ž๐‘” = ๐‘ž+ โˆ’ ๐‘žโˆ’, i.e., under the map ๐‘“( )๐‘” the ๐‘ž+ part is invariant, but the ๐‘žโˆ’ partchanges sign

๐‘“๐‘žยฑ๐‘” =1

2(๐‘“๐‘ž๐‘” ยฑ ๐‘“2๐‘ž๐‘”2) =

1

2(๐‘“๐‘ž๐‘” ยฑ ๐‘ž) = ยฑ1

2(๐‘ž ยฑ ๐‘“๐‘ž๐‘”) = ยฑ๐‘žยฑ. (3.2)

We now show that even for (3.1) both parts are two-dimensional, and span twocompletely orthogonal planes. The ๐‘ž+-plane is spanned

5 by the orthogonal pair ofquaternions {๐‘“ โˆ’ ๐‘”, 1 + ๐‘“๐‘”}:

S((๐‘“ โˆ’ ๐‘”)(1 + ๐‘“๐‘”)

)= S((๐‘“ โˆ’ ๐‘”)(1 + (โˆ’๐‘”)(โˆ’๐‘“)))

= S(๐‘“ + ๐‘“๐‘”๐‘“ โˆ’ ๐‘” โˆ’ ๐‘”2๐‘“

) (2.9)= S

(๐‘“ + ๐‘“2๐‘” โˆ’ ๐‘” + ๐‘“

)= 2S(๐‘“ โˆ’ ๐‘”) = 0, (3.3)

whereas the ๐‘žโˆ’-plane is, e.g., spanned by {๐‘“ + ๐‘”, 1 โˆ’ ๐‘“๐‘”}. The quaternions ๐‘“ +๐‘”, 1โˆ’ ๐‘“๐‘” can be proved to be mutually orthogonal by simply replacing ๐‘” โ†’ โˆ’๐‘” in(3.3). Note that we have

๐‘“(๐‘“ โˆ’ ๐‘”)๐‘” = ๐‘“2๐‘” โˆ’ ๐‘“๐‘”2 = โˆ’๐‘” + ๐‘“ = ๐‘“ โˆ’ ๐‘”,

๐‘“(1 + ๐‘“๐‘”)๐‘” = ๐‘“๐‘” + ๐‘“2๐‘”2 = ๐‘“๐‘” + 1 = 1 + ๐‘“๐‘”,(3.4)

as well as๐‘“(๐‘“ + ๐‘”)๐‘” = ๐‘“2๐‘” + ๐‘“๐‘”2 = โˆ’๐‘” โˆ’ ๐‘“ = โˆ’(๐‘“ + ๐‘”),

๐‘“(1โˆ’ ๐‘“๐‘”)๐‘” = ๐‘“๐‘” โˆ’ ๐‘“2๐‘”2 = ๐‘“๐‘” โˆ’ 1 = โˆ’(1โˆ’ ๐‘“๐‘”).(3.5)

We now want to generalize Lemma 2.3.

Lemma 3.1 (Orthogonality of two OPS planes). Given any two quaternions ๐‘ž, ๐‘ โˆˆโ„ and applying the OPS (3.1) with respect to two linearly independent pure unitquaternions ๐‘“, ๐‘” we get zero for the scalar part of the mixed products

S(๐‘+๐‘žโˆ’) = 0, S(๐‘โˆ’๐‘ž+) = 0. (3.6)

We prove the first identity, the second follows from S(๐‘ฅ) = S(๐‘ฅ).

S(๐‘+๐‘žโˆ’) =1

4S((๐‘+ ๐‘“๐‘๐‘”)(๐‘ž โˆ’ ๐‘”๐‘ž๐‘“)) =

1

4S(๐‘๐‘ž โˆ’ ๐‘“๐‘๐‘”๐‘”๐‘ž๐‘“ + ๐‘“๐‘๐‘”๐‘ž โˆ’ ๐‘๐‘”๐‘ž๐‘“)

(2.10), (2.9)=

1

4S(๐‘๐‘ž โˆ’ ๐‘๐‘ž + ๐‘๐‘”๐‘ž๐‘“ โˆ’ ๐‘๐‘”๐‘ž๐‘“) = 0. (3.7)

Thus the set

{๐‘“ โˆ’ ๐‘”, 1 + ๐‘“๐‘”, ๐‘“ + ๐‘”, 1โˆ’ ๐‘“๐‘”} (3.8)

forms a 4D orthogonal basis of โ„ interpreted by (2.11) as โ„4, where we have forthe orthogonal 2D planes the subspace bases:

๐‘ž+-basis: {๐‘“ โˆ’ ๐‘”, 1 + ๐‘“๐‘”}, ๐‘žโˆ’-basis: {๐‘“ + ๐‘”, 1โˆ’ ๐‘“๐‘”}. (3.9)

5For ๐‘“ = ๐’Š, ๐‘” = ๐’‹ this is in agreement with (2.13) and (2.16)!

Page 47: Quaternion and Clifford Fourier Transforms and Wavelets

20 E. Hitzer and S.J. Sangwine

We can therefore use the following representation for every ๐‘ž โˆˆ โ„ by means of fourreal coefficients ๐‘ž1, ๐‘ž2, ๐‘ž3, ๐‘ž4 โˆˆ โ„

๐‘ž = ๐‘ž1(1 + ๐‘“๐‘”) + ๐‘ž2(๐‘“ โˆ’ ๐‘”) + ๐‘ž3(1 โˆ’ ๐‘“๐‘”) + ๐‘ž4(๐‘“ + ๐‘”), (3.10)

where

๐‘ž1 = S(๐‘ž(1 + ๐‘“๐‘”)โˆ’1

), ๐‘ž2 = S

(๐‘ž(๐‘“ โˆ’ ๐‘”)โˆ’1

),

๐‘ž3 = S(๐‘ž(1 โˆ’ ๐‘“๐‘”)โˆ’1

), ๐‘ž4 = S

(๐‘ž(๐‘“ + ๐‘”)โˆ’1

).

(3.11)

As an example we have for ๐‘“ = ๐’Š, ๐‘” = ๐’‹ according to (2.13) the coefficients for thedecomposition with respect to the orthogonal basis (3.8)

๐‘ž1 =1

2(๐‘ž๐‘Ÿ + ๐‘ž๐‘˜), ๐‘ž2 =

1

2(๐‘ž๐‘– โˆ’ ๐‘ž๐‘—), ๐‘ž3 =

1

2(๐‘ž๐‘Ÿ โˆ’ ๐‘ž๐‘˜), ๐‘ž4 =

1

2(๐‘ž๐‘– + ๐‘ž๐‘—). (3.12)

Moreover, using

๐‘“ โˆ’ ๐‘” = ๐‘“(1 + ๐‘“๐‘”) = (1 + ๐‘“๐‘”)(โˆ’๐‘”), ๐‘“ + ๐‘” = ๐‘“(1โˆ’ ๐‘“๐‘”) = (1โˆ’ ๐‘“๐‘”)๐‘”, (3.13)

we have the following left and right factoring properties

๐‘ž+ = ๐‘ž1(1 + ๐‘“๐‘”) + ๐‘ž2(๐‘“ โˆ’ ๐‘”) = (๐‘ž1 + ๐‘ž2๐‘“)(1 + ๐‘“๐‘”)(3.14)

= (1 + ๐‘“๐‘”)(๐‘ž1 โˆ’ ๐‘ž2๐‘”),

๐‘žโˆ’ = ๐‘ž3(1โˆ’ ๐‘“๐‘”) + ๐‘ž4(๐‘“ + ๐‘”) = (๐‘ž3 + ๐‘ž4๐‘“)(1โˆ’ ๐‘“๐‘”)(3.15)

= (1โˆ’ ๐‘“๐‘”)(๐‘ž3 + ๐‘ž4๐‘”).

Equations (3.4) and (3.5) further show that the map ๐‘“( )๐‘” rotates the ๐‘žโˆ’-plane by 180โˆ˜ around the ๐‘ž+ axis plane. We found that our interpretation of themap ๐‘“( )๐‘” is in perfect agreement with Coxeterโ€™s notion of half-turn in [1]. Thisopens the way for new types of QFTs, where the pair of square roots of โˆ’1 involveddoes not necessarily need to be orthogonal.

Before suggesting a generalization of the QFT, we will establish a new set ofvery useful algebraic identities. Based on (3.14) and (3.15) we get for ๐›ผ, ๐›ฝ โˆˆ โ„

๐‘’๐›ผ๐‘“๐‘ž๐‘’๐›ฝ๐‘” = ๐‘’๐›ผ๐‘“๐‘ž+๐‘’๐›ฝ๐‘” + ๐‘’๐›ผ๐‘“๐‘žโˆ’๐‘’๐›ฝ๐‘”,

๐‘’๐›ผ๐‘“๐‘ž+๐‘’๐›ฝ๐‘” = (๐‘ž1 + ๐‘ž2๐‘“)๐‘’๐›ผ๐‘“ (1 + ๐‘“๐‘”)๐‘’๐›ฝ๐‘” = ๐‘’๐›ผ๐‘“ (1 + ๐‘“๐‘”)๐‘’๐›ฝ๐‘”(๐‘ž1 โˆ’ ๐‘ž2๐‘”), (3.16)

๐‘’๐›ผ๐‘“๐‘žโˆ’๐‘’๐›ฝ๐‘” = (๐‘ž3 + ๐‘ž4๐‘“)๐‘’๐›ผ๐‘“ (1โˆ’ ๐‘“๐‘”)๐‘’๐›ฝ๐‘” = ๐‘’๐›ผ๐‘“ (1โˆ’ ๐‘“๐‘”)๐‘’๐›ฝ๐‘”(๐‘ž3 + ๐‘ž4๐‘”).

Using (3.14) again we obtain

๐‘’๐›ผ๐‘“ (1 + ๐‘“๐‘”) = (cos๐›ผ+ ๐‘“ sin๐›ผ)(1 + ๐‘“๐‘”)

(3.14)= (1 + ๐‘“๐‘”)(cos๐›ผโˆ’ ๐‘” sin๐›ผ) = (1 + ๐‘“๐‘”)๐‘’โˆ’๐›ผ๐‘”,

(3.17)

where we set ๐‘ž1 = cos๐›ผ, ๐‘ž2 = sin๐›ผ for applying (3.14). Replacing in (3.17)โˆ’๐›ผโ†’ ๐›ฝwe get

๐‘’โˆ’๐›ฝ๐‘“(1 + ๐‘“๐‘”) = (1 + ๐‘“๐‘”)๐‘’๐›ฝ๐‘”, (3.18)

Page 48: Quaternion and Clifford Fourier Transforms and Wavelets

2. Orthogonal 2D Planes Split 21

Furthermore, replacing in (3.17) ๐‘” โ†’ โˆ’๐‘” and subsequently ๐›ผโ†’ ๐›ฝ we get

๐‘’๐›ผ๐‘“ (1โˆ’ ๐‘“๐‘”) = (1 โˆ’ ๐‘“๐‘”)๐‘’๐›ผ๐‘”,

๐‘’๐›ฝ๐‘“(1โˆ’ ๐‘“๐‘”) = (1 โˆ’ ๐‘“๐‘”)๐‘’๐›ฝ๐‘”.(3.19)

Applying (3.14), (3.16), (3.17) and (3.18) we can rewrite

๐‘’๐›ผ๐‘“๐‘ž+๐‘’๐›ฝ๐‘”(3.16)= (๐‘ž1 + ๐‘ž2๐‘“)๐‘’

๐›ผ๐‘“ (1 + ๐‘“๐‘”)๐‘’๐›ฝ๐‘”(3.17)= (๐‘ž1 + ๐‘ž2๐‘“)(1 + ๐‘“๐‘”)๐‘’(๐›ฝโˆ’๐›ผ)๐‘”

(3.14)= ๐‘ž+๐‘’(๐›ฝโˆ’๐›ผ)๐‘”, (3.20)

or equivalently as

๐‘’๐›ผ๐‘“๐‘ž+๐‘’๐›ฝ๐‘”(3.16)= ๐‘’๐›ผ๐‘“ (1 + ๐‘“๐‘”)๐‘’๐›ฝ๐‘”(๐‘ž1 โˆ’ ๐‘ž2๐‘”)

(3.18)= ๐‘’(๐›ผโˆ’๐›ฝ)๐‘“(1 + ๐‘“๐‘”)(๐‘ž1 โˆ’ ๐‘ž2๐‘”)

(3.14)= ๐‘’(๐›ผโˆ’๐›ฝ)๐‘“๐‘ž+. (3.21)

In the same way by changing ๐‘” โ†’ โˆ’๐‘”, ๐›ฝ โ†’ โˆ’๐›ฝ in (3.20) and (3.21) we can rewrite

๐‘’๐›ผ๐‘“๐‘žโˆ’๐‘’๐›ฝ๐‘” = ๐‘’(๐›ผ+๐›ฝ)๐‘“๐‘žโˆ’ = ๐‘žโˆ’๐‘’(๐›ผ+๐›ฝ)๐‘”. (3.22)

The result is therefore

๐‘’๐›ผ๐‘“๐‘žยฑ๐‘’๐›ฝ๐‘” = ๐‘žยฑ๐‘’(๐›ฝโˆ“๐›ผ)๐‘” = ๐‘’(๐›ผโˆ“๐›ฝ)๐‘“๐‘žยฑ. (3.23)

3.2. Orthogonal 2D Planes Split Using One Pure Unit Quaternion

We now treat the case for ๐‘” = ๐‘“, ๐‘“2 = โˆ’1. We then have the map ๐‘“( )๐‘“ , and theOPS split with respect to ๐‘“ โˆˆ โ„, ๐‘“2 = โˆ’1,

๐‘žยฑ =1

2(๐‘ž ยฑ ๐‘“๐‘ž๐‘“). (3.24)

The pure quaternion ๐’Š can be rotated by ๐‘… = ๐’Š(๐’Š+ ๐‘“), see (3.27), into the quater-nion unit ๐‘“ and back. Therefore studying the map ๐’Š( )๐’Š is, up to the constantrotation between ๐’Š and ๐‘“ , the same as studying ๐‘“( )๐‘“ . This gives

๐’Š๐‘ž๐’Š = ๐’Š(๐‘ž๐‘Ÿ + ๐‘ž๐‘–๐’Š+ ๐‘ž๐‘—๐’‹ + ๐‘ž๐‘˜๐’Œ)๐’Š = โˆ’๐‘ž๐‘Ÿ โˆ’ ๐‘ž๐‘–๐’Š+ ๐‘ž๐‘—๐’‹ + ๐‘ž๐‘˜๐’Œ. (3.25)

The OPS with respect to ๐‘“ = ๐‘” = ๐’Š gives

๐‘žยฑ =1

2(๐‘ž ยฑ ๐’Š๐‘ž๐’Š), ๐‘ž+ = ๐‘ž๐‘—๐’‹ + ๐‘ž๐‘˜๐’Œ = (๐‘ž๐‘— + ๐‘ž๐‘˜๐’Š)๐’‹, ๐‘žโˆ’ = ๐‘ž๐‘Ÿ + ๐‘ž๐‘–๐’Š, (3.26)

where the ๐‘ž+-plane is two-dimensional and manifestly orthogonal to the 2D ๐‘žโˆ’-plane. This form (3.26) of the OPS is therefore identical to the quaternionic sim-plex/perplex split of [3].

For ๐‘” = ๐‘“ the ๐‘žโˆ’-plane is always spanned by {1, ๐‘“}. The rotation operator๐‘… = ๐’Š(๐’Š+๐‘“), with squared norm โˆฃ๐‘…โˆฃ2 = โˆฃ๐’Š(๐’Š+๐‘“)โˆฃ2 = โˆฃ(๐’Š+๐‘“)โˆฃ2 = โˆ’(๐’Š+๐‘“)2, rotates๐’Š into ๐‘“ according to

๐‘…โˆ’1๐’Š๐‘… =๐‘…

โˆฃ๐‘…โˆฃ2 ๐’Š๐‘… =(๐’Š+ ๐‘“)๐’Š๐’Š๐’Š(๐’Š+ ๐‘“)

โˆ’(๐’Š+ ๐‘“)2=

(๐’Š+ ๐‘“)๐’Š(๐’Š(โˆ’๐‘“) + 1)๐‘“

(๐’Š+ ๐‘“)2

=(๐’Š+ ๐‘“)(๐‘“ + ๐’Š)๐‘“

(๐’Š+ ๐‘“)2= ๐‘“.

(3.27)

Page 49: Quaternion and Clifford Fourier Transforms and Wavelets

22 E. Hitzer and S.J. Sangwine

The rotation ๐‘… leaves 1 invariant and thus rotates the whole {1, ๐’Š} plane into the๐‘žโˆ’-plane spanned by {1, ๐‘“}. Consequently ๐‘… also rotates the {๐’‹,๐’Œ} plane into the๐‘ž+-plane spanned by {๐’‹โ€ฒ = ๐‘…โˆ’1๐’‹๐‘…, ๐’Œโ€ฒ = ๐‘…โˆ’1๐’Œ๐‘…}. We thus constructively obtainthe fully orthonormal 4D basis of โ„ as

{1, ๐‘“, ๐’‹โ€ฒ,๐’Œโ€ฒ} = ๐‘…โˆ’1{1, ๐’Š, ๐’‹,๐’Œ}๐‘…, ๐‘… = ๐’Š(๐’Š+ ๐‘“), (3.28)

for any chosen pure unit quaternion ๐‘“ . We further have, for the orthogonal 2Dplanes created in (3.24) the subspace bases:

๐‘ž+-basis: {๐’‹โ€ฒ,๐’Œโ€ฒ}, ๐‘žโˆ’-basis: {1, ๐‘“}. (3.29)

The rotation ๐‘… (an orthogonal transformation!) of (3.27) preserves the fun-damental quaternionic orthonormality and the anticommutation relations

๐‘“๐’‹โ€ฒ = ๐’Œโ€ฒ = โˆ’๐’‹โ€ฒ๐‘“, ๐’Œโ€ฒ๐‘“ = ๐’‹โ€ฒ = โˆ’๐‘“๐’Œโ€ฒ ๐’‹โ€ฒ๐’Œโ€ฒ = ๐‘“ = โˆ’๐’Œโ€ฒ๐’‹โ€ฒ. (3.30)

Hence

๐‘“๐‘ž๐‘“ = ๐‘“(๐‘ž+ + ๐‘žโˆ’)๐‘“ = ๐‘ž+ โˆ’ ๐‘žโˆ’, i.e., ๐‘“๐‘žยฑ๐‘“ = ยฑ๐‘žยฑ, (3.31)

which represents again a half-turn by 180โˆ˜ in the 2D ๐‘žโˆ’-plane around the 2D๐‘ž+-plane (as axis).

Figures 1 and 2 illustrate this decomposition for the case where ๐‘“ is theunit pure quaternion 1โˆš

3(๐’Š + ๐’‹ + ๐’Œ). This decomposition corresponds (for pure

quaternions) to the classical luminance-chrominance decomposition used in colourimage processing, as illustrated, for example, in [3, Figure 2]. Three hundredunit quaternions randomly oriented in 4-space were decomposed. Figure 1 showsthe three hundred points in 4-space, projected onto the six orthogonal planes{๐‘’, ๐’Šโ€ฒ}, {๐‘’, ๐’‹โ€ฒ}, {๐‘’,๐’Œโ€ฒ}, {๐’Šโ€ฒ, ๐’‹โ€ฒ}, {๐’‹โ€ฒ,๐’Œโ€ฒ}, {๐’Œโ€ฒ, ๐’Šโ€ฒ} where ๐‘’ = 1 and ๐’Šโ€ฒ = ๐‘“ , as given in(3.28). The six views at the top show the ๐‘ž+-plane, and the six below show the๐‘žโˆ’-plane.

Figure 2 shows the vector parts of the decomposed quaternions. The basisfor the plot is {๐’Šโ€ฒ, ๐’‹ โ€ฒ,๐’Œโ€ฒ}, where ๐’Šโ€ฒ = ๐‘“ as given in (3.28). The green circles showthe components in the {1, ๐‘“} plane, which intersects the 3-space of the vector partonly along the line ๐‘“ (which is the luminance or grey line of colour image pixels).The red line on the figure corresponds to ๐‘“ . The blue circles show the componentsin the {๐’‹โ€ฒ,๐’Œโ€ฒ} plane, which is entirely within the 3-space. It is orthogonal to ๐‘“ andcorresponds to the chrominance plane of colour image processing.

The next question is the influence the current OPS (3.24) has for left andright exponential factors of the form

๐‘’๐›ผ๐‘“๐‘žยฑ ๐‘’๐›ฝ๐‘“ . (3.32)

We learn from (3.30) that

๐‘’๐›ผ๐‘“๐‘žยฑ๐‘’๐›ฝ๐‘“ = ๐‘’(๐›ผโˆ“๐›ฝ)๐‘“๐‘žยฑ = ๐‘žยฑ๐‘’(๐›ฝโˆ“๐›ผ)๐‘“ , (3.33)

which is identical to (3.23), if we insert ๐‘” = ๐‘“ in (3.23).

Page 50: Quaternion and Clifford Fourier Transforms and Wavelets

2. Orthogonal 2D Planes Split 23

0.5 0 0.5

0.5

0

0.5

e

iยด

0.5 0 0.5

0.5

0

0.5

ejยด

0.5 0 0.5

0.5

0

0.5

e

kยด0.5 0 0.5

0.5

0

0.5

iยด

jยด

0.5 0 0.5

0.5

0

0.5

jยด

kยด

0.5 0 0.5

0.5

0

0.5

kยดiยด

0.5 0 0.5

0.5

0

0.5

e

iยด

0.5 0 0.5

0.5

0

0.5

e

jยด

0.5 0 0.5

0.5

0

0.5

e

kยด

0.5 0 0.5

0.5

0

0.5

iยด

jยด

0.5 0 0.5

0.5

0

0.5

jยด

kยด

0.5 0 0.5

0.5

0

0.5

kยด

iยด

Figure 1. 4D scatter plot of quaternions decomposed using the or-thogonal planes split of (3.24) with one unit pure quaternion ๐‘“ = ๐’Šโ€ฒ =1โˆš3(๐’Š+ ๐’‹ + ๐’Œ) = ๐‘”.

Page 51: Quaternion and Clifford Fourier Transforms and Wavelets

24 E. Hitzer and S.J. Sangwine

0.50

0.5

0.5

0

0.5

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

jยด

iยด

kยด

Figure 2. Scatter plot of vector parts of quaternions decomposed usingthe orthogonal planes split of (3.24) with one pure unit quaternion ๐‘“ =๐’Šโ€ฒ = 1โˆš

3(๐’Š+ ๐’‹ + ๐’Œ) = ๐‘”. The red line corresponds to the direction of ๐‘“ .

Next, we consider ๐‘” = โˆ’๐‘“, ๐‘“2 = โˆ’1. We then have the map ๐‘“( )(โˆ’๐‘“), andthe OPS split with respect to ๐‘“,โˆ’๐‘“ โˆˆ โ„, ๐‘“2 = โˆ’1,

๐‘žยฑ =1

2(๐‘ž ยฑ ๐‘“๐‘ž(โˆ’๐‘“)) =

1

2(๐‘ž โˆ“ ๐‘“๐‘ž๐‘“). (3.34)

Again we can study ๐‘“ = ๐’Š first, because for general pure unit quaternions ๐‘“ theunit quaternion ๐’Š can be rotated by (3.27) into the quaternion unit ๐‘“ and back.Therefore studying the map ๐’Š( )(โˆ’๐’Š) is up to the constant rotation ๐‘… of (3.27) thesame as studying ๐‘“( )(โˆ’๐‘“). This gives the map

๐’Š๐‘ž(โˆ’๐’Š) = ๐’Š(๐‘ž๐‘Ÿ + ๐‘ž๐‘–๐’Š+ ๐‘ž๐‘—๐’‹ + ๐‘ž๐‘˜๐’Œ)(โˆ’๐’Š) = ๐‘ž๐‘Ÿ + ๐‘ž๐‘–๐’Šโˆ’ ๐‘ž๐‘—๐’‹ โˆ’ ๐‘ž๐‘˜๐’Œ. (3.35)

The OPS with respect to ๐‘“ = ๐’Š, ๐‘” = โˆ’๐’Š gives

๐‘žยฑ =1

2(๐‘ž ยฑ ๐’Š๐‘ž(โˆ’๐’Š)), ๐‘žโˆ’ = ๐‘ž๐‘—๐’‹ + ๐‘ž๐‘˜๐’Œ = (๐‘ž๐‘— + ๐‘ž๐‘˜๐’Š)๐’‹, ๐‘ž+ = ๐‘ž๐‘Ÿ + ๐‘ž๐‘–๐’Š, (3.36)

where, compared to ๐‘“ = ๐‘” = ๐’Š, the 2D ๐‘ž+-plane and the 2D ๐‘žโˆ’-planes appear in-terchanged. The form (3.36) of the OPS is again identical to the quaternionic sim-plex/perplex split of [3], but the simplex and perplex parts appear interchanged.

For ๐‘” = โˆ’๐‘“ the ๐‘ž+-plane is always spanned by {1, ๐‘“}. The rotation ๐‘… of(3.27) rotates ๐’Š into ๐‘“ and leaves 1 invariant and thus rotates the whole {1, ๐’Š}

Page 52: Quaternion and Clifford Fourier Transforms and Wavelets

2. Orthogonal 2D Planes Split 25

plane into the ๐‘ž+-plane spanned by {1, ๐‘“}. Consequently, ๐‘… of (3.27) also rotatesthe {๐’‹,๐’Œ} plane into the ๐‘žโˆ’-plane spanned by {๐’‹โ€ฒ = ๐‘…โˆ’1๐’‹๐‘…, ๐’Œโ€ฒ = ๐‘…โˆ’1๐’Œ๐‘…}.

We therefore have for the orthogonal 2D planes created in (3.34) the subspacebases:

๐‘ž+-basis: {1, ๐‘“}, ๐‘žโˆ’-basis: {๐’‹โ€ฒ,๐’Œโ€ฒ}. (3.37)

We again obtain the fully orthonormal 4D basis (3.28) of โ„, preservingthe fundamental quaternionic orthonormality and the anticommutation relations(3.30).

Hence for (3.34)

๐‘“๐‘ž(โˆ’๐‘“) = ๐‘“(๐‘ž+ + ๐‘žโˆ’)(โˆ’๐‘“) = ๐‘ž+ โˆ’ ๐‘žโˆ’, i.e., ๐‘“๐‘žยฑ(โˆ’๐‘“) = ยฑ๐‘žยฑ, (3.38)

which represents again a half-turn by 180โˆ˜ in the 2D ๐‘žโˆ’-plane around the 2D๐‘ž+-plane (as axis).

The remaining question is the influence the current OPS (3.34) has for leftand right exponential factors of the form

๐‘’๐›ผ๐‘“๐‘žยฑ๐‘’โˆ’๐›ฝ๐‘“ . (3.39)

We learn from (3.30) that

๐‘’๐›ผ๐‘“๐‘žยฑ๐‘’โˆ’๐›ฝ๐‘“ = ๐‘’(๐›ผโˆ“๐›ฝ)๐‘“๐‘žยฑ = ๐‘žยฑ๐‘’โˆ’(๐›ฝโˆ“๐›ผ)๐‘“ , (3.40)

which is identical to (3.23), if we insert ๐‘” = โˆ’๐‘“ in (3.23).

For (3.23) therefore, we do not any longer need to distinguish the cases ๐‘“ โˆ•=ยฑ๐‘” and ๐‘“ = ยฑ๐‘”. This motivates us to a general OPS definition for any pair of purequaternions ๐‘“, ๐‘”, and we get a general lemma.

Definition 3.2 (General orthogonal 2D planes split). Let ๐‘“, ๐‘” โˆˆ โ„ be an arbitrarypair of pure quaternions ๐‘“, ๐‘”, ๐‘“2 = ๐‘”2 = โˆ’1, including the cases ๐‘“ = ยฑ๐‘”. Thegeneral OPS is then defined with respect to the two pure unit quaternions ๐‘“, ๐‘” as

๐‘žยฑ =1

2(๐‘ž ยฑ ๐‘“๐‘ž๐‘”). (3.41)

Remark 3.3. The three generalized OPS (3.1), (3.24), and (3.34) are formallyidentical and are now subsumed in (3.41) of Definition 3.2, where the values ๐‘” = ยฑ๐‘“are explicitly included, i.e., any pair of pure unit quaternions ๐‘“, ๐‘” โˆˆ โ„, ๐‘“2 = ๐‘”2 =โˆ’1, is admissible.

Lemma 3.4. With respect to the general OPS of Definition 3.2 we have for left andright exponential factors the identity

๐‘’๐›ผ๐‘“๐‘žยฑ๐‘’๐›ฝ๐‘” = ๐‘žยฑ๐‘’(๐›ฝโˆ“๐›ผ)๐‘” = ๐‘’(๐›ผโˆ“๐›ฝ)๐‘“๐‘žยฑ. (3.42)

Page 53: Quaternion and Clifford Fourier Transforms and Wavelets

26 E. Hitzer and S.J. Sangwine

3.3. Geometric Interpretation of Left and Right Exponential Factors in ๐’‡ , ๐’ˆ

We obtain the following general geometric interpretation. The map ๐‘“( )๐‘” alwaysrepresents a rotation by angle ๐œ‹ in the ๐‘žโˆ’-plane (around the ๐‘ž+-plane), the map๐‘“ ๐‘ก( )๐‘”๐‘ก, ๐‘ก โˆˆ โ„, similarly represents a rotation by angle ๐‘ก๐œ‹ in the ๐‘žโˆ’-plane (aroundthe ๐‘ž+-plane as axis). Replacing6 ๐‘” โ†’ โˆ’๐‘” in the map ๐‘“( )๐‘” we further find that

๐‘“๐‘žยฑ(โˆ’๐‘”) = โˆ“๐‘žยฑ. (3.43)

Therefore the map ๐‘“( )(โˆ’๐‘”) = ๐‘“( )๐‘”โˆ’1, because ๐‘”โˆ’1 = โˆ’๐‘”, represents a rotationby angle ๐œ‹ in the ๐‘ž+-plane (around the ๐‘žโˆ’-plane), exchanging the roles of 2Drotation plane and 2D rotation axis. Similarly, the map ๐‘“๐‘ ( )๐‘”โˆ’๐‘ , ๐‘  โˆˆ โ„, representsa rotation by angle ๐‘ ๐œ‹ in the ๐‘ž+-plane (around the ๐‘žโˆ’-plane as axis).

The product of these two rotations gives

๐‘“ ๐‘ก+๐‘ ๐‘ž๐‘”๐‘กโˆ’๐‘  = ๐‘’(๐‘ก+๐‘ )๐œ‹2 ๐‘“๐‘ž๐‘’(๐‘กโˆ’๐‘ )

๐œ‹2 ๐‘” = ๐‘’๐›ผ๐‘“๐‘ž๐‘’๐›ฝ๐‘”,

๐›ผ = (๐‘ก+ ๐‘ )๐œ‹

2, ๐›ฝ = (๐‘กโˆ’ ๐‘ )

๐œ‹

2,

(3.44)

where based on (2.5) we used the identities ๐‘“ = ๐‘’๐œ‹2 ๐‘“ and ๐‘” = ๐‘’

๐œ‹2 ๐‘”.

The geometric interpretation of (3.44) is a rotation by angle ๐›ผ + ๐›ฝ in the๐‘žโˆ’-plane (around the ๐‘ž+-plane), and a second rotation by angle ๐›ผโˆ’ ๐›ฝ in the ๐‘ž+-plane (around the ๐‘žโˆ’-plane). For ๐›ผ = ๐›ฝ = ๐œ‹/2 we recover the map ๐‘“( )๐‘”, and for๐›ผ = โˆ’๐›ฝ = ๐œ‹/2 we recover the map ๐‘“( )๐‘”โˆ’1.

3.4. Determination of ๐’‡, ๐’ˆ for Given Steerable Pair of Orthogonal 2D Planes

Equations (3.9), (3.29), and (3.37) tell us how the pair of pure unit quaternions๐‘“, ๐‘” โˆˆ โ„ used in the general OPS of Definition 3.2, leads to an explicit basis forthe resulting two orthogonal 2D planes, the ๐‘ž+-plane and the ๐‘žโˆ’-plane. We nowask the opposite question: how can we determine from a given steerable pair oforthogonal 2D planes in โ„ the pair of pure unit quaternions ๐‘“, ๐‘” โˆˆ โ„, which splitsโ„ exactly into this given pair of orthogonal 2D planes?

To answer this question, we first observe that in a 4D space it is sufficientto know only one 2D plane explicitly, specified, e.g., by a pair of orthogonal unitquaternions ๐‘Ž, ๐‘ โˆˆ โ„, โˆฃ๐‘Žโˆฃ = โˆฃ๐‘โˆฃ = 1, and without restriction of generality ๐‘2 = โˆ’1,i.e., ๐‘ can be a pure unit quaternion ๐‘ = ๐(๐‘). But for ๐‘Ž = cos๐›ผ + ๐(๐‘Ž) sin๐›ผ,compare (2.6), we must distinguish S(๐‘Ž) = cos๐›ผ โˆ•= 0 and S(๐‘Ž) = cos๐›ผ = 0, i.e., of๐‘Ž also being a pure quaternion with ๐‘Ž2 = โˆ’1. The second orthogonal 2D plane isthen simply the orthogonal complement in โ„ to the ๐‘Ž, ๐‘-plane.

Let us first treat the case S(๐‘Ž) = cos๐›ผ โˆ•= 0. We set

๐‘“ := ๐‘Ž๐‘, ๐‘” := ๐‘Ž๐‘. (3.45)

6Alternatively and equivalently we could replace ๐‘“ โ†’ โˆ’๐‘“ instead of ๐‘” โ†’ โˆ’๐‘”.

Page 54: Quaternion and Clifford Fourier Transforms and Wavelets

2. Orthogonal 2D Planes Split 27

With this setting we get for the basis of the ๐‘žโˆ’-plane

๐‘“ + ๐‘” = ๐‘Ž๐‘+ ๐‘Ž๐‘ = 2S(๐‘Ž) ๐‘,

1โˆ’ ๐‘“๐‘” = 1โˆ’ ๐‘Ž๐‘๐‘Ž๐‘ = 1โˆ’ ๐‘Ž2๐‘2 = 1 + ๐‘Ž2

= 1 + cos2 ๐›ผโˆ’ sin2 ๐›ผ+ 2๐(๐‘Ž) cos๐›ผ sin๐›ผ

= 2 cos๐›ผ(cos๐›ผ+ ๐(๐‘Ž) sin๐›ผ) = 2 S(๐‘Ž) ๐‘Ž.

(3.46)

For the equality ๐‘Ž๐‘๐‘Ž๐‘ = ๐‘Ž2๐‘2 we used the orthogonality of ๐‘Ž, ๐‘, which means thatthe vector part of ๐‘Ž must be orthogonal to the pure unit quaternion ๐‘, i.e., it mustanticommute with ๐‘

๐‘Ž๐‘ = ๐‘๐‘Ž, ๐‘๐‘Ž = ๐‘Ž๐‘. (3.47)

Comparing (3.9) and (3.46), the plane spanned by the two orthogonal unit quater-nions ๐‘Ž, ๐‘ โˆˆ โ„ is indeed the ๐‘žโˆ’-plane for S(๐‘Ž) = cos๐›ผ โˆ•= 0. The orthogonal ๐‘ž+-planeis simply given by its basis vectors (3.9), inserting (3.45). This leads to the pair oforthogonal unit quaternions ๐‘, ๐‘‘ for the ๐‘ž+-plane as

๐‘ =๐‘“ โˆ’ ๐‘”

โˆฃ๐‘“ โˆ’ ๐‘”โˆฃ =๐‘Ž๐‘โˆ’ ๐‘Ž๐‘

โˆฃ(๐‘Žโˆ’ ๐‘Ž)๐‘โˆฃ =๐‘Žโˆ’ ๐‘Ž

โˆฃ๐‘Žโˆ’ ๐‘Žโˆฃ๐‘ = ๐(๐‘Ž)๐‘, (3.48)

๐‘‘ =1 + ๐‘“๐‘”

โˆฃ1 + ๐‘“๐‘”โˆฃ =๐‘“ โˆ’ ๐‘”

โˆฃ๐‘“ โˆ’ ๐‘”โˆฃ๐‘” = ๐‘๐‘” = ๐(๐‘Ž)๐‘๐‘” = ๐(๐‘Ž)๐‘๐‘Ž๐‘ = ๐(๐‘Ž)๐‘Ž๐‘2 = โˆ’๐(๐‘Ž)๐‘Ž, (3.49)

where we have used (3.13) for the second, and (3.47) for the sixth equality in(3.49).

Let us also verify that ๐‘“, ๐‘” of (3.45) are both pure unit quaternions using(3.47)

๐‘“2 = ๐‘Ž๐‘๐‘Ž๐‘ = (๐‘Ž๐‘Ž)๐‘๐‘ = โˆ’1, ๐‘”2 = ๐‘Ž๐‘๐‘Ž๐‘ = (๐‘Ž๐‘Ž)๐‘๐‘ = โˆ’1. (3.50)

Note, that if we would set in (3.45) for ๐‘” := โˆ’๐‘Ž๐‘, then the ๐‘Ž, ๐‘-plane wouldhave become the ๐‘ž+-plane instead of the ๐‘žโˆ’-plane. We can therefore determine bythe sign in the definition of ๐‘”, which of the two OPS planes the ๐‘Ž, ๐‘-plane is torepresent.

For both ๐‘Ž and ๐‘ being two pure orthogonal quaternions, we can again set

๐‘“ := ๐‘Ž๐‘โ‡’ ๐‘“2 = ๐‘Ž๐‘๐‘Ž๐‘ = โˆ’๐‘Ž2๐‘2 = โˆ’1, ๐‘” := ๐‘Ž๐‘ = โˆ’๐‘Ž๐‘ = โˆ’๐‘“, (3.51)

where due to the orthogonality of the pure unit quaternions ๐‘Ž, ๐‘ we were able touse ๐‘๐‘Ž = โˆ’๐‘Ž๐‘. In this case ๐‘“ = ๐‘Ž๐‘ is thus also shown to be a pure unit quaternion.Now the ๐‘žโˆ’-plane of the corresponding OPS (3.34) is spanned by {๐‘Ž, ๐‘}, whereasthe ๐‘ž+-plane is spanned by {1, ๐‘“}. Setting instead ๐‘” := โˆ’๐‘Ž๐‘ = ๐‘Ž๐‘ = ๐‘“ , the ๐‘žโˆ’-plane of the corresponding OPS (3.24) is spanned by {1, ๐‘“}, wheras the ๐‘ž+-planeis spanned by {๐‘Ž, ๐‘}.

We summarize our results in the following theorem.

Theorem 3.5. (Determination of ๐’‡, ๐’ˆ from given steerable 2D plane) Given any2D plane in โ„ in terms of two unit quaternions ๐‘Ž, ๐‘, where ๐‘ is without restriction

Page 55: Quaternion and Clifford Fourier Transforms and Wavelets

28 E. Hitzer and S.J. Sangwine

of generality pure, i.e., ๐‘2 = โˆ’1, we can make the given plane the ๐‘žโˆ’-plane of theOPS ๐‘žยฑ = 1

2 (๐‘ž ยฑ ๐‘“๐‘ž๐‘”), by setting

๐‘“ := ๐‘Ž๐‘, ๐‘” := ๐‘Ž๐‘. (3.52)

For S(๐‘Ž) โˆ•= 0 the orthogonal ๐‘ž+-plane is fully determined by the orthogonal unitquaternions

๐‘ = ๐(๐‘Ž)๐‘, ๐‘‘ = โˆ’๐(๐‘Ž)๐‘Ž. (3.53)

where ๐(๐‘Ž) is as defined in (2.6). For S(๐‘Ž) = 0 the orthogonal ๐‘ž+-plane with basis{1, ๐‘“} is instead fully determined by ๐‘“ = โˆ’๐‘” = ๐‘Ž๐‘.

Setting alternatively

๐‘“ := ๐‘Ž๐‘, ๐‘” := โˆ’๐‘Ž๐‘. (3.54)

makes the given ๐‘Ž, ๐‘-plane the ๐‘ž+-plane instead. For S(๐‘Ž) โˆ•= 0 the orthogonal ๐‘žโˆ’-plane is then fully determined by (3.54) and (3.9), with the same orthogonal unitquaternions ๐‘ = ๐(๐‘Ž)๐‘, ๐‘‘ = โˆ’๐(๐‘Ž)๐‘Ž as in (3.53). For S(๐‘Ž) = 0 the orthogonal๐‘žโˆ’-plane with basis {1, ๐‘“} is then instead fully determined by ๐‘“ = ๐‘” = ๐‘Ž๐‘.

An illustration of the decomposition is given in Figures 3 and 4. Again, threehundred unit pure quaternions randomly oriented in 4-space have been decom-posed into two sets using the decomposition of Definition 3.2 and two unit purequaternions ๐‘“ and ๐‘” computed as in Theorem 3.5. ๐‘ was the pure unit quaternion1โˆš3(๐’Š + ๐’‹ + ๐’Œ) and ๐‘Ž was the full unit quaternion 1โˆš

2+ 1

2 (๐’Š โˆ’ ๐’‹). ๐‘ and ๐‘‘ were

computed by (3.53) as ๐‘ = ๐(๐‘Ž)๐‘ and ๐‘‘ = โˆ’๐(๐‘Ž)๐‘Ž.Figure 3 shows the three hundred points in 4-space, projected onto the six

orthogonal planes {๐‘, ๐‘‘}, {๐‘, ๐‘}, {๐‘, ๐‘Ž}, {๐‘‘, ๐‘}, {๐‘, ๐‘Ž}, {๐‘Ž, ๐‘‘} where the orthonormal4-space basis {๐‘, ๐‘‘, ๐‘, ๐‘Ž} = {(๐‘“ โˆ’ ๐‘”)/โˆฃ๐‘“ โˆ’ ๐‘”โˆฃ, (1 + ๐‘“๐‘”)/โˆฃ1 + ๐‘“๐‘”โˆฃ, (๐‘“ + ๐‘”)/โˆฃ๐‘“ + ๐‘”โˆฃ, (1โˆ’๐‘“๐‘”)/โˆฃ1โˆ’ ๐‘“๐‘”โˆฃ}. The six views at the top show the ๐‘ž+-plane, and the six below showthe ๐‘žโˆ’-plane. Figure 4 shows the vector parts of the decomposed quaternions.

4. New QFT Forms: OPS-QFTs with Two PureUnit Quaternions ๐’‡, ๐’ˆ

4.1. Generalized OPS Leads to New Steerable Type of QFT

We begin with a straightforward generalization of the (double-sided form of the)QFT [4, 5] in โ„ by replacing ๐’Š with ๐‘“ and ๐’‹ with ๐‘” defined as

Definition 4.1. (QFT with respect to two pure unit quaternions ๐’‡, ๐’ˆ)Let ๐‘“, ๐‘” โˆˆ โ„, ๐‘“2 = ๐‘”2 = โˆ’1, be any two pure unit quaternions. The quaternionFourier transform with respect to ๐‘“, ๐‘” is

โ„ฑ๐‘“,๐‘”{โ„Ž}(๐Ž) =โˆซโ„2

๐‘’โˆ’๐‘“๐‘ฅ1๐œ”1โ„Ž(๐’™) ๐‘’โˆ’๐‘”๐‘ฅ2๐œ”2๐‘‘2๐’™, (4.1)

where โ„Ž โˆˆ ๐ฟ1(โ„2,โ„), ๐‘‘2๐’™ = ๐‘‘๐‘ฅ1๐‘‘๐‘ฅ2 and ๐’™,๐Ž โˆˆ โ„2.

Page 56: Quaternion and Clifford Fourier Transforms and Wavelets

2. Orthogonal 2D Planes Split 29

jยด

0.5 0 0.5

0.5

0

0.5

a

b

0.5 0 0.5

0.5

0

0.5

ac

0.5 0 0.5

0.5

0

0.5

a

d

0.5 0 0.5

0.5

0

0.5

b

c

0.5 0 0.5

0.5

0

0.5

c

d

0.5 0 0.5

0.5

0

0.5

db

0.5 0 0.5

0.5

0

0.5

a

b

0.5 0 0.5

0.5

0

0.5

a

c

0.5 0 0.5

0.5

0

0.5

a

d

0.5 0 0.5

0.5

0

0.5

b

c

0.5 0 0.5

0.5

0

0.5

c

d

0.5 0 0.5

0.5

0

0.5

d

b

Figure 3. 4D scatter plot of quaternions decomposed using the orthog-onal planes split of Definition 3.2.

Page 57: Quaternion and Clifford Fourier Transforms and Wavelets

30 E. Hitzer and S.J. Sangwine

0.6 0.4 0.2 0 0.2 0.4 0.6

0.5

0

0.5

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

c

b

d

Figure 4. Scatter plot of vector parts of quaternions decomposed usingthe orthogonal planes split of Definition 3.2.

Note, that the pure unit quaternions ๐‘“, ๐‘” in Definition 4.1 do not need to beorthogonal, and that the cases ๐‘“ = ยฑ๐‘” are fully included.

Linearity of the integral (4.1) allows us to use the OPS split โ„Ž = โ„Žโˆ’ + โ„Ž+

โ„ฑ๐‘“,๐‘”{โ„Ž}(๐Ž) = โ„ฑ๐‘“,๐‘”{โ„Žโˆ’}(๐Ž) + โ„ฑ๐‘“,๐‘”{โ„Ž+}(๐Ž)= โ„ฑ๐‘“,๐‘”

โˆ’ {โ„Ž}(๐Ž) + โ„ฑ๐‘“,๐‘”+ {โ„Ž}(๐Ž),

(4.2)

since by their construction the operators of the Fourier transformation โ„ฑ๐‘“,๐‘”, andof the OPS with respect to ๐‘“, ๐‘” commute. From Lemma 3.4 follows

Theorem 4.2 (QFT of โ„Žยฑ). The QFT of the โ„Žยฑ OPS split parts, with respect totwo unit quaternions ๐‘“, ๐‘”, of a quaternion module function โ„Ž โˆˆ ๐ฟ1(โ„2,โ„) have thequasi-complex forms

โ„ฑ๐‘“,๐‘”ยฑ {โ„Ž} = โ„ฑ๐‘“,๐‘”{โ„Žยฑ} =

โˆซโ„2

โ„Žยฑ๐‘’โˆ’๐‘”(๐‘ฅ2๐œ”2โˆ“๐‘ฅ1๐œ”1)๐‘‘2๐‘ฅ

=

โˆซโ„2

๐‘’โˆ’๐‘“(๐‘ฅ1๐œ”1โˆ“๐‘ฅ2๐œ”2)โ„Žยฑ๐‘‘2๐‘ฅ .

(4.3)

Remark 4.3. The quasi-complex forms in Theorem 4.2 allow us to establish dis-cretized and fast versions of the QFT of Definition 4.1 as sums of two complexdiscretized and fast Fourier transformations (FFT), respectively.

Page 58: Quaternion and Clifford Fourier Transforms and Wavelets

2. Orthogonal 2D Planes Split 31

โˆ’โˆ’

+

โˆ’

โˆ’

+

+

โˆ’

Figure 5. Geometric interpretation of integrand of QFT๐‘“,๐‘” in Defini-tion 4.1 in terms of local phase rotations in ๐‘žยฑ-planes.

We can now give a geometric interpretation of the integrand of the QFT๐‘“,๐‘” inDefinition 4.1 in terms of local phase rotations, compare Section 3.3. The integrandproduct

๐‘’โˆ’๐‘“๐‘ฅ1๐œ”1โ„Ž(๐’™) ๐‘’โˆ’๐‘”๐‘ฅ2๐œ”2 (4.4)

represents a local rotation by the phase angle โˆ’(๐‘ฅ1๐œ”1 + ๐‘ฅ2๐œ”2) in the ๐‘žโˆ’-plane,and by the phase angle โˆ’(๐‘ฅ1๐œ”1 โˆ’ ๐‘ฅ2๐œ”2) = ๐‘ฅ2๐œ”2 โˆ’ ๐‘ฅ1๐œ”1 in the orthogonal ๐‘ž+-plane, compare Figure 5, which depicts two completely orthogonal planes in fourdimensions.

Based on Theorem 3.5 the two phase rotation planes (analysis planes) canbe freely steered by defining the two pure unit quaternions ๐‘“, ๐‘” used in Definition4.1 according to (3.52) or (3.54).

4.2. Two Phase Angle Version of QFT

The above newly gained geometric understanding motivates us to propose a furthernew version of the QFT๐‘“,๐‘”, with a straightforward two phase angle interpretation.

Definition 4.4. (Phase angle QFT with respect to ๐’‡, ๐’ˆ)Let ๐‘“, ๐‘” โˆˆ โ„, ๐‘“2 = ๐‘”2 = โˆ’1, be any two pure unit quaternions. The phase anglequaternion Fourier transform with respect to ๐‘“, ๐‘” is

โ„ฑ๐‘“,๐‘”๐ท {โ„Ž}(๐Ž) =

โˆซโ„2

๐‘’โˆ’๐‘“12 (๐‘ฅ1๐œ”1+๐‘ฅ2๐œ”2)โ„Ž(๐’™) ๐‘’โˆ’๐‘”

12 (๐‘ฅ1๐œ”1โˆ’๐‘ฅ2๐œ”2)๐‘‘2๐’™. (4.5)

where again โ„Ž โˆˆ ๐ฟ1(โ„2,โ„), ๐‘‘2๐’™ = ๐‘‘๐‘ฅ1๐‘‘๐‘ฅ2 and ๐’™,๐Ž โˆˆ โ„2.

The geometric interpretation of the integrand of (4.5) is a local phase rotationby angle โˆ’(๐‘ฅ1๐œ”1 + ๐‘ฅ2๐œ”2)/2 โˆ’ (๐‘ฅ1๐œ”1 โˆ’ ๐‘ฅ2๐œ”2)/2 = โˆ’๐‘ฅ1๐œ”1 in the ๐‘žโˆ’-plane, and asecond local phase rotation by angle โˆ’(๐‘ฅ1๐œ”1+๐‘ฅ2๐œ”2)/2+(๐‘ฅ1๐œ”1โˆ’๐‘ฅ2๐œ”2)/2 = โˆ’๐‘ฅ2๐œ”2

in the ๐‘ž+-plane, compare Section 3.3.If we apply the OPS๐‘“,๐‘” split to (4.5) we obtain the following theorem.

Page 59: Quaternion and Clifford Fourier Transforms and Wavelets

32 E. Hitzer and S.J. Sangwine

Theorem 4.5 (Phase angle QFT of ๐’‰ยฑ). The phase angle QFT of Definition 4.4applied to the โ„Žยฑ OPS split parts, with respect to two pure unit quaternions ๐‘“, ๐‘”, ofa quaternion module function โ„Ž โˆˆ ๐ฟ1(โ„2,โ„) leads to the quasi-complex expressions

โ„ฑ๐‘“,๐‘”๐ท+{โ„Ž} = โ„ฑ๐‘“,๐‘”

๐ท {โ„Ž+} =โˆซโ„2

โ„Ž+๐‘’+๐‘”๐‘ฅ2๐œ”2๐‘‘2๐‘ฅ =

โˆซโ„2

๐‘’โˆ’๐‘“๐‘ฅ2๐œ”2โ„Ž+๐‘‘2๐‘ฅ , (4.6)

โ„ฑ๐‘“,๐‘”๐ทโˆ’{โ„Ž} = โ„ฑ๐‘“,๐‘”

๐ท {โ„Žโˆ’} =โˆซโ„2

โ„Žโˆ’๐‘’โˆ’๐‘”๐‘ฅ1๐œ”1๐‘‘2๐‘ฅ =

โˆซโ„2

๐‘’โˆ’๐‘“๐‘ฅ1๐œ”1โ„Žโˆ’๐‘‘2๐‘ฅ. (4.7)

Note that based on Theorem 3.5 the two phase rotation planes (analysisplanes) are again freely steerable.

Theorem 4.5 allows us to establish discretized and fast versions of the phaseangle QFT of Definition 4.4 as sums of two complex discretized and fast Fouriertransformations (FFT), respectively.

The maps ๐‘“( )๐‘” considered so far did not involve quaternion conjugation ๐‘ž โ†’๐‘ž. In the following we investigate maps which additionally conjugate the argument,

i.e., of type ๐‘“( )๐‘”, which are also involutions.

5. Involutions and QFTs Involving Quaternion Conjugation

5.1. Involutions Involving Quaternion Conjugations

The simplest case is quaternion conjugation itself

๐‘ž โ†’ ๐‘ž = ๐‘ž๐‘Ÿ โˆ’ ๐‘ž๐‘–๐’Šโˆ’ ๐‘ž๐‘—๐’‹ โˆ’ ๐‘ž๐‘˜๐’Œ, (5.1)

which can be interpreted as a reflection at the real line ๐‘ž๐‘Ÿ. The real line through theorigin remains pointwise invariant, while every other point in the 3D hyperplaneof pure quaternions is reflected to the opposite side of the real line. The relatedinvolution

๐‘ž โ†’ โˆ’๐‘ž = โˆ’๐‘ž๐‘Ÿ + ๐‘ž๐‘–๐’Š+ ๐‘ž๐‘—๐’‹ + ๐‘ž๐‘˜๐’Œ, (5.2)

is the reflection at the 3D hyperplane of pure quaternions (which stay invariant),i.e., only the real line is changed into its negative ๐‘ž๐‘Ÿ โ†’ โˆ’๐‘ž๐‘Ÿ.

Similarly any pure unit quaternion factor like ๐’Š in the map

๐‘ž โ†’ ๐’Š ๐‘ž๐’Š = โˆ’๐‘ž๐‘Ÿ + ๐‘ž๐‘–๐’Šโˆ’ ๐‘ž๐‘—๐’‹ โˆ’ ๐‘ž๐‘˜๐’Œ, (5.3)

leads to a reflection at the (pointwise invariant) line through the origin with di-rection ๐’Š, while the map

๐‘ž โ†’ โˆ’๐’Š ๐‘ž๐’Š = ๐‘ž๐‘Ÿ โˆ’ ๐‘ž๐‘–๐’Š+ ๐‘ž๐‘—๐’‹ + ๐‘ž๐‘˜๐’Œ, (5.4)

leads to a reflection at the invariant 3D hyperplane orthogonal to the line throughthe origin with direction ๐’Š. The map

๐‘ž โ†’ ๐‘“ ๐‘ž๐‘“, (5.5)

leads to a reflection at the (pointwise invariant) line with direction ๐‘“ through theorigin, while the map

๐‘ž โ†’ โˆ’๐‘“ ๐‘ž๐‘“, (5.6)

Page 60: Quaternion and Clifford Fourier Transforms and Wavelets

2. Orthogonal 2D Planes Split 33

leads to a reflection at the invariant 3D hyperplane orthogonal to the line withdirection ๐‘“ through the origin.

Next we turn to a map of the type

๐‘ž โ†’ โˆ’๐‘’๐›ผ๐‘“๐‘ž๐‘’๐›ผ๐‘“ . (5.7)

Its set of pointwise invariants is given by

๐‘ž = โˆ’๐‘’๐›ผ๐‘“๐‘ž๐‘’๐›ผ๐‘“ โ‡” ๐‘’โˆ’๐›ผ๐‘“๐‘ž = โˆ’๐‘ž๐‘’๐›ผ๐‘“ โ‡” ๐‘’โˆ’๐›ผ๐‘“๐‘ž + ๐‘ž๐‘’๐›ผ๐‘“ = 0

โ‡” S(๐‘ž๐‘’๐›ผ๐‘“

)= 0 โ‡” ๐‘ž โŠฅ ๐‘’๐›ผ๐‘“ .

(5.8)

We further observe that

๐‘’๐›ผ๐‘“ โ†’ โˆ’๐‘’๐›ผ๐‘“๐‘’โˆ’๐›ผ๐‘“๐‘’๐›ผ๐‘“ = โˆ’๐‘’๐›ผ๐‘“ . (5.9)

The map โˆ’๐‘Ž( )๐‘Ž, with unit quaternion ๐‘Ž = ๐‘’๐›ผ๐‘“ , therefore represents a reflectionat the invariant 3D hyperplane orthogonal to the line through the origin withdirection ๐‘Ž.

Similarly, the map ๐‘Ž( )๐‘Ž, with unit quaternion ๐‘Ž = ๐‘’๐›ผ๐‘“ , then represents areflection at the (pointwise invariant) line with direction ๐‘Ž through the origin.

The combination of two such reflections (both at 3D hyperplanes, or both atlines), given by unit quaternions ๐‘Ž, ๐‘, leads to a rotation

โˆ’๐‘โˆ’๐‘Ž๐‘ž๐‘Ž๐‘ = ๐‘๐‘Ž๐‘ž๐‘Ž๐‘ = ๐‘๐‘Ž๐‘ž๐‘Ž๐‘ = ๐‘Ÿ๐‘ž๐‘ ,

๐‘Ÿ = ๐‘๐‘Ž, ๐‘  = ๐‘Ž๐‘, โˆฃ๐‘Ÿโˆฃ = โˆฃ๐‘โˆฃ โˆฃ๐‘Žโˆฃ = 1 = โˆฃ๐‘ โˆฃ , (5.10)

in two orthogonal planes, exactly as studied in Section 3.3.

The combination of three reflections at 3D hyperplanes, given by unit quater-nions ๐‘Ž, ๐‘, ๐‘, leads to

โˆ’๐‘[โˆ’๐‘โˆ’๐‘Ž๐‘ž๐‘Ž๐‘]๐‘ = ๐‘‘ ๐‘ž๐‘ก, ๐‘‘ = โˆ’๐‘๐‘๐‘Ž, ๐‘ก = ๐‘Ž๐‘๐‘, โˆฃ๐‘‘โˆฃ = โˆฃ๐‘โˆฃ โˆฃ๐‘โˆฃ โˆฃ๐‘Žโˆฃ = โˆฃ๐‘กโˆฃ = 1. (5.11)

The product of the reflection map โˆ’๐‘ž of (5.2) with ๐‘‘ ๐‘ž๐‘ก leads to โˆ’๐‘‘๐‘ž๐‘ก, a double

rotation as studied in Section 4. Therefore ๐‘‘ ( ) ๐‘ก represents a rotary reflection(rotation reflection). The three reflections โˆ’๐‘Ž๐‘ž๐‘Ž, โˆ’๐‘๐‘ž๐‘, โˆ’๐‘๐‘ž๐‘ have the intersectionof the three 3D hyperplanes as a resulting common pointwise invariant line, whichis ๐‘‘+ ๐‘ก, because

๐‘‘ (๐‘‘+ ๐‘ก) ๐‘ก = ๐‘‘ ๐‘ก๐‘ก+ ๐‘‘ ๐‘‘๐‘ก = ๐‘‘+ ๐‘ก. (5.12)

In the remaining 3D hyperplane, orthogonal to the pointwise invariant line throughthe origin in direction ๐‘‘+ ๐‘ก, the axis of the rotary reflection is

๐‘‘ (๐‘‘โˆ’ ๐‘ก) ๐‘ก = โˆ’๐‘‘ ๐‘ก๐‘ก+ ๐‘‘ ๐‘‘๐‘ก = โˆ’๐‘‘+ ๐‘ก = โˆ’(๐‘‘โˆ’ ๐‘ก). (5.13)

We now also understand that a sign change of ๐‘‘ โ†’ โˆ’๐‘‘ (compare three reflec-

tions at three 3D hyperplanes โˆ’๐‘[โˆ’๐‘(โˆ’๐‘Ž๐‘ž๐‘Ž)๐‘]๐‘ with three reflections at three lines

+๐‘[+๐‘(+๐‘Ž๐‘ž๐‘Ž)๐‘]๐‘) simply exchanges the roles of pointwise invariant line ๐‘‘ + ๐‘ก androtary reflection axis ๐‘‘โˆ’ ๐‘ก.

Page 61: Quaternion and Clifford Fourier Transforms and Wavelets

34 E. Hitzer and S.J. Sangwine

Next, we seek for an explicit description of the rotation plane of the rotary

reflection ๐‘‘ ( ) ๐‘ก. We find that for the unit quaternions ๐‘‘ = ๐‘’๐›ผ๐‘”, ๐‘ก = ๐‘’๐›ฝ๐‘“ the com-mutator

[๐‘‘, ๐‘ก] = ๐‘‘๐‘กโˆ’ ๐‘ก๐‘‘ = ๐‘’๐›ผ๐‘”๐‘’๐›ฝ๐‘“ โˆ’ ๐‘’๐›ฝ๐‘“๐‘’๐›ผ๐‘” = (๐‘”๐‘“ โˆ’ ๐‘“๐‘”) sin๐›ผ sin๐›ฝ, (5.14)

is a pure quaternion, because

๐‘”๐‘“ โˆ’ ๐‘“๐‘” = ๐‘“๐‘” โˆ’ ๐‘”๐‘“ = โˆ’(๐‘”๐‘“ โˆ’ ๐‘“๐‘”). (5.15)

Moreover, [๐‘‘, ๐‘ก] is orthogonal to ๐‘‘ and ๐‘ก, and therefore orthogonal to the planespanned by the pointwise invariant line ๐‘‘+ ๐‘ก and the rotary reflection axis ๐‘‘โˆ’ ๐‘ก,because

S([๐‘‘, ๐‘ก]๐‘‘

)= S(๐‘‘๐‘ก๐‘‘โˆ’ ๐‘ก๐‘‘ ๐‘‘

)= 0, S

([๐‘‘, ๐‘ก]๐‘ก

)= 0. (5.16)

We obtain a second quaternion in the plane orthogonal to ๐‘‘ + ๐‘ก, and ๐‘‘ โˆ’ ๐‘ก, byapplying the rotary reflection to [๐‘‘, ๐‘ก]

๐‘‘ [๐‘‘, ๐‘ก] ๐‘ก = โˆ’๐‘‘[๐‘‘, ๐‘ก]๐‘ก = โˆ’[๐‘‘, ๐‘ก]๐‘‘๐‘ก, (5.17)

because ๐‘‘ is orthogonal to the pure quaternion [๐‘‘, ๐‘ก]. We can construct an or-

thogonal basis of the plane of the rotary reflection ๐‘‘ ( ) ๐‘ก by computing the pair oforthogonal quaternions

๐‘ฃ1,2 = [๐‘‘, ๐‘ก]โˆ“ ๐‘‘ [๐‘‘, ๐‘ก] ๐‘ก = [๐‘‘, ๐‘ก]ยฑ [๐‘‘, ๐‘ก]๐‘‘๐‘ก = [๐‘‘, ๐‘ก](1 ยฑ ๐‘‘๐‘ก). (5.18)

For finally computing the rotation angle, we need to know the relative length ofthe two orthogonal quaternions ๐‘ฃ1, ๐‘ฃ2 of (5.18). For this it helps to represent theunit quaternion ๐‘‘๐‘ก as

๐‘‘๐‘ก = ๐‘’๐›พ๐‘ข, ๐›พ โˆˆ โ„, ๐‘ข โˆˆ โ„, ๐‘ข2 = โˆ’1. (5.19)

We then obtain for the length ratio

๐‘Ÿ2 =โˆฃ๐‘ฃ1โˆฃ2โˆฃ๐‘ฃ2โˆฃ2 =

โˆฃ1 + ๐‘‘๐‘กโˆฃ2โˆฃ1โˆ’ ๐‘‘๐‘กโˆฃ2 =

(1 + ๐‘‘๐‘ก)(1 + ๐‘ก๐‘‘)

(1 โˆ’ ๐‘‘๐‘ก)(1โˆ’ ๐‘ก๐‘‘)=

1 + ๐‘‘๐‘ก๐‘ก๐‘‘+ ๐‘‘๐‘ก+ ๐‘ก๐‘‘

1 + ๐‘‘๐‘ก๐‘ก๐‘‘โˆ’ ๐‘‘๐‘กโˆ’ ๐‘ก๐‘‘

=2 + 2 cos ๐›พ

2โˆ’ 2 cos ๐›พ=

1 + cos ๐›พ

1โˆ’ cos ๐›พ.

(5.20)

By applying the rotary reflection ๐‘‘ ( ) ๐‘ก to ๐‘ฃ1 and decomposing the result withrespect to the pair of orthogonal quaternions in the rotary reflection plane (5.18)we can compute the rotation angle. Applying the rotary reflection to ๐‘ฃ1 gives

๐‘‘ ๐‘ฃ1 ๐‘ก = ๐‘‘ [๐‘‘, ๐‘ก]โˆ’ ๐‘‘[๐‘‘, ๐‘ก]๐‘ก ๐‘ก = ๐‘‘[๐‘‘, ๐‘ก](1 + ๐‘‘๐‘ก)๐‘ก = ๐‘‘(1 + ๐‘ก๐‘‘)[๐‘‘, ๐‘ก]๐‘ก

= ๐‘‘(1 + ๐‘ก๐‘‘)(โˆ’[๐‘‘, ๐‘ก])๐‘ก = โˆ’[๐‘‘, ๐‘ก](๐‘‘๐‘ก+ ๐‘‘๐‘ก๐‘‘๐‘ก).(5.21)

The square of ๐‘‘๐‘ก is

(๐‘‘๐‘ก)2 = (cos ๐›พ + ๐‘ข sin ๐›พ)2 = โˆ’1 + 2 cos ๐›พ [cos ๐›พ + ๐‘ข sin ๐›พ]

= โˆ’1 + 2 cos ๐›พ ๐‘‘๐‘ก.(5.22)

Page 62: Quaternion and Clifford Fourier Transforms and Wavelets

2. Orthogonal 2D Planes Split 35

We therefore get

๐‘‘ ๐‘ฃ1 ๐‘ก = โˆ’[๐‘‘, ๐‘ก](๐‘‘๐‘กโˆ’ 1 + 2 cos๐›พ๐‘‘๐‘ก) = [๐‘‘, ๐‘ก](1โˆ’ (1 + 2 cos๐›พ)๐‘‘๐‘ก)

= ๐‘Ž1๐‘ฃ1 + ๐‘Ž2๐‘Ÿ๐‘ฃ2,(5.23)

and need to solve

1โˆ’ (1 + 2 cos ๐›พ)๐‘‘๐‘ก = ๐‘Ž1(1 + ๐‘‘๐‘ก) + ๐‘Ž2๐‘Ÿ(1 โˆ’ ๐‘‘๐‘ก), (5.24)

which leads to

๐‘‘ ๐‘ฃ1 ๐‘ก = โˆ’ cos๐›พ๐‘ฃ1 + sin ๐›พ๐‘Ÿ๐‘ฃ2 = cos(๐œ‹ โˆ’ ๐›พ)๐‘ฃ1 + sin(๐œ‹ โˆ’ ๐›พ)๐‘Ÿ๐‘ฃ2. (5.25)

The rotation angle of the rotary reflection ๐‘‘ ( ) ๐‘ก in its rotation plane ๐‘ฃ1, ๐‘ฃ2 istherefore

ฮ“ = ๐œ‹ โˆ’ ๐›พ, ๐›พ = arccosS(๐‘‘๐‘ก). (5.26)

In terms of ๐‘‘ = ๐‘’๐›ผ๐‘”, ๐‘ก = ๐‘’๐›ฝ๐‘“ we get

๐‘‘๐‘ก = cos๐›ผ cos๐›ฝ โˆ’ ๐‘” sin๐›ผ cos๐›ฝ + ๐‘“ cos๐›ผ sin๐›ฝ โˆ’ ๐‘”๐‘“ sin๐›ผ sin๐›ฝ. (5.27)

And with the angle ๐œ” between ๐‘” and ๐‘“

๐‘”๐‘“ =1

2(๐‘”๐‘“ + ๐‘“๐‘”) +

1

2(๐‘”๐‘“ โˆ’ ๐‘“๐‘”) = S(๐‘”๐‘“) +

1

2[๐‘”, ๐‘“ ]

= โˆ’ cos๐œ” โˆ’ sin๐œ”[๐‘”, ๐‘“ ]

โˆฃ[๐‘”, ๐‘“ ]โˆฃ ,(5.28)

we finally obtain for ๐›พ the scalar part S(๐‘‘๐‘ก)as

S(๐‘‘๐‘ก)= cos ๐›พ = cos๐›ผ cos๐›ฝ + cos๐œ” sin๐›ผ sin๐›ฝ

= cos๐›ผ cos๐›ฝ โˆ’ S(๐‘”๐‘“) sin๐›ผ sin๐›ฝ.(5.29)

In the special case of ๐‘” = ยฑ๐‘“ , S(๐‘”๐‘“) = โˆ“1, i.e., for ๐œ” = 0, ๐œ‹, we get from(5.29) that

S(๐‘‘๐‘ก)= cos๐›ผ cos๐›ฝ ยฑ sin๐›ผ sin๐›ฝ = cos๐›ผ cos๐›ฝ + sin(ยฑ๐›ผ) sin๐›ฝ

= cos(ยฑ๐›ผโˆ’ ๐›ฝ), (5.30)

and thus using (5.26) the rotation angle would become

ฮ“ = ๐œ‹ โˆ’ (ยฑ๐›ผโˆ’ ๐›ฝ) = ๐œ‹ โˆ“ ๐›ผ+ ๐›ฝ. (5.31)

Yet (5.26) was derived assuming [๐‘‘, ๐‘ก] โˆ•= 0. But direct inspection shows that (5.31)is indeed correct: For ๐‘” = ยฑ๐‘“ the plane ๐‘‘ + ๐‘ก, ๐‘‘ โˆ’ ๐‘ก is identical to the 1, ๐‘“ plane.The rotation plane is thus a plane of pure quaternions orthogonal to the 1, ๐‘“ plane.The quaternion conjugation in ๐‘ž ๏ฟฝโ†’ ๐‘‘ ๐‘ž ๐‘ก leads to a rotation by ๐œ‹ and the left andright factors lead to further rotations by โˆ“๐›ผ and ๐›ฝ, respectively. Thus (5.31) isverified as a special case of (5.26) for ๐‘” = ยฑ๐‘“ .

By substituting in Lemma 3.4 (๐›ผ, ๐›ฝ)โ†’ (โˆ’๐›ฝ,โˆ’๐›ผ), and by taking the quater-nion conjugate we obtain the following lemma.

Page 63: Quaternion and Clifford Fourier Transforms and Wavelets

36 E. Hitzer and S.J. Sangwine

Lemma 5.1. Let ๐‘žยฑ = 12 (๐‘ž ยฑ ๐‘“๐‘ž๐‘”) be the OPS of Definition 3.2. For left and right

exponential factors we have the identity

๐‘’๐›ผ๐‘” ๐‘žยฑ๐‘’๐›ฝ๐‘“ = ๐‘žยฑ๐‘’(๐›ฝโˆ“๐›ผ)๐‘“ = ๐‘’(๐›ผโˆ“๐›ฝ)๐‘” ๐‘žยฑ. (5.32)

5.2. New Steerable QFTs with Quaternion Conjugation andTwo Pure Unit Quaternions ๐’‡, ๐’ˆ

We therefore consider now the following new variant of the (double-sided form ofthe) QFT [4, 5] in โ„ (replacing both ๐’Š with ๐‘” and ๐’‹ with ๐‘“ , and using quaternionconjugation). It is essentially the quaternion conjugate of the new QFT of Def-inition 4.1, but because of its distinct local transformation geometry it deservesseparate treatment.

Definition 5.2. (QFT with respect to ๐’‡, ๐’ˆ, including quaternion conjugation)Let ๐‘“, ๐‘” โˆˆ โ„, ๐‘“2 = ๐‘”2 = โˆ’1, be any two pure unit quaternions. The quaternionFourier transform with respect to ๐‘“, ๐‘”, involving quaternion conjugation, is

โ„ฑ๐‘”,๐‘“๐‘ {โ„Ž}(๐Ž) = โ„ฑ๐‘“,๐‘”{โ„Ž}(โˆ’๐Ž) =

โˆซโ„2

๐‘’โˆ’๐‘”๐‘ฅ1๐œ”1โ„Ž(๐’™) ๐‘’โˆ’๐‘“๐‘ฅ2๐œ”2๐‘‘2๐’™, (5.33)

where โ„Ž โˆˆ ๐ฟ1(โ„2,โ„), ๐‘‘2๐’™ = ๐‘‘๐‘ฅ1๐‘‘๐‘ฅ2 and ๐’™,๐Ž โˆˆ โ„2.

Linearity of the integral in (5.33) of Definition 5.2 leads to the followingcorollary to Theorem 4.2.

Corollary 5.3 (QFT โ„ฑ๐‘”,๐‘“๐‘ of โ„Žยฑ). The QFT โ„ฑ๐‘”,๐‘“

๐‘ (5.33) of the โ„Žยฑ = 12 (โ„Ž ยฑ ๐‘“โ„Ž๐‘”)

OPS split parts, with respect to any two unit quaternions ๐‘“, ๐‘”, of a quaternionmodule function โ„Ž โˆˆ ๐ฟ1(โ„2,โ„) have the quasi-complex forms

โ„ฑ๐‘”,๐‘“๐‘ {โ„Žยฑ}(๐Ž) = โ„ฑ๐‘“,๐‘”{โ„Žยฑ}(โˆ’๐Ž) =

โˆซโ„2

โ„Žยฑ๐‘’โˆ’๐‘“(๐‘ฅ2๐œ”2โˆ“๐‘ฅ1๐œ”1)๐‘‘2๐‘ฅ

=

โˆซโ„2

๐‘’โˆ’๐‘”(๐‘ฅ1๐œ”1โˆ“๐‘ฅ2๐œ”2)โ„Žยฑ๐‘‘2๐‘ฅ .

(5.34)

Note, that the pure unit quaternions ๐‘“, ๐‘” in Definition 5.2 and Corollary5.3 do not need to be orthogonal, and that the cases ๐‘“ = ยฑ๐‘” are fully included.Corollary 5.3 leads to discretized and fast versions of the QFT with quaternionconjugation of Definition 5.2.

It is important to note that the roles (sides) of ๐‘“, ๐‘” appear exchanged in(5.33) of Definition 5.2 and in Corollary 5.3, although the same OPS of Definition3.2 is applied to the signal โ„Ž as in Sections 3 and 4. This role change is due tothe presence of quaternion conjugation in Definition 5.2. Note that it is possibleto first apply (5.33) to โ„Ž, and subsequently split the integral with the OPS๐‘”,๐‘“

โ„ฑ๐‘,ยฑ = 12 (โ„ฑ๐‘ยฑ ๐‘”โ„ฑ๐‘๐‘“), where the particular order of ๐‘” from the left and ๐‘“ from the

right is due to the application of conjugation in (5.34) to โ„Žยฑ after โ„Ž is split with(3.41) into โ„Ž+ and โ„Žโˆ’.

Page 64: Quaternion and Clifford Fourier Transforms and Wavelets

2. Orthogonal 2D Planes Split 37

5.3. Local Geometric Interpretation of the QFT with Quaternion Conjugation

Regarding the local geometric interpretation of the QFT with quaternion conju-gation of Definition 5.2 we need to distinguish the following cases, depending on[๐‘‘, ๐‘ก] and on whether the left and right phase factors

๐‘‘ = ๐‘’โˆ’๐‘”๐‘ฅ1๐œ”1 , ๐‘ก = ๐‘’โˆ’๐‘“๐‘ฅ2๐œ”2 , (5.35)

attain scalar values ยฑ1 or not.Let us first assume that [๐‘‘, ๐‘ก] โˆ•= 0, which by (5.14) is equivalent to ๐‘” โˆ•= ยฑ๐‘“ ,

and sin(๐‘ฅ1๐œ”1) โˆ•= 0, and sin(๐‘ฅ2๐œ”2) โˆ•= 0. Then we have the generic case of a localrotary reflection with pointwise invariant line of direction

๐‘‘+ ๐‘ก = ๐‘’โˆ’๐‘”๐‘ฅ1๐œ”1 + ๐‘’โˆ’๐‘“๐‘ฅ2๐œ”2 , (5.36)

rotation axis in direction

๐‘‘โˆ’ ๐‘ก = ๐‘’โˆ’๐‘”๐‘ฅ1๐œ”1 โˆ’ ๐‘’โˆ’๐‘“๐‘ฅ2๐œ”2 , (5.37)

rotation plane with basis (5.18), and by (5.26) and (5.29) the general rotationangle

ฮ“ = ๐œ‹ โˆ’ arccosS(๐‘‘๐‘ก),

S(๐‘‘๐‘ก)= cos(๐‘ฅ1๐œ”1) cos(๐‘ฅ2๐œ”2)โˆ’ S(๐‘”๐‘“) sin(๐‘ฅ1๐œ”1) sin(๐‘ฅ2๐œ”2). (5.38)

Whenever ๐‘” = ยฑ๐‘“ , or when sin(๐‘ฅ1๐œ”1) = 0 (๐‘ฅ1๐œ”1 = 0, ๐œ‹[mod 2๐œ‹], i.e., ๐‘‘ =ยฑ1), we get for the pointwise invariant line in direction ๐‘‘ + ๐‘ก the simpler unit

quaternion direction expression ๐‘’โˆ’12 (ยฑ๐‘ฅ1๐œ”1+๐‘ฅ2๐œ”2)๐‘“ , because we can apply

๐‘’๐›ผ๐‘“ + ๐‘’๐›ฝ๐‘“ = ๐‘’12 (๐›ผ+๐›ฝ)๐‘“(๐‘’

12 (๐›ผโˆ’๐›ฝ)๐‘“ + ๐‘’

12 (๐›ฝโˆ’๐›ผ)๐‘“ ) = ๐‘’

12 (๐›ผ+๐›ฝ)๐‘“2 cos

๐›ผโˆ’ ๐›ฝ

2, (5.39)

and similarly for the rotation axis ๐‘‘โˆ’ ๐‘ก we obtain the direction expression

๐‘’โˆ’12 (ยฑ๐‘ฅ1๐œ”1+๐‘ฅ2๐œ”2+๐œ‹)๐‘“ ,

whereas the rotation angle is by (5.31) simply

ฮ“ = ๐œ‹ ยฑ ๐‘ฅ1๐œ”1 โˆ’ ๐‘ฅ2๐œ”2. (5.40)

For sin(๐‘ฅ2๐œ”2) = 0 (๐‘ฅ2๐œ”2 = 0, ๐œ‹[mod2๐œ‹], i.e., ๐‘ก = ยฑ1), the pointwise invariantline in direction ๐‘‘+ ๐‘ก simplifies by (5.39) to ๐‘’โˆ’

12 (๐‘ฅ1๐œ”1+๐‘ฅ2๐œ”2)๐‘”, and the rotation axis

with direction ๐‘‘โˆ’ ๐‘ก simplifies to ๐‘’โˆ’12 (๐‘ฅ1๐œ”1+๐‘ฅ2๐œ”2+๐œ‹)๐‘”, whereas the angle of rotation

is by (5.31) simplyฮ“ = ๐œ‹ + ๐‘ฅ1๐œ”1 โˆ’ ๐‘ฅ2๐œ”2. (5.41)

5.4. Phase Angle QFT with Respect to ๐’‡, ๐’ˆ, Including Quaternion Conjugation

Even when quaternion conjugation is applied to the signal โ„Ž we can propose afurther new version of the QFT๐‘”,๐‘“

๐‘ , with a straightforward two phase angle inter-pretation. The following definition to some degree ignores the resulting local rotaryreflection effect of combining quaternion conjugation and left and right phase fac-tors of Section 5.3, but depending on the application context, it may neverthelessbe of interest in its own right.

Page 65: Quaternion and Clifford Fourier Transforms and Wavelets

38 E. Hitzer and S.J. Sangwine

Definition 5.4 (Phase angle QFTwith respect to ๐’‡, ๐’ˆ, including quaternion con-jugation). Let ๐‘“, ๐‘” โˆˆ โ„, ๐‘“2 = ๐‘”2 = โˆ’1, be any two pure unit quaternions. Thephase angle quaternion Fourier transform with respect to ๐‘“, ๐‘”, involving quaternionconjugation, is

โ„ฑ๐‘”,๐‘“๐‘๐ท {โ„Ž}(๐Ž) = โ„ฑ๐‘“,๐‘”

๐ท {โ„Ž}(โˆ’๐œ”1, ๐œ”2) =

โˆซโ„2

๐‘’โˆ’๐‘”12 (๐‘ฅ1๐œ”1+๐‘ฅ2๐œ”2)โ„Ž(๐’™) ๐‘’โˆ’๐‘“

12 (๐‘ฅ1๐œ”1โˆ’๐‘ฅ2๐œ”2)๐‘‘2๐’™.

(5.42)where again โ„Ž โˆˆ ๐ฟ1(โ„2,โ„), ๐‘‘2๐’™ = ๐‘‘๐‘ฅ1๐‘‘๐‘ฅ2 and ๐’™,๐Ž โˆˆ โ„2.

Based on Lemma 5.1, one possible geometric interpretation of the integrandof (5.42)) is a local phase rotation of โ„Ž+ by angle โˆ’(๐‘ฅ1๐œ”1 โˆ’ ๐‘ฅ2๐œ”2)/2 + (๐‘ฅ1๐œ”1 +

๐‘ฅ2๐œ”2)/2 = +๐‘ฅ2๐œ”2 in the ๐‘ž+ plane, and a second local phase rotation of โ„Žโˆ’ by angleโˆ’(๐‘ฅ1๐œ”1 โˆ’ ๐‘ฅ2๐œ”2)/2โˆ’ (๐‘ฅ1๐œ”1 + ๐‘ฅ2๐œ”2)/2 = โˆ’๐‘ฅ1๐œ”1 in the ๐‘žโˆ’ plane. This is expressedin the following corollary to Theorem 4.5.

Corollary 5.5 (Phase angle QFT of ๐’‰ยฑ, involving quaternion conjugation). Thephase angle QFT with quaternion conjugation of Definition 5.4 applied to the โ„ŽยฑOPS split parts, with respect to any two pure unit quaternions ๐‘“, ๐‘”, of a quaternionmodule function โ„Ž โˆˆ ๐ฟ1(โ„2,โ„) leads to the quasi-complex expressions

โ„ฑ๐‘”,๐‘“๐‘๐ท {โ„Ž+}(๐Ž) = โ„ฑ๐‘”,๐‘“

๐ท {โ„Ž+}(โˆ’๐œ”1, ๐œ”2) =

โˆซโ„2

โ„Ž+๐‘’+๐‘“๐‘ฅ2๐œ”2๐‘‘2๐‘ฅ =

โˆซโ„2

๐‘’โˆ’๐‘”๐‘ฅ2๐œ”2โ„Ž+๐‘‘2๐‘ฅ ,

(5.43)

โ„ฑ๐‘”,๐‘“๐‘๐ท {โ„Žโˆ’}(๐Ž) = โ„ฑ๐‘”,๐‘“

๐ท {โ„Žโˆ’}(โˆ’๐œ”1, ๐œ”2) =

โˆซโ„2

โ„Žโˆ’๐‘’โˆ’๐‘“๐‘ฅ1๐œ”1๐‘‘2๐‘ฅ =

โˆซโ„2

๐‘’โˆ’๐‘”๐‘ฅ1๐œ”1โ„Žโˆ’๐‘‘2๐‘ฅ .

(5.44)

Note that based on Theorem 3.5 the two phase rotation planes (analysisplanes) are again freely steerable. Corollary 5.5 leads to discretized and fast ver-sions of the phase angle QFT with quaternion conjugation of Definition 5.4.

6. Conclusion

The involution maps ๐’Š( )๐’‹ and ๐‘“( )๐‘” have led us to explore a range of similar quater-nionic maps ๐‘ž ๏ฟฝโ†’ ๐‘Ž๐‘ž๐‘ and ๐‘ž ๏ฟฝโ†’ ๐‘Ž๐‘ž๐‘, where ๐‘Ž, ๐‘ are taken to be unit quaternions.Geometric interpretations of these maps as reflections, rotations, and rotary reflec-tions in 4D can mostly be found in [1]. We have further developed these geometricinterpretations to gain a complete local transformation geometric understandingof the integrands of the proposed new quaternion Fourier transformations (QFTs)applied to general quaternionic signals โ„Ž โˆˆ ๐ฟ1(โ„2,โ„). This new geometric under-standing is also valid for the special cases of the hitherto well-known left-sided,right-sided, and left- and right-sided (two-sided) QFTs of [2, 4, 8, 3] and numerousother references.

Our newly gained geometric understanding itself motivated us to proposenew types of QFTs with specific geometric properties. The investigation of these

Page 66: Quaternion and Clifford Fourier Transforms and Wavelets

2. Orthogonal 2D Planes Split 39

new types of QFTs with the generalized form of the orthogonal 2D planes splitof Definition 3.2 lead to important QFT split theorems, which allow the use ofdiscrete and (complex) Fourier transform software for efficient discretized and fastnumerical implementations.

Finally, we are convinced that our geometric interpretation of old and newQFTs paves the way for new applications, e.g., regarding steerable filter design forspecific tasks in image, colour image and signal processing, etc.

Acknowledgement. E.H. wishes to thank God for the joy of doing this research,his family, and S.J.S. for his great cooperation and hospitality.

References

[1] H.S.M. Coxeter. Quaternions and reflections. The American Mathematical Monthly,53(3):136โ€“146, Mar. 1946.

[2] T.A. Ell. Quaternion-Fourier transforms for analysis of 2-dimensional linear time-invariant partial-differential systems. In Proceedings of the 32nd Conference on De-cision and Control, pages 1830โ€“1841, San Antonio, Texas, USA, 15โ€“17 December1993. IEEE Control Systems Society.

[3] T.A. Ell and S.J. Sangwine. Hypercomplex Fourier transforms of color images. IEEETransactions on Image Processing, 16(1):22โ€“35, Jan. 2007.

[4] E. Hitzer. Quaternion Fourier transform on quaternion fields and generalizations.Advances in Applied Clifford Algebras, 17(3):497โ€“517, May 2007.

[5] E. Hitzer. Directional uncertainty principle for quaternion Fourier transforms. Ad-vances in Applied Clifford Algebras, 20(2):271โ€“284, 2010.

[6] E. Hitzer. OPS-QFTs: A new type of quaternion Fourier transform based on theorthogonal planes split with one or two general pure quaternions. In InternationalConference on Numerical Analysis and Applied Mathematics, volume 1389 of AIPConference Proceedings, pages 280โ€“283, Halkidiki, Greece, 19โ€“25 September 2011.American Institute of Physics.

[7] E. Hitzer. Two-sided Clifford Fourier transform with two square roots of โˆ’1 in ๐ถโ„“๐‘,๐‘ž.In Proceedings of the 5th Conference on Applied Geometric Algebras in ComputerScience and Engineering (AGACSE 2012), La Rochelle, France, 2โ€“4 July 2012.

[8] S.J. Sangwine. Fourier transforms of colour images using quaternion, or hypercom-plex, numbers. Electronics Letters, 32(21):1979โ€“1980, 10 Oct. 1996.

Eckhard HitzerCollege of Liberal Arts, Department of Material ScienceInternational Christian University, 181-8585 Tokyo, Japane-mail: [email protected]

Stephen J. SangwineSchool of Computer Science and Electronic EngineeringUniversity of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UKe-mail: [email protected]

Page 67: Quaternion and Clifford Fourier Transforms and Wavelets

Quaternion and Cliffordโ€“Fourier Transforms and Wavelets

Trends in Mathematics, 41โ€“56cโƒ 2013 Springer Basel

3 Quaternionic Spectral Analysis ofNon-Stationary Improper Complex Signals

Nicolas Le Bihan and Stephen J. Sangwine

Abstract. We consider the problem of the spectral content of a complex im-proper signal and the time-varying behaviour of this spectral content. Thesignals considered are one-dimensional (1D), complex-valued, with possiblecorrelation between the real and imaginary parts, i.e., improper complex sig-nals. As a consequence, it is well known that the โ€˜classicalโ€™ (complex-valued)Fourier transform does not exhibit Hermitian symmetry and also that it isnecessary to consider simultaneously the spectrum and the pseudo-spectrumto completely characterize such signals. Hence, an โ€˜augmentedโ€™ representa-tion is necessary. However, this does not provide a geometric analysis of thecomplex improper signal.

We propose another approach for the analysis of improper complex sig-nals based on the use of a 1D Quaternion Fourier Transform (QFT). In thecase where complex signals are non-stationary, we investigate the extension ofthe well-known โ€˜analytic signalโ€™ and introduce the quaternion-valued โ€˜hyper-analytic signalโ€™. As with the hypercomplex two-dimensional (2D) extensionof the analytic signal proposed by Bulow in 2001, our extension of analyticsignals for complex-valued signals can be obtained by the inverse QFT of thequaternion-valued spectrum after suppressing negative frequencies.

Analysis of the hyperanalytic signal reveals the time-varying frequencycontent of the corresponding complex signal. Using two different represen-tations of quaternions, we show how modulus and quaternion angles of thehyperanalytic signal are linked to geometric features of the complex signal.This allows the definition of the angular velocity and the complex envelope ofa complex signal. These concepts are illustrated on synthetic signal examples.

The hyperanalytic signal can be seen as the exact counterpart of theclassical analytic signal, and should be thought of as the very first and sim-plest quaternionic time-frequency representation for improper non-stationarycomplex-valued signals.

Mathematics Subject Classification (2010). 65T50, 11R52.

Keywords. Quaternions, complex signals, Fourier transform, analytic signal.

Page 68: Quaternion and Clifford Fourier Transforms and Wavelets

42 N. Le Bihan and S.J. Sangwine

1. Introduction

The analytic signal has been known since 1948 from the work of Ville [21] andGabor [7]. It can be easily described, even though its theoretical ramifications aredeep. Its use in non-stationary signal analysis is routine and it has been used innumerous applications. Simply put, given a real-valued signal ๐‘“(๐‘ก), its analyticsignal ๐‘Ž(๐‘ก) is a complex signal with real part equal to ๐‘“(๐‘ก), and imaginary partorthogonal to ๐‘“(๐‘ก). The imaginary part is sometimes known as the quadraturesignal โ€“ in the case where ๐‘“(๐‘ก) is a sinusoid, the imaginary part of the analyticsignal is in quadrature, that is with a phase difference of โˆ’๐œ‹/2. The orthogonalsignal is related to ๐‘“(๐‘ก) by the Hilbert transform [9, 10]. The analytic signal hasthe interesting property that its modulus โˆฃ๐‘Ž(๐‘ก)โˆฃ is an envelope of the signal ๐‘“(๐‘ก).The envelope is also known as the instantaneous amplitude. Thus if ๐‘“(๐‘ก) is anamplitude-modulated sinusoid, the envelope โˆฃ๐‘Ž(๐‘ก)โˆฃ, subject to certain conditions,is the modulating signal. The argument of the analytic signal, โˆ  ๐‘Ž(๐‘ก) is known asthe instantaneous phase. The analytic signal has a third interesting property: ithas a one-sided Fourier transform. Thus a simple algorithm for constructing theanalytic signal (algebraically or numerically) is to compute the Fourier transformof ๐‘“(๐‘ก), multiply the Fourier transform by a unit step which is zero for negativefrequencies, and then construct the inverse Fourier transform.

In this chapter we extend the concept of the analytic signal from the case ofa real signal ๐‘“(๐‘ก) with a complex analytic signal ๐‘Ž(๐‘ก), to a complex signal ๐‘ง(๐‘ก) witha hypercomplex analytic signal โ„Ž(๐‘ก), which we call the hyperanalytic signal. Just asthe classical complex analytic signal contains both the original real signal (in thereal part) and a real orthogonal signal (in the imaginary part), a hyperanalyticsignal contains two complex signals: the original signal and an orthogonal signal.We have previously published partial results on this topic [19, 15, 14]. Here wedevelop a clear idea of how to generalise the classic case of amplitude modulationto a complex signal, and show for the first time that this leads to a correctlyextended analytic signal concept in which the (complex ) envelope and phase haveclear interpretations.

The construction of an orthogonal signal alone would not constitute a fullgeneralisation of the classical analytic signal to the complex case: it is also neces-sary to generalise the envelope and phase concepts, and this can only be done byinterpreting the original and orthogonal complex signals as a pair. In this chapterwe have only one way to do this: by representing the pair of complex signals asa quaternion signal. This arises naturally from the method above for creating anorthogonal signal, but also from the Cayleyโ€“Dickson construction of a quaternionas a complex number with complex real and imaginary parts (with different rootsof โˆ’1 used in each of the two levels of complex number).

Extension of the analytic signal concept to 2D signals, that is images, withreal, complex or quaternion-valued pixels is of interest, but outside the scopeof this chapter. Some work has been done on this, notably by Bulow, Felsberg,Sommer and Hahn [1, 2, 6, 8]. The principal issue to be solved in the 2D case

Page 69: Quaternion and Clifford Fourier Transforms and Wavelets

3. โ„-spectral analysis 43

is to generalise the concept of a single-sided spectrum. Hahn considered a singlequadrant or orthant spectrum, Sommer et al. considered a spectrum with supportlimited to half the complex plane, not necessarily confined to two quadrants, butstill with real sample or pixel values.

Recently, Lilly and Olhede [16] have published a paper on bivariate analyticsignal concepts without explicitly considering the complex signal case which wecover here. Their approach is linked to a specific signal model, the modulatedelliptical signal, which they illustrate with the example of a drifting oceanographicfloat. The approach taken in the present chapter is more general and withoutreference to a specific signal model.

2. 1D Quaternion Fourier Transform

In this section, we will be concerned with the definition and properties of thequaternion Fourier transform (QFT) of complex-valued signals. Before introducingthe main definitions, we give some prerequisites on quaternion-valued signals.

2.1. Preliminary Remarks

Quaternions were discovered by Sir W.R. Hamilton in 1843 [11]. Quaternions are4D hypercomplex numbers that form a noncommutative division ring denotedโ„. A quaternion ๐‘ž โˆˆ โ„ has a Cartesian form: ๐‘ž = ๐‘ž0 + ๐‘ž1๐’Š + ๐‘ž2๐’‹ + ๐‘ž3๐’Œ, with๐‘ž0, ๐‘ž1, ๐‘ž2, ๐‘ž3 โˆˆ โ„ and ๐’Š, ๐’‹,๐’Œ roots of โˆ’1 satisfying ๐’Š2 = ๐’‹2 = ๐’Œ2 = ๐’Š๐’‹๐’Œ = โˆ’1.The scalar part of ๐‘ž is: S(๐‘ž) = ๐‘ž0. The vector part of ๐‘ž is: V(๐‘ž) = ๐‘ž โˆ’ S(๐‘ž).Quaternion multiplication is not commutative, so that in general ๐‘ž๐‘ โˆ•= ๐‘๐‘ž for๐‘, ๐‘ž โˆˆ โ„. The conjugate of ๐‘ž is ๐‘ž = ๐‘ž0 โˆ’ ๐‘ž1๐’Š โˆ’ ๐‘ž2๐’‹ โˆ’ ๐‘ž3๐’Œ. The norm of ๐‘ž is

โˆฅ๐‘žโˆฅ = โˆฃ๐‘žโˆฃ2 = (๐‘ž20 + ๐‘ž21 + ๐‘ž22 + ๐‘ž23) = ๐‘ž๐‘ž. A quaternion with ๐‘ž0 = 0 is called pure. Ifโˆฃ๐‘žโˆฃ = 1, then ๐‘ž is called a unit quaternion. The inverse of ๐‘ž is ๐‘žโˆ’1 = ๐‘ž/ โˆฅ๐‘žโˆฅ. Pureunit quaternions are special quaternions, among which are ๐’Š, ๐’‹ and ๐’Œ. Togetherwith the identity of โ„, they form a quaternion basis : {1, ๐’Š, ๐’‹,๐’Œ}. In fact, givenany two unit pure quaternions, ๐œ‡ and ๐œ‰, which are orthogonal to each other (i.e.,S(๐œ‡๐œ‰) = 0), then {1, ๐œ‡, ๐œ‰, ๐œ‡๐œ‰} is a quaternion basis.

Quaternions can also be viewed as complex numbers with complex compo-nents, i.e., one can write ๐‘ž = ๐‘ง1 + ๐’‹๐‘ง2 in the basis {1, ๐’Š, ๐’‹,๐’Œ} with ๐‘ง1, ๐‘ง2 โˆˆ โ„‚๐’Š, i.e.,๐‘ง๐›ผ = โ„œ(๐‘ง๐›ผ) + ๐’Šโ„‘(๐‘ง๐›ผ) for ๐›ผ = 1, 21. This is called the Cayleyโ€“Dickson form.

Among the possible representations of ๐‘ž, two of them will be used in thischapter: the polar (Euler) form and the polar Cayleyโ€“Dickson form [20].

Polar form. Any non-zero quaternion ๐‘ž can be written:

๐‘ž = โˆฃ๐‘žโˆฃ ๐‘’๐œ‡๐‘ž๐œ™๐‘ž = โˆฃ๐‘žโˆฃ (cos๐œ™๐‘ž + ๐œ‡๐‘ž sin๐œ™๐‘ž) ,

1In the sequel, we denote by โ„‚๐œ‡ the set of complex numbers with root of โˆ’1 = ๐œ‡. Note thatthese are degenerate quaternions, where all vector parts point in the same direction.

Page 70: Quaternion and Clifford Fourier Transforms and Wavelets

44 N. Le Bihan and S.J. Sangwine

where ๐œ‡๐‘ž is the axis of ๐‘ž and ๐œ™๐‘ž is the angle of ๐‘ž. For future use in this chapter,we give here their explicit expressions:{

๐œ‡๐‘ž = V(๐‘ž) / โˆฃV(๐‘ž)โˆฃ ,๐œ™๐‘ž = arctan (โˆฃV(๐‘ž)โˆฃ / S(๐‘ž)) . (2.1)

The axis and angle are used in interpreting the hyperanalytic signal in Section 4.

Polar Cayleyโ€“Dickson form. Any quaternion ๐‘ž also has a unique polar Cayleyโ€“Dickson form [20] given by:

๐‘ž = ๐ด๐‘ž exp(๐ต๐‘ž๐’‹) = (๐‘Ž0 + ๐‘Ž1๐’Š) exp((๐‘0 + ๐‘1๐’Š)๐’‹), (2.2)

where ๐ด๐‘ž = ๐‘Ž0 + ๐‘Ž1๐’Š is the complex modulus of ๐‘ž and ๐ต๐‘ž = ๐‘0 + ๐‘1๐’Š its complexphase. It is proven in [20] that given a quaternion ๐‘ = (๐‘0 + ๐‘1๐’Š)๐’‹ = ๐‘0๐’‹ + ๐‘1๐’Œ, itsexponential is given as:

๐‘’๐‘ = cos โˆฃ๐‘โˆฃ+ ๐‘

โˆฃ๐‘โˆฃ sin โˆฃ๐‘โˆฃ (2.3)

= cos(โˆš

๐‘20 + ๐‘21) + ๐’‹๐‘0โˆš

๐‘20 + ๐‘21sin(โˆš

๐‘20 + ๐‘21)

+ ๐’Œ๐‘1โˆš

๐‘20 + ๐‘21sin(โˆš

๐‘20 + ๐‘21). (2.4)

As a consequence, using the right-hand side expression in (2.2), the Cartesiancoordinates of ๐‘ž can be linked to the polar Cayleyโ€“Dickson ones in the followingway:โŽงโŽจโŽฉ

๐ด๐‘ž =๐‘ž0 + ๐’Š๐‘ž1

cos(โˆš

๐‘ž22 + ๐‘ž23)

๐ต๐‘ž = arctan(โˆš

๐‘ž22 + ๐‘ž23)โˆš

๐‘ž22 + ๐‘ž23

(๐‘ž0๐‘ž3 + ๐‘ž1๐‘ž2๐‘ž20 + ๐‘ž21

+ ๐’Š๐‘ž0๐‘ž3 โˆ’ ๐‘ž1๐‘ž2๐‘ž20 + ๐‘ž21

).

(2.5)

In Section 4, we will make use of the complex modulus ๐ด๐‘ž for interpretationof the hyperanalytic signal.

2.2. 1D Quaternion Fourier Transform

In this chapter, we use a 1D version of the (right-side) QFT first defined in discrete-time form in [17]. Thus, it is necessary to specify the axis (a pure unit quaternion)of the transform. So, we will denote by โ„ฑ๐œ‡ [ ] a QFT with transformation axis ๐œ‡.For convenience below, we refer to this as a ๐‘„๐น๐‘‡๐œ‡. In order to work with theclassical quaternion basis, in the sequel we will use ๐’‹ as the transform axis. Theonly restriction on the transform axis is that it must be orthogonal to the originalbasis of the signal (here {1, ๐’Š}). We now present the definition and some propertiesof the transform used here.

Page 71: Quaternion and Clifford Fourier Transforms and Wavelets

3. โ„-spectral analysis 45

Definition 1. Given a complex-valued signal ๐‘ง(๐‘ก) = ๐‘ง๐‘Ÿ(๐‘ก) + ๐’Š๐‘ง๐‘–(๐‘ก), its quaternionFourier transform with respect to axis ๐’‹ is:

๐‘๐’‹(๐œˆ) = โ„ฑ๐’‹ [๐‘ง(๐‘ก)] =

+โˆžโˆซโˆ’โˆž

๐‘ง(๐‘ก)๐‘’โˆ’๐’‹2๐œ‹๐œˆ๐‘กd๐‘ก, (2.6)

and the inverse transform is:

๐‘ง(๐‘ก) = โ„ฑโˆ’1๐’‹ [๐‘๐’‹(๐œˆ)] =

+โˆžโˆซโˆ’โˆž

๐‘๐’‹(๐œˆ)๐‘’๐’‹2๐œ‹๐œˆ๐‘กd๐œˆ. (2.7)

Property 1. Given a complex signal ๐‘ง(๐‘ก) = ๐‘ง๐‘Ÿ(๐‘ก)+๐’Š๐‘ง๐‘–(๐‘ก) and its quaternion Fouriertransform denoted ๐‘๐’‹(๐œˆ), then the following properties hold:

โˆ™ The even part of ๐‘ง๐‘Ÿ(๐‘ก) is in โ„œ(๐‘๐’‹(๐œˆ)),โˆ™ The odd part of ๐‘ง๐‘Ÿ(๐‘ก) is in โ„‘๐’‹(๐‘๐’‹(๐œˆ)),โˆ™ The even part of ๐‘ง๐‘–(๐‘ก) is in โ„‘๐’Š(๐‘๐’‹(๐œˆ)),โˆ™ The odd part of ๐‘ง๐‘–(๐‘ก) is in โ„‘๐’Œ(๐‘๐’‹(๐œˆ)).

Proof. Expand (2.6) into real and imaginary parts with respect to ๐’Š, and expandthe quaternion exponential into cosine and sine components:

๐‘๐’‹(๐œˆ) =

+โˆžโˆซโˆ’โˆž

[๐‘ง๐‘Ÿ(๐‘ก) + ๐’Š๐‘ง๐‘–(๐‘ก)] [cos(2๐œ‹๐œˆ๐‘ก)โˆ’ ๐’‹ sin(2๐œ‹๐œˆ๐‘ก)] d๐‘ก

=

+โˆžโˆซโˆ’โˆž

๐‘ง๐‘Ÿ(๐‘ก) cos(2๐œ‹๐œˆ๐‘ก)d๐‘กโˆ’ ๐’‹

+โˆžโˆซโˆ’โˆž

๐‘ง๐‘Ÿ(๐‘ก) sin(2๐œ‹๐œˆ๐‘ก)d๐‘ก

+ ๐’Š

+โˆžโˆซโˆ’โˆž

๐‘ง๐‘–(๐‘ก) cos(2๐œ‹๐œˆ๐‘ก)d๐‘กโˆ’ ๐’Œ

+โˆžโˆซโˆ’โˆž

๐‘ง๐‘–(๐‘ก) sin(2๐œ‹๐œˆ๐‘ก)d๐‘ก,

from which the stated properties are evident. โ–ก

These properties are central to the justification of the use of the QFT toanalyze a complex-valued signal carrying complementary but different informationin its real and imaginary parts. Using the QFT, it is possible to have the oddand even parts of the real and imaginary parts of the signal in four differentcomponents in the transform domain. This idea was also the initial motivation ofBulow, Sommer and Felsberg when they developed the monogenic signal for images[1, 2, 6]. Note that the use of hypercomplex Fourier transforms was originallyintroduced in 2D Nuclear Magnetic Resonance image analysis [5, 3].

We now turn to the link between a complex signal and the quaternion signalthat can be uniquely associated to it.

Page 72: Quaternion and Clifford Fourier Transforms and Wavelets

46 N. Le Bihan and S.J. Sangwine

Property 2. A one-sided ๐‘„๐น๐‘‡ ๐‘‹(๐œˆ), obtained from a complex signal as in Defi-nition 1 by suppressing the negative frequencies, that is with ๐‘‹(๐œˆ) = 0 for ๐œˆ < 0,corresponds to a full quaternion-valued signal in the time domain.

Proof. The proof is based on the symmetry properties, listed in Property 1, fulfilledby the ๐‘„๐น๐‘‡๐’‹ of complex-valued signals. From this, it is easily verified that, giventhe ๐‘„๐น๐‘‡๐’‹ of a complex signal ๐‘ข(๐‘ก) denoted by ๐‘ˆ๐’‹(๐œˆ), then (1 + sign(๐œˆ))๐‘ˆ๐’‹(๐œˆ)is right-sided (i.e., it vanishes for all ๐œˆ < 0). Here sign(๐œˆ) is the classical signfunction, which is equal to 1 for ๐œˆ > 0 and equal to โˆ’1 for ๐œˆ < 0. Second, theinverse transform, or ๐ผ๐‘„๐น๐‘‡๐’‹ of (1 + sign(๐œˆ))๐‘ˆ๐’‹(๐œˆ) can be decomposed as follows:

๐ผ๐‘„๐น๐‘‡๐’‹ [(1 + sign(๐œˆ))๐‘ˆ๐’‹(๐œˆ)] = ๐ผ๐‘„๐น๐‘‡๐’‹ [๐‘ˆ๐’‹(๐œˆ)] + ๐ผ๐‘„๐น๐‘‡๐’‹ [sign(๐œˆ)๐‘ˆ๐’‹(๐œˆ)]

By definition, ๐ผ๐‘„๐น๐‘‡๐’‹ [๐‘ˆ๐’‹(๐œˆ)] is a complex-valued signal with non-zero real and๐’Š-imaginary parts, and null ๐’‹-imaginary and ๐’Œ-imaginary parts. To complete theproof we show that ๐ผ๐‘„๐น๐‘‡๐’‹ [sign(๐œˆ)๐‘ˆ๐’‹(๐œˆ)] has null real and ๐’Š-imaginary parts, andnon-zero ๐’‹-imaginary and ๐’Œ-imaginary parts. Consider the original complex signal๐‘ข(๐‘ก) = ๐‘ข๐‘Ÿ(๐‘ก)+๐‘ข๐‘–(๐‘ก)๐’Š, as composed of odd and even, real and imaginary parts (fourcomponents in total). Property 1 shows how these four components map to thefour Cartesian components of ๐‘ˆ๐’‹(๐œˆ), namely:

โˆ™ The even part of ๐‘ข๐‘Ÿ(๐‘ก) ๏ฟฝโ†’ โ„œ(๐‘ˆ๐’‹(๐œˆ)), which is even,โˆ™ The even part of ๐‘ข๐‘–(๐‘ก) ๏ฟฝโ†’ โ„‘๐’Š(๐‘ˆ๐’‹(๐œˆ)), which is even,โˆ™ The odd part of ๐‘ข๐‘Ÿ(๐‘ก) ๏ฟฝโ†’ โ„‘๐’‹(๐‘ˆ๐’‹(๐œˆ)), which is odd.โˆ™ The odd part of ๐‘ข๐‘–(๐‘ก) ๏ฟฝโ†’ โ„‘๐’Œ(๐‘ˆ๐’‹(๐œˆ)), which is odd.

Multiplication by sign(๐œˆ) changes the parity to the following:

โˆ™ sign(๐œˆ)โ„œ(๐‘ˆ๐’‹(๐œˆ)) is odd,โˆ™ sign(๐œˆ)โ„‘๐’Š(๐‘ˆ๐’‹(๐œˆ)), is odd,โˆ™ sign(๐œˆ)โ„‘๐’‹(๐‘ˆ๐’‹(๐œˆ)), is even.โˆ™ sign(๐œˆ)โ„‘๐’Œ(๐‘ˆ๐’‹(๐œˆ)), is even.

and the inverse transform ๐ผ๐‘„๐น๐‘‡๐’‹ maps these components to:

โˆ™ sign(๐œˆ)โ„œ(๐‘ˆ๐’‹(๐œˆ)) ๏ฟฝโ†’ ๐’‹๐‘ข1(๐‘ก),โˆ™ sign(๐œˆ)โ„‘๐’Š(๐‘ˆ๐’‹(๐œˆ)) ๏ฟฝโ†’ ๐’Š๐’‹๐‘ข2(๐‘ก) = ๐’Œ๐‘ข2(๐‘ก),โˆ™ sign(๐œˆ)โ„‘๐’‹(๐‘ˆ๐’‹(๐œˆ)) ๏ฟฝโ†’ ๐’‹๐‘ข3(๐‘ก),โˆ™ sign(๐œˆ)โ„‘๐’Œ(๐‘ˆ๐’‹(๐œˆ)) ๏ฟฝโ†’ ๐’Œ๐‘ข4(๐‘ก),

where ๐‘ข๐‘ฅ(๐‘ก), ๐‘ฅ = 1, 2, 3, 4 are real functions of ๐‘ก. Hence ๐ผ๐‘„๐น๐‘‡๐’‹ [sign(๐œˆ)๐‘ˆ๐’‹(๐œˆ)] hasnull real and null ๐’Š-imaginary parts, but non-zero ๐’‹-imaginary and ๐’Œ-imaginaryparts as previously stated. โ–ก

Property 3. Given a complex signal ๐‘ฅ(๐‘ก), one can associate to it a unique canonicalpair corresponding to a modulus and phase. These modulus and phase are uniquelydefined through the hyperanalytic signal, which is quaternion valued.

Proof. Cancelling the negative frequencies of the QFT leads to a quaternion signalin the time domain. Then, any quaternion signal has a modulus and phase definedusing its Cayleyโ€“Dickson polar form. โ–ก

Page 73: Quaternion and Clifford Fourier Transforms and Wavelets

3. โ„-spectral analysis 47

2.3. Convolution

We consider the special case of convolution of a complex signal by a real signal.Consider ๐‘” and ๐‘“ such that: ๐‘” : โ„+ โ†’ โ„‚ and ๐‘“ : โ„+ โ†’ โ„. Now, consider theQFT๐’‹ of their convolution:

โ„ฑ๐’‹ [(๐‘” โˆ— ๐‘“)(๐‘ก)] =+โˆžโˆซโˆ’โˆž

+โˆžโˆซโˆ’โˆž

๐‘”(๐œ)๐‘“(๐‘ก โˆ’ ๐œ)d๐œ๐‘’โˆ’2๐’‹๐œ‹๐œˆ๐‘กd๐‘ก

=

+โˆžโˆซโˆ’โˆž

+โˆžโˆซโˆ’โˆž

๐‘”(๐œ)๐‘’โˆ’๐’‹2๐œ‹๐œˆ(๐‘กโ€ฒ+๐œ)๐‘“(๐‘กโ€ฒ)๐‘‘๐œd๐‘กโ€ฒ

=

+โˆžโˆซโˆ’โˆž

๐‘”(๐œ)๐‘’โˆ’๐’‹2๐œ‹๐œˆ๐œd๐œ

+โˆžโˆซโˆ’โˆž

๐‘“(๐‘กโ€ฒ)๐‘’โˆ’๐’‹2๐œ‹๐œˆ๐‘กโ€ฒd๐‘กโ€ฒ

= โ„ฑ๐’‹ [๐‘”(๐‘ก)]โ„ฑ๐’‹ [๐‘“(๐‘ก)] .

(2.8)

Thus, the definition used for the QFT here verifies the convolution theorem in theconsidered case. This specific case will be of use in our definition of the hyperan-alytic signal.

2.4. The Quaternion Fourier Transform of the Hilbert Transform

It is straightforward to verify that the quaternion Fourier transform of a real signal๐‘ฅ(๐‘ก) = 1/๐œ‹๐‘ก is โˆ’๐’‹ sign(๐œˆ), where ๐’‹ is the axis of the transform. Substituting ๐‘ฅ(๐‘ก)into (2.6), we get:

โ„ฑ๐’‹

[1

๐œ‹๐‘ก

]=

1

๐œ‹

+โˆžโˆซโˆ’โˆž

๐‘’โˆ’๐’‹2๐œ‹๐œˆ๐‘ก

๐‘กd๐‘ก,

and this is clearly isomorphic to the classical complex case. The solution in theclassical case is โˆ’๐‘– sign(๐œˆ), and hence in the quaternion case must be as statedabove.

It is also straightforward to see that, given an arbitrary real signal ๐‘ฆ(๐‘ก),subject only to the constraint that its classical Hilbert transform โ„‹ [๐‘ฆ(๐‘ก)] exists,then one can easily show that the classical Hilbert transform of the signal may beobtained using a quaternion Fourier transform as follows:

โ„‹ [๐‘ฆ(๐‘ก)] = โ„ฑโˆ’1๐’‹ [โˆ’๐’‹ sign(๐œˆ)๐‘Œ๐’‹(๐œˆ)] (2.9)

where ๐‘Œ๐’‹(๐œˆ) = โ„ฑ๐’‹ [๐‘ฆ(๐‘ก)]. This result follows from the isomorphism between thequaternion and complex Fourier transforms when operating on a real signal, andit may be seen to be the result of a convolution between the signal ๐‘ฆ(๐‘ก) and thequaternion Fourier transform of ๐‘ฅ(๐‘ก) = 1/๐œ‹๐‘ก. Note that ๐’‹ and ๐‘Œ๐’‹(๐œˆ) commute asa consequence of ๐‘ฆ(๐‘ก) being real.

Page 74: Quaternion and Clifford Fourier Transforms and Wavelets

48 N. Le Bihan and S.J. Sangwine

3. The Hypercomplex Analytic Signal

We define the hyperanalytic signal ๐‘ง+(๐‘ก) by a similar approach to that originallydeveloped by Ville [21]. The following definitions give the details of the construc-tion of this signal. Note that the signal ๐‘ง(๐‘ก) is considered to be non-analytic, orimproper, in the classical (complex) sense, that is its real and imaginary parts arenot orthogonal. However, the following definitions are valid if ๐‘ง(๐‘ก) is analytic, asit can be considered as a degenerate case of the more general non-analytic case.

Definition 2. Consider a complex signal ๐‘ง(๐‘ก) = ๐‘ง๐‘Ÿ(๐‘ก) + ๐’Š๐‘ง๐‘–(๐‘ก) and its quaternionFourier transform ๐‘๐’‹(๐œˆ) as defined in Definition 1. Then, the hypercomplex ana-logue of the Hilbert transform of ๐‘ง(๐‘ก), is as follows:

โ„‹๐’‹ [๐‘ง(๐‘ก)] = โ„ฑโˆ’1๐’‹ [โˆ’๐’‹ sign(๐œˆ)๐‘๐’‹(๐œˆ)] , (3.1)

where the Hilbert transform is thought of as: โ„‹๐’‹ [๐‘ง(๐‘ก)] = ๐‘.๐‘ฃ. (๐‘ง โˆ— (1/๐œ‹๐‘ก)), wherethe principal value (p.v.) is understood in its classical way. This result follows fromequation (2.9) and the linearity of the quaternion Fourier transform. To extractthe imaginary part, the vector part of the quaternion signal must be multiplied byโˆ’๐’Š. An alternative is to take the scalar or inner product of the vector part with๐’Š. Note that ๐’‹ and ๐‘๐’‹(๐œˆ) anticommute because ๐’‹ is orthogonal to ๐’Š, the axis of๐‘๐’‹(๐œˆ). Therefore the ordering is not arbitrary, but changing it simply conjugatesthe result.

Definition 3. Given a complex-valued signal ๐‘ง(๐‘ก) that can be expressed in the formof a quaternion as ๐‘ง(๐‘ก) = ๐‘ง๐‘Ÿ(๐‘ก) + ๐’Š๐‘ง๐‘–(๐‘ก), then the hypercomplex analytic signal of๐‘ง(๐‘ก), denoted ๐‘ง+(๐‘ก) is given by:

๐‘ง+(๐‘ก) = ๐‘ง(๐‘ก) + ๐’‹โ„‹๐’‹ [๐‘ง(๐‘ก)] , (3.2)

where โ„‹๐’‹ [๐‘ง(๐‘ก)] is the hypercomplex analogue of the Hilbert transform of ๐‘ง(๐‘ก)defined in the preceding definition. The quaternion Fourier transform of this hy-percomplex analytic signal is thus:

๐‘+(๐œˆ) = ๐‘๐’‹(๐œˆ)โˆ’ ๐’‹2 sign(๐œˆ)๐‘๐’‹(๐œˆ)

= [1 + sign(๐œˆ)]๐‘๐’‹(๐œˆ)

= 2๐‘ˆ(๐œˆ)๐‘๐’‹(๐œˆ),

where ๐‘ˆ(๐œˆ) is the classical unit step function.

This result is unique to the quaternion Fourier transform representation ofthe hypercomplex analytic signal โ€“ the hypercomplex analytic signal has a one-sided quaternion Fourier spectrum. This means that the hypercomplex analyticsignal may be constructed from a complex signal ๐‘ง(๐‘ก) in exactly the same waythat an analytic signal may be constructed from a real signal ๐‘ฅ(๐‘ก), by suppressionof negative frequencies in the Fourier spectrum. The only difference is that in thehypercomplex analytic case, a quaternion rather than a complex Fourier transformmust be used, and of course the complex signal must be put in the form ๐‘ง(๐‘ก) =

Page 75: Quaternion and Clifford Fourier Transforms and Wavelets

3. โ„-spectral analysis 49

๐‘ง๐‘Ÿ(๐‘ก) + ๐’Š๐‘ง๐‘–(๐‘ก) which, although a quaternion signal, is isomorphic to the originalcomplex signal.

A second important property of the hypercomplex analytic signal is that itmaintains a separation between the different even and odd parts of the originalsignal.

Property 4. The original signal ๐‘ง(๐‘ก) is the simplex part [4, Theorem 1], [18, ยง 13.1.3]of its corresponding hypercomplex analytic signal. The perplex part is the orthog-onal or โ€˜quadratureโ€™ component, ๐‘œ(๐‘ก). They are obtained by:

๐‘ง(๐‘ก) =1

2(๐‘ง+(๐‘ก)โˆ’ ๐’Š๐‘ง+(๐‘ก)๐’Š) , (3.3)

๐‘œ(๐‘ก) =1

2(๐‘ง+(๐‘ก) + ๐’Š๐‘ง+(๐‘ก)๐’Š) . (3.4)

Proof. This follows from equation (3.2). Writing this in full by substituting theorthogonal signal for โ„‹๐’‹ [๐‘ง(๐‘ก)]:

๐‘ง+(๐‘ก) = ๐‘ง(๐‘ก) + ๐’‹๐‘œ(๐‘ก) = ๐‘ง๐‘Ÿ(๐‘ก) + ๐’Š๐‘ง๐‘–(๐‘ก) + ๐’‹๐‘œ๐‘Ÿ(๐‘ก)โˆ’ ๐’Œ๐‘œ๐‘–(๐‘ก),

and substituting this into equation (3.3), we get:

๐‘ง(๐‘ก) =1

2

(๐‘ง๐‘Ÿ(๐‘ก) + ๐’Š๐‘ง๐‘–(๐‘ก) + ๐’‹๐‘œ๐‘Ÿ(๐‘ก)โˆ’ ๐’Œ๐‘œ๐‘–(๐‘ก)

โˆ’๐’Š [๐‘ง๐‘Ÿ(๐‘ก) + ๐’Š๐‘ง๐‘–(๐‘ก) + ๐’‹๐‘œ๐‘Ÿ(๐‘ก)โˆ’ ๐’Œ๐‘œ๐‘–(๐‘ก)] ๐’Š

),

and since ๐’Š and ๐’‹ are orthogonal unit pure quaternions, ๐’Š๐’‹ = โˆ’๐’‹๐’Š:

=1

2

(๐‘ง๐‘Ÿ(๐‘ก) + ๐’Š๐‘ง๐‘–(๐‘ก) + ๐’‹๐‘œ๐‘Ÿ(๐‘ก)โˆ’ ๐’Œ๐‘œ๐‘–(๐‘ก)

+ ๐‘ง๐‘Ÿ(๐‘ก) + ๐’Š๐‘ง๐‘–(๐‘ก)โˆ’ ๐’‹๐‘œ๐‘Ÿ(๐‘ก) + ๐’Œ๐‘œ๐‘–(๐‘ก)

),

from which the first part of the result follows. Equation (3.4) differs only in thesign of the second term, and it is straightforward to see that if ๐‘ง+(๐‘ก) is substituted,๐‘ง(๐‘ก) cancels out, leaving ๐‘œ(๐‘ก). โ–ก

4. Geometric Instantaneous Amplitude and Phase

Using the hypercomplex analytic signal, we now present the geometric featuresthat can be obtained thanks to two representations of ๐‘ง+(๐‘ก). First, we notice thatthe hypercomplex analytic signal has a polar form given as:

๐‘ง+(๐‘ก) = ๐œŒ+R(๐‘ก)๐‘’๐œ‡

+(๐‘ก)๐œ™+(๐‘ก), (4.1)

where ๐œŒ+R = โˆฃ๐‘ง+(๐‘ก)โˆฃ is the real modulus of ๐‘ง+(๐‘ก), ๐œ™+(๐‘ก) is its argument and ๐œ‡+(๐‘ก) its

axis. The real modulus, or real envelope, is not very informative, as it is real valuedand so does not provide a 2D description of the slowly varying part (envelope) of๐‘ง(๐‘ก). Nonetheless, a complex modulus can be defined using the modulus of thepolar Cayleyโ€“Dickson representation that is more informative on the geometricfeatures of the original improper signal ๐‘ง(๐‘ก).

Page 76: Quaternion and Clifford Fourier Transforms and Wavelets

50 N. Le Bihan and S.J. Sangwine

4.1. Complex Envelope

The complex modulus of the hypercomplex analytic signal has properties verysimilar to the โ€˜classicalโ€™ case. It is defined as the modulus of the Cayleyโ€“Dicksonpolar representation of ๐‘ง+(๐‘ก). Considering the Cayleyโ€“Dickson polar form of thehypercomplex analytic signal given as:

๐‘ง+(๐‘ก) = ๐œŒ+C(๐‘ก)๐‘’

ฮฆ+(๐‘ก)๐’‹ , (4.2)

then the complex envelope of ๐‘ง(๐‘ก) is simply ๐œŒ+C(๐‘ก). An illustration of a complex

envelope of a complex improper signal is given in Figures 1 and 3. In Figure 1,an improper complex signal made of a low frequency envelope modulating a highfrequency linear frequency sweep is presented. The complex envelope obtainedthrough the hyperanalytic signal is displayed in red (and in blue a negated versionto show how the envelope encompass the signal). In Figure 3, a similar signal, butwith a quadratic sweep, is displayed. Again, the complex envelope fits the slowlyvarying pattern of the signal.

Note that we do not make use of the phase of the Cayleyโ€“Dickson polar formin the sequel. It was demonstrated in [15] that this phase can reveal informationon the โ€˜modulationโ€™ part of the improper complex signal. Here we are looking forgeometric descriptors of the improper complex signal through the hyperanalyticsignal. For this purpose, we now show how the phase of the polar form of ๐‘ง+(๐‘ก)can be linked with the angular velocity concept.

4.2. Angular Velocity

The phase of a hyperanalytic signal is slightly different from the well-known con-cept of phase for a complex-valued signal. First, it is a three-dimensional quantitymade of an axis and a phase (i.e., a pure unit quaternion and a scalar). Using thepolar form of ๐‘ง+(๐‘ก), its normalized part, denoted ๐‘ง+(๐‘ก), is simply:

๐‘ง+(๐‘ก) =๐‘ง+(๐‘ก)

๐œŒ+R(๐‘ก)

, (4.3)

where it is assumed that ๐œŒ+R(๐‘ก) โˆ•= 0 for all ๐‘ก. In the case where ๐œŒ+

R(๐‘ก) = 0, it simplymeans that the original signal ๐‘ง(๐‘ก) = 0 and so is ๐‘ง+(๐‘ก). If not, then ๐‘ง+(๐‘ก) is a unitquaternion, i.e., an element of ๐’ฎ3. Without loss of generality, one can write ๐‘ง+(๐‘ก)as:

๐‘ง+(๐‘ก) = exp [๐œƒ(๐‘ก)v(๐‘ก)] , (4.4)

where ๐œƒ(๐‘ก) is scalar valued and v(๐‘ก) is a pure unit quaternion. Now, it is wellknown [13, 12] from quaternion formulations of kinematics that the instantaneousfrequency is given by:

๐œ™(๐‘ก) =d๐œƒ(๐‘ก)

d๐‘ก= arg

(d๐‘ง+(๐‘ก)

d๐‘ก

), (4.5)

where the time derivative of ๐‘ง+(๐‘ก) is understood as:

d๐‘ง+(๐‘ก)

d๐‘ก= lim

ฮ”๐‘กโ†’0

๐‘ง+(๐‘ก+ฮ”๐‘ก)๐‘ง+(๐‘ก)โˆ’1

ฮ”๐‘ก. (4.6)

Page 77: Quaternion and Clifford Fourier Transforms and Wavelets

3. โ„-spectral analysis 51

1

0.5

0

0.5

1

00.10.20.30.40.50.60.70.80.91

1.5

1

0.5

0

0.5

1

1.5

TimeReal

Imag

Figure 1. Improper complex signal consisting of a modulating lowfrequency envelope and a high frequency linear frequency sweep. Theenvelope ๐œŒ+

C(๐‘ก) is indicated by the arrow at left and โˆ’๐œŒ+C(๐‘ก) by the arrow

at right.

This is in fact the multiplicative increment (a unit pure quaternion) between thehyperanalytic signal at time ๐‘ก and time ๐‘ก+ฮ”๐‘ก. The argument in (4.5) is thus theamount of angle per unit of time by which the signal has been rotated (in rad/s).The axis of this increment gives the direction of this rotation. This is an angularvelocity, which corresponds, for a complex improper signal, to its instantaneousfrequency. This angular velocity is a geometrical and spectral local informationon the signal ๐‘ง(๐‘ก), as it gives locally the frequency content and the geometricalorientation and behaviour of the signal with time.

In Figures 1 to 4, we illustrate this concept of instantaneous frequency forimproper complex signals. In Figure 1, an improper complex signal made of alinear sweep (single frequency signal with frequency linearly changing with time)and a complex envelope is presented. Its complex envelope is presented in red (theinverse of the envelope is also plotted, in blue, for visualization purposes), whichfits the โ€˜low frequencyโ€™ behaviour of the signal. In Figure 2, the angular velocity ofthe hyperanalytic signal is compared to the frequency sweep used to generate the

Page 78: Quaternion and Clifford Fourier Transforms and Wavelets

52 N. Le Bihan and S.J. Sangwine

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

5

10

15

20

25

30

35

40

45

50

Time

Freq

uenc

y

Figure 2. Linear frequency sweep estimated as the angular velocity ofthe hyperanalytic signal (with ripples and discontinuity), and originallinear frequency sweep used to generate the original improper complexsignal (without ripples). The discontinuity in the estimate is due to thefact that the angular velocity obtained from the hyperanalytic signal isnot differentiable at ๐‘ก = 0.5.

signal, showing good agreement, except at a singularity point (where the phase ofthe hyperanalytic signal is not differentiable). A similar procedure is carried outin Figures 3 and 4, where the โ€˜high frequencyโ€™ content is now a quadratic sweep(frequency varying quadratically with time). The same conclusions can be drawnabout the complex envelope and the angular velocity.

The complex envelope and the angular velocity are the extensions, for com-plex improper signals, of the well-known envelope and instantaneous frequencyfor real signals. They allow a local description of the geometrical and spectral be-haviour of the signal and thus consist in the simplest time-frequency representationfor improper complex signals. As in the classical case, these local descriptors havetheir limitations. Here, the number of frequency components must be kept to onefor the angular velocity to be able to recover the instantaneous frequency. Thislimitation makes impossible the identification of local spectral contents in the caseof mixtures of signals or wide-band signals. Such signals require more sophisticated

Page 79: Quaternion and Clifford Fourier Transforms and Wavelets

3. โ„-spectral analysis 53

1

0.5

0

0.5

1

00.2

0.40.6

0.81

0.25

0.2

0.15

0.1

0.05

0

0.05

0.1

0.15

0.2

0.25

Time

Real

Imag

Figure 3. Improper complex signal consisting in a modulating lowfrequency envelope and a high frequency quadratic frequency sweep.

time-frequency representations that could be developed, based on the quaternionFT. The study of such representations is a natural step after the work presented.

5. Conclusions

We have shown in this chapter how the classical analytic signal concept may beextended to the case of the hyperanalytic signal of an original complex signal. Thequaternion based approach yields an interpretation of the hyperanalytic signal as aquaternion signal which leads naturally to the definition of the complex envelope.Also, the use of the polar form of the hyperanalytic signal allows the derivationof an angular velocity, which is indeed an instantaneous frequency. Both the enve-lope and the angular velocity allow a local and spectral description of a compleximproper signal, leading to the first geometrical time-frequency representation forcomplex improper signals.

Future work will consist in developing other time-frequency representationsfor improper complex signals with more diverse spectral behaviour.

Page 80: Quaternion and Clifford Fourier Transforms and Wavelets

54 N. Le Bihan and S.J. Sangwine

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

5

10

15

20

25

Time

Freq

uenc

y

Figure 4. Quadratic frequency sweep estimated as the angular veloc-ity of the hyperanalytic signal (with ripples), and original quadraticfrequency sweep used to generate the original improper complex sig-nal (without ripples). The discontinuity at ๐‘ก = 0.5 is due to the factthat the angular velocity obtained from the hyperanalytic signal is notdifferentiable at this point.

Acknowledgement

We thank Eckhard Hitzer for suggesting the proof of Property 2.

References

[1] T. Bulow. Hypercomplex Spectral Signal Representations for the Processing and Anal-ysis of Images. PhD thesis, University of Kiel, Germany, Institut fur Informatik undPraktische Mathematik, Aug. 1999.

[2] T. Bulow and G. Sommer. Hypercomplex signals โ€“ a novel extension of the ana-lytic signal to the multidimensional case. IEEE Transactions on Signal Processing,49(11):2844โ€“2852, Nov. 2001.

[3] M.A. Delsuc. Spectral representation of 2D NMR spectra by hypercomplex numbers.Journal of magnetic resonance, 77(1):119โ€“124, Mar. 1988.

Page 81: Quaternion and Clifford Fourier Transforms and Wavelets

3. โ„-spectral analysis 55

[4] T.A. Ell and S.J. Sangwine. Hypercomplex Wiener-Khintchine theorem with ap-plication to color image correlation. In IEEE International Conference on ImageProcessing (ICIP 2000), volume II, pages 792โ€“795, Vancouver, Canada, 11โ€“14 Sept.2000. IEEE.

[5] R.R. Ernst, G. Bodenhausen, and A. Wokaun. Principles of Nuclear Magnetic Res-onance in One and Two Dimensions. International Series of Monographs on Chem-istry. Oxford University Press, 1987.

[6] M. Felsberg and G. Sommer. The monogenic signal. IEEE Transactions on SignalProcessing, 49(12):3136โ€“3144, Dec. 2001.

[7] D. Gabor. Theory of communication. Journal of the Institution of Electrical Engi-neers, 93(26):429โ€“457, 1946. Part III.

[8] S.L. Hahn. Multidimensional complex signals with single-orthant spectra. Proceed-ings of the IEEE, 80(8):1287โ€“1300, Aug. 1992.

[9] S.L. Hahn. Hilbert transforms. In A.D. Poularikas, editor, The transforms and appli-cations handbook, chapter 7, pages 463โ€“629. CRC Press, Boca Raton, 1996. A CRChandbook published in cooperation with IEEE press.

[10] S.L. Hahn. Hilbert transforms in signal processing. Artech House signal processinglibrary. Artech House, Boston, London, 1996.

[11] W.R. Hamilton. Lectures on Quaternions. Hodges and Smith, Dublin, 1853. Avail-able online at Cornell University Library: http://historical.library.cornell.edu/math/.

[12] A.J. Hanson. Visualizing Quaternions. The Morgan Kaufmann Series in Interactive3D Technology. Elsevier/Morgan Kaufmann, San Francisco, 2006.

[13] J.B. Kuipers. Quaternions and Rotation Sequences. Princeton University Press,Princeton, New Jersey, 1999.

[14] N. Le Bihan and S.J. Sangwine. About the extension of the 1D analytic signal toimproper complex valued signals. In Eighth International Conference on Mathemat-ics in Signal Processing, page 45, The Royal Agricultural College, Cirencester, UK,16โ€“18 December 2008.

[15] N. Le Bihan and S.J. Sangwine. The H-analytic signal. In Proceedings of EUSIPCO2008, 16th European Signal Processing Conference, page 5, Lausanne, Switzerland,25โ€“29 Aug. 2008. European Association for Signal Processing.

[16] J.M. Lilly and S.C. Olhede. Bivariate instantaneous frequency and bandwidth. IEEETransactions on Signal Processing, 58(2):591โ€“603, Feb. 2010.

[17] S.J. Sangwine and T.A. Ell. The discrete Fourier transform of a colour image. In J.M.Blackledge and M.J. Turner, editors, Image Processing II Mathematical Methods, Al-gorithms and Applications, pages 430โ€“441, Chichester, 2000. Horwood Publishing forInstitute of Mathematics and its Applications. Proceedings Second IMA Conferenceon Image Processing, De Montfort University, Leicester, UK, September 1998.

[18] S.J. Sangwine, T.A. Ell, and N. Le Bihan. Hypercomplex models and processing ofvector images. In C. Collet, J. Chanussot, and K. Chehdi, editors,Multivariate ImageProcessing, Digital Signal and Image Processing Series, chapter 13, pages 407โ€“436.ISTE Ltd, and John Wiley, London, and Hoboken, NJ, 2010.

[19] S.J. Sangwine and N. Le Bihan. Hypercomplex analytic signals: Extension of theanalytic signal concept to complex signals. In Proceedings of EUSIPCO 2007, 15th

Page 82: Quaternion and Clifford Fourier Transforms and Wavelets

56 N. Le Bihan and S.J. Sangwine

European Signal Processing Conference, pages 621โ€“4, Poznan, Poland, 3โ€“7 Sept.2007. European Association for Signal Processing.

[20] S.J. Sangwine and N. Le Bihan. Quaternion polar representation with a complexmodulus and complex argument inspired by the Cayleyโ€“Dickson form. Advances inApplied Clifford Algebras, 20(1):111โ€“120, Mar. 2010. Published online 22 August2008.

[21] J. Ville. Theorie et applications de la notion de signal analytique. Cables et Trans-mission, 2A:61โ€“74, 1948.

Nicolas Le BihanGIPSA-Lab/CNRS11 Rue des mathematiquesF-38402 Saint Martin dโ€™Heres, Francee-mail: [email protected]

Stephen J. SangwineSchool of Computer Science and Electronic EngineeringUniversity of EssexWivenhoe ParkColchester CO4 3SQ, UKe-mail: [email protected]

Page 83: Quaternion and Clifford Fourier Transforms and Wavelets

Quaternion and Cliffordโ€“Fourier Transforms and Wavelets

Trends in Mathematics, 57โ€“83cโƒ 2013 Springer Basel

4 Quaternionic Local Phase for Low-levelImage Processing Using Atomic Functions

E. Ulises Moya-Sanchez and E. Bayro-Corrochano

Abstract. In this work we address the topic of image processing using anatomic function (AF) in a representation of quaternionic algebra. Our ap-proach is based on the most important AF, the up(๐‘ฅ) function. The mainreason to use the atomic function up(๐‘ฅ) is that this function can expressanalytically multiple operations commonly used in image processing such aslow-pass filtering, derivatives, local phase, and multiscale and steering filters.Therefore, the modelling process in low level-processing becomes easy usingthis function. The quaternionic algebra can be used in image analysis becauselines (even), edges (odd) and the symmetry of some geometric objects in โ„2

are enhanced. The applications show an example of how up(๐‘ฅ) can be ap-plied in some basic operations in image processing and for quaternionic phasecomputation.

Mathematics Subject Classification (2010). Primary 11R52; secondary 65D18.

Keywords. Quaternionic phase.

1. Introduction

The visual system is the most advanced of our senses. Therefore, it is easy tounderstand that the processing of images plays an important role in human per-ception and computer vision [3, 9]. In this chapter we address the topic of imageprocessing using geometric algebra (GA) for computer vision applications in low-level and mid-level (geometric feature extraction and analysis) processing, whichbelong to the first layers of a bottom-up computer vision system.

Complex and hypercomplex numbers play an important role in signal pro-cessing [9, 5], especially in order to obtain local features such as the frequency andphase. In 1D signal analysis, it is usual to compute via the FFT a local magni-tude and phase using the analytic signal. The entire potential of the local phase

This work has been supported by CINVESTAV and CONACYT.

Page 84: Quaternion and Clifford Fourier Transforms and Wavelets

58 E.U. Moya-Sanchez and E. Bayro-Corrochano

information of the images is shown when constraints or invariants are required tobe found. In other words, we use the quaternionic (local) phase because the localphase can be used to link the low-level image processing with the upper layers.The phase information is invariant to illumination changes and can be used todetect low-level geometric characteristics of lines or edges [9, 3, 13]. The phasecan also be used to measure the local decomposition of the image according to itssymmetries [6, 9].

This work has two basic goals: to present a new approach based on an atomicfunction (AF) up(๐‘ฅ) in a representation of geometric algebra (GA) and to applythe phase information to reduce the gap between low-level processing and imageanalysis. Our approach is based on the most important AF, the up(๐‘ฅ) function[12], quaternionic algebra, and multiscale and steering filters. The up(๐‘ฅ) functionhas good locality properties (compact support), the derivative of any order canbe expressed easily, the up(๐‘ฅ) and dup(๐‘ฅ) can mimic the simple cells of the mam-malian visual processing system [14], and the approximation to other functions(polynomial) is relatively simple [12]. As we show in this work, the atomic func-tion up(๐‘ฅ) can be used as a building block to build multiple operations commonlyused in image processing, such as low-pass filtering, ๐‘›th-order derivatives, localphase, etc.

The applications presented show an example of how the AF can be applied toquaternionic phase analysis. It is based on line and edge detection and symmetrymeasurement using the phase. As a result, we can reduce the gap between thelow-level processing and the computer vision applications without abandoning thegeometric algebra framework.

2. Atomic Functions

The atomic functions were first developed in the 1970s, jointly by V.L. and V.A.Rvachev. By definition, the AF are compactly supported, infinitely differentiablesolutions of differential functional equations (see (2.1)) with a shifted argument[12], that is

๐ฟ๐‘“(๐‘ฅ) = ๐œ†

๐‘€โˆ‘๐‘˜=1

๐‘(๐‘˜)๐‘“(๐‘Ž๐‘ฅโˆ’ ๐‘(๐‘˜)), โˆฃ๐‘Žโˆฃ > 1, ๐‘, ๐‘, ๐œ† โˆˆ ๐‘, (2.1)

where ๐ฟ = d๐‘›

d๐‘ฅ๐‘›+๐‘Ž1

d๐‘›โˆ’1

d๐‘ฅ๐‘›โˆ’1 + โ‹… โ‹… โ‹…+๐‘Ž๐‘› is a linear differential operator with constant

coefficients. In the AF class, the function up(๐‘ฅ) is the simplest and, at the sametime, the most useful primitive function to generate other kinds of AFs [12].

2.1. Mother Atomic Function up(๐’™)

In general, the atomic function up(๐‘ฅ) is generated by infinite convolutions of rect-angular impulses. The function up(๐‘ฅ) has the following representation in terms of

Page 85: Quaternion and Clifford Fourier Transforms and Wavelets

4. Quaternionic Local Phase 59

150 100 50 0 50 100 1500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

space (x)150 100 50 0 50 100 150

0

0.2

0.4

0.6

0.8

1

frequency ( )

Figure 1. Left: atomic function up(๐‘ฅ); right: Fourier transform up(๐œˆ).

the Fourier transform [12, 8]:

up(๐‘ฅ) =1

2๐œ‹

โˆซ โˆž

โˆ’โˆž

โˆžโˆ๐‘˜=1

sin(๐œˆ2โˆ’๐‘˜)๐œˆ2โˆ’๐‘˜

๐‘’๐’Š๐œˆ๐‘ฅd๐œˆ. (2.2)

=1

2๐œ‹

โˆซ โˆž

โˆ’โˆžup(๐œˆ)๐‘’๐’Š๐œˆ๐‘ฅd๐œˆ (2.3)

Figure 1 shows the up(๐‘ฅ) and its Fourier transform up(๐œˆ).

The AF windows were compared with classic windows by means of parameterssuch as the equivalent noise bandwidth, the 50% overlapping region correlation, theparasitic modulation amplitude, the maximum conversion losses (in decibels), themaximum side lobe level (in decibels), the asymptotic decay rate of the side lobes(in decibels per octave), the window width at the six- decibel level, the coherentgain, etc. All atomic windows exceed classic ones in terms of the asymptotic decayrate [12].

However the main reasons that we found to use the AF up(๐‘ฅ) instead ofother kernels such as Gauss, Gabor, and log-Gabor is that many operations com-monly used in image processing can be expressed analytically, in contrast usingthe Gauss or the log-Gabor this could be impossible. Additionally the followinguseful properties of the AF have been reported in [12, 10]

โˆ™ There are explicit equations for the values of the moments and Fourier trans-form (see (2.3)). The even moments of up(๐‘ฅ) are

๐‘Ž๐‘› =

1โˆซโˆ’1

๐‘ฅ๐‘› up(๐‘ฅ)d๐‘ฅ (2.4)

๐‘Ž2๐‘› =(2๐‘›)!

22๐‘› โˆ’ 1

๐‘›โˆ‘๐‘˜=1

๐‘Ž2๐‘›โˆ’2๐‘˜

(2๐‘›โˆ’ 2๐‘˜)!(2๐‘˜ + 1)!(2.5)

Page 86: Quaternion and Clifford Fourier Transforms and Wavelets

60 E.U. Moya-Sanchez and E. Bayro-Corrochano

where ๐‘Ž0 = 1 and ๐‘Ž2๐‘›+1 = 0. The odd-order moments are

๐‘๐‘› =

1โˆซ0

๐‘ฅ๐‘› up(๐‘ฅ)d๐‘ฅ (2.6)

๐‘2๐‘›+1 =1

(๐‘›+ 1)22๐‘›+1

๐‘›+1โˆ‘๐‘˜=1

๐‘Ž2๐‘›โˆ’2๐‘˜+2

(2๐‘˜

2๐‘›+ 2๐‘˜

)(2.7)

where ๐‘2๐‘› = ๐‘Ž2๐‘›. A similar relation for Gauss or Log-Gabor does not exist.โˆ™ The up(๐‘ฅ) function is a compactly supported function in the spatial do-main. Therefore, we can obtain good local characteristics. In addition tocompactly supported functions and integrable functions, functions that havea sufficiently rapid decay at infinity can also be convolved. The Gauss andLog-Gabor functions do not have such compact support.

โˆ™ Translations with smaller steps yield polynomials (๐‘ฅ๐‘›) of any degree, i.e.,โˆžโˆ‘

๐‘˜=โˆ’โˆž๐‘๐‘˜ up(๐‘ฅโˆ’ (๐‘˜2๐‘›)) โ‰ก ๐‘ฅ๐‘› ๐‘๐‘˜, ๐‘ฅ โˆˆ โ„. (2.8)

โˆ™ Since derivatives of any order can be represented in terms of simple shifts,we can easily represent any derivative operator or ๐‘›th-order derivative:

d(๐‘›) up(๐‘ฅ) = 2๐‘›(๐‘›+1)/22๐‘›โˆ‘๐‘˜=1

๐›ฟ๐‘˜ up(2๐‘›๐‘ฅ+ 2๐‘› + 1โˆ’ 2๐‘˜), (2.9)

where ๐›ฟ2๐‘˜ = โˆ’๐›ฟ๐‘˜, ๐›ฟ2๐‘˜โˆ’1 = ๐›ฟ๐‘˜, ๐›ฟ2๐‘˜ = 1.โˆ™ The AFs are infinitely differentiable (๐ถโˆž). As a result, the AFs and theirFourier transforms are rapidly decreasing functions. (Their Fourier trans-forms decrease on the real axis faster than any power function.)

A natural extension of the up(๐‘ฅ) function to the case of many variables is basedon the usual tensor product of 1D up(๐‘ฅ) [10]. As a result, we have

up(๐‘ฅ, ๐‘ฆ) = up(๐‘ฅ) up(๐‘ฆ). (2.10)

In Figure 2, we show a 2D atomic function in the spatial and frequency domains.

2.2. The dup(๐’™) Function

There are some mask operators, including the Sobel, Prewitt, and Kirsh, that areused to extract edges from images. A common drawback of these operators is thatit is impossible to ensure that they adapt to the intrinsic signal parameters over awide range of the working band, i.e., they are truncated and discrete versions of adifferential operator. [8]. This means that adaptation of the differential operator tothe behavior of the input signal by broadening or narrowing its band is desirable,in order to ensure a maximum signal-to-noise ratio [8].

This problem reduces to the synthesis of infinitely differentiable finite func-tions with a small wide bandwidth that are used for constructing the weightingwindows [8]. One of the most effective solutions is obtained with the help of the

Page 87: Quaternion and Clifford Fourier Transforms and Wavelets

4. Quaternionic Local Phase 61

Figure 2. Top: Two views of up(๐‘ฅ, ๐‘ฆ). Bottom: Fourier transform up(๐œˆ, ๐œ).

atomic functions [8]. The AF can be used in two ways: construction of a windowin the frequency region to obtain the required improvement in properties of thepulse characteristic; or direct synthesis based on (2.1) [8]. Therefore, the functionup(๐‘ฅ) satisfies (2.1) as follows:

dup(๐‘ฅ) = 2 up(2๐‘ฅ+ 1)โˆ’ 2 up(2๐‘ฅโˆ’ 1) (2.11)

Figure 3 shows the dup(๐‘ฅ) function and its Fourier transform ๐‘‘๐‘ข๐‘(๐œˆ). If we computethe Fourier transform of (2.11), we obtain

๐’Š๐œˆ๐น [up(2๐‘ฅ)] =(๐‘’๐’Š๐œˆ โˆ’ ๐‘’โˆ’๐’Š๐œˆ

)๐น [up(2๐‘ฅ)]) (2.12)

๐น (dup(๐‘ฅ)) = 2๐’Š sin(๐œˆ)๐น (up(2๐‘ฅ)) (2.13)

By differentiating (2.1) term by term, we obtain [8]

d(๐‘›) up(๐‘ฅ) = 2๐‘›(๐‘›+1)/22๐‘›โˆ‘๐‘˜=1

๐›ฟ๐‘˜ up(2๐‘›๐‘ฅ+ 2๐‘› + 1โˆ’ 2๐‘˜), (2.14)

where ๐›ฟ2๐‘˜ = โˆ’๐›ฟ๐‘˜, ๐›ฟ2๐‘˜โˆ’1 = ๐›ฟ๐‘˜, and ๐›ฟ2๐‘˜ = 1. The function dup(๐‘ฅ) provides a goodwindow in the spatial frequency regions because the side lobe has been completely

Page 88: Quaternion and Clifford Fourier Transforms and Wavelets

62 E.U. Moya-Sanchez and E. Bayro-Corrochano

150 100 50 0 50 100 150

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

Space (x)150 100 50 0 50 100 150

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

Frequency ( )

Figure 3. Left: derivative of atomic function dup(๐‘ฅ); Right: Fourier

transform dup(๐œˆ).

eliminated [8]. Similarly to (2.10), we can get a 2D expression of each derivative:

dup(๐‘ฅ, ๐‘ฆ)๐‘ฅ = dup(๐‘ฅ) up(๐‘ฆ) (2.15)

dup(๐‘ฅ, ๐‘ฆ)๐‘ฆ = up(๐‘ฅ) dup(๐‘ฆ) (2.16)

dup(๐‘ฅ, ๐‘ฆ)๐‘ฅ,๐‘ฆ = dup(๐‘ฅ) dup(๐‘ฆ) (2.17)

Figure 4 shows two graphics of dup(๐‘ฅ, ๐‘ฆ)๐‘ฆ, dup(๐‘ฅ, ๐‘ฆ)๐‘ฅ,๐‘ฆ in the spatial domain.

Figure 4. Left: dup(๐‘ฅ, ๐‘ฆ)๐‘ฅ,๐‘ฆ; right: dup(๐‘ฅ, ๐‘ฆ)๐‘ฆ.

3. Why the Use of the Atomic Function?

In this section we justify our introduction of the atomic function up(๐‘ฅ) as a kernel.In this regard, we discuss the role of the Gauss, LogGauss and the up(๐‘ฅ) kernelsin low-level image processing. First, we analyse their characteristics from a math-ematical perspective and then we carry out an experimental test to show theirstrengths in the processing of real images. We have to stress that we are interestedin the application of the up(๐‘ฅ) kernel not just for filtering in scale space. This

Page 89: Quaternion and Clifford Fourier Transforms and Wavelets

4. Quaternionic Local Phase 63

up(๐‘ฅ) kernel is promising because it has a range of multiple possible applicationswhich is wider than the possible applications of the Gauss or LogGauss kernels.

3.1. Dyadic Shifts and the Riesz Transform

As was explained in Section 2, atomic functions are compactly supported, in-finitely differentiable solutions of differential equations with a shifted argument.Consequently an atomic function can be seen as an appropriate building block oflinear shift invariant (LSI) operators to implement complex operators for imageprocessing. In contrast the Gauss and LogGauss functions require derivatives andconvolutions with a function of series of impulses for building complex operators.We believe that atomic functions are promising to develop operators based onlinear combination of shifted atomic functions. Section 2.2 illustrates the differ-entiator atomic function dup(๐‘ฅ). In 2002 Petermichl [16] showed that the Hilberttransform lies in the closed convex hull of dyadic singular operators, thus theHilbert transform can be represented as an average of dyadic shifts. Petermichl etal. [17] show that the same is true for โ„๐‘›, therefore the Riesz transforms can alsobe obtained as the results of averaging of dyadic shifts. Thus we claim that theRiesz transforms can be obtained by averaging dyadic shifts of atomic functions.

3.2. Monogenic Signals and the Atomic Function

The monogenic signal was introduced by Felsberg, Bulow, and Sommer [7]. Weoutline briefly the concept of the monogenic signal and then explain the use ofthe atomic-function based monogenic signal. If we embed โ„3 into a subspace of โ„spanned by just {1, ๐’Š, ๐’‹} according to

๐‘ž = (๐’Š, ๐’‹, 1)๐’™ = ๐‘ฅ3 + ๐‘ฅ1๐’Š+ ๐‘ฅ2๐’‹, (3.1)

and further embed the vector field ๐’ˆ as follows:

๐‘”โ„ = (โˆ’๐’Š,โˆ’๐’‹, 1)๐’ˆ = ๐‘”3 โˆ’ ๐‘”1๐’Šโˆ’ ๐‘”2๐’‹ (3.2)

then โˆ‡ร— ๐‘”(๐’™) = 0 and โˆ‡ โ‹… ๐‘”(๐’™) = โŸจโˆ‡, ๐‘”(๐’™)โŸฉ = 0 are equivalent to the generalizedCauchyโ€“Riemann equations from Clifford analysis [4, 15]. All functions that fulfillthese equations are known as ๐‘š๐‘œ๐‘›๐‘œ๐‘”๐‘’๐‘›๐‘–๐‘ functions. Using the same embedding,the monogenic signal can be defined in the frequency domain as follows:

๐น๐‘€ (๐‘ข) = ๐บ3(๐‘ข1, ๐‘ข2, 0)โˆ’ ๐’Š๐บ1(๐‘ข1, ๐‘ข2, 0)โˆ’ ๐’‹๐บ2(๐‘ข1, ๐‘ข2, 0)

= ๐น (๐’–)โˆ’ (๐’Š, ๐’‹)๐‘ญ๐‘…(๐’–) =โˆฃ๐’–โˆฃ+ (1,๐’Œ)๐’–

โˆฃ๐’–โˆฃ ๐น (๐’–), (3.3)

where the inverse Fourier transform of ๐น๐‘€ (๐‘ข) is given by

๐‘“๐‘€ (๐’™) = ๐‘“(๐’™)โˆ’ (๐’Š, ๐’‹)๐’‡๐‘…(๐’™) = ๐‘“(๐’™) + โ„Ž๐‘… โ˜… ๐‘“(๐’™), (3.4)

Page 90: Quaternion and Clifford Fourier Transforms and Wavelets

64 E.U. Moya-Sanchez and E. Bayro-Corrochano

where ๐’‡๐‘…(๐’™) stands for the Riesz transform obtained by taking the inverse trans-form of ๐‘ญ๐‘…(๐’–) as follows:

๐‘ญ๐‘…(๐’–) =๐’Š๐’–

โˆฃ๐’–โˆฃ๐น (๐’–) = ๐‘ฏ๐‘…(๐’–)๐น (๐’–)โ†โ†’ ๐’‡๐‘…(๐’™) = โˆ’๐’™

2๐œ‹ โˆฃ๐’™โˆฃ2 โ˜… ๐‘“(๐’™)

= โ„Ž๐‘…(๐’™) โ˜… ๐‘“(๐’™), (3.5)

where โ˜… stands for the convolution operation. Note that here the Riesz transformis the generalization of the 1D Hilbert transform. Using the fundamental solutionof the 3D Laplace equation restricted to the open half-space ๐‘ง > 0 with boundarycondition, the solution is defined as

๐‘“๐‘€ (๐‘ฅ, ๐‘ฆ, ๐‘ง) = โ„Ž๐‘ƒ โ˜… ๐‘“(๐‘ฅ, ๐‘ฆ, ๐‘ง) + โ„Ž๐‘ƒ โ˜… โ„Ž๐‘… โ˜… ๐‘“(๐‘ฅ, ๐‘ฆ, ๐‘ง)

= โ„Ž๐‘ƒ โ˜… (1 + โ„Ž๐‘…โ˜…)๐‘“(๐‘ฅ, ๐‘ฆ, ๐‘ง), (3.6)

where โ„Ž๐‘ƒ stands for the 2D Poisson kernel. Setting in ๐‘“๐‘€ (๐‘ฅ, ๐‘ฆ, ๐‘ง) the variable ๐‘งequal to zero, we obtain the so-called monogenic signal. Some authors have used theGauss kernel instead of the Poisson kernel, because the Poisson kernel establishesa linear scale space similar to the Gaussian scale space.

The atomic function is also an LSI operator; therefore, it appears that its useensures a computation in a linear scale space as well.

The monogenic functions are the solutions of the generalized Cauchyโ€“Rie-mann equations or Laplace-type equations. The atomic function can be used tocompute compactly supported solutions of functional differential equations, forexample, (2.1). Conditions under which the type of equations (2.1) have solu-tions with compact support and an explicit form were obtained by Ravachev [12].Compactly supported solutions of equations of the type (2.1) are called atomicfunctions .

Now, for the case of 2D signal processing, we can apply the wavelet steerabil-ity and the Riesz transform. In this regard we will utilize the quaternion waveletatomic function, which will be discussed in more depth below. For the scale spacefiltering, authors use the Gauss or Poisson kernels for the Riesz transformation[6, 7]. It is known that the Poisson kernel is the fundamental solution of the 3DLaplace equation, however there are authors who use instead the Poisson, Gaussor LogGauss function. Felsberg [6] showed that the spatial extent of the Poissonkernel is greater than that of the Gaussian kernel. In addition the uncertainty ofthe Poisson kernel for 1D signals is slightly worse than that of the Gaussian kernel(by a factor of

โˆš2). Nowadays many authors are now using the LogGauss kernel

for implementing monogenic signals, because it has better properties than boththe Gauss and Poisson kernels. Thus, we can infer that, in contrast, the atomicfunction as a spatially-compact kernel guarantees an analytic and closed solutionof Laplace type equations. In addition, as we said above, the Riesz transformscan be obtained by averaging dyadic operators, thus the use of a compact atomic

Page 91: Quaternion and Clifford Fourier Transforms and Wavelets

4. Quaternionic Local Phase 65

function avoids increased truncation errors. However, by the case of the noncom-pact Poisson, Gauss and LogGauss kernels, in practice, their larger spatial extentsrequire either larger filter masks otherwise they cause increased truncation errors.

4. Quaternion Algebra โ„

The even subalgebra ๐’ข+3,0,0 (bivector basis) is isomorphic to the quaternion alge-

bra โ„, which is an associative, non-commutative, four-dimensional algebra thatconsists of one real element and three imaginary elements.

๐‘ž = ๐‘Ž+ ๐‘๐’Š+ ๐‘๐’‹ + ๐‘‘๐’Œ, ๐‘Ž, ๐‘, ๐‘, ๐‘‘ โˆˆ โ„ (4.1)

The units ๐’Š, ๐’‹ obey the relations ๐’Š2 = ๐’‹2 = โˆ’1, ๐’Š๐’‹ = ๐’Œ. โ„ is geometrically inspired,and the imaginary components can be described in terms of the basis of โ„3 space,๐’Šโ†’ ๐’†23, ๐’‹ โ†’ ๐’†12,๐’Œโ†’ ๐’†31. Another important property of โ„ is the phase concept.A polar representation of ๐‘ž is

๐‘ž = โˆฃ๐‘žโˆฃ ๐‘’๐’Š๐œ™๐‘’๐’Œ๐œ“๐‘’๐’‹๐œƒ, (4.2)

where โˆฃ๐‘žโˆฃ = โˆš๐‘ž๐‘ž where ๐‘ž is a conjugate of ๐‘ž = ๐‘Ž โˆ’ ๐‘๐’Š โˆ’ ๐‘๐’‹ โˆ’ ๐‘‘๐’Œ and the angles

(๐œ™, ๐œƒ, ๐œ“) represent the three quaternionic phases [5].

4.1. Quaternionic Atomic Function qup(๐’™, ๐’š)

Since a 2D signal can be split into even (e) and odd (o) parts [5],

๐‘“(๐‘ฅ, ๐‘ฆ) = ๐‘“ee(๐‘ฅ, ๐‘ฆ) + ๐‘“oe(๐‘ฅ, ๐‘ฆ) + ๐‘“eo(๐‘ฅ, ๐‘ฆ) + ๐‘“oo(๐‘ฅ, ๐‘ฆ), (4.3)

we can separate the four components of up(๐‘ฅ, ๐‘ฆ) and represent it as a quaternionas follows [13, 14]:

qup(๐‘ฅ, ๐‘ฆ) = up(๐‘ฅ, ๐‘ฆ)[cos(๐‘ค๐‘ฅ) cos(๐‘ค๐‘ฆ)

+ ๐’Š sin(๐‘ค๐‘ฅ) cos(๐‘ค๐‘ฆ) + ๐’‹ cos(๐‘ค๐‘ฅ) sin(๐‘ค๐‘ฆ) + ๐’Œ sin(๐‘ค๐‘ฅ) sin(๐‘ค๐‘ฆ)]

= qupee(๐‘ฅ, ๐‘ฆ) + ๐’Š qupoe(๐‘ฅ, ๐‘ฆ) + ๐’‹ qupeo(๐‘ฅ, ๐‘ฆ) + ๐’Œ qupoo(๐‘ฅ, ๐‘ฆ). (4.4)

Figure 5 shows the quaternion atomic function qup(๐‘ฅ, ๐‘ฆ) in the spatial domain withits four components: the real part qupee(๐‘ฅ, ๐‘ฆ) and the imaginary parts qupeo(๐‘ฅ, ๐‘ฆ),qupoe(๐‘ฅ, ๐‘ฆ), and qupoo(๐‘ฅ, ๐‘ฆ). We can see even and odd symmetries in the horizon-tal, vertical, and diagonal axes.

Figure 5. Atomic function qup(๐‘ฅ, ๐‘ฆ). From left to right: qupee(๐‘ฅ, ๐‘ฆ),qupoe(๐‘ฅ, ๐‘ฆ), qupeo(๐‘ฅ, ๐‘ฆ), and qupoo(๐‘ฅ, ๐‘ฆ).

Page 92: Quaternion and Clifford Fourier Transforms and Wavelets

66 E.U. Moya-Sanchez and E. Bayro-Corrochano

4.2. Quaternionic Atomic Wavelet

The importance of wavelet transforms (real, complex, hypercomplex) has beendiscussed in many references [1, 18]. In this work, we use the quaternionic wavelettransform (๐‘„๐‘Š๐‘‡ ). The ๐‘„๐‘Š๐‘‡ can be seen as an extension of the complex wavelettransform (๐ถ๐‘Š๐‘‡ ) [1]. The multiresolution analysis applied in ๐‘…๐‘Š๐‘‡ and ๐ถ๐‘Š๐‘‡can be straightforwardly extended to the ๐‘„๐‘Š๐‘‡ [1].

Our approach is based on the quaternionic Fourier transform (๐‘„๐น๐‘‡ ), (4.5),which is also the basis for the quaternionic analytic function defined by Bulow [5].The kernel of the 2D ๐‘„๐น๐‘‡ is given by

๐‘’โˆ’๐’Š2๐œ‹๐œ๐‘ฅ๐‘“(๐‘ฅ, ๐‘ฆ)๐‘’โˆ’๐’‹2๐œ‹๐œˆ๐‘ฆ, (4.5)

where the real part is cos(2๐œ‹๐œˆ๐‘ฅ) cos(2๐œ‹๐œ๐‘ฆ); the imaginary parts (๐’Š, ๐’‹,๐’Œ) are its par-tial Hilbert transform cos(2๐œ‹๐œˆ๐‘ฅ) sin(2๐œ‹๐œ๐‘ฆ), sin(2๐œ‹๐œˆ๐‘ฅ) cos(2๐œ‹๐œ๐‘ฆ) (horizontal andvertical); and total Hilbert transform (diagonal) sin(2๐œ‹๐œˆ๐‘ฅ) sin(2๐œ‹๐œ๐‘ฆ). Using the๐‘„๐น๐‘‡ basis, we can obtain the 2D phase information that satisfies the definitionof the quaternionic analytic signal. To compute the multiscale approach, we use a2D separable implementation. We independently apply two sets of โ„Ž and ๐‘” waveletfilters.

โ„Ž = exp

(๐’Š๐‘1๐‘ข1๐‘ฅ

๐œŽ1

)up(๐‘ฅ, ๐‘ฆ, ๐œŽ1) exp

(๐’‹๐‘ 1๐œ”๐‘ฃ1๐‘ฆ

๐œŽ1

)= โ„Žee + ๐’Šโ„Žoe + ๐’‹โ„Žeo + ๐’Œโ„Žoo (4.6)

๐‘” = exp

(๐’Š๐‘2๐‘ค2๐‘ฅ

๐œŽ2

)up(๐‘ฅ, ๐‘ฆ, ๐œŽ1) exp

(๐’‹๐‘ 2๐œ”๐‘ฃ2๐‘ฆ

๐œŽ2

)= ๐‘”ee + ๐’Š๐‘”oe + ๐’‹๐‘”eo + ๐’Œ๐‘”oo, (4.7)

where the extra ๐œ parameter in the up function stands for the filter width. Theprocedure for quaternionic wavelet multiresolution analysis depicted partially inFigure 6 is as follows [1]:

1. Convolve the image (2D signal) at level ๐‘› with the scale and wave filtersโ„Ž and ๐‘” along the rows of the 2D signal. The latter filters are the discreteversions of those filters given in (4.6) and (4.7).

2. The โ„Ž and ๐‘” filters are convolved with the columns of the previous responsesof the filters โ„Ž and ๐‘”.

3. Subsample the responses of these filters by a factor of 2 (โ†‘ 2).4. The real part of the approximation at level ๐‘› + 1 is taken as input at the

next level. This process continues through all levels, repeating the steps juststated.

As can be seen in Figure 6, the low level of the pyramid is the highest level ofresolution, and as you move up, the resolution decreases.

Page 93: Quaternion and Clifford Fourier Transforms and Wavelets

4. Quaternionic Local Phase 67

Image

Level 1

h1

g1

Rows

h1

g1

Columns

h1

g1

2

22

2

2

2

Approximation

Horizontal

Vertical

Diagonal2=subsampling

Image2

Level 2

h2

g2

Rows

h2

g2

Colums

h2

g2

2

22

2

2

2

Approximation

Horizontal

Vertical

Diagonal2=subsampling

Figure 6. Multiresolution approach.

4.3. Steerable Quaternionic Filter

Due to our approach not being invariant to rotations [6], we require a filter bankin order to get different line or edge orientations. Figure 7 shows different orien-tation filters and real and imaginary parts. We steer the mother atomic functionwavelet through a multiresolution pyramid in order to detect quaternionic phasechanges, which can be used for the feature detection of lines, edges, centroids, andorientation in geometric structures.

5. Quaternionic Local Phase Information

In this chapter, we refer to the phase information as the local phase in order toseparate the structure or geometric information and the amplitude in a certainpart of the signal. Moreover, the phase information permits us to obtain invariantor equivariant1 response. For instance, it has been shown that the phase has aninvariant response to changes in image brightness and the phase can be used tomeasure the symmetry or asymmetry of objects [11, 2, 9]. These invariant andequivariant responses are the key part to link the low-level processing with theimage analysis and the upper layers in computer vision applications.

The local phase means the computation of the phase at a certain positionin a real signal. In 1D signals, the analytic signal based on the Hilbert transform(๐‘“๐‘ฏ(๐‘ฅ)) [5] is given by

๐‘“๐ด(๐‘“(๐‘ฅ)) = ๐‘“(๐‘ฅ) + ๐’Š๐‘“๐‘ฏ(๐‘ฅ), (5.1)

๐‘“๐ด(๐‘“(๐‘ฅ)) = โˆฃ๐ดโˆฃ ๐‘’๐’Š๐œƒ, (5.2)

where โˆฃ๐ดโˆฃ =โˆš

๐‘“(๐‘ฅ)2 + ๐‘“๐‘ฏ(๐‘ฅ)2 and ๐œƒ = arctan

(๐‘“(๐‘ฅ)๐‘“๐‘ฏ(๐‘ฅ)

)permits us to extract the

magnitude and phase independently. In 2D signals, the Hilbert transform is notenough to compute the magnitude and phase independently in any direction [6]. Inorder to solve this, the quaternionic analytic (see (5.3)) signal and the monogenic

1Equivariance: monotonic dependency of value or parameter under some transformation.

Page 94: Quaternion and Clifford Fourier Transforms and Wavelets

68 E.U. Moya-Sanchez and E. Bayro-Corrochano

Figure 7. From left to right: qup(15โˆ˜), qup(40โˆ˜), qup(90โˆ˜), qup(140โˆ˜),and qup(155โˆ˜)

signal have been proposed by Bulow [5] and Felsberg [6], respectively. Until now,we have used an approximation of the quaternionic analytic signal based on thebasis of ๐‘„๐น๐‘‡ to extract some oriented axis symmetries.

Figure 8 contains, at the top, an image with lines and edges, at the centrean image profile, and at the bottom the profiles of the three quaternionic phases.In the phase profiles, we can distinguish between a line (even) and an edge (odd)using the phase (๐œƒ). These results are similar to the results reported by Granlund[9] using only a complex phase, because they used an image that changes in onedirection.

5.1. Quaternionic Analytic Signal

The quaternionic analytic signal in the spatial domain is defined as [5]:

๐‘“ ๐‘ž๐ด(๐‘ฅ, ๐‘ฆ) = ๐‘“(๐‘ฅ, ๐‘ฆ) + ๐’Š๐‘“๐‘ฏ๐’Š(๐‘ฅ, ๐‘ฆ) + ๐’‹๐‘“๐‘ฏ๐’‹(๐‘ฅ, ๐‘ฆ) + ๐’Œ๐‘“๐‘ฏ๐’Œ(๐‘ฅ, ๐‘ฆ), (5.3)

where ๐‘“๐‘ฏ๐’Š(๐‘ฅ, ๐‘ฆ) = ๐‘“(๐‘ฅ, ๐‘ฆ) โˆ— (๐›ฟ(๐‘ฆ)/๐œ‹๐‘ฅ) and ๐‘“๐‘ฏ๐’‹(๐‘ฅ, ๐‘ฆ) = ๐‘“(๐‘ฅ, ๐‘ฆ) โˆ— (๐›ฟ(๐‘ฅ)/๐œ‹๐‘ฆ) are thepartial Hilbert transforms and ๐‘“๐‘ฏ๐’Œ(๐‘ฅ, ๐‘ฆ) = ๐‘“(๐‘ฅ, ๐‘ฆ) โˆ— (๐›ฟ(๐‘ฅ, ๐‘ฆ)/๐œ‹2๐‘ฅ๐‘ฆ

)is the total

Hilbert transform. Bulow has shown that the ๐‘„๐น๐‘‡ kernel is expressed in terms ofthe Hilbert transforms. The phases can be computed easily using a 3D rotation ma-trix โ„ณ, which can be factored into three rotations, ๐‘… = ๐‘…๐‘ฅ(2๐œ™), ๐‘…๐‘ง(2๐œ“), ๐‘…๐‘ฆ(2๐œƒ),

Page 95: Quaternion and Clifford Fourier Transforms and Wavelets

4. Quaternionic Local Phase 69

0 20 40 60 80 100 120

20

40

60

80

100

120

0 20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100 120

1

0.5

0

0.5

1

1.5

Figure 8. Image (top left), image profile (top right), and three quater-nionic phases: profile, line, and edge (bottom).

in the coordinate axes [5], i.e.,

โ„ณ(๐‘ž) =โ„ณ(๐‘ž1)โ„ณ(๐‘ž2)โ„ณ(๐‘ž3) (5.4)

๐‘ž1 = ๐‘’๐’Š๐œ™, ๐‘ž2 = ๐‘’๐’‹๐œƒ, ๐‘ž3 = ๐‘’๐’Œ๐œ“ (5.5)

โ„ณ(๐‘ž) =

โŽ›โŽ๐‘Ž2 + ๐‘2 โˆ’ ๐‘2 โˆ’ ๐‘‘2 2(๐‘๐‘โˆ’ ๐‘Ž๐‘‘) 2(๐‘๐‘‘+ ๐‘Ž๐‘)2(๐‘๐‘+ ๐‘Ž๐‘‘) ๐‘Ž2 โˆ’ ๐‘2 + ๐‘2 โˆ’ ๐‘‘2 2(๐‘๐‘‘โˆ’ ๐‘Ž๐‘)2(๐‘๐‘‘โˆ’ ๐‘Ž๐‘) 2(๐‘๐‘‘+ ๐‘Ž๐‘) ๐‘Ž2 โˆ’ ๐‘2 โˆ’ ๐‘2 + ๐‘‘2

โŽžโŽ  (5.6)

๐‘… =

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

cos(2๐œ“) cos(2๐œƒ) โˆ’ sin(2๐œ“) cos(2๐œ“) sin(2๐œƒ)

cos(2๐œ™) sin(2๐œ“) cos(2๐œƒ)+ sin(2๐œ™) sin(2๐œƒ) cos(2๐œ™) cos(2๐œ“)

cos(2๐œ™) sin(2๐œ“) sin(2๐œƒ)โˆ’ sin(2๐œ™) cos(2๐œƒ)

sin(2๐œ™) sin(2๐œ“) cos(2๐œƒ)โˆ’ cos(2๐œ™) sin(2๐œƒ) sin(2๐œ™) cos(2๐œ“)

sin(2๐œ™) sin(2๐œ“) sin(2๐œƒ)+ cos(2๐œ™) cos(2๐œƒ)

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ .

(5.7)

The quaternionic phases are expressed by the following rules:

๐œ“ = โˆ’1

2arcsin(2(๐‘๐‘โˆ’ ๐‘Ž๐‘‘)). (5.8)

Page 96: Quaternion and Clifford Fourier Transforms and Wavelets

70 E.U. Moya-Sanchez and E. Bayro-Corrochano

โˆ™ If ๐œ“ โˆˆ ]โˆ’๐œ‹4 ,

๐œ‹4

[, then ๐œ™ = 1

2 arg๐’Š (๐‘ž๐’ฏ๐’‹ (๐‘ž)) and ๐œƒ = 12 arg๐’‹ (๐’ฏ๐’Š (๐‘ž) ๐‘ž).

โˆ™ If ๐œ“ = ยฑ๐œ‹4 , then select either ๐œ™ = 0 and ๐œƒ = 1

2 arg๐’‹ (๐’ฏ๐’Œ (๐‘ž) ๐‘ž) or ๐œƒ = 0 and

๐œ™ = 12 arg๐’Š (๐‘ž๐’ฏ๐’Œ (๐‘ž)).

โˆ™ If ๐‘’๐’Š๐œ™๐‘’๐’Œ๐œ“๐‘’๐’‹๐œƒ = โˆ’๐‘ž and ๐œ™ โ‰ฅ 0, then ๐œ™โ†’ ๐œ™โˆ’ ๐œ‹.โˆ™ If ๐‘’๐’Š๐œ™๐‘’๐’Œ๐œ“๐‘’๐’‹๐œƒ = โˆ’๐‘ž and ๐œ™ < 0, then ๐œ™โ†’ ๐œ™+ ๐œ‹.

The phase ranges are (๐œ™, ๐œƒ, ๐œ“) โˆˆ [โˆ’๐œ‹, ๐œ‹[ร— [โˆ’๐œ‹2 ,

๐œ‹2

[ร— [โˆ’๐œ‹4 ,

๐œ‹4

]. The applications of

the quaternionic analytic signal in image processing have to be limited in a narrowband, and Bulow used a Gauss window with the ๐‘„๐น๐‘‡ kernel (which can be seenas Gabor) to approximate the quaternionic analytic function. In our work, insteadof a Gauss window, we use a compact support window, the up(๐‘ฅ, ๐‘ฆ) function.

5.2. Quaternionic Phase Analysis

There are many points of view to see the phase information. The local phase canbe used as a measure of the symmetry in the 2D signals of the object [11, 9].The symmetry is related to middle-level properties if it remains invariant undersome transformation. A symmetric analysis related to the phase was proposedby P. Kovesi, using the even (๐‘’๐‘›(๐‘ฅ)) and odd (๐‘œ๐‘›(๐‘ฅ)) responses of wavelets atscale ๐‘› [11]:

Sym(๐‘ฅ) =

โˆ‘๐‘›

โˆฃ๐‘’๐‘›(๐‘ฅ)โˆฃ โˆ’ โˆฃ๐‘œ๐‘›(๐‘ฅ)โˆฃโˆ‘๐‘›

๐ด๐‘›(๐‘ฅ)(5.9)

Asym(๐‘ฅ) =

โˆ‘๐‘›

โˆฃ๐‘œ๐‘›(๐‘ฅ)โˆฃ โˆ’ โˆฃ๐‘’๐‘›(๐‘ฅ)โˆฃโˆ‘๐‘›

๐ด๐‘›(๐‘ฅ)(5.10)

where ๐ด๐‘›(๐‘ฅ) =โˆš

๐‘’๐‘›(๐‘ฅ)2 + ๐‘œ๐‘›(๐‘ฅ)2. Since the phase information has the capabilityto decode the geometrical information into even or odd symmetries (see Figure 8),we use the phase information to do a geometric analysis of the image. Note thatthe quaternionic phase analysis helps to reduce the gap between the low-level andthe middle-level processing.

5.3. Hilbert Transform Using AF

The Hilbert transform and the derivative are closely related, and the Hilbert trans-form can actually be computed using a derivative and some convolution proper-ties [19]:

๐‘“ โ˜… (๐‘” โ˜… โ„Ž) = (๐‘“ โ˜… ๐‘”) โ˜… โ„Ž (5.11)

โˆ‡ (๐‘“ โ˜… ๐‘”) = โˆ‡๐‘“ โ˜… ๐‘” = ๐‘“ โ˜…โˆ‡๐‘”, (5.12)

Page 97: Quaternion and Clifford Fourier Transforms and Wavelets

4. Quaternionic Local Phase 71

where

๐‘“(๐‘ฅ, ๐‘ฆ), ๐‘”(๐‘ฅ, ๐‘ฆ), โ„Ž(๐‘ฅ, ๐‘ฆ) โˆˆ โ„2 and โˆ‡ = ๐’†1โˆ‚

โˆ‚๐‘ฅ+ ๐’†2

โˆ‚

โˆ‚๐‘ฆ.

If ๐‘”(๐‘ฅ, ๐‘ฆ) = โˆ’(1/๐œ‹) log โˆฃ๐‘ฅโˆฃ log โˆฃ๐‘ฆโˆฃ 2, and if we use the convolution distribution prop-erties, we can express the Hilbert transform and the partial Hilbert transform (see(5.3)) as

๐‘“๐‘ฏ๐’Š(๐‘ฅ, ๐‘ฆ) =โˆ‚๐‘“(๐‘ฅ, ๐‘ฆ)

โˆ‚๐‘ฅโ˜…โˆ’ 1

๐œ‹log โˆฃ๐‘ฅโˆฃ (5.13)

๐‘“๐‘ฏ๐’‹ (๐‘ฅ, ๐‘ฆ) =โˆ‚๐‘“(๐‘ฅ, ๐‘ฆ)

โˆ‚๐‘ฆโ˜…โˆ’ 1

๐œ‹log โˆฃ๐‘ฆโˆฃ (5.14)

๐‘“๐‘ฏ๐’Œ(๐‘ฅ, ๐‘ฆ) =โˆ‚2๐‘“(๐‘ฅ, ๐‘ฆ)

โˆ‚๐‘ฅโˆ‚๐‘ฆโ˜…โˆ’ 1

๐œ‹2log โˆฃ๐‘ฅโˆฃ log โˆฃ๐‘ฆโˆฃ (5.15)

and we can use the convolution association property to get the equation of a certainpart of the signal in terms of dup(๐‘ฅ):

๐‘“๐‘ฏ๐’Š(๐‘ฅ, ๐‘ฆ) = ๐‘“(๐‘ฅ, ๐‘ฆ) โ˜…

(dup(๐‘ฅ, ๐‘ฆ)๐‘ฅ โ˜…โˆ’ 1

๐œ‹log โˆฃ๐‘ฅโˆฃ

)(5.16)

๐‘“๐‘ฏ๐’‹ (๐‘ฅ, ๐‘ฆ) = ๐‘“(๐‘ฅ, ๐‘ฆ) โ˜…

(dup(๐‘ฅ, ๐‘ฆ)๐‘ฆ โ˜…โˆ’ 1

๐œ‹log โˆฃ๐‘ฆโˆฃ

)(5.17)

๐‘“๐‘ฏ๐’Œ(๐‘ฅ, ๐‘ฆ) = ๐‘“(๐‘ฅ, ๐‘ฆ) โ˜…

(dup(๐‘ฅ, ๐‘ฆ)๐‘ฅ๐‘ฆ โ˜…โˆ’ 1

๐œ‹2log โˆฃ๐‘ฅโˆฃ log โˆฃ๐‘ฆโˆฃ

). (5.18)

Moreover, it has been shown by Petermichl et al. [17] that the Hilbert andRiesz transforms can be implemented with the average of dyadic shifts, and thedyadic shift operations appear naturally using the AF and its derivatives.

6. Applications

6.1. Convolution ๐‘ฐ โ˜… qup(๐’™, ๐’š)

Figure 9 shows the convolution of the qup (real and imaginary parts) filter on ashadow chessboard image. The real part corresponds to a low-pass filtering of theimage. In addition, we can see a selective detection of lines in the horizontal and

2log โˆฃ๐‘ฅโˆฃ is the fundamental solution of the Laplace equation.

Figure 9. Convolution of qup(๐‘ฅ, ๐‘ฆ) with chessboard image. From leftto right: original image, real part, ๐’Š-part, ๐’‹-part, and ๐’Œ-part.

Page 98: Quaternion and Clifford Fourier Transforms and Wavelets

72 E.U. Moya-Sanchez and E. Bayro-Corrochano

Figure 10. Convolution of qup(๐‘ฅ, ๐‘ฆ) with image (letter H). From leftto right: original image, real part, ๐’Š-part, ๐’‹-part, and ๐’Œ-part.

Figure 11. Convolution of qup(๐‘ฅ, ๐‘ฆ) with image (letter L). From leftto right: original image, real part, ๐’Š-part, ๐’‹-part, and ๐’Œ-part are shown.

vertical orientations, particularly in the ๐’Š-part and ๐’‹-part. On the other hand, the๐’Œ-part can be used to detect the corners as a diagonal response. We can see howthe response in the light part is more intensive than that in the shadowed part.We show in Figures 10 and 11 how the qup(๐‘ฅ, ๐‘ฆ) filters respond to other images.We can see a similar behaviour in Figure 9. We can also notice that the directconvolution of qup(๐‘ฅ, ๐‘ฆ) with the image is sensitive to the contrast.

6.2. Derivative of up(๐’™)

Figure 12 illustrates the convolution of the first derivative, dup(๐‘ฅ, ๐‘ฆ), and a shadowchessboard. The convolution with dup can be used as an oriented change detec-tor with a simple rotation. Similarly to Figure 9, the convolved image has a lowresponse in the shadow part.

Figure 12. Convolution of dup(๐‘ฅ, ๐‘ฆ) with the chess image. (a) Testimage; (b) result of the convolution of the image with dup(๐‘ฅ, ๐‘ฆ, 0โˆ˜); (c)dup(๐‘ฅ, ๐‘ฆ, 45โˆ˜); (d) dup(๐‘ฅ, ๐‘ฆ, 135โˆ˜).

Page 99: Quaternion and Clifford Fourier Transforms and Wavelets

4. Quaternionic Local Phase 73

6.3. Image Processing Using Monogenic Signals

We use these three kernels to implement monogenic signals whereby the apertureof the filters are varied at three scales of a multiresolution pyramid. The samereference frequency and the same aperture rate variation are used for the threemonogenic signals. In Figures 13, 14 and 15, you can appreciate at these scales thebetter consistency of the up(๐‘ฅ) kernel particularly to detect via the phase concept

(a) Upper row: Gauss, Hx and Hy frequency; lower row: energy, ๐œƒ, ๐œ“

(b) Upper row: LogGabor, Hx and Hy frequency; lower row: energy, ๐œƒ, ๐œ“

Figure 13. Monogenic signal and response at the first level of filtering(๐‘  = 1). (a) Gabor monogenic; (b) LogGabor monogenic signal.

Page 100: Quaternion and Clifford Fourier Transforms and Wavelets

74 E.U. Moya-Sanchez and E. Bayro-Corrochano

(c) Upper row: up, Hx and Hy frequency; lower row: energy, ๐œƒ, ๐œ“

Figure 13. Monogenic signal and response at the first level of filtering(๐‘  = 1). (c) up monogenic.

the corners and borders diminishing the expected blurring by a checkerboard im-age. We suspect that this an effect of the compactness in space of the up(๐‘ฅ) kernel,the Moire effects are milder especially if you observe the images at scales 2 and3, whereas in both the Gauss and LogGauss kernel-based monogenic phases thereare noticeable artifacts in the form of bubbles or circular spots. These are often aresult of Moire effects. In contrast the phases of the up(๐‘ฅ) based monogenic signalstill preserves the scales and edges of the checkerboard.

6.4. Quaternionic Local Phase

As we have mentioned before, the (local) phase information can be used to extractthe structure information (line and edges) independently of illumination changes,and we can measure the symmetry (or asymmetry) with the phase information asa middle-level property. The performance of qup to detect edges or lines using thequaternionic phases in different images is shown in this section.

In Figure 17, we present different geometric figures with lines that representthe profiles (top, centre, and bottom). Similarly to Figure 8, the profiles of theimages are shown as well as the quaternionic phase profile. This figure illustrateshow the three phases have a different symmetric or antisymmetric response on thetop, center, and bottom profile. These results motivate us to use the quaternionicphases as a measure of symmetry using the even or odd response of the quaternionicphases in a horizontal or vertical direction. In others words, the quaternionic phaseinformation decomposes the image into oriented edges or lines.

Page 101: Quaternion and Clifford Fourier Transforms and Wavelets

4. Quaternionic Local Phase 75

As an example of other possible applications of the phase information inimage analysis of geometric figures, we show Figure 18. The original image, themagnitude, and the three phases are shown. The first row of Figure 18 shows foursquares with a different illumination and area; one of the squares is rotated, andthis is the only square that can be seen in the ๐œ“ phase. In the second row, thefour squares have been rotated 15โˆ˜, and the ๐œ“ phase responds to the four squares,whereas in the third row, the four figures are rotated 45โˆ˜, and the ๐œ“ phase onlydetects three of the four squares. In this example, the ๐œ“ phase only responds tothe orientation of the square (a geometric transformation), independently of thesize, contrast, or position of the image.

The magnitude and the quaternionic phases for a circle with lines are shownin Figure 19. In this image, we tuned the filter parameters in order to obtain aresponse (positive and negative) to diagonal lines. Again, in this image, the shadowor the size of the lines in the image does not change the phase response. The blacklines correspond to a cone beam with a 45โˆ˜ orientation (ยฑ15โˆ˜) and the white linesare oriented 135โˆ˜ (ยฑ15โˆ˜).

In Figures 19 and 18, lines or geometric objects have been shown separately.Figure 20 illustrates an image with lines and geometric objects. In this case, we canuse the quaternionic phases to extract different oriented edges of geometric objectsor different oriented line textures. The ๐œƒ and ๐œ™ phases detect lines or edges in somevertical and horizontal directions, while the ๐œ“ phase detects the diagonal responseand the corners in squares or geometric figures. Even if the geometric objects haveinternal lines, different illuminations, or positions, the edges of each square can

(a) Upper row: Gauss, Hx and Hy frequency; lower row: energy, ๐œƒ, ๐œ“

Figure 14. Monogenic signal and response at the second level of fil-tering (๐‘  = 2). (a) Gabor filters.

Page 102: Quaternion and Clifford Fourier Transforms and Wavelets

76 E.U. Moya-Sanchez and E. Bayro-Corrochano

(b) Upper row: LogGabor, Hx and Hy frequency; lower row: energy, ๐œƒ, ๐œ“

(c) Upper row: up, Hx and Hy frequency; lower row: energy, ๐œƒ, ๐œ“

Figure 14. Monogenic signal and response at the second level of fil-tering (๐‘  = 2). (b) LogGabor and (c) up filters.

be detected in the ๐œ™ and ๐œƒ images. Furthermore, in the ๐œ™ phase, the horizontallines are highlighted, whereas the vertical lines do not appear. The ๐œƒ phases showa similar result, but in this case the vertical edges and lines are highlighted. In the๐œ“ phase, the vertical lines or edges are highlighted.

Page 103: Quaternion and Clifford Fourier Transforms and Wavelets

4. Quaternionic Local Phase 77

(a) Upper row: Gauss, Hx and Hy frequency; lower row: energy, ๐œƒ, ๐œ“

(b) Upper row: LogGabor, Hx and Hy frequency; lower row: energy, ๐œƒ, ๐œ“

Figure 15. Monogenic signal and response at the third level of filtering(๐‘  = 3). (a) Gabor and (b) LogGabor filters.

6.5. Phase Symmetry

As an example of many possible applications, we show the computation of themain axis in one orientation using the ๐œƒ phase. We use the information of Fig-ure 21 to determine a threshold. A reflection operation can be used to measurethe symmetry.

Page 104: Quaternion and Clifford Fourier Transforms and Wavelets

78 E.U. Moya-Sanchez and E. Bayro-Corrochano

(c) Upper row: up, Hx and Hy frequency; lower row: energy, ๐œƒ, ๐œ“

Figure 15. Monogenic signal and response at the third level of filtering(๐‘  = 3). (c) up filters.

Figure 16. From left to right: circle; edges.

6.6. Multiresolution and Steerable Filters: qup(๐’™, ๐’š)

In this section, we present multiscale and steerable filter results. Figure 22 shows acircle and its multiscale processing. In the left column, we see a multiscale filtering.In this figure, the ๐œ“ phase responds better to diagonal lines, and we can see coarseto fine details. In the right group of the figure, we can see the effect of differentorientations of our steerable filters.

7. Conclusions

In this work, we have presented image processing and analysis using an atomicfunction and the quaternionic phase concept. As we have shown, the atomic func-tion up(๐‘ฅ) has shown potential in image processing as a building block to build

Page 105: Quaternion and Clifford Fourier Transforms and Wavelets

4. Quaternionic Local Phase 79

100 200 300 400 500 600 7000.2

0

0.2

0.4

0.6

0.8

1

Top Center Bottom

20 40 60 80 100 1200

0.5

1

1.5

2

2.5

3

3.5Top Center Bottom

100 200 300 400 500 600 700

0

20 40 60 80 100 1200.3

0.2

0.1

0

0.1

0.2

0.3

0.4

0.5

100 200 300 400 500 600 700

1.5708

0

1.5708

20 40 60 80 100 1200.4

0.3

0.2

0.1

0

0.1

0.2

0.3

0.4

0.5

100 200 300 400 500 600 700

1.5708

0

1.5708

20 40 60 80 100 1200.3

0.2

0.1

0

0.1

0.2

0.3

0.4

Figure 17. Left: quaternionic phase profiles of a circle. Top, centreand bottom phase profiles are shown. Right: quaternionic phase profilesof edge images. Top, centre and bottom phase profiles are shown.

multiple operations that can be done analytically such as low-pass filtering, deriva-tives, local phase, and multiscale and steering filters. We have shown that thefunction qup(๐‘ฅ, ๐‘ฆ) is useful to detect lines or edges in a specific orientation usingthe quaternionic phase concept. Additionally, an oriented texture can be chosen

Page 106: Quaternion and Clifford Fourier Transforms and Wavelets

80 E.U. Moya-Sanchez and E. Bayro-Corrochano

Figure 18. From left to right: image, magnitude, and the quaternionicphases ๐œ™, ๐œƒ and ๐œ“. We can see how the ๐œ“ phase responds to the rotatedobject.

Figure 19. From left to right: image, magnitude, and the quaternionicphases. We can see how the ๐œ“ phase responds to the rotated object.

using the quaternionic phases. As an initial step, we have shown how to do the im-age analysis of geometric objects in โ„2 using the symmetry response of the phase.As in other applications of geometric algebra we can take advantage of the con-straints. Since the information from the three phases is independent of illuminationchanges, algorithms using the quaternionic atomic function can be less sensitivethan other methods based on the illumination changes. These results motivatedus to find other invariants such as rotation invariants using the Riesz transform.In future work, we expect to develop a complete computer vision approach basedon geometric algebra.

Page 107: Quaternion and Clifford Fourier Transforms and Wavelets

4. Quaternionic Local Phase 81

Figure 20. Image (left) and 2D quaternionic phases (left to right: ๐œ™,๐œƒ, ๐œ“). A texture based on lines can be detected or discriminated, andat the same time, the phase information can highlight the edges.

Figure 21. Circle image. The symmetry behaviour of the phase is shown.

References

[1] E. Bayro-Corrochano. The theory and use of the quaternion wavelet transform. Jour-nal of Mathematical Imaging and Vision, 24:19โ€“35, 2006.

[2] J. Bernd. Digital Image Processing. Springer-Verlag, New York, 1993.

[3] J. Bigun. Vision with Direction. Springer, 2006.

[4] F. Brackx, R. Delanghe, and F. Sommen. Clifford Analysis, volume 76. Pitman,Boston, 1982.

[5] T. Bulow. Hypercomplex Spectral Signal Representations for the Processing and Anal-ysis of Images. PhD thesis, University of Kiel, Germany, Institut fur Informatik undPraktische Mathematik, Aug. 1999.

[6] M. Felsberg. Low-Level Image Processing with the Structure Multivector. PhD thesis,Christian-Albrechts-Universitat, Institut fur Informatik und Praktische Mathematik,Kiel, 2002.

[7] M. Felsberg and G. Sommer. The monogenic signal. IEEE Transactions on SignalProcessing, 49(12):3136โ€“3144, Dec. 2001.

[8] A.S. Gorshkov, V.F. Kravchenko, and V.A. Rvachev. Estimation of the discrete de-rivative of a signal on the basis of atomic functions. Izmeritelnaya Tekhnika, 1(8):10,1992.

[9] G.H. Granlund and H. Knutsson. Signal Processing for Computer Vision. Kluwer,Dordrecht, 1995.

Page 108: Quaternion and Clifford Fourier Transforms and Wavelets

82 E.U. Moya-Sanchez and E. Bayro-Corrochano

(a)

(b)

Figure 22. Multiresolution and steerable filters. Columns left to right:image, magnitude, quaternionic phases ๐œ™, ๐œƒ, ๐œ“. (a) multiscale approach.(b) steering filters top to bottom 0โˆ˜, 45โˆ˜, 90โˆ˜ convolved with the image.

Page 109: Quaternion and Clifford Fourier Transforms and Wavelets

4. Quaternionic Local Phase 83

[10] V.M. Kolodyazhnya and V.A. Rvachov. Atomic functions: Generalization to themultivariable case and promising applications. Cybernetics and Systems Analysis,46(6), 2007.

[11] P. Kovesi. Invariant Measures of Image Features from Phase Information. PhD the-sis, University of Western Australia, Australia, 1996.

[12] V. Kravchenko, V. Ponomaryov, and H. Perez-Meana. Adaptive digital processing ofmultidimensional signals with applications. Moscow Fizmatlit, Moscow, 2010.

[13] E. Moya-Sanchez and E. Bayro-Corrochano. Quaternion atomic function waveletfor applications in image processing. In I. Bloch and R. Cesar, editors, Progress inPattern Recognition, Image Analysis, Computer Vision, and Applications, volume6419 of Lecture Notes in Computer Science, pages 346โ€“353. Springer, 2010.

[14] E. Moya-Sanchez and E. Vazquez-Santacruz. A geometric bio-inspired model forrecognition of low-level structures. In T. Honkela, W. Duch, M. Girolami, andS. Kaski, editors, Artificial Neural Networks and Machine Learning โ€“ ICANN 2011,volume 6792 of Lecture Notes in Computer Science, pages 429โ€“436. Springer, 2011.

[15] M.N. Nabighian. Toward a three-dimensional automatic interpretation of potentialfield data via generalized Hilbert transforms: Fundamental relations. Geophysics,49(6):780โ€“786, June 1982.

[16] S. Petermichl. Dyadic shifts and logarithmic estimate for Hankel operators withmatrix symbol. Comptes Rendus de lโ€™Academie des Sciences, 330(6):455โ€“460, 2000.

[17] S. Petermichl, S. Treil, and A. Volberg. Why are the Riesz transforms averages of thedyadic shifts? Publicacions matematiques, 46(Extra 1):209โ€“228, 2002. Proceedingsof the 6th International Conference on Harmonic Analysis and Partial DifferentialEquations, El Escorial (Madrid), 2002.

[18] I.W. Selesnick, R.G. Baraniuk, and N.G. Kingsbury. The dual-tree complex wavelettransform. IEEE Signal Processing Magazine, 22(6):123โ€“151, Nov. 2005.

[19] B. Svensson. A Multidimensional Filtering Framework with Applications to Lo-cal Structure Analysis and Image Enhancement. PhD thesis, Linkoping University,Linkooping, Sweden, 2008.

E. Ulises Moya-Sanchez and E. Bayro-CorrochanoCINVESTAVCampus Guadalajara, Av. del Bosque 1145Colonia El Bajio, CP 45019Zapopan, Jalisco, Mexicoe-mail: [email protected]

[email protected]

Page 110: Quaternion and Clifford Fourier Transforms and Wavelets

Quaternion and Cliffordโ€“Fourier Transforms and Wavelets

Trends in Mathematics, 85โ€“104cโƒ 2013 Springer Basel

5 Bochnerโ€™s Theorems in the Frameworkof Quaternion Analysis

S. Georgiev and J. Morais

Abstract. Let ๐œŽ(๐‘ฅ) be a nondecreasing function, such that ๐œŽ(โˆ’โˆž) = 0,๐œŽ(โˆž) = 1 and let us denote by โ„ฌ the class of functions which can be repre-sented by a Fourierโ€“Stieltjes integral ๐‘“(๐‘ก) =

โˆซโˆžโˆ’โˆž ๐‘’๐‘–๐‘ก๐‘ฅ๐‘‘๐œŽ(๐‘ฅ). The purpose of

this chapter is to give a characterization of the class โ„ฌ and to give a gener-alization of the classical theorem of Bochner in the framework of quaternionanalysis.

Mathematics Subject Classification (2010). Primary 30G35; secondary 42A38.

Keywords. Quaternion analysis, quaternion Fourier transform, quaternionFourierโ€“Stieltjes integral, Bochner theorem.

1. Introduction

In a recent paper [5], we discussed special properties of the asymptotic behaviourof the quaternion Fourier transform (QFT) and provided a straightforward gener-alization of the classical Bochnerโ€“Minlos theorem to the framework of quaternionanalysis. The main objective of the present chapter is to extend, using similar tech-niques, the theorem of Bochner on Fourier integral transforms of complex-valuedfunctions of positive type to functions with values in the Hamiltonian quater-nion algebra in which the exponential function is replaced by a (noncommutative)quaternion exponential product. The Fourierโ€“Stieltjes transform (FST) is a well-known generalization of the standard Fourier transform, and is frequently appliedin certain areas of theoretical and applied probability and stochastic processes con-texts. The present study aims to develop further numerical integration methodsfor solving partial differential equations in the quaternion analysis setting.

The chapter is organized as follows. Section 2 recalls the classical Bochnertheorem on the Fourier integral transforms of functions of positive type and col-lects some basic concepts in quaternion analysis. Section 3 defines and analyzesdifferent types of quaternion Fourierโ€“Stieltjes transforms (QFST) and establishes

Page 111: Quaternion and Clifford Fourier Transforms and Wavelets

86 S. Georgiev and J. Morais

a number of their important properties. The underlying signals are continuousfunctions of bounded variation defined in โ„2 and taking values on the quaternionalgebra. We proceed by proving the uniform continuity on this transform. Then,we describe the interplay between uniform continuity and quaternion distribution.Section 4 contains the main result of the chapter โ€“ the counterpart of the Bochnertheorem for the noncommutative structure of quaternion functions (see Theorem4.3 below). To prove our Bochner theorem, we introduce the notion of positive-type quaternion function and deduce some of its characteristics, and rely on theasymptotic behaviour and other general properties of the QFST. To the best ofour knowledge this is done here for the first time. In the interests of simplicity ofpresentation, we have not extended this work to its most general form. Furtherinvestigations are in progress and will be reported in full in a forthcoming paper.

2. Preliminaries

2.1. Bochner Theorem

In this subsection, we review the classical Bochner theorem on Fourier integraltransforms, which can be found, e.g., in [1, 2].

A complex-valued function ๐‘“(๐‘ก) defined on the interval (โˆ’โˆž,โˆž) is said tobe positive definite if it satisfies the following conditions:

1. ๐‘“ is bounded and continuous on (โˆ’โˆž,โˆž);

2. ๐‘“(โˆ’๐‘ก) = ๐‘“(๐‘ก), for all ๐‘ก;3. for any set of real numbers ๐‘ก1, . . . , ๐‘ก๐‘ , complex numbers ๐‘Ž1, . . . , ๐‘Ž๐‘ , and any

positive integer ๐‘ , the inequality

๐‘ โˆ‘๐‘š=1

๐‘ โˆ‘๐‘›=1

๐‘Ž๐‘š๐‘Ž๐‘›๐‘“(๐‘ก๐‘š โˆ’ ๐‘ก๐‘›) โ‰ฅ 0 is satisfied.

The following theorem is due to Bochner [1].

Theorem 2.1 (Bochner). If ๐œŽ(๐‘ฅ) is a nondecreasing bounded function on the in-terval (โˆ’โˆž,โˆž), and if ๐‘“(๐‘ก) is defined by the Stieltjes integral

๐‘“(๐‘ก) =

โˆซ โˆž

โˆ’โˆž๐‘’๐‘–๐‘ก๐‘ฅ๐‘‘๐œŽ(๐‘ฅ), โˆ’โˆž < ๐‘ก <โˆž, (2.1)

then ๐‘“(๐‘ก) is a continuous function of the positive type.

It is of interest to remark at this point that the Fourierโ€“Stieltjes transformof nondecreasing bounded functions can be easily seen continuous functions ofpositive type. Conversely, if ๐‘“(๐‘ก) is measurable on (โˆ’โˆž,โˆž), and ๐‘“ is of the positivetype, then there exists a nondecreasing bounded function ๐œŽ(๐‘ฅ) such that ๐‘“(๐‘ก) isgiven by (2.1) for almost all ๐‘ฅ, โˆ’โˆž < ๐‘ฅ < โˆž. In the converse part, Bochnerassumed ๐‘“(๐‘ก) to be continuous, and showed that ๐œŽ(๐‘ฅ) is such that (2.1) is true forall ๐‘ก. Riesz, on the other hand, succeeded to prove that the measurability of ๐‘“ wassufficient in the converse.

Page 112: Quaternion and Clifford Fourier Transforms and Wavelets

5. Bochnerโ€™s Theorems 87

2.2. Quaternion Analysis

The present subsection collects some basic facts about quaternions and the (left-sided) QFT, which will be needed throughout the text.

In all that follows let

โ„ := {๐‘ง = ๐‘Ž+ ๐‘๐’Š+ ๐‘๐’‹ + ๐‘‘๐’Œ : ๐‘Ž, ๐‘, ๐‘, ๐‘‘ โˆˆ โ„} (2.2)

denote the Hamiltonian skew field, i.e., quaternions, where the imaginary units ๐’Š,๐’‹, and ๐’Œ are subject to the multiplication rules:

๐’Š2 = ๐’‹2 = ๐’Œ2 = โˆ’1,๐’Š๐’‹ = ๐’Œ = โˆ’๐’‹๐’Š, ๐’‹๐’Œ = ๐’Š = โˆ’๐’Œ๐’‹, ๐’Œ๐’Š = ๐’‹ = โˆ’๐’Š๐’Œ. (2.3)

Like in the complex case, S(๐‘ง) = ๐‘Ž and V(๐‘ง) = ๐‘๐’Š+ ๐‘๐’‹ + ๐‘‘๐’Œ define the scalar andvector parts of ๐‘ง. The conjugate of ๐‘ง is ๐‘ง = ๐‘Žโˆ’ ๐‘๐’Šโˆ’ ๐‘๐’‹ โˆ’ ๐‘‘๐’Œ, and the norm of ๐‘ง isdefined by

โˆฃ๐‘งโˆฃ = โˆš๐‘ง๐‘ง =โˆš๐‘ง๐‘ง =

โˆš๐‘Ž2 + ๐‘2 + ๐‘2 + ๐‘‘2, (2.4)

which coincides with the corresponding Euclidean norm of ๐‘ง as a vector in โ„4. Forx := (๐‘ฅ1, ๐‘ฅ2) โˆˆ โ„2 we consider โ„-valued functions defined in โ„2, i.e., functions ofthe form

๐‘“(x) := [๐‘“(x)]0 + [๐‘“(x)]1๐’Š+ [๐‘“(x)]2๐’‹ + [๐‘“(x)]3๐’Œ, (2.5)

[๐‘“ ]๐‘™ : โ„2 โˆ’โ†’ โ„ (๐‘™ = 0, 1, 2, 3).

Properties (like integrability, continuity or differentiability) that are ascribed to ๐‘“have to be fulfilled by all its components [๐‘“ ]๐‘™.

Let ๐ฟ1(โ„2;โ„) denote the linear space of integrableโ„-valued functions definedin โ„2. The left-sided QFT of ๐‘“ โˆˆ ๐ฟ1(โ„2;โ„) is given by [6]

โ„ฑ(๐‘“) : โ„2 โ†’ โ„, โ„ฑ(๐‘“)(๐Ž) :=

โˆซโ„2

e(๐Ž,x) ๐‘“(x) ๐‘‘2x, (2.6)

where the kernel function

e : โ„2 ร— โ„2 โ†’ โ„, e(๐Ž,x) := ๐‘’โˆ’๐’‹๐œ”2๐‘ฅ2๐‘’โˆ’๐’Š๐œ”1๐‘ฅ1 , (2.7)

is called the (left-sided) quaternion Fourier kernel. For ๐‘– = 1, 2, ๐‘ฅ๐‘– will denote thespace coordinates and ๐œ”๐‘– the angular frequencies. The previous definition of theQFT varies from the original one only in the fact that we use 2D vectors insteadof scalars and that it is defined to be 2D. It is of interest to remark at this pointthat the product in (2.6) has to be performed in a fixed order since, in general,e(๐Ž,x) does not commute with every element of the algebra.

Under suitable conditions, the original signal ๐‘“ can be reconstructed fromโ„ฑ(๐‘“) by the inverse transform. The (left-sided) inverse QFT of ๐‘” โˆˆ ๐ฟ1(โ„2;โ„) isgiven by

โ„ฑโˆ’1(๐‘”) : โ„2 โ†’ โ„, โ„ฑโˆ’1(๐‘”)(x) =1

(2๐œ‹)2

โˆซโ„2

e(๐Ž,x) ๐‘”(๐Ž) ๐‘‘2๐Ž , (2.8)

where e(๐Ž,x) is called the inverse (left-sided) quaternion Fourier kernel.

Page 113: Quaternion and Clifford Fourier Transforms and Wavelets

88 S. Georgiev and J. Morais

3. Quaternion Fourierโ€“Stieltjes Transform and its Properties

This section generalizes the classical FST to Hamiltonโ€™s quaternion algebra. Usingthe 4D analogue of the (complex-valued) function ๐œŽ(๐‘ฅ) described before, we extendthe FST to the QFST. As we shall see later, some properties of the FST can beextended in this context.

3.1. Quaternion Fourierโ€“Stieltjes Transform

Partially motivated by the results from Bulow [3], the idea behind the constructionof a quaternion counterpart of the Stieltjes integral is to replace the exponentialfunction in (2.1) by a suitable (noncommutative) quaternion exponential product.

In the sequel, we consider the functions ๐œŽ1, ๐œŽ2 : โ„ โ†’ โ„ of the quaternionform (2.5), such that โˆฃ๐œŽ๐‘–โˆฃ โ‰ค ๐›ฟ๐‘– for real numbers ๐›ฟ๐‘– <โˆž (๐‘– = 1, 2). Due to the non-commutativity of the quaternions, we shall define three different types of QFST.

Definition 3.1. The QFST โ„ฑ๐’ฎ(๐œŽ1, ๐œŽ2) : โ„2 โ†’ โ„ of ๐œŽ1(๐‘ฅ1) and ๐œŽ2(๐‘ฅ2) is definedas the Stieltjes integrals:

1. Right-sided QFST:

โ„ฑ๐’ฎ๐‘Ÿ(๐œŽ1, ๐œŽ2)(๐œ”1, ๐œ”2) :=

โˆซโ„2

๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ2(๐‘ฅ2)๐‘’

๐’Š๐œ”1๐‘ฅ1๐‘’๐’‹๐œ”2๐‘ฅ2 . (3.1)

2. Left-sided QFST:

โ„ฑ๐’ฎ๐‘™(๐œŽ1, ๐œŽ2)(๐œ”1, ๐œ”2) :=

โˆซโ„2

๐‘’๐’‹๐œ”2๐‘ฅ2๐‘’๐’Š๐œ”1๐‘ฅ1๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ2(๐‘ฅ2). (3.2)

3. Two-sided QFST:

โ„ฑ๐’ฎ๐‘ (๐œŽ1, ๐œŽ2)(๐œ”1, ๐œ”2) :=

โˆซโ„2

๐‘’๐’Š๐œ”1๐‘ฅ1๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ2(๐‘ฅ2)๐‘’

๐’‹๐œ”2๐‘ฅ2 . (3.3)

Remark 3.2. We remind the reader that, the order of the exponentials in (3.1)โ€“(3.3) is fixed because of the noncommutativity of the quaternion product. It is ofinterest to remark at this point that in case that ๐‘‘๐œŽ1๐‘‘๐œŽ2 = ๐‘“(x)๐‘‘2x, the formulaeabove reduce to the usual definitions for the right-, left- and two-sided QFT [4, 7, 6],which only differ by the signs in the exponential kernel terms.

It is significant to note that, in practice, the integrals (3.1)โ€“(3.3) will alwaysexist. For example, for any two real variables ๐œ”1, ๐œ”2, and for real constants ๐‘Ž, ๐‘ itholds that

โˆฃโ„ฑ๐’ฎ๐‘Ÿ(๐œŽ1, ๐œŽ2)โˆฃ โ‰ค

โˆฃโˆฃโˆฃโˆซ ๐‘Žโˆ’โˆž (โˆซ ๐‘โˆ’โˆž+โˆซโˆž๐‘

)๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ

2(๐‘ฅ2)๐‘’๐’Š๐œ”1๐‘ฅ1๐‘’๐’‹๐œ”2๐‘ฅ2

โˆฃโˆฃโˆฃ+โˆฃโˆฃโˆฃโˆซโˆž๐‘Ž (โˆซ ๐‘

โˆ’โˆž+โˆซโˆž๐‘

)๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ

2(๐‘ฅ2)๐‘’๐’Š๐œ”1๐‘ฅ1๐‘’๐’‹๐œ”2๐‘ฅ2

โˆฃโˆฃโˆฃโ‰ค (โˆฃ๐œŽ1(โˆž)โˆ’ ๐œŽ1(๐‘)โˆฃ+ โˆฃ๐œŽ1(๐‘)โˆ’ ๐œŽ1(โˆ’โˆž)โˆฃ)ร— (โˆฃ๐œŽ2(โˆž)โˆ’ ๐œŽ2(๐‘Ž)โˆฃ+ โˆฃ๐œŽ2(๐‘Ž)โˆ’ ๐œŽ2(โˆ’โˆž)โˆฃ) . (3.4)

Page 114: Quaternion and Clifford Fourier Transforms and Wavelets

5. Bochnerโ€™s Theorems 89

Remark 3.3. Throughout this text we will only investigate the integral (3.1), whichwe denote for simplicity by โ„ฑ๐’ฎ(๐œŽ1, ๐œŽ2). Nevertheless, all computations can beeasily adapted to (3.2) and (3.3). In view of (3.1) and (3.2), a straightforwardcalculation shows that

โ„ฑ๐’ฎ๐‘Ÿ(๐œŽ1, ๐œŽ2)(๐œ”1, ๐œ”2) =

โˆซโ„2

๐‘’โˆ’๐’‹๐œ”2๐‘ฅ2๐‘’โˆ’๐’Š๐œ”1๐‘ฅ1๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ2(๐‘ฅ2)

= โ„ฑ๐’ฎ ๐‘™(๐œŽ2, ๐œŽ1)(โˆ’๐œ”1,โˆ’๐œ”2). (3.5)

For the sake of further simplicity, in the considerations to follow we will often omitthe subscript and, additionally, write only โ„ฑ๐’ฎ(๐œ”1,๐œ”2) instead of โ„ฑ๐’ฎ(๐œŽ1,๐œŽ2)(๐œ”1,๐œ”2).We can restate the definition of right-sided QFST (3.1) in equivalent terms as fol-lows.

Lemma 3.4. The (right-sided ) QFST has the closed-form representation

โ„ฑ๐’ฎ(๐œ”1, ๐œ”2) := [ฮฆ(๐œ”1, ๐œ”2)]0 + [ฮฆ(๐œ”1, ๐œ”2)]1 + [ฮฆ(๐œ”1, ๐œ”2)]2 + [ฮฆ(๐œ”1, ๐œ”2)]3 , (3.6)

where we used the integrals

[ฮฆ(๐œ”1, ๐œ”2)]0 =

โˆซโ„2

๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ2(๐‘ฅ2) cos(๐œ”1๐‘ฅ1) cos(๐œ”2๐‘ฅ2), (3.7)

[ฮฆ(๐œ”1, ๐œ”2)]1 =

โˆซโ„2

๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ2(๐‘ฅ2)๐’Š sin(๐œ”1๐‘ฅ1) cos(๐œ”2๐‘ฅ2), (3.8)

[ฮฆ(๐œ”1, ๐œ”2)]2 =

โˆซโ„2

๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ2(๐‘ฅ2)๐’‹ cos(๐œ”1๐‘ฅ1) sin(๐œ”2๐‘ฅ2), (3.9)

[ฮฆ(๐œ”1, ๐œ”2)]3 =

โˆซโ„2

๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ2(๐‘ฅ2)๐’Œ sin(๐œ”1๐‘ฅ1) sin(๐œ”2๐‘ฅ2). (3.10)

Corollary 3.5. The (right-sided) QFST satisfies the following identities:

โ„ฑ๐’ฎ(๐œ”1, ๐œ”2) + โ„ฑ๐’ฎ(๐œ”1,โˆ’๐œ”2) = 2 (ฮฆ0(๐œ”1, ๐œ”2) + ฮฆ1(๐œ”1, ๐œ”2)) , (3.11)

โ„ฑ๐’ฎ(๐œ”1, ๐œ”2)โˆ’โ„ฑ๐’ฎ(๐œ”1,โˆ’๐œ”2) = 2 (ฮฆ2(๐œ”1, ๐œ”2) + ฮฆ3(๐œ”1, ๐œ”2)) , (3.12)

โ„ฑ๐’ฎ(๐œ”1, ๐œ”2) + โ„ฑ๐’ฎ(โˆ’๐œ”1, ๐œ”2) = 2 (ฮฆ0((๐œ”1, ๐œ”2) + ฮฆ2(๐œ”1, ๐œ”2)) , (3.13)

โ„ฑ๐’ฎ(๐œ”1, ๐œ”2)โˆ’โ„ฑ๐’ฎ(โˆ’๐œ”1, ๐œ”2) = 2 (ฮฆ1(๐œ”1, ๐œ”2) + ฮฆ3(๐œ”1, ๐œ”2)) , (3.14)

โ„ฑ๐’ฎ(๐œ”1, ๐œ”2) + โ„ฑ๐’ฎ(โˆ’๐œ”1,โˆ’๐œ”2) = 2 (ฮฆ0(๐œ”1, ๐œ”2) + ฮฆ3(๐œ”1, ๐œ”2)) , (3.15)

โ„ฑ๐’ฎ(๐œ”1, ๐œ”2)โˆ’โ„ฑ๐’ฎ(โˆ’๐œ”1,โˆ’๐œ”2) = 2 (ฮฆ1(๐œ”1, ๐œ”2) + ฮฆ2(๐œ”1, ๐œ”2)) , (3.16)

โ„ฑ๐’ฎ(๐œ”1,โˆ’๐œ”2) + โ„ฑ๐’ฎ(โˆ’๐œ”1,โˆ’๐œ”2) = 2 (ฮฆ0(๐œ”1, ๐œ”2)โˆ’ ฮฆ2(๐œ”1, ๐œ”2)) , (3.17)

โ„ฑ๐’ฎ(๐œ”1,โˆ’๐œ”2)โˆ’โ„ฑ๐’ฎ(โˆ’๐œ”1,โˆ’๐œ”2) = 2 (ฮฆ1(๐œ”1, ๐œ”2)โˆ’ ฮฆ3(๐œ”1, ๐œ”2)) , (3.18)

โ„ฑ๐’ฎ(โˆ’๐œ”1, ๐œ”2) + โ„ฑ๐’ฎ(โˆ’๐œ”1,โˆ’๐œ”2) = 2 (ฮฆ0(๐œ”1, ๐œ”2)โˆ’ ฮฆ1(๐œ”1, ๐œ”2)) , (3.19)

โ„ฑ๐’ฎ(โˆ’๐œ”1, ๐œ”2)โˆ’โ„ฑ๐’ฎ(โˆ’๐œ”1,โˆ’๐œ”2) = 2 (ฮฆ2(๐œ”1, ๐œ”2)โˆ’ ฮฆ3(๐œ”1, ๐œ”2)) . (3.20)

3.2. Properties

This subsection presents certain properties of the asymptotic behaviour of theQFST, and establishes some of its basic properties.

Page 115: Quaternion and Clifford Fourier Transforms and Wavelets

90 S. Georgiev and J. Morais

We begin with the notions of monotonic increasing, bounded variation anddistribution in the context of quaternion analysis.

Definition 3.6. A function ๐œŽ : โ„ โ†’ โ„ is called monotonic increasing, if all of itscomponents [๐œŽ]๐‘™ (๐‘™ = 0, 1, 2, 3) are monotonic increasing functions.

Definition 3.7. A function ๐œŽ : โ„ โ†’ โ„ is called with bounded variation on โ„, ifthere exists a real number ๐‘€ <โˆž such that

โˆซโ„โˆฃ๐‘‘๐œŽ(๐‘ฅ)โˆฃ < ๐‘€ .

Definition 3.8. A function ๐œŽ : โ„ โ†’ โ„ is said to be a quaternion distribution, if itis of bounded variation and monotonic increasing, and if the following limits exist

lim๐‘ฅโˆ’โ†’๐‘ฆ+

๐œŽ(๐‘ฅ) = ๐œŽ(๐‘ฆ + 0), and lim๐‘ฅโˆ’โ†’๐‘ฆโˆ’๐œŽ(๐‘ฅ) = ๐œŽ(๐‘ฆ โˆ’ 0), (3.21)

(taken over all directions) for which

๐œŽ(๐‘ฆ) =1

2[๐œŽ(๐‘ฆ + 0) + ๐œŽ(๐‘ฆ โˆ’ 0)] (3.22)

holds almost everywhere on โ„.

To proceed with, it is significant to note that, for every two functions ๐œŽ1, ๐œŽ2 :โ„โ†’ โ„ of the quaternion form (2.5), the study of the properties of the distribution

โ„ฑ๐’ฎ(๐œ”1, ๐œ”2) :=

โˆซโ„2

๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ2(๐‘ฅ2)๐‘’

๐’Š๐œ”1๐‘ฅ1๐‘’๐’‹๐œ”2๐‘ฅ2 (3.23)

is reduced to the separate study of each componentโˆซโ„2

[๐‘‘๐œŽ1(๐‘ฅ1)

]๐‘™

[๐‘‘๐œŽ2(๐‘ฅ2)

]๐‘š

๐‘’๐’Š๐œ”1๐‘ฅ1๐‘’๐’‹๐œ”2๐‘ฅ2 (๐‘™,๐‘š = 0, 1, 2, 3) . (3.24)

From now on, we denote the class of functions which can be represented as (3.23)by โ„ฌ. Functions in โ„ฌ are called (right) quaternion Bochner functions and โ„ฌ willbe referred to as the (right) quaternion Bochner set. It follows that all membersof โ„ฌ are entire functions of the real variables ๐œ”1, ๐œ”2.

Firstly, we shall note the following property of โ„ฌ:Proposition 3.9. โ„ฌ is a linear space.

Proof. Let ๐‘“, ๐‘” โˆˆ โ„ฌ and ๐‘ง1, ๐‘ง2, ๐‘ง3, ๐‘ง4 be quaternion numbers. It is easily seen that

๐‘ง1๐‘“๐‘ง2 + ๐‘ง3๐‘”๐‘ง4 โˆˆ โ„ฌ. (3.25)

โ–กThe foregoing discussion suggests the computation of certain equalities for

quaternion Bochner functions. If ๐‘“ โˆˆ โ„ฌ is given, then

๐‘“(0, ๐œ”2) =(๐œŽ1(โˆž)โˆ’ ๐œŽ1(โˆ’โˆž)

) โˆซโ„

๐‘‘๐œŽ2(๐‘ฅ2)๐‘’๐’‹๐œ”2๐‘ฅ2 , (3.26)

๐‘“(๐œ”1, 0) =

โˆซโ„

๐‘‘๐œŽ1(๐‘ฅ1)(๐œŽ2(โˆž)โˆ’ ๐œŽ2(โˆ’โˆž)

)๐‘’๐’Š๐œ”1๐‘ฅ1 , (3.27)

๐‘“(0, 0) =(๐œŽ1(โˆž)โˆ’ ๐œŽ1(โˆ’โˆž)

) (๐œŽ2(โˆž)โˆ’ ๐œŽ2(โˆ’โˆž)

). (3.28)

Page 116: Quaternion and Clifford Fourier Transforms and Wavelets

5. Bochnerโ€™s Theorems 91

In particular, a simple argument gives

๐‘“(โˆ’๐œ”1,โˆ’๐œ”2) =

โˆซโ„2

๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ2(๐‘ฅ2)๐‘’

โˆ’๐’Š๐œ”1๐‘ฅ1๐‘’โˆ’๐’‹๐œ”2๐‘ฅ2

=

โˆซโ„2

๐‘’๐’‹๐œ”2๐‘ฅ2๐‘’๐’Š๐œ”1๐‘ฅ1๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ2(๐‘ฅ2)

= ๐‘”(๐œ”1, ๐œ”2), (3.29)

where ๐‘” is any function which can be represented as โ„ฑ๐’ฎ ๐‘™(๐œŽ2, ๐œŽ1)(๐œ”1, ๐œ”2). We nowhave the following property:

Proposition 3.10. Every element of โ„ฌ is a continuous bounded function.

Proof. Let ๐‘“ be any function in โ„ฌ. The continuity of ๐‘“ is obvious. For the bound-edness a direct computation shows that

โˆฃ๐‘“(๐œ”1, ๐œ”2)โˆฃ โ‰คโˆซโ„2

โˆฃ๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ2(๐‘ฅ2)โˆฃ โˆฃ๐‘’๐’Š๐œ”1๐‘ฅ1๐‘’๐’‹๐œ”2๐‘ฅ2 โˆฃ (3.30)

โ‰ค โˆฃ๐œŽ1(โˆž)โˆ’ ๐œŽ1(โˆ’โˆž)โˆฃ โˆฃ๐œŽ2(โˆž)โˆ’ ๐œŽ2(โˆ’โˆž)โˆฃ . โ–ก

Suppose now that ๐œŽ1, ๐œŽ2 : โ„ โ†’ โ„ are fixed, and ๐‘“ โˆˆ โ„ฌ does not vanishidentically. Question: Depending on the parity of ๐œŽ1(๐‘ฅ1) and ๐œŽ2(๐‘ฅ2), what can wesay about the representation of ๐‘“? If there is any similarity or difference in theparity of these functions, does this lead to some particular functions ๐‘“ โˆˆ โ„ฌ? Theanswers are given by the following proposition:

Proposition 3.11. Let ๐œŽ1, ๐œŽ2 : โ„โ†’ โ„, and ๐‘“ โˆˆ โ„ฌ be given.

1. If ๐œŽ1(๐‘ฅ1) is an odd function then

๐‘“(๐œ”1, ๐œ”2) = 2

โˆซ โˆžโˆ’โˆž

โˆซ โˆž

0

๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ2(๐‘ฅ2)๐’Š sin(๐œ”1๐‘ฅ1)๐‘’

๐’‹๐œ”2๐‘ฅ2 ,

๐‘“(0, ๐œ”2) = 0. (3.31)

2. If ๐œŽ1(๐‘ฅ1) is an even function then

๐‘“(๐œ”1, ๐œ”2) = 2

โˆซ โˆžโˆ’โˆž

โˆซ โˆž

0

๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ2(๐‘ฅ2) cos(๐œ”1๐‘ฅ1)๐‘’

๐’‹๐œ”2๐‘ฅ2 ,

๐‘“(0, 0) = 2(๐œŽ1(โˆž)โˆ’ ๐œŽ1(0)

) (๐œŽ2(โˆž)โˆ’ ๐œŽ2(โˆ’โˆž)

). (3.32)

3. If ๐œŽ2(๐‘ฅ2) is an odd function then

๐‘“(๐œ”1, ๐œ”2) = 2

โˆซ โˆž0

โˆซ โˆž

โˆ’โˆž๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ

2(๐‘ฅ2)๐‘’๐’Š๐œ”1๐‘ฅ1 sin(๐œ”2๐‘ฅ2)๐’‹,

๐‘“(๐œ”1, 0) = 0. (3.33)

Page 117: Quaternion and Clifford Fourier Transforms and Wavelets

92 S. Georgiev and J. Morais

4. If ๐œŽ2(๐‘ฅ2) is an even function then

๐‘“(๐œ”1, ๐œ”2) = 2

โˆซ โˆž

0

โˆซ โˆž

โˆ’โˆž๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ

2(๐‘ฅ2)๐‘’๐’Š๐œ”1๐‘ฅ1 cos(๐œ”2๐‘ฅ2),

๐‘“(0, 0) = 2(๐œŽ1(โˆž) โˆ’ ๐œŽ1(โˆ’โˆž)

) (๐œŽ2(โˆž)โˆ’ ๐œŽ2(0)

). (3.34)

5. If ๐œŽ1(๐‘ฅ1) and ๐œŽ2(๐‘ฅ2) are both odd functions then

๐‘“(๐œ”1, ๐œ”2) = 4

โˆซ โˆž0

โˆซ โˆž

0

๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ2(๐‘ฅ2)๐’Œ sin(๐œ”1๐‘ฅ1) sin(๐œ”2๐‘ฅ2),

๐‘“(๐œ”1, 0) = ๐‘“(0, ๐œ”2) = 0. (3.35)

6. If ๐œŽ1(๐‘ฅ1) is an odd function and ๐œŽ2(๐‘ฅ2) an even function then

๐‘“(๐œ”1, ๐œ”2) = 4

โˆซ โˆž

0

โˆซ โˆž

0

๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ2(๐‘ฅ2)๐’Š sin(๐œ”1๐‘ฅ1) cos(๐œ”2๐‘ฅ2),

๐‘“(0, ๐œ”2) = 0. (3.36)

7. If ๐œŽ1(๐‘ฅ1) is an even function and ๐œŽ2(๐‘ฅ2) an odd function then

๐‘“(๐œ”1, ๐œ”2) = 4

โˆซ โˆž0

โˆซ โˆž

0

๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ2(๐‘ฅ2)๐’‹ cos(๐œ”1๐‘ฅ1) sin(๐œ”2๐‘ฅ2),

๐‘“(๐œ”1, 0) = 0. (3.37)

8. If ๐œŽ1(๐‘ฅ1) and ๐œŽ2(๐‘ฅ2) are both even functions then

๐‘“(๐œ”1, ๐œ”2) = 4

โˆซ โˆž

0

โˆซ โˆž

0

๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ2(๐‘ฅ2) cos(๐œ”1๐‘ฅ1) cos(๐œ”2๐‘ฅ2),

๐‘“(0, 0) = 4(๐œŽ1(โˆž)โˆ’ ๐œŽ1(0)

) (๐œŽ2(โˆž)โˆ’ ๐œŽ2(0)

). (3.38)

Proof. For sake of brevity we prove only the first statement, the proof of theremaining statements is similar. Let ๐œŽ1(๐‘ฅ1) be an odd function. Using the trigono-metric representation of the function ๐‘’๐’Š๐œ”1๐‘ฅ1 , a straightforward computation showsthat

๐‘“(๐œ”1, ๐œ”2) =

โˆซ โˆž

โˆ’โˆž

โˆซ โˆž

โˆ’โˆž๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ

2(๐‘ฅ2) ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2

=

โˆซ โˆž

โˆ’โˆž

(โˆซ โˆž

โˆ’โˆž๐‘‘๐œŽ1(๐‘ฅ1) cos(๐œ”1๐‘ฅ1)

)๐‘‘๐œŽ2(๐‘ฅ2) ๐‘’

๐’‹๐œ”2๐‘ฅ2

+

โˆซ โˆž

โˆ’โˆž

(โˆซ โˆž

โˆ’โˆž๐‘‘๐œŽ1(๐‘ฅ1) sin(๐œ”1๐‘ฅ1)

)๐‘‘๐œŽ2(๐‘ฅ2) ๐’Š ๐‘’

๐’‹๐œ”2๐‘ฅ2 (3.39)

= 2

โˆซ โˆž

โˆ’โˆž

โˆซ โˆž

0

๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ2(๐‘ฅ2) ๐’Š sin(๐œ”1๐‘ฅ1) ๐‘’

๐’‹๐œ”2๐‘ฅ2 . โ–ก

3.3. Uniform Continuity

In this subsection we discuss uniform continuity and its relationship to the QFST.We begin by defining uniform continuity.

Page 118: Quaternion and Clifford Fourier Transforms and Wavelets

5. Bochnerโ€™s Theorems 93

Definition 3.12. A quaternion function ๐‘“ : ฮฉ โŠ‚ โ„2 โ†’ โ„ is uniformly continuouson ฮฉ, if and only if for all ๐œ– > 0 there exists a ๐›ฟ > 0, such that โˆฃ๐‘“(๐œ”1)โˆ’ ๐‘“(๐œ”2)โˆฃ < ๐œ–for all ๐œ”1, ๐œ”2 โˆˆ ฮฉ whenever โˆฃ๐œ”1 โˆ’ ๐œ”2โˆฃ < ๐›ฟ.

We now prove some results related to the asymptotic behaviour of the QFST.

Proposition 3.13. Let ๐‘“ be an element of โ„ฌ. For any natural number ๐‘›, let ๐‘“๐‘› :โ„ร— [โˆ’๐‘›, ๐‘›]โ†’ โ„ be the function given by

๐‘“๐‘›(๐œ”1, ๐œ”2) =

โˆซ ๐‘›

โˆ’๐‘›

โˆซ โˆž

โˆ’โˆž๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ

2(๐‘ฅ2)๐‘’๐’Š๐œ”1๐‘ฅ1๐‘’๐’‹๐œ”2๐‘ฅ2 .

Then ๐‘“๐‘›(๐œ”1, ๐œ”2) โˆ’โ†’๐‘›โˆ’โ†’โˆž ๐‘“(๐œ”1, ๐œ”2) uniformly. Also, if the ๐‘“๐‘› are uniformly con-tinuous functions, then ๐‘“ is also a uniformly continuous function.

Proof. A first straightforward computation shows that

โˆฃ๐‘“(๐œ”1, ๐œ”2)โˆ’ ๐‘“๐‘›(๐œ”1, ๐œ”2)โˆฃ

=

โˆฃโˆฃโˆฃโˆฃ โˆžโˆซโˆ’โˆžโˆžโˆซโˆ’โˆž

๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ2(๐‘ฅ2)๐‘’

๐’Š๐œ”1๐‘ฅ1๐‘’๐’‹๐œ”2๐‘ฅ2 โˆ’๐‘›โˆซโˆ’๐‘›

โˆžโˆซโˆ’โˆž

๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ2(๐‘ฅ2)๐‘’

๐’Š๐œ”1๐‘ฅ1๐‘’๐’‹๐œ”2๐‘ฅ2

โˆฃโˆฃโˆฃโˆฃ=

โˆฃโˆฃโˆฃโˆฃ โˆ’๐‘›โˆซโˆ’โˆžโˆžโˆซโˆ’โˆž

๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ2(๐‘ฅ2)๐‘’

๐’Š๐œ”1๐‘ฅ1๐‘’๐’‹๐œ”2๐‘ฅ2 +โˆžโˆซ๐‘›

โˆžโˆซโˆ’โˆž

๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ2(๐‘ฅ2)๐‘’

๐’Š๐œ”1๐‘ฅ1๐‘’๐’‹๐œ”2๐‘ฅ2

โˆฃโˆฃโˆฃโˆฃโ‰ค โˆฃ๐œŽ1(โˆž)โˆ’ ๐œŽ1(โˆ’โˆž)โˆฃ โˆฃ๐œŽ2(โˆ’๐‘›)โˆ’ ๐œŽ2(โˆ’โˆž)โˆฃ+ โˆฃ๐œŽ1(โˆž)โˆ’ ๐œŽ1(โˆ’โˆž)โˆฃ โˆฃ๐œŽ2(โˆž)โˆ’ ๐œŽ2(๐‘›)โˆฃ .

(3.40)

Moreover, bearing in mind that

๐œŽ2(โˆ’๐‘›)โˆ’ ๐œŽ2(โˆ’โˆž) โˆ’โ†’๐‘›โˆ’โ†’โˆž 0, ๐œŽ2(โˆž) โˆ’ ๐œŽ2(๐‘›) โˆ’โ†’๐‘›โˆ’โ†’โˆž 0, (3.41)

and hence, ๐‘“๐‘›(๐œ”1, ๐œ”2) โˆ’โ†’๐‘›โˆ’โ†’โˆž ๐‘“(๐œ”1, ๐œ”2) uniformly. In addition, we claim that ifall the ๐‘“๐‘›(๐œ”1, ๐œ”2) are uniformly continuous functions, it follows that ๐‘“(๐œ”1, ๐œ”2) isalso a uniformly continuous function. โ–ก

Likewise, we have the following analogous result.

Proposition 3.14. Let ๐‘“ be an element of โ„ฌ. For any natural number ๐‘›, let ๐‘“๐‘› :[โˆ’๐‘›, ๐‘›]ร— โ„โ†’ โ„ be the function given by

๐‘“๐‘›(๐œ”1, ๐œ”2) =

โˆซ โˆž

โˆ’โˆž

โˆซ ๐‘›

โˆ’๐‘›๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ

2(๐‘ฅ2) ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2 .

Then ๐‘“๐‘›(๐œ”1, ๐œ”2) โˆ’โ†’๐‘›โˆ’โ†’โˆž ๐‘“(๐œ”1, ๐œ”2) uniformly. Also, if all the ๐‘“๐‘› are uniformlycontinuous functions then ๐‘“ is also a uniformly continuous function.

Page 119: Quaternion and Clifford Fourier Transforms and Wavelets

94 S. Georgiev and J. Morais

Proposition 3.15. Let ๐‘“ be an element of โ„ฌ. For any natural number ๐‘›, let ๐‘“๐‘› :[โˆ’๐‘›, ๐‘›]ร— [โˆ’๐‘›, ๐‘›]โ†’ โ„ be the function given by

๐‘“๐‘›(๐œ”1, ๐œ”2) =

โˆซ ๐‘›

โˆ’๐‘›

โˆซ ๐‘›

โˆ’๐‘›๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ

2(๐‘ฅ2) ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2 .

Then ๐‘“๐‘›(๐œ”1, ๐œ”2) โˆ’โ†’๐‘›โˆ’โ†’โˆž ๐‘“(๐œ”1, ๐œ”2) uniformly. Also, if all the ๐‘“๐‘› are uniformlycontinuous functions then ๐‘“ is also a uniformly continuous function.

Proof. We set ๐ด := ๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ2(๐‘ฅ2) ๐‘’

๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2 . The proof follows from a simpleobservation:โˆซ โˆž

โˆ’โˆž

โˆซ โˆž

โˆ’โˆž๐ดโˆ’

โˆซ ๐‘›

โˆ’๐‘›

โˆซ ๐‘›

โˆ’๐‘›๐ด =

โˆซ โˆ’๐‘›

โˆ’โˆž

โˆซ โˆ’๐‘›

โˆ’โˆž๐ด+

โˆซ โˆ’๐‘›

โˆ’โˆž

โˆซ ๐‘›

โˆ’๐‘›๐ด+

โˆซ โˆ’๐‘›

โˆ’โˆž

โˆซ โˆž

๐‘›

๐ด

+

โˆซ ๐‘›

โˆ’๐‘›

โˆซ โˆ’๐‘›

โˆ’โˆž๐ด+

โˆซ ๐‘›

โˆ’๐‘›

โˆซ โˆž

๐‘›

๐ด+

โˆซ โˆž

๐‘›

โˆซ โˆ’๐‘›

โˆ’โˆž๐ด (3.42)

+

โˆซ โˆž

๐‘›

โˆซ ๐‘›

โˆ’๐‘›๐ด+

โˆซ โˆž

๐‘›

โˆซ โˆž

๐‘›

๐ด. โ–ก

We come now to the main theorem of this section.

Theorem 3.16. Let ๐‘“ โˆˆ โ„ฌ be given, and ๐‘” : โ„2 โˆ’โ†’ โ„ be a continuous and absolutelyintegrable function. For any ๐œŽ1, ๐œŽ2 : โ„ โˆ’โ†’ โ„ the following relations hold:

1.

โˆซโ„2

๐‘“(๐‘ก1, ๐‘ก2)๐‘”(๐œ”1 โˆ’ ๐‘ก1, ๐œ‚ โˆ’ ๐œ”2)๐‘‘๐‘ก1๐‘‘๐‘ก2

=

โˆซโ„2

๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ2(๐‘ฅ2)

โˆซโ„2

๐‘’๐’Š๐‘ก1๐‘ฅ1๐‘’๐’‹๐‘ก2๐‘ฅ2๐‘”(๐œ”1 โˆ’ ๐‘ก1, ๐œ‚ โˆ’ ๐œ”2)๐‘‘๐‘ก1๐‘‘๐‘ก2; (3.43)

2.

โˆซโ„2

๐‘“(๐‘ก1, ๐‘ก2)๐‘”(๐‘ก1, ๐‘ก2)๐‘‘๐‘ก1๐‘‘๐‘ก2

= (2๐œ‹)2โˆซโ„2

๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ2(๐‘ฅ2)โ„ฑโˆ’1(๐‘”)(๐‘ฅ1, ๐‘ฅ2). (3.44)

Proof. Assume ๐‘” : โ„2 โˆ’โ†’ โ„ to be a continuous and absolutely integrable function.For any real variables ๐œŒ and ๐œ’ we define the function

๐‘…(๐‘ฅ1, ๐‘ฅ2, ๐œŒ, ๐œ’) :=

โˆซ ๐œ’

โˆ’๐œ’

โˆซ ๐œŒ

โˆ’๐œŒ๐‘’๐’Š๐‘ก1๐‘ฅ1๐‘’๐’‹๐‘ก2๐‘ฅ2๐‘”(๐‘ก1, ๐‘ก2)๐‘‘๐‘ก1๐‘‘๐‘ก2. (3.45)

We set ๐‘“๐‘›(๐‘ก1, ๐‘ก2) =โˆซ ๐‘›โˆ’๐‘›โˆซ ๐‘›โˆ’๐‘› ๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ

2(๐‘ฅ2)๐‘’๐’Š๐‘ก1๐‘ฅ1๐‘’๐’‹๐‘ก2๐‘ฅ2 . Using the fact that ๐‘” is an

absolutely integrable function, it follows thatโˆซ ๐œ’

โˆ’๐œ’

โˆซ ๐œŒ

โˆ’๐œŒ๐‘“๐‘›(๐‘ก1, ๐‘ก2)๐‘”(๐‘ก1, ๐‘ก2)๐‘‘๐‘ก1๐‘‘๐‘ก2

=

โˆซ ๐œ’

โˆ’๐œ’

โˆซ ๐œŒ

โˆ’๐œŒ

(โˆซ ๐‘›

โˆ’๐‘›

โˆซ ๐‘›

โˆ’๐‘›๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ

2(๐‘ฅ2)๐‘’๐’Š๐‘ก1๐‘ฅ1๐‘’๐’‹๐‘ก2๐‘ฅ2

)๐‘”(๐‘ก1, ๐‘ก2)๐‘‘๐‘ก1๐‘‘๐‘ก2

Page 120: Quaternion and Clifford Fourier Transforms and Wavelets

5. Bochnerโ€™s Theorems 95

=

โˆซ ๐‘›

โˆ’๐‘›

โˆซ ๐‘›

โˆ’๐‘›๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ

2(๐‘ฅ2)

โˆซ ๐œ’

โˆ’๐œ’

โˆซ ๐œŒ

๐œŒ

๐‘’๐’Š๐‘ก1๐‘ฅ1๐‘’๐’‹๐‘ก2๐‘ฅ2๐‘”(๐‘ก1, ๐‘ก2)๐‘‘๐‘ก1๐‘‘๐‘ก2

=

โˆซ ๐‘›

โˆ’๐‘›

โˆซ ๐‘›

โˆ’๐‘›๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ

2(๐‘ฅ2)๐‘…(๐‘ฅ1, ๐‘ฅ2, ๐œŒ, ๐œ‚). (3.46)

From the last proposition we know that lim๐‘›โˆ’โ†’โˆž ๐‘“๐‘›(๐œ”1, ๐œ”2) = ๐‘“(๐œ”1, ๐œ”2) converges

uniformly. Moreover, since ๐‘”(๐‘ก1, ๐‘ก2) is an absolutely integrable function, it followsthat ๐‘…(๐‘ฅ1, ๐‘ฅ2, ๐œŒ, ๐œ’) is also a uniformly continuous function. Hence

lim๐‘›โˆ’โ†’โˆž

๐œ’โˆซโˆ’๐œ’

๐œŒโˆซโˆ’๐œŒ

๐‘“๐‘›(๐‘ก1, ๐‘ก2)๐‘”(๐‘ก1, ๐‘ก2)๐‘‘๐‘ก1๐‘‘๐‘ก2 =

๐œ’โˆซโˆ’๐œ’

๐œŒโˆซโˆ’๐œŒ

๐‘“(๐‘ก1, ๐‘ก2)๐‘”(๐‘ก1, ๐‘ก2)๐‘‘๐‘ก1๐‘‘๐‘ก2. (3.47)

With this argument in hand, and based on (3.46) we conclude that

lim๐‘›โˆ’โ†’โˆž

โˆซ ๐œ’

โˆ’๐œ’

โˆซ ๐œŒ

โˆ’๐œŒ๐‘“๐‘›(๐‘ก1, ๐‘ก2)๐‘”(๐‘ก1, ๐‘ก2)๐‘‘๐‘ก1๐‘‘๐‘ก2 =

โˆซโ„2

๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ2(๐‘ฅ2)๐‘…(๐‘ฅ1, ๐‘ฅ2, ๐œŒ, ๐œ‚).

(3.48)From the last equality and from (3.47) we obtainโˆซ

โ„2

๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ2(๐‘ฅ2)๐‘…(๐‘ฅ1, ๐‘ฅ2, ๐œŒ, ๐œ‚) =

โˆซ ๐œ’

โˆ’๐œ’

โˆซ ๐œŒ

๐œŒ

๐‘“(๐‘ก1, ๐‘ก2)๐‘”(๐‘ก1, ๐‘ก2)๐‘‘๐‘ก1๐‘‘๐‘ก2. (3.49)

In addition, we have

๐‘…(๐‘ฅ1, ๐‘ฅ2, ๐œŒ, ๐œ’) โˆ’โ†’ ๐œŒ โˆ’โ†’โˆž๐œ’ โˆ’โ†’โˆž

โˆซโ„2

๐‘’๐’Š๐‘ก1๐‘ฅ1 ๐‘’๐’‹๐‘ก2๐‘ฅ2๐‘”(๐‘ก1, ๐‘ก2)๐‘‘๐‘ก1๐‘‘๐‘ก2, (3.50)

and hence, for any fixed ๐‘Ž, ๐‘ > 0 it follows thatโˆซ ๐‘Ž

โˆ’๐‘Ž

โˆซ ๐‘

โˆ’๐‘๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ

2(๐‘ฅ2)๐‘…(๐‘ฅ1, ๐‘ฅ2, ๐œŒ, ๐œ‚) (3.51)

โˆ’โ†’ ๐œŒ โˆ’โ†’โˆž๐œ’ โˆ’โ†’โˆž

โˆซ ๐‘Ž

โˆ’๐‘Ž

โˆซ ๐‘

โˆ’๐‘๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ

2(๐‘ฅ2)

โˆซโ„2

๐‘’๐’Š๐‘ก1๐‘ฅ1 ๐‘’๐’‹๐‘ก2๐‘ฅ2๐‘”(๐‘ก1, ๐‘ก2)๐‘‘๐‘ก1๐‘‘๐‘ก2.

For the sake of brevity, in the considerations to follow we will often omit the argu-ment and write simply ๐‘… instead of ๐‘…(๐‘ฅ1, ๐‘ฅ2, ๐œŒ, ๐œ‚). Since ๐‘… is uniformly bounded,there exists a positive constant ๐‘€ so that โˆฃ๐‘…โˆฃ โ‰ค ๐‘€ for all ๐‘ฅ1, ๐‘ฅ2, ๐œŒ, ๐œ‚ โˆˆ โ„. Wedefine

๐ผ :=

โˆฃโˆฃโˆฃโˆฃโˆฃโˆซ โˆ’๐‘Ž

โˆ’โˆž

โˆซ โˆ’๐‘

โˆ’โˆž๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ

2(๐‘ฅ2)๐‘… +

โˆซ ๐‘Ž

โˆ’๐‘Ž

โˆซ โˆ’๐‘

โˆ’โˆž๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ

2(๐‘ฅ2)๐‘…

+

โˆซ โˆž

๐‘Ž

โˆซ โˆ’๐‘

โˆ’โˆž๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ

2(๐‘ฅ2)๐‘… +

โˆซ โˆ’๐‘Ž

โˆ’โˆž

โˆซ ๐‘

โˆ’๐‘๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ

2(๐‘ฅ2)๐‘…

Page 121: Quaternion and Clifford Fourier Transforms and Wavelets

96 S. Georgiev and J. Morais

+

โˆซ โˆž

๐‘Ž

โˆซ ๐‘

โˆ’๐‘๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ

2(๐‘ฅ2)๐‘… +

โˆซ โˆ’๐‘Ž

โˆ’โˆž

โˆซ โˆž

๐‘

๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ2(๐‘ฅ2)๐‘…

+

โˆซ ๐‘Ž

โˆ’๐‘Ž

โˆซ โˆž

๐‘

๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ2(๐‘ฅ2)๐‘…+

โˆซ โˆž

๐‘Ž

โˆซ โˆž

๐‘

๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ2(๐‘ฅ2)๐‘…

โˆฃโˆฃโˆฃโˆฃ . (3.52)

Therefore, we obtain

๐ผ โ‰ค๐‘€ [โˆฃ๐œŽ1(โˆ’๐‘)โˆ’ ๐œŽ1(โˆ’โˆž)โˆฃ โˆฃ๐œŽ2(โˆ’๐‘Ž)โˆ’ ๐œŽ2(โˆ’โˆž)โˆฃ+ โˆฃ๐œŽ1(โˆ’๐‘)โˆ’ ๐œŽ1(โˆ’โˆž)โˆฃ โˆฃ๐œŽ2(๐‘Ž)โˆ’ ๐œŽ2(โˆ’๐‘Ž)โˆฃ+ โˆฃ๐œŽ1(โˆ’๐‘)โˆ’ ๐œŽ1(โˆ’โˆž)โˆฃ โˆฃ๐œŽ2(โˆž)โˆ’ ๐œŽ2(๐‘Ž)โˆฃ+ โˆฃ๐œŽ1(๐‘)โˆ’ ๐œŽ1(โˆ’๐‘)โˆฃ โˆฃ๐œŽ2(โˆ’๐‘Ž)โˆ’ ๐œŽ2(โˆ’โˆž)โˆฃ+ โˆฃ๐œŽ1(๐‘)โˆ’ ๐œŽ1(โˆ’๐‘)โˆฃ โˆฃ๐œŽ2(โˆž)โˆ’ ๐œŽ2(๐‘Ž)โˆฃ+ โˆฃ๐œŽ1(โˆž)โˆ’ ๐œŽ1(๐‘)โˆฃ โˆฃ๐œŽ2(โˆ’๐‘Ž)โˆ’ ๐œŽ2(โˆ’โˆž)โˆฃ+ โˆฃ๐œŽ1(โˆž)โˆ’ ๐œŽ1(๐‘)โˆฃ โˆฃ๐œŽ2(๐‘Ž)โˆ’ ๐œŽ2(โˆ’๐‘Ž)โˆฃ+ โˆฃ๐œŽ1(โˆž)โˆ’ ๐œŽ1(๐‘)โˆฃ โˆฃ๐œŽ2(โˆž)โˆ’ ๐œŽ2(๐‘Ž)โˆฃ] โˆ’โ†’๐‘Ž,๐‘โˆ’โ†’โˆž 0. (3.53)

Using the last inequality and (3.51) we get

lim๐‘Ž,๐‘โˆ’โ†’โˆž

โˆซ ๐‘Ž

โˆ’๐‘Ž

โˆซ ๐‘

โˆ’๐‘๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ

2(๐‘ฅ2)๐‘…(๐‘ฅ1, ๐‘ฅ2, ๐œŒ, ๐œ‚) (3.54)

=

โˆซโ„2

๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ2(๐‘ฅ2)

โˆซโ„2

๐‘’๐’Š๐‘ก1๐‘ฅ1 ๐‘’๐’‹๐‘ก2๐‘ฅ2๐‘”(๐‘ก1, ๐‘ก2)๐‘‘๐‘ก1๐‘‘๐‘ก2.

Based on this and with (3.48) we findโˆซโ„2

๐‘“(๐‘ก1, ๐‘ก2)๐‘”(๐‘ก1, ๐‘ก2)๐‘‘๐‘ก1๐‘‘๐‘ก2

=

โˆซโ„2

๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ2(๐‘ฅ2)

โˆซโ„2

๐‘’๐’Š๐‘ก1๐‘ฅ1 ๐‘’๐’‹๐‘ก2๐‘ฅ2๐‘”(๐‘ก1, ๐‘ก2)๐‘‘๐‘ก1๐‘‘๐‘ก2

= (2๐œ‹)2โˆซโ„2

๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ2(๐‘ฅ2)โ„ฑโˆ’1(๐‘”)(๐‘ฅ1, ๐‘ฅ2). (3.55)

Making the change of variables ๐‘ก1 โˆ’โ†’ ๐œ”1โˆ’ ๐‘ก1, ๐‘ก2 โˆ’โ†’ ๐œ‚โˆ’๐œ”2 in the definition of ๐‘”,we finally findโˆซ

โ„2

๐‘“(๐‘ก1, ๐‘ก2)๐‘”(๐œ”1 โˆ’ ๐‘ก1, ๐œ‚ โˆ’ ๐œ”2)๐‘‘๐‘ก1๐‘‘๐‘ก2 (3.56)

=

โˆซโ„2

๐‘‘๐œŽ1(๐‘ฅ1)๐‘‘๐œŽ2(๐‘ฅ2)

โˆซโ„2

๐‘’๐’Š๐‘ก1๐‘ฅ1 ๐‘’๐’‹๐‘ก2๐‘ฅ2๐‘”(๐œ”1 โˆ’ ๐‘ก1, ๐œ‚ โˆ’ ๐œ”2)๐‘‘๐‘ก1๐‘‘๐‘ก2. โ–ก

Theorem 3.17. For any ๐œŽ1, ๐œŽ2 : โ„ โˆ’โ†’ โ„, consider the functions

๐‘”(๐œ”1) =

โˆซโ„

๐‘‘๐œŽ1(๐‘ฅ1) ๐‘’๐’Š๐œ”1๐‘ฅ1 , โ„Ž(๐œ”2) =

โˆซโ„

๐‘‘๐œŽ2(๐‘ฅ2) ๐‘’๐’‹๐œ”2๐‘ฅ2 . (3.57)

Page 122: Quaternion and Clifford Fourier Transforms and Wavelets

5. Bochnerโ€™s Theorems 97

Then for any real number ๐œŒ the following equalities hold:

๐œŽ1(๐œŒ)โˆ’ ๐œŽ1(0) =1

2๐œ‹

โˆซโ„

๐‘”(๐œ”1)๐‘’โˆ’๐’Š๐œŒ๐œ”1 โˆ’ 1

โˆ’๐’Š๐œ”1๐‘‘๐œ”1, (3.58)

๐œŽ2(๐œŒ)โˆ’ ๐œŽ2(0) =1

2๐œ‹

โˆซโ„

โ„Ž(๐œ”2)๐‘’โˆ’๐’‹๐œŒ๐œ”2 โˆ’ 1

โˆ’๐’‹๐œ”2๐‘‘๐œ”2. (3.59)

Proof. We begin with the following observation:

๐‘”(๐œ”1)(๐‘’โˆ’๐’Š๐œŒ๐œ”1 โˆ’ 1

)=

โˆซโ„

๐‘‘๐œŽ1(๐‘ฅ1) ๐‘’๐’Š๐œ”1๐‘ฅ1

(๐‘’โˆ’๐’Š๐œŒ๐œ”1 โˆ’ 1

)=

โˆซโ„

๐‘‘๐œŽ1(๐‘ฅ1) ๐‘’๐’Š๐œ”1(๐‘ฅ1โˆ’๐œŒ) โˆ’

โˆซโ„

๐‘‘๐œŽ1(๐‘ฅ1) ๐‘’๐’Š๐œ”1๐‘ฅ1

=

โˆซโ„

๐‘‘๐œŽ1(๐‘ฅ1 + ๐œŒ) ๐‘’๐’Š๐œ”1๐‘ฅ1 โˆ’โˆซโ„

๐‘‘๐œŽ1(๐‘ฅ1) ๐‘’๐’Š๐œ”1๐‘ฅ1

= lim๐‘›โˆ’โ†’โˆž

(โˆซ ๐‘›

โˆ’๐‘›๐‘‘๐œŽ1(๐‘ฅ1 + ๐œŒ) ๐‘’๐’Š๐œ”1๐‘ฅ1 โˆ’

โˆซ ๐‘›

โˆ’๐‘›๐‘‘๐œŽ1(๐‘ฅ1) ๐‘’

๐’Š๐œ”1๐‘ฅ1

)= lim

๐‘›โˆ’โ†’โˆž

[๐œŽ1(๐‘›+ ๐œŒ)๐‘’๐’Š๐‘›๐œ”1 โˆ’ ๐œŽ1(โˆ’๐‘›+ ๐œŒ)๐‘’โˆ’๐’Š๐‘›๐œ”1 โˆ’ ๐œŽ1(๐‘›)๐‘’๐’Š๐‘›๐œ”1

+ ๐œŽ1(โˆ’๐‘›)๐‘’โˆ’๐’Š๐‘›๐œ”1 โˆ’โˆซ ๐‘›

โˆ’๐‘›

(๐œŽ1(๐‘ฅ1 + ๐œŒ)โˆ’ ๐œŽ1(๐‘ฅ1)

)๐‘‘๐‘ฅ1 ๐‘’

๐’Š๐œ”1๐‘ฅ1๐’Š๐œ”1

]= โˆ’

โˆซโ„

(๐œŽ1(๐‘ฅ1 + ๐œŒ)โˆ’ ๐œŽ1(๐‘ฅ1)

)๐‘‘๐‘ฅ1 ๐‘’

๐’Š๐œ”1๐‘ฅ1๐’Š๐œ”1.

(3.60)

Therefore, it is easy to see that

๐‘”(๐œ”1)(๐‘’โˆ’๐’Š๐œŒ๐œ”1 โˆ’ 1

) 1

โˆ’๐’Š๐œ”1=

โˆซโ„

(๐œŽ1(๐‘ฅ1 + ๐œŒ)โˆ’ ๐œŽ1(๐‘ฅ1)

)๐‘‘๐‘ฅ1 ๐‘’

๐’Š๐œ”1๐‘ฅ1 . (3.61)

From the last equality and from the inverse Fourier transform formula we find that

๐œŽ1(๐‘ฅ1 + ๐œŒ)โˆ’ ๐œŽ1(๐‘ฅ1) =1

2๐œ‹

โˆซโ„

๐‘”(๐œ”1)๐‘’โˆ’๐’Š๐œŒ๐œ”1 โˆ’ 1

โˆ’๐’Š๐œ”1๐‘’โˆ’๐’Š๐‘ฅ1๐œ”1๐‘‘๐œ”1, (3.62)

and, in particular for ๐‘ฅ1 = 0 we find that

๐œŽ1(๐œŒ)โˆ’ ๐œŽ1(0) =1

2๐œ‹

โˆซโ„

๐‘”(๐œ”1)๐‘’โˆ’๐’Š๐œŒ๐œ”1 โˆ’ 1

โˆ’๐’Š๐œ”1๐‘‘๐œ”1. (3.63)

In a similar way we may deduce that

๐œŽ2(๐œŒ)โˆ’ ๐œŽ2(0) =1

2๐œ‹

โˆซโ„

โ„Ž(๐œ”1)๐‘’โˆ’๐’‹๐œŒ๐œ”1 โˆ’ 1

โˆ’๐’‹๐œ”1๐‘‘๐œ”1 , (3.64)

which completes the proof. โ–ก

Page 123: Quaternion and Clifford Fourier Transforms and Wavelets

98 S. Georgiev and J. Morais

3.4. Connecting Uniform Continuity to Quaternion Distributions

In this subsection we describe the connection between uniform continuity andquaternion distributions.

Theorem 3.18. Let the sequences of quaternion distributions

๐œŽ1(๐‘ฅ1), ๐œŽ2(๐‘ฅ1), . . . , ๐œŽ

๐‘›(๐‘ฅ1), . . . , ๐œ1(๐‘ฅ2), ๐œ2(๐‘ฅ2), . . . , ๐œ

๐‘›(๐‘ฅ2), . . . (3.65)

be convergent to the distributions ๐œŽ0(๐‘ฅ1) and ๐œ0(๐‘ฅ2), respectively. Assume that

lim๐‘›โˆ’โ†’โˆž๐œŽ๐‘›(ยฑโˆž) = ๐œŽ0(ยฑโˆž), lim

๐‘›โˆ’โ†’โˆž ๐œ๐‘›(ยฑโˆž) = ๐œ0(ยฑโˆž), (3.66)

where ๐‘“๐‘›(๐œ”1, ๐œ”2) โˆˆ โ„ฌ corresponds to the distributions ๐œŽ๐‘›(๐‘ฅ1) and ๐œ๐‘›(๐‘ฅ2), and๐‘“0(๐œ”1, ๐œ”2) corresponds to the distributions ๐œŽ0(๐‘ฅ1) and ๐œ0(๐‘ฅ2), respectively. Then

lim๐‘›โˆ’โ†’โˆž ๐‘“๐‘›(๐œ”1, ๐œ”2) = ๐‘“0(๐œ”1, ๐œ”2).

Proof. To begin with, we choose ๐‘Ž > 0 so that ๐œŽ0(๐‘ฅ1) and ๐œ0(๐‘ฅ2) are continuousfunctions at ยฑ๐‘Ž. Then

lim๐‘›โˆ’โ†’โˆž๐œŽ๐‘›(ยฑ๐‘Ž) = ๐œŽ0(ยฑ๐‘Ž), lim

๐‘›โˆ’โ†’โˆž ๐œ๐‘›(ยฑ๐‘Ž) = ๐œ0(ยฑ๐‘Ž). (3.67)

For brevity of exposition, in the sequel we omit the arguments and write simply๐‘‘๐œŽ๐‘˜ and ๐‘‘๐œ๐‘˜ instead of ๐‘‘๐œŽ๐‘˜(๐‘ฅ1) and ๐‘‘๐œ๐‘˜(๐‘ฅ2), respectively. Now, we make use ofthe following representations for ๐‘“๐‘›(๐œ”1, ๐œ”2) and ๐‘“0(๐œ”1, ๐œ”2):

๐‘“๐‘›(๐œ”1, ๐œ”2) =

โˆซโ„2

๐‘‘๐œŽ๐‘›๐‘‘๐œ๐‘› ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2

=

โˆซ ๐‘Ž

โˆ’๐‘Ž

โˆซ ๐‘Ž

โˆ’๐‘Ž๐‘‘๐œŽ๐‘›๐‘‘๐œ๐‘› ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2 +

โˆซ โˆ’๐‘Ž

โˆ’โˆž

โˆซ โˆ’๐‘Ž

โˆ’โˆž๐‘‘๐œŽ๐‘›๐‘‘๐œ๐‘› ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2

+

โˆซ โˆ’๐‘Ž

โˆ’โˆž

โˆซ ๐‘Ž

โˆ’๐‘Ž๐‘‘๐œŽ๐‘›๐‘‘๐œ๐‘› ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2 +

โˆซ โˆ’๐‘Ž

โˆ’โˆž

โˆซ โˆž

๐‘Ž

๐‘‘๐œŽ๐‘›๐‘‘๐œ๐‘› ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2

+

โˆซ ๐‘Ž

โˆ’๐‘Ž

โˆซ โˆ’๐‘Ž

โˆ’โˆž๐‘‘๐œŽ๐‘›๐‘‘๐œ๐‘› ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2 +

โˆซ ๐‘Ž

โˆ’๐‘Ž

โˆซ โˆž

๐‘Ž

๐‘‘๐œŽ๐‘›๐‘‘๐œ๐‘› ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2

+

โˆซ โˆž

๐‘Ž

โˆซ โˆ’๐‘Ž

โˆ’โˆž๐‘‘๐œŽ๐‘›๐‘‘๐œ๐‘› ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2 +

โˆซ โˆž

๐‘Ž

โˆซ ๐‘Ž

โˆ’๐‘Ž๐‘‘๐œŽ๐‘›๐‘‘๐œ๐‘› ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2

+

โˆซ โˆž

๐‘Ž

โˆซ โˆž

๐‘Ž

๐‘‘๐œŽ๐‘›๐‘‘๐œ๐‘› ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2 , (3.68)

and,

๐‘“0(๐œ”1, ๐œ”2) =

โˆซโ„2

๐‘‘๐œŽ0๐‘‘๐œ0 ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2

=

โˆซ ๐‘Ž

โˆ’๐‘Ž

โˆซ ๐‘Ž

โˆ’๐‘Ž๐‘‘๐œŽ0๐‘‘๐œ0 ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2 +

โˆซ โˆ’๐‘Ž

โˆ’โˆž

โˆซ โˆ’๐‘Ž

โˆ’โˆž๐‘‘๐œŽ0๐‘‘๐œ0 ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2

+

โˆซ โˆ’๐‘Ž

โˆ’โˆž

โˆซ ๐‘Ž

โˆ’๐‘Ž๐‘‘๐œŽ0๐‘‘๐œ0 ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2 +

โˆซ โˆ’๐‘Ž

โˆ’โˆž

โˆซ โˆž

๐‘Ž

๐‘‘๐œŽ0๐‘‘๐œ0 ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2

Page 124: Quaternion and Clifford Fourier Transforms and Wavelets

5. Bochnerโ€™s Theorems 99

+

โˆซ ๐‘Ž

โˆ’๐‘Ž

โˆซ โˆ’๐‘Ž

โˆ’โˆž๐‘‘๐œŽ0๐‘‘๐œ0 ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2 +

โˆซ ๐‘Ž

โˆ’๐‘Ž

โˆซ โˆž

๐‘Ž

๐‘‘๐œŽ0๐‘‘๐œ0 ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2

+

โˆซ โˆž

๐‘Ž

โˆซ โˆ’๐‘Ž

โˆ’โˆž๐‘‘๐œŽ0๐‘‘๐œ0 ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2 +

โˆซ โˆž

๐‘Ž

โˆซ ๐‘Ž

โˆ’๐‘Ž๐‘‘๐œŽ0๐‘‘๐œ0 ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2

+

โˆซ โˆž

๐‘Ž

โˆซ โˆž

๐‘Ž

๐‘‘๐œŽ0๐‘‘๐œ0 ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2 . (3.69)

Furthermore, we set

๐ผ1(๐œ”1, ๐œ”2, ๐‘Ž)

=

โˆซ ๐‘Ž

โˆ’๐‘Ž

โˆซ ๐‘Ž

โˆ’๐‘Ž๐‘‘๐œŽ0๐‘‘๐œ0 ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2 โˆ’

โˆซ ๐‘Ž

โˆ’๐‘Ž

โˆซ ๐‘Ž

โˆ’๐‘Ž๐‘‘๐œŽ๐‘›๐‘‘๐œ๐‘› ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2 , (3.70)

๐ผ2(๐œ”1, ๐œ”2, ๐‘Ž)

=

โˆซ โˆ’๐‘Ž

โˆ’โˆž

โˆซ โˆ’๐‘Ž

โˆ’โˆž๐‘‘๐œŽ0๐‘‘๐œ0 ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2 โˆ’

โˆซ โˆ’๐‘Ž

โˆ’โˆž

โˆซ โˆ’๐‘Ž

โˆ’โˆž๐‘‘๐œŽ๐‘›๐‘‘๐œ๐‘› ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2 , (3.71)

๐ผ3(๐œ”1, ๐œ”2, ๐‘Ž)

=

โˆซ โˆ’๐‘Ž

โˆ’โˆž

โˆซ ๐‘Ž

โˆ’๐‘Ž๐‘‘๐œŽ0๐‘‘๐œ0 ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2 โˆ’

โˆซ โˆ’๐‘Ž

โˆ’โˆž

โˆซ ๐‘Ž

โˆ’๐‘Ž๐‘‘๐œŽ๐‘›๐‘‘๐œ๐‘› ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2 , (3.72)

๐ผ4(๐œ”1, ๐œ”2, ๐‘Ž)

=

โˆซ โˆ’๐‘Ž

โˆ’โˆž

โˆซ โˆž

๐‘Ž

๐‘‘๐œŽ0๐‘‘๐œ0 ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2 โˆ’โˆซ โˆ’๐‘Ž

โˆ’โˆž

โˆซ โˆž

๐‘Ž

๐‘‘๐œŽ๐‘›๐‘‘๐œ๐‘› ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2 , (3.73)

๐ผ5(๐œ”1, ๐œ”2, ๐‘Ž)

=

โˆซ ๐‘Ž

โˆ’๐‘Ž

โˆซ โˆ’๐‘Ž

โˆ’โˆž๐‘‘๐œŽ0๐‘‘๐œ0 ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2 โˆ’

โˆซ ๐‘Ž

โˆ’๐‘Ž

โˆซ โˆ’๐‘Ž

โˆ’โˆž๐‘‘๐œŽ๐‘›๐‘‘๐œ๐‘› ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2 , (3.74)

๐ผ6(๐œ”1, ๐œ”2, ๐‘Ž)

=

โˆซ ๐‘Ž

โˆ’๐‘Ž

โˆซ โˆž

๐‘Ž

๐‘‘๐œŽ0๐‘‘๐œ0 ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2 โˆ’โˆซ ๐‘Ž

โˆ’๐‘Ž

โˆซ โˆž

๐‘Ž

๐‘‘๐œŽ๐‘›๐‘‘๐œ๐‘› ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2 , (3.75)

๐ผ7(๐œ”1, ๐œ”2, ๐‘Ž)

=

โˆซ โˆž

๐‘Ž

โˆซ โˆ’๐‘Ž

โˆ’โˆž๐‘‘๐œŽ0๐‘‘๐œ0 ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2 โˆ’

โˆซ โˆž

๐‘Ž

โˆซ โˆ’๐‘Ž

โˆ’โˆž๐‘‘๐œŽ๐‘›๐‘‘๐œ๐‘› ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2 , (3.76)

๐ผ8(๐œ”1, ๐œ”2, ๐‘Ž)

=

โˆซ โˆž

๐‘Ž

โˆซ ๐‘Ž

โˆ’๐‘Ž๐‘‘๐œŽ0๐‘‘๐œ0 ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2 โˆ’

โˆซ โˆž

๐‘Ž

โˆซ ๐‘Ž

โˆ’๐‘Ž๐‘‘๐œŽ๐‘›๐‘‘๐œ๐‘› ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2 , (3.77)

๐ผ9(๐œ”1, ๐œ”2, ๐‘Ž)

=

โˆซ โˆž

๐‘Ž

โˆซ โˆž

๐‘Ž

๐‘‘๐œŽ0๐‘‘๐œ0 ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2 โˆ’โˆซ โˆž

๐‘Ž

โˆซ โˆž

๐‘Ž

๐‘‘๐œŽ๐‘›๐‘‘๐œ๐‘› ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2 . (3.78)

We further define ๐ด๐‘™(๐œ”1, ๐œ”2, ๐‘Ž) = lim๐‘›โˆ’โ†’โˆž โˆฃ๐ผ ๐‘™(๐œ”1, ๐‘Ž)โˆฃ (๐‘™ = 1, 2, 3, 4, 5, 6, 7, 8).

Page 125: Quaternion and Clifford Fourier Transforms and Wavelets

100 S. Georgiev and J. Morais

For ๐ผ1(๐œ”1, ๐‘Ž) a straightforward computation shows that

โˆฃ๐ผ1(๐œ”1, ๐œ”2, ๐‘Ž)โˆฃ

=

โˆฃโˆฃโˆฃโˆฃโˆฃ(๐œŽ๐‘›(๐‘Ž)๐‘’๐’Š๐œ”1๐‘Ž โˆ’ ๐œŽ๐‘›(โˆ’๐‘Ž)๐‘’โˆ’๐’Š๐œ”1๐‘Ž โˆ’

โˆซ ๐‘Ž

โˆ’๐‘Ž๐œŽ๐‘›(๐‘ฅ1)๐’Š๐œ”1๐‘’

๐’Š๐œ”1๐‘ฅ1๐‘‘๐‘ฅ1

)(๐œ๐‘›(๐‘Ž)๐‘’๐’‹๐œ”2๐‘Ž โˆ’ ๐œ๐‘›(โˆ’๐‘Ž)๐‘’โˆ’๐’‹๐œ”2๐‘Ž โˆ’

โˆซ ๐‘Ž

โˆ’๐‘Ž๐œ๐‘›(๐‘ฅ2)๐’Š๐œ”2๐‘’

๐’‹๐œ”2๐‘ฅ2๐‘‘๐‘ฅ2

)โˆ’(๐œŽ0(๐‘Ž)๐‘’๐’Š๐œ”1๐‘Ž โˆ’ ๐œŽ0(โˆ’๐‘Ž)๐‘’โˆ’๐’Š๐œ”1๐‘Ž โˆ’

โˆซ ๐‘Ž

โˆ’๐‘Ž๐œŽ0(๐‘ฅ1)๐’Š๐œ”1๐‘’

๐’Š๐œ”1๐‘ฅ1๐‘‘๐‘ฅ1

)(๐œ0(๐‘Ž)๐‘’๐’‹๐œ”2๐‘Ž โˆ’ ๐œ๐‘›(โˆ’๐‘Ž)๐‘’โˆ’๐’‹๐œ”2๐‘Ž โˆ’

โˆซ ๐‘Ž

โˆ’๐‘Ž๐œ0(๐‘ฅ2)๐’‹๐œ”2๐‘’

๐’‹๐œ”2๐‘ฅ2๐‘‘๐‘ฅ2

)โˆฃโˆฃโˆฃโˆฃโˆฃ. (3.79)

Based on these results and on (3.67), and the convergence of the sequences ๐œŽ๐‘›(๐‘ฅ1)and ๐œ๐‘›(๐‘ฅ2), it follows that ๐ด1(๐œ”1, ๐œ”2, ๐‘Ž) = 0. Hence

โˆฃ๐ผ2(๐œ”1, ๐‘Ž)โˆฃ โ‰คโˆซ โˆ’๐‘Ž

โˆ’โˆž

โˆซ โˆ’๐‘Ž

โˆ’โˆž๐‘‘๐œŽ0(๐‘ฅ1)๐‘‘๐œ

0(๐‘ฅ2) โˆฃ๐‘’๐’Š๐œ”1๐‘ฅ1๐‘’๐’‹๐œ”2๐‘ฅ2 โˆฃ

+

โˆซ โˆ’๐‘Ž

โˆ’โˆž

โˆซ โˆ’๐‘Ž

โˆ’โˆž๐‘‘๐œŽ๐‘›(๐‘ฅ1)๐‘‘๐œ

๐‘›(๐‘ฅ2) โˆฃ๐‘’๐’Š๐œ”1๐‘ฅ1๐‘’๐’‹๐œ”2๐‘ฅ2 โˆฃ

โ‰ค โˆฃ๐œŽ0(โˆ’๐‘Ž)โˆ’ ๐œŽ0(โˆ’โˆž)โˆฃ โˆฃ๐œ0(โˆ’๐‘Ž)โˆ’ ๐œ0(โˆ’โˆž)โˆฃ+ โˆฃ๐œŽ๐‘›(โˆ’๐‘Ž)โˆ’ ๐œŽ๐‘›(โˆ’โˆž)โˆฃ โˆฃ๐œ๐‘›(โˆ’๐‘Ž)โˆ’ ๐œ๐‘›(โˆ’โˆž)โˆฃ . (3.80)

From the last inequality and from (3.66) it follows that for any ๐œ– > 0 we can choose๐‘Ž > 0 large enough so that ๐ด2(๐œ”1, ๐œ”2, ๐‘Ž) < ๐œ–. In a similar way, we have

๐ด๐‘™(๐œ”1, ๐œ”2, ๐‘Ž) < ๐œ–, ๐‘™ = 3, 4, 5, 6, 7, 8, 9. (3.81)

By combining these arguments, we finally obtain

lim๐‘›โˆ’โ†’โˆž ๐‘“๐‘›(๐œ”1, ๐œ”2) = ๐‘“0(๐œ”1, ๐œ”2), (3.82)

which completes the proof. โ–ก

4. The Main Theorem

In this section we shall extend Bochnerโ€™s result to the noncommutative structureof quaternion functions. We first define a few general properties of quaternionpositive-type functions.

4.1. Positive Functions

Let us define the notion of positive definite measure in the context of quaternionanalysis.

Definition 4.1. A function ๐‘“ : โ„2 โˆ’โ†’ โ„ is called positive definite, if it satisfies thefollowing conditions:

Page 126: Quaternion and Clifford Fourier Transforms and Wavelets

5. Bochnerโ€™s Theorems 101

1. ๐‘“ is bounded and continuous on โ„2.

2. ๐‘“(โˆ’๐Ž) = ๐‘”(๐Ž) for all ๐Ž โˆˆ โ„2, where ๐‘” is any function which can be repre-

sented as โ„ฑ๐’ฎ ๐‘™(๐œŽ2, ๐œŽ1)(๐œ”1, ๐œ”2).3. For any ๐œ†๐‘š = (๐œ†1๐‘š, ๐œ†2๐‘š) โˆˆ โ„2, quaternion numbers ๐‘ง๐‘š (๐‘š = 1, 2, . . . , ๐‘›),

and any positive integer ๐‘› the following inequality is satisfied:๐‘›โˆ‘

๐‘š,๐‘™=1๐‘šโ‰ฅ๐‘™

๐‘“(๐œ†๐‘š โˆ’ ๐œ†๐‘™) ๐‘ง๐‘š๐‘ง๐‘™ +๐‘›โˆ‘

๐‘š,๐‘™=1๐‘š>๐‘™

๐‘ง๐‘š๐‘ง๐‘™๐‘“(๐œ†๐‘™ โˆ’ ๐œ†๐‘š) โ‰ฅ 0. (4.1)

These parameters are measured such that:

(i) When ๐œ†๐‘š = ๐œ†๐‘™ for ๐‘š โˆ•= ๐‘™ (๐‘š, ๐‘™ = 1, 2, . . . , ๐‘›) it follows๐‘›โˆ‘

๐‘š,๐‘™=1๐‘šโ‰ค๐‘™

๐‘“(0, 0)๐‘ง๐‘š๐‘ง๐‘™ +

๐‘›โˆ‘๐‘š,๐‘™=1๐‘š>๐‘™

๐‘ง๐‘š๐‘ง๐‘™ ๐‘“(0, 0) =

๐‘›โˆ‘๐‘š,๐‘™=1๐‘šโ‰ค๐‘™

(๐‘“(0, 0)๐‘ง๐‘š๐‘ง๐‘™ + ๐‘ง๐‘™๐‘ง๐‘š๐‘“(0, 0)

)

=โˆ‘๐‘š,๐‘™=1๐‘šโ‰ค๐‘™

(๐‘“(0, 0)๐‘ง๐‘š๐‘ง๐‘™ + ๐‘“(0, 0)๐‘ง๐‘š๐‘ง๐‘™

)

= 2

๐‘›โˆ‘๐‘š,๐‘™=1๐‘šโ‰ค๐‘™

S(๐‘“(0, 0)๐‘ง๐‘š๐‘ง๐‘™) โ‰ฅ 0. (4.2)

(ii) When ๐œ†๐‘š = ๐œ†๐‘™, ๐‘ง๐‘š = ๐‘ง๐‘™ for ๐‘š โˆ•= ๐‘™ (๐‘š, ๐‘™ = 1, 2, . . . , ๐‘›), and by using theprevious observation we get

2 S(๐‘“(0, 0))

๐‘›โˆ‘๐‘š=1

โˆฃ๐‘ง๐‘šโˆฃ2 โ‰ฅ 0 โ‡” S(๐‘“(0, 0)) โ‰ฅ 0. (4.3)

(iii) When ๐‘› = 2, ๐œ†1 = ๐Ž, and ๐œ†2 = 0, it follows that

๐‘“(๐Ž)๐‘ง1๐‘ง2 + ๐‘“(0, 0)(โˆฃ๐‘ง1โˆฃ2 + โˆฃ๐‘ง2โˆฃ2

)+ ๐‘ง2๐‘ง1๐‘“(๐Ž)

= 2 S(๐‘“(๐Ž)๐‘ง1๐‘ง2) +(โˆฃ๐‘ง1โˆฃ2 + โˆฃ๐‘ง2โˆฃ2

)๐‘“(0, 0). (4.4)

In particular, when ๐‘ง1 = ๐‘ง2 we obtain

2 โˆฃ๐‘ง1โˆฃ2 (S(๐‘“(๐Ž)) + ๐‘“(0, 0)) โ‰ฅ 0 โ‡” S(๐‘“(๐Ž)) + ๐‘“(0, 0) โ‰ฅ 0. (4.5)

Remark 4.2. It should be noted that not all functions in โ„ฌ are positive definite.To verify this claim take, for example, the function ๐‘“(๐œ”1, ๐œ”2) = โˆ’๐‘’โˆ’๐’Š๐œ”1 . It is easyto see that expression (4.1) is not satisfied.

4.2. Bochner Theorem

Before proving the generalization of Bochnerโ€™s theorem to quaternion functions,we consider the following set

๐’ž :=

{๐‘“ : โ„2 โˆ’โ†’ โ„ : ๐‘“ =

โˆซโ„2

๐‘‘โˆฃโˆฃ๐œŽ1(๐‘ฅ1)

โˆฃโˆฃ ๐‘‘ โˆฃโˆฃ๐œŽ2(๐‘ฅ2)โˆฃโˆฃ ๐‘’๐’Š๐œ”1๐‘ฅ1๐‘’๐’‹๐œ”2๐‘ฅ2

}โŠ‚ โ„ฌ. (4.6)

Page 127: Quaternion and Clifford Fourier Transforms and Wavelets

102 S. Georgiev and J. Morais

We are now ready for the classification theorem.

Theorem 4.3. If ๐‘“ โˆˆ ๐’ž then ๐‘“ is positive definite.

Proof. Statement 1 of Definition 4.1 is proved in Proposition 3.10, and Statement2 follows from (3.29). Let ๐œ†๐‘š = (๐œ†1๐‘š, ๐œ†2๐‘š) โˆˆ โ„2, ๐‘ง๐‘š โˆˆ โ„ (๐‘š = 1, 2, . . . , ๐‘›). Forany ๐œŽ1, ๐œŽ2 : โ„โ†’ โ„, straightforward computations show that

๐‘›โˆ‘๐‘š,๐‘™=1๐‘šโ‰ค๐‘™

๐‘“(๐œ†๐‘š โˆ’ ๐œ†๐‘™)๐‘ง๐‘š๐‘ง๐‘™ +

๐‘›โˆ‘๐‘š,๐‘™=1๐‘š>๐‘™

๐‘ง๐‘š๐‘ง๐‘™๐‘“(๐œ†๐‘™ โˆ’ ๐œ†๐‘š)

=๐‘›โˆ‘

๐‘š,๐‘™=1๐‘šโ‰ค๐‘™

(โˆซโ„2

๐‘‘โˆฃโˆฃ๐œŽ1(๐‘ฅ1)

โˆฃโˆฃ ๐‘‘ โˆฃโˆฃ๐œŽ2(๐‘ฅ2)โˆฃโˆฃ ๐‘’๐’Š(๐œ†1๐‘šโˆ’๐œ†1๐‘™)๐‘ฅ1๐‘’๐’‹(๐œ†2๐‘šโˆ’๐œ†2๐‘™)๐‘ฅ2

)๐‘ง๐‘š๐‘ง๐‘™

+

๐‘›โˆ‘๐‘š,๐‘™=1๐‘š>๐‘™

๐‘ง๐‘š๐‘ง๐‘™

โˆซโ„2

๐‘‘ โˆฃ๐œŽ1(๐‘ฅ1)โˆฃ ๐‘‘ โˆฃ๐œŽ2(๐‘ฅ2)โˆฃ ๐‘’๐’Š(๐œ†1๐‘™โˆ’๐œ†1๐‘š)๐‘ฅ1๐‘’๐’‹(๐œ†2๐‘šโˆ’๐œ†2๐‘™)๐‘ฅ2

=

๐‘›โˆ‘๐‘š,๐‘™=1๐‘šโ‰ค๐‘™

(โˆซโ„2

๐‘‘โˆฃโˆฃ๐œŽ1(๐‘ฅ1)

โˆฃโˆฃ ๐‘‘ โˆฃโˆฃ๐œŽ2(๐‘ฅ2)โˆฃโˆฃ ๐‘’๐’Š(๐œ†1๐‘šโˆ’๐œ†1๐‘™)๐‘ฅ1๐‘’๐’‹(๐œ†2๐‘šโˆ’๐œ†2๐‘™)๐‘ฅ2

)๐‘ง๐‘š๐‘ง๐‘™

+

๐‘›โˆ‘๐‘š,๐‘™=1๐‘š>๐‘™

๐‘ง๐‘š๐‘ง๐‘™

โˆซโ„2

๐‘’โˆ’๐’‹(๐œ†2๐‘šโˆ’๐œ†2๐‘™)๐‘ฅ2๐‘’โˆ’๐’Š(๐œ†1๐‘™โˆ’๐œ†1๐‘š)๐‘ฅ1๐‘‘โˆฃโˆฃ๐œŽ1(๐‘ฅ1)

โˆฃโˆฃ ๐‘‘ โˆฃโˆฃ๐œŽ2(๐‘ฅ2)โˆฃโˆฃ

=

๐‘›โˆ‘๐‘š=1

โˆฃ๐‘ง๐‘šโˆฃ2(โˆฃโˆฃ๐œŽ1(โˆž)

โˆฃโˆฃโˆ’ โˆฃโˆฃ๐œŽ1(โˆ’โˆž)โˆฃโˆฃ) (โˆฃโˆฃ๐œŽ2(โˆž)

โˆฃโˆฃโˆ’ โˆฃโˆฃ๐œŽ2(โˆ’โˆž)โˆฃโˆฃ)

+

๐‘›โˆ‘๐‘š,๐‘™=1๐‘š<๐‘™

โˆซโ„2

๐‘‘โˆฃโˆฃ๐œŽ1(๐‘ฅ1)

โˆฃโˆฃ ๐‘‘ โˆฃโˆฃ๐œŽ2(๐‘ฅ2)โˆฃโˆฃโŽ›โŽ ๐‘’๐’Š(๐œ†1๐‘šโˆ’๐œ†1๐‘™)๐‘ฅ1๐‘’๐’‹(๐œ†2๐‘šโˆ’๐œ†2๐‘™)๐›ฝ๐‘ง๐‘š๐‘ง๐‘™

+

๐‘ง๐‘™๐‘ง๐‘š๐‘’โˆ’๐’‹(๐œ†2๐‘šโˆ’๐œ†2๐‘™)๐‘ฅ2๐‘’โˆ’๐’Š(๐œ†1๐‘šโˆ’๐œ†1๐‘™)๐‘ฅ1

โŽžโŽ =

๐‘›โˆ‘๐‘š=1

โˆฃ๐‘ง๐‘šโˆฃ2(โˆฃโˆฃ๐œŽ1(โˆž)

โˆฃโˆฃโˆ’ โˆฃโˆฃ๐œŽ1(โˆ’โˆž)โˆฃโˆฃ) (โˆฃโˆฃ๐œŽ2(โˆž)

โˆฃโˆฃโˆ’ โˆฃโˆฃ๐œŽ2(โˆ’โˆž)โˆฃโˆฃ)

+ 2

๐‘›โˆ‘๐‘š,๐‘™=1๐‘š<๐‘™

โˆซโ„2

๐‘‘โˆฃโˆฃ๐œŽ1(๐‘ฅ1)

โˆฃโˆฃ ๐‘‘ โˆฃโˆฃ๐œŽ2(๐‘ฅ2)โˆฃโˆฃS(๐‘’๐’Š(๐œ†1๐‘šโˆ’๐œ†1๐‘™)๐‘ฅ1๐‘’๐’‹(๐œ†2๐‘šโˆ’๐œ†2๐‘™)๐‘ฅ2๐‘ง๐‘š๐‘ง๐‘™

)

โ‰ฅ๐‘›โˆ‘

๐‘š=1

โˆฃ๐‘ง๐‘šโˆฃ2(โˆฃโˆฃ๐œŽ1(โˆž)

โˆฃโˆฃโˆ’ โˆฃโˆฃ๐œŽ1(โˆ’โˆž)โˆฃโˆฃ) (โˆฃโˆฃ๐œŽ2(โˆž)

โˆฃโˆฃ โˆ’ โˆฃโˆฃ๐œŽ2(โˆ’โˆž)โˆฃโˆฃ)

โˆ’ 2

๐‘›โˆ‘๐‘š,๐‘™=1๐‘š<๐‘™

โˆซโ„2

โˆฃ๐‘ง๐‘šโˆฃโˆฃ๐‘ง๐‘™โˆฃ ๐‘‘โˆฃโˆฃ๐œŽ1(๐‘ฅ1)

โˆฃโˆฃ ๐‘‘ โˆฃโˆฃ๐œŽ2(๐‘ฅ2)โˆฃโˆฃ

Page 128: Quaternion and Clifford Fourier Transforms and Wavelets

5. Bochnerโ€™s Theorems 103

=

โŽ›โŽœโŽ ๐‘›โˆ‘๐‘š=1

โˆฃ๐‘ง๐‘šโˆฃ2 โˆ’ 2

๐‘›โˆ‘๐‘š,๐‘™=1๐‘š<๐‘™

โˆฃ๐‘ง๐‘šโˆฃโˆฃ๐‘ง๐‘™โˆฃ

โŽžโŽŸโŽ (โˆฃโˆฃ๐œŽ1(โˆž)โˆฃโˆฃโˆ’ โˆฃโˆฃ๐œŽ1(โˆ’โˆž)

โˆฃโˆฃ) (โˆฃโˆฃ๐œŽ2(โˆž)โˆฃโˆฃโˆ’ โˆฃโˆฃ๐œŽ2(โˆ’โˆž)

โˆฃโˆฃ)

=

(๐‘›โˆ‘

๐‘š=1

โˆฃ๐‘ง๐‘šโˆฃ)2 (โˆฃโˆฃ๐œŽ1(โˆž)

โˆฃโˆฃโˆ’ โˆฃโˆฃ๐œŽ1(โˆ’โˆž)โˆฃโˆฃ) (โˆฃโˆฃ๐œŽ2(โˆž)

โˆฃโˆฃโˆ’ โˆฃโˆฃ๐œŽ2(โˆ’โˆž)โˆฃโˆฃ) โ‰ฅ 0. (4.7)

This proves that ๐‘“ is positive definite. โ–ก

The extension of Bochnerโ€™s result to a much larger class of quaternion func-tions remains a challenge to future research.

Acknowledgement

Partial support from the Foundation for Science and Technology (FCT) via thegrant DD-VU-02/90, Bulgaria, is acknowledged by the first named author. Thesecond named author acknowledges financial support from the Foundation for Sci-ence and Technology (FCT) via the post-doctoral grant SFRH/ BPD/66342/2009.This work was supported by FEDER funds through the COMPETE โ€“ Opera-tional Programme Factors of Competitiveness (โ€˜Programa Operacional Factoresde Competitividadeโ€™) and by Portuguese funds through the Center for Researchand Development in Mathematics and Applications (University of Aveiro) andthe Portuguese Foundation for Science and Technology (โ€˜FCT โ€“ Fundacao paraa Ciencia e a Tecnologiaโ€™), within project PEst-C/MAT/UI4106/2011 with theCOMPETE number FCOMP-01-0124-FEDER-022690.

References

[1] S. Bochner. Monotone funktionen, Stieltjessche integrate, und harmonische analyse.Mathematische Annalen, 108:378โ€“410, 1933.

[2] S. Bochner. Lectures on Fourier Integrals. Princeton University Press, Princeton, NewJersey, 1959.

[3] T. Bulow. Hypercomplex Spectral Signal Representations for the Processing and Anal-ysis of Images. PhD thesis, University of Kiel, Germany, Institut fur Informatik undPraktische Mathematik, Aug. 1999.

[4] T. Bulow, M. Felsberg, and G. Sommer. Non-commutative hypercomplex Fouriertransforms of multidimensional signals. In G. Sommer, editor, Geometric computingwith Clifford Algebras: Theoretical Foundations and Applications in Computer Visionand Robotics, pages 187โ€“207, Berlin, 2001. Springer.

[5] S. Georgiev, J. Morais, K.I. Kou, and W. SproรŸig. Bochnerโ€“Minlos theorem andquaternion Fourier transform. To appear.

[6] B. Mawardi, E. Hitzer, A. Hayashi, and R. Ashino. An uncertainty principle for quater-nion Fourier transform. Computers and Mathematics with Applications, 56(9):2411โ€“2417, 2008.

Page 129: Quaternion and Clifford Fourier Transforms and Wavelets

104 S. Georgiev and J. Morais

[7] B. Mawardi and E.M.S. Hitzer. Clifford Fourier transformation and uncertainty prin-ciple for the Clifford algebra ๐ถโ„“3,0. Advances in Applied Clifford Algebras, 16(1):41โ€“61,2006.

S. GeorgievDepartment of Differential EquationsUniversity of SofiaSofia, Bulgariae-mail: [email protected]

J. MoraisCentro de Investigacao e Desenvolvimento

em Matematica e Aplicacoes (CIDMA)Universidade de AveiroP3810-193 Aveiro, Portugale-mail: [email protected]

Page 130: Quaternion and Clifford Fourier Transforms and Wavelets

Quaternion and Cliffordโ€“Fourier Transforms and Wavelets

Trends in Mathematics, 105โ€“120cโƒ 2013 Springer Basel

6 Bochnerโ€“Minlos Theorem andQuaternion Fourier Transform

S. Georgiev, J. Morais, K.I. Kou and W. SproรŸig

Abstract. There have been several attempts in the literature to generalizethe classical Fourier transform by making use of the Hamiltonian quaternionalgebra. The first part of this chapter features certain properties of the as-ymptotic behaviour of the quaternion Fourier transform. In the second partwe introduce the quaternion Fourier transform of a probability measure, andwe establish some of its basic properties. In the final analysis, we introducethe notion of positive definite measure, and we set out to extend the classicalBochnerโ€“Minlos theorem to the framework of quaternion analysis.

Mathematics Subject Classification (2010). Primary 30G35; secondary 42A38;tertiary 42A82.

Keywords. Quaternion analysis, quaternion Fourier transform, asymptotic be-haviour, positive definitely measure, Bochnerโ€“Minlos theorem.

1. Introduction and Statement of Results

As is well known, the classical Fourier transform (FT) has wide applications inengineering, computer sciences, physics and applied mathematics. For instance,the FT can be used to provide signal analysis techniques where the signal fromthe original time domain is transformed to the frequency domain. Therefore thereexists great interest and considerable effort to extend the FT to higher dimensions,and study its properties and interdependencies (see, e.g., [1โ€“7, 9โ€“11, 17, 18, 20โ€“23] and elsewhere). In view of numerous applications in physics and engineeringproblems, one is particularly interested in higher-dimensional analogues to โ„๐‘›, inparticular, for ๐‘› = 4. To this end, so far quaternion analysis offers the possibilityof generalizing the underlying function theory in 2D to 4D, with the advantageof meeting exactly these goals. To aid the reader, see [15, 16, 19, 24, 25] for morecomplete accounts of this subject and related topics.

The first part of the present work is devoted to the study of the asymp-totic behaviour of the quaternion Fourier transform (QFT). The QFT was first

Page 131: Quaternion and Clifford Fourier Transforms and Wavelets

106 S. Georgiev, J. Morais, K.I. Kou and W. SproรŸig

introduced by Ell in [10]. He proposed a two-sided QFT and studied some of itsapplications and properties. Later, Bulow [7] (cf. [8] and [1,20]) has also conducteda generalization of the real and complex FT using the quaternion algebra basedon two complex variables, but, to the best of our knowledge, a detailed study ofits asymptotic behaviour has not been carried out yet. The main motivation of thepresent study is to develop further general numerical methods for partial differen-tial equations and to extend localization theorems for summation of Fourier seriesin the quaternion analysis setting. In a forthcoming article we shall describe theseconnections in more detail and illustrate them by some typical examples.

Due to the noncommutativity of the quaternions, there are three differenttypes of QFT: a right-sided QFT, a left-sided QFT, and a two-sided QFT [23].We will carry out the investigation of the following finite integral (defined fromthe time domain to the frequency domain)

โ„ฑ๐‘Ÿ(๐‘“)(๐œ”1, ๐œ”2) :=

โˆซ ๐‘

๐‘Ž

โˆซ ๐‘

๐‘Ž

๐‘“(๐‘ฅ1, ๐‘ฅ2) ๐‘’โˆ’๐’Š๐œ”1๐‘ฅ1 ๐‘’โˆ’๐’‹๐œ”2๐‘ฅ2 ๐‘‘๐‘ฅ1๐‘‘๐‘ฅ2, (1.1)

where the signal ๐‘“ : [๐‘Ž, ๐‘]ร— [๐‘Ž, ๐‘] โŠ‚ โ„2 โˆ’โ†’ โ„ will be taken to be

๐‘“(๐‘ฅ1, ๐‘ฅ2) := [๐‘“(๐‘ฅ1, ๐‘ฅ2)]0 + [๐‘“(๐‘ฅ1, ๐‘ฅ2)]1๐’Š+ [๐‘“(๐‘ฅ1, ๐‘ฅ2)]2๐’‹ + [๐‘“(๐‘ฅ1, ๐‘ฅ2)]3๐’Œ,

[๐‘“ ]๐‘™ : [๐‘Ž, ๐‘]ร— [๐‘Ž, ๐‘] โˆ’โ†’ โ„ (๐‘™ = 0, 1, 2, 3)

satisfying certain conditions, guaranteeing the convergence of the above integral.โ„ฑ๐‘Ÿ(๐‘“)(๐œ”1, ๐œ”2) is the (finite) right-sided Fourier transform [21] of the quaternionfunction ๐‘“(๐‘ฅ1, ๐‘ฅ2), and it may be interpreted as a quaternionic extension of theclassical FT; the exponential product ๐‘’โˆ’๐’Š๐œ”1๐‘ฅ1๐‘’โˆ’๐’‹๐œ”2๐‘ฅ2 is called the (right-sided)quaternion Fourier kernel, and for ๐‘– = 1, 2; ๐‘ฅ๐‘– will denote the space and ๐œ”๐‘– theangular frequency variables. The previous definition of the QFT varies from theoriginal one only in the fact that we use 2D vectors instead of scalars and that itis defined to be two-dimensional. Here ๐’Š, ๐’‹ and ๐’Œ are unit pure quaternions (i.e.,the quaternions with unit magnitude having no scalar part) that are orthogonalto each other. We point out that the product in (1.1) has to be written in a fixedorder since, in general, ๐‘’โˆ’๐’Š๐œ”1๐‘ฅ1๐‘’โˆ’๐’‹๐œ”2๐‘ฅ2 does not commute with every element ofthe algebra.

Remark 1.1. Throughout this text we investigate the integral (1.1) only that, forsimplicity, we denote by โ„ฑ(๐‘“). Nevertheless, all results can be easily performedfrom the left-hand side:

โ„ฑ๐‘™(๐‘“)(๐œ”1, ๐œ”2) :=

โˆซ ๐‘

๐‘Ž

โˆซ ๐‘

๐‘Ž

๐‘’โˆ’๐’‹๐œ”2๐‘ฅ2 ๐‘’โˆ’๐’Š๐œ”1๐‘ฅ1๐‘“(๐‘ฅ1, ๐‘ฅ2) ๐‘‘๐‘ฅ1๐‘‘๐‘ฅ2,

since

โ„ฑ๐‘Ÿ(๐‘“)(โˆ’๐œ”1,โˆ’๐œ”2) =

โˆซ ๐‘

๐‘Ž

โˆซ ๐‘

๐‘Ž

๐‘“(๐‘ฅ1, ๐‘ฅ2)๐‘’๐’Š๐œ”1๐‘ฅ1๐‘’๐’‹๐œ”2๐‘ฅ2๐‘‘๐‘ฅ1๐‘‘๐‘ฅ2

Page 132: Quaternion and Clifford Fourier Transforms and Wavelets

6. Bochnerโ€“Minlos Theorem and Quaternion Fourier Transform 107

=

โˆซ ๐‘

๐‘Ž

โˆซ ๐‘

๐‘Ž

๐‘“(๐‘ฅ1, ๐‘ฅ2)๐‘’โˆ’๐’‹๐œ”2๐‘ฅ2๐‘’โˆ’๐’Š๐œ”1๐‘ฅ1๐‘‘๐‘ฅ1๐‘‘๐‘ฅ2

=

โˆซ ๐‘

๐‘Ž

โˆซ ๐‘

๐‘Ž

๐‘’โˆ’๐’‹๐œ”2๐‘ฅ2๐‘’โˆ’๐’Š๐œ”1๐‘ฅ1๐‘“(๐‘ฅ1, ๐‘ฅ2)๐‘‘๐‘ฅ1๐‘‘๐‘ฅ2 = โ„ฑ๐‘™(๐‘“)(๐œ”1, ๐œ”2).

Lemma 1.2. The QFT of a 2D signal ๐‘“ โˆˆ ๐ฟ1([๐‘Ž, ๐‘]ร— [๐‘Ž, ๐‘];โ„) has the closed-formrepresentation:

โ„ฑ(๐‘“)(๐œ”1, ๐œ”2) := ฮฆ0(๐œ”1, ๐œ”2) + ฮฆ1(๐œ”1, ๐œ”2) + ฮฆ2(๐œ”1, ๐œ”2) + ฮฆ3(๐œ”1, ๐œ”2),

where the integrals are

ฮฆ0(๐œ”1, ๐œ”2) =

โˆซ ๐‘

๐‘Ž

โˆซ ๐‘

๐‘Ž

๐‘“(๐‘ฅ1, ๐‘ฅ2) cos(๐œ”1๐‘ฅ1) cos(๐œ”2๐‘ฅ2)๐‘‘๐‘ฅ1๐‘‘๐‘ฅ2,

ฮฆ1(๐œ”1, ๐œ”2) = โˆ’โˆซ ๐‘

๐‘Ž

โˆซ ๐‘

๐‘Ž

๐‘“(๐‘ฅ1, ๐‘ฅ2)๐’Š sin(๐œ”1๐‘ฅ1) cos(๐œ”2๐‘ฅ2)๐‘‘๐‘ฅ1๐‘‘๐‘ฅ2,

ฮฆ2(๐œ”1, ๐œ”2) = โˆ’โˆซ ๐‘

๐‘Ž

โˆซ ๐‘

๐‘Ž

๐‘“(๐‘ฅ1, ๐‘ฅ2)๐’‹ cos(๐œ”1๐‘ฅ1) sin(๐œ”2๐‘ฅ2)๐‘‘๐‘ฅ1๐‘‘๐‘ฅ2,

ฮฆ3(๐œ”1, ๐œ”2) =

โˆซ ๐‘

๐‘Ž

โˆซ ๐‘

๐‘Ž

๐‘“(๐‘ฅ1, ๐‘ฅ2)๐’Œ sin(๐œ”1๐‘ฅ1) sin(๐œ”2๐‘ฅ2)๐‘‘๐‘ฅ1๐‘‘๐‘ฅ2.

For illustrative purposes, we have the following identities:

Corollary 1.3. The QFT of a 2D signal ๐‘“ โˆˆ ๐ฟ1([๐‘Ž, ๐‘] ร— [๐‘Ž, ๐‘];โ„) satisfies the fol-lowing relations:

โ„ฑ(๐‘“)(๐œ”1, ๐œ”2) + โ„ฑ(๐‘“)(๐œ”1,โˆ’๐œ”2) = 2 (ฮฆ0(๐œ”1, ๐œ”2) + ฮฆ1(๐œ”1, ๐œ”2)) ,

โ„ฑ(๐‘“)(๐œ”1, ๐œ”2)โˆ’โ„ฑ(๐‘“)(๐œ”1,โˆ’๐œ”2) = 2 (ฮฆ2(๐œ”1, ๐œ”2) + ฮฆ3(๐œ”1, ๐œ”2)) ,

โ„ฑ(๐‘“)(๐œ”1, ๐œ”2) + โ„ฑ(๐‘“)(โˆ’๐œ”1, ๐œ”2) = 2 (ฮฆ0(๐œ”1, ๐œ”2) + ฮฆ2(๐œ”1, ๐œ”2)) ,

โ„ฑ(๐‘“)(๐œ”1, ๐œ”2)โˆ’โ„ฑ(๐‘“)(โˆ’๐œ”1, ๐œ”2) = 2 (ฮฆ1(๐œ”1, ๐œ”2) + ฮฆ3(๐œ”1, ๐œ”2)) ,

โ„ฑ(๐‘“)(๐œ”1, ๐œ”2) + โ„ฑ(๐‘“)(โˆ’๐œ”1,โˆ’๐œ”2) = 2 (ฮฆ0(๐œ”1, ๐œ”2) + ฮฆ3(๐œ”1, ๐œ”2)) ,

โ„ฑ(๐‘“)(๐œ”1, ๐œ”2)โˆ’โ„ฑ(๐‘“)(โˆ’๐œ”1,โˆ’๐œ”2) = 2 (ฮฆ1(๐œ”1, ๐œ”2) + ฮฆ2(๐œ”1, ๐œ”2)) ,

โ„ฑ(๐‘“)(๐œ”1,โˆ’๐œ”2) + โ„ฑ(๐‘“)(โˆ’๐œ”1,โˆ’๐œ”2) = 2 (ฮฆ0(๐œ”1, ๐œ”2)โˆ’ ฮฆ2(๐œ”1, ๐œ”2)) ,

โ„ฑ(๐‘“)(๐œ”1,โˆ’๐œ”2)โˆ’โ„ฑ(๐‘“)(โˆ’๐œ”1,โˆ’๐œ”2) = 2 (ฮฆ1(๐œ”1, ๐œ”2)โˆ’ ฮฆ3(๐œ”1, ๐œ”2)) ,

โ„ฑ(๐‘“)(โˆ’๐œ”1, ๐œ”2) + โ„ฑ(๐‘“)(โˆ’๐œ”1,โˆ’๐œ”2) = 2 (ฮฆ0(๐œ”1, ๐œ”2)โˆ’ ฮฆ1(๐œ”1, ๐œ”2)) ,

โ„ฑ(๐‘“)(โˆ’๐œ”1, ๐œ”2)โˆ’โ„ฑ(๐‘“)(โˆ’๐œ”1,โˆ’๐œ”2) = 2 (ฮฆ2(๐œ”1, ๐œ”2)โˆ’ ฮฆ3(๐œ”1, ๐œ”2)) .

Under suitable conditions, the original signal ๐‘“ can be reconstructed fromโ„ฑ(๐‘“) by the inverse transform (frequency to time domains).

Definition 1.4. The (right-sided) inverse QFT of ๐‘” โˆˆ ๐ฟ1(โ„2;โ„) is given by

โ„ฑโˆ’1๐‘Ÿ (๐‘”) : โ„2 โˆ’โ†’ โ„,

โ„ฑโˆ’1๐‘Ÿ (๐‘”)(๐‘ฅ1, ๐‘ฅ2) :=

1

(2๐œ‹)2

โˆซโ„2

๐‘”(๐œ”1, ๐œ”2) ๐‘’๐’‹๐œ”2๐‘ฅ2 ๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘‘๐œ”1๐‘‘๐œ”2.

Page 133: Quaternion and Clifford Fourier Transforms and Wavelets

108 S. Georgiev, J. Morais, K.I. Kou and W. SproรŸig

It has the closed-form representation:

โ„ฑโˆ’1๐‘Ÿ (๐‘”)(๐‘ฅ1, ๐‘ฅ2) := ฮฆ0(๐‘ฅ1, ๐‘ฅ2) + ฮฆ1(๐‘ฅ1, ๐‘ฅ2) + ฮฆ2(๐‘ฅ1, ๐‘ฅ2) + ฮฆ3(๐‘ฅ1, ๐‘ฅ2),

where the integrals are

ฮฆ0(๐‘ฅ1, ๐‘ฅ2) =1

(2๐œ‹)2

โˆซ ๐‘

๐‘Ž

โˆซ ๐‘

๐‘Ž

๐‘”(๐œ”1, ๐œ”2) cos(๐œ”1๐‘ฅ1) cos(๐œ”2๐‘ฅ2)๐‘‘๐œ”1๐‘‘๐œ”2,

ฮฆ1(๐‘ฅ1, ๐‘ฅ2) =1

(2๐œ‹)2

โˆซ ๐‘

๐‘Ž

โˆซ ๐‘

๐‘Ž

๐‘”(๐œ”1, ๐œ”2)๐’Š sin(๐œ”1๐‘ฅ1) cos(๐œ”2๐‘ฅ2)๐‘‘๐œ”1๐‘‘๐œ”2,

ฮฆ2(๐‘ฅ1, ๐‘ฅ2) =1

(2๐œ‹)2

โˆซ ๐‘

๐‘Ž

โˆซ ๐‘

๐‘Ž

๐‘”(๐œ”1, ๐œ”2)๐’‹ cos(๐œ”1๐‘ฅ1) sin(๐œ”2๐‘ฅ2)๐‘‘๐œ”1๐‘‘๐œ”2,

ฮฆ3(๐‘ฅ1, ๐‘ฅ2) = โˆ’ 1

(2๐œ‹)2

โˆซ ๐‘

๐‘Ž

โˆซ ๐‘

๐‘Ž

๐‘”(๐œ”1, ๐œ”2)๐’Œ sin(๐œ”1๐‘ฅ1) sin(๐œ”2๐‘ฅ2)๐‘‘๐œ”1๐‘‘๐œ”2.

The quaternion exponential product ๐‘’๐’‹๐‘ฅ2๐œ”2 ๐‘’๐’Š๐œ”1๐‘ฅ1 is called the inverse (right-sided)quaternion Fourier kernel.

Remark 1.5. Again, all computations can easily be converted to other conventions,since

โ„ฑโˆ’1๐‘Ÿ (๐‘”)(โˆ’๐‘ฅ1,โˆ’๐‘ฅ2) =

1

(2๐œ‹)2

โˆซ ๐‘

๐‘Ž

โˆซ ๐‘

๐‘Ž

๐‘”(๐œ”1, ๐œ”2)๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2๐‘‘๐œ”1๐‘‘๐œ”2

=1

(2๐œ‹)2

โˆซ ๐‘

๐‘Ž

โˆซ ๐‘

๐‘Ž

๐‘’๐’Š๐œ”1๐‘ฅ1 ๐‘’๐’‹๐œ”2๐‘ฅ2๐‘”(๐œ”1, ๐œ”2)๐‘‘๐œ”1๐‘‘๐œ”2

:= โ„ฑโˆ’1๐‘™ (๐‘”)(๐‘ฅ1, ๐‘ฅ2).

For convenience, below we will denote โ„ฑโˆ’1๐‘Ÿ as โ„ฑโˆ’1.

The present chapter has two main goals. The first consists in studying theasymptotic behaviour of the integral (1.1) under the assumption that ๐‘“ belongsto ๐ฟ1((๐‘Ž, ๐‘) ร— (๐‘, ๐‘‘);โ„) where ๐‘Ž, ๐‘, ๐‘, ๐‘‘ can be both finite and infinite points. Weshall be interested in the connection between the function ๐‘“(๐‘ฅ1, ๐‘ฅ2), and the be-haviour of its Fourier transform โ„ฑ(๐‘“)(๐œ”1, ๐œ”2) at infinity. These properties have aninterest on their own for further applications to number theory, combinatorics, sig-nal processing, imaging, computer vision and numerical analysis. The complexityof the underlying computations will need some attention. Central to this view-point are certain Fourier transform techniques, which as in the complex case,would be familiar to the reader. Our second goal consists in extending the clas-sical Bochnerโ€“Minlos theorem to a noncommutative structure as in the case ofquaternion functions. The resulting theorem guarantees the existence and unique-ness of the corresponding probability measure defined on a dual space. This willbe done using the concept of quaternion Fourier transform of a probability mea-sure. For the readerโ€™s convenience and for the sake of easy reference, the chapteris motivated by the results presented in [12, 13].

Page 134: Quaternion and Clifford Fourier Transforms and Wavelets

6. Bochnerโ€“Minlos Theorem and Quaternion Fourier Transform 109

Although the presented results can be extended to generalized Clifford alge-bras as well, we will focus the discussion on the QFT for conciseness here. Theproof of its generalization to higher dimensions is possible but needs more com-plicated calculations, which exceed the scope of this manuscript. These results arestill under further investigation and will be reported in a forthcoming paper.

2. Preliminaries

At this stage we briefly recall basic algebraic facts about quaternions necessary forthe sequel. Let โ„ := {๐‘ = ๐‘Ž+ ๐‘๐’Š+ ๐‘๐’‹ + ๐‘‘๐’Œ : ๐‘Ž, ๐‘, ๐‘, ๐‘‘ โˆˆ โ„} be a four-dimensionalassociative and noncommutative algebra, where the imaginary units ๐’Š, ๐’‹, and ๐’Œare subject to the Hamiltonian multiplication rules

๐’Š2 = ๐’‹2 = ๐’Œ2 = โˆ’1;๐’Š๐’‹ = ๐’Œ = โˆ’๐’‹๐’Š, ๐’‹๐’Œ = ๐’Š = โˆ’๐’Œ๐’‹, ๐’Œ๐’Š = ๐’‹ = โˆ’๐’Š๐’Œ.

The scalar and vector parts of ๐‘, S(๐‘) andV(๐‘), are defined as the ๐‘Ž and ๐‘๐’Š+๐‘๐’‹+๐‘‘๐’Œterms, respectively. For the scalar part the cyclic product rule S(๐‘๐‘ž๐‘Ÿ) = S(๐‘ž๐‘Ÿ๐‘) isvalid. Further step is quaternion conjugation introduced similarly to that of thecomplex numbers ๐‘ = ๐‘Žโˆ’๐‘๐’Šโˆ’๐‘๐’‹โˆ’๐‘‘๐’Œ. The quaternion conjugation is an anti-linearinvolution

๐‘ = ๐‘, ๐‘+ ๐‘ž = ๐‘+ ๐‘ž, ๐‘ž๐‘ = ๐‘๐‘ž, ๐œ†๐‘ = ๐œ†๐‘ (โˆ€๐œ† โˆˆ โ„).

The norm of ๐‘ is defined by โˆฃ๐‘โˆฃ = โˆš๐‘๐‘ =

โˆš๐‘๐‘ =

โˆš๐‘Ž2 + ๐‘2 + ๐‘2 + ๐‘‘2, and it

coincides with its corresponding Euclidean norm as a vector in โ„4. For everytwo quaternions ๐‘ and ๐‘ž the triangle inequalities hold โˆฃ๐‘+ ๐‘žโˆฃ โ‰ค โˆฃ๐‘โˆฃ + โˆฃ๐‘žโˆฃ, andโˆฃ โˆฃ๐‘โˆฃ โˆ’ โˆฃ๐‘žโˆฃ โˆฃ โ‰ค โˆฃ๐‘ยฑ ๐‘žโˆฃ. Also, we have โˆฃS(๐‘)โˆฃ โ‰ค โˆฃ๐‘โˆฃ and โˆฃV(๐‘)โˆฃ โ‰ค โˆฃ๐‘โˆฃ.

In the sequel, a quaternion sequence is a collection of real quaternions ๐‘0, ๐‘1,๐‘2, . . . โ€˜labelledโ€™ by nonnegative integers. We shall denote such a sequence by {๐‘๐‘›}where ๐‘› = 0, 1, 2, . . . and ๐‘๐‘› = ๐‘0,๐‘› + ๐‘1,๐‘›๐’Š+ ๐‘2,๐‘›๐’‹ + ๐‘3,๐‘›๐’Œ are the elements of thesequence, ๐‘๐‘™,๐‘› โˆˆ โ„ (๐‘™ = 0, 1, 2, 3). To supplement our investigations, we recall thekey notion of convergence of a quaternion sequence.

Definition 2.1. The quaternion sequence {๐‘๐‘›} is called convergent to the quater-nion ๐‘ = ๐‘Ž+๐‘๐’Š+๐‘๐’‹+๐‘‘๐’Œ if lim

๐‘›โˆ’โ†’โˆž โˆฃ๐‘๐‘›โˆ’๐‘โˆฃ = 0. We will use the traditional notation:

lim๐‘›โˆ’โ†’โˆž ๐‘๐‘› = ๐‘.

Lemma 2.2. Let {๐‘๐‘›} and {๐‘ž๐‘›} be two quaternion sequences for which lim๐‘›โˆ’โ†’โˆž ๐‘๐‘› = ๐‘

and lim๐‘›โˆ’โ†’โˆž ๐‘ž๐‘› = ๐‘ž, for ๐‘, ๐‘ž โˆˆ โ„. Then

1. lim๐‘›โˆ’โ†’โˆž(๐‘๐‘› ยฑ ๐‘ž๐‘›) = ๐‘ยฑ ๐‘ž;

2. lim๐‘›โˆ’โ†’โˆž(๐‘๐‘›๐‘ž๐‘›) = ๐‘๐‘ž;

3. lim๐‘›โˆ’โ†’โˆž(๐›ผ๐‘๐‘›) = ๐›ผ๐‘, ๐›ผ โˆˆ โ„.

Page 135: Quaternion and Clifford Fourier Transforms and Wavelets

110 S. Georgiev, J. Morais, K.I. Kou and W. SproรŸig

Now, let ๐‘  be the space of sequences

๐‘  := {{๐‘๐‘›} : lim๐‘›โˆ’โ†’โˆž๐‘›๐‘ก๐‘๐‘› = 0, โˆ€ ๐‘ก โˆˆ โ„•0},

where ๐‘๐‘› โˆˆ โ„, and let

๐‘ ๐‘š := {{๐‘๐‘›} : โˆฅ๐‘โˆฅ2๐‘š :=โˆžโˆ‘๐‘›=0

(1 + ๐‘›2)๐‘š โˆฃ๐‘๐‘›โˆฃ2 < +โˆž}, ๐‘š โˆˆ โ„ค.

Proposition 2.3. We have ๐‘  = โˆฉ๐‘šโˆˆโ„ค๐‘ ๐‘š.

Proof. Let ๐‘ โˆˆ ๐‘  be arbitrarily chosen and fixed, and ๐‘ก โˆˆ โ„•0. From the definitionof the space ๐‘  we have that lim

๐‘›โˆ’โ†’โˆž๐‘›๐‘ก๐‘๐‘› = 0. Then for ๐ถ > 0 a natural number

๐‘ = ๐‘(๐ถ) can be found so that for every ๐‘› > ๐‘ the following holds

๐‘›๐‘กโˆฃ๐‘๐‘›โˆฃ โ‰ค ๐ถ.

Hence, it followsโˆžโˆ‘๐‘›=0

(1 + ๐‘›2

)[ ๐‘ก2 ] โˆฃ๐‘๐‘›โˆฃ2 โ‰ค โˆฃ๐‘0โˆฃ2 + ๐ถ2โˆžโˆ‘๐‘›=1

(1 + ๐‘›2

)[ ๐‘ก4 ] 1

๐‘›2๐‘ก< +โˆž,

and therefore ๐‘ โˆˆ ๐‘ [ ๐‘ก4 ]. Since ๐‘ก โˆˆ โ„•0 is arbitrary we conclude that ๐‘ โˆˆ ๐‘ ๐‘š for every

๐‘š โˆˆ โ„•0, from where ๐‘ โˆˆ โˆฉ๐‘šโˆˆโ„•๐‘ ๐‘š. Since ๐‘ โˆˆ ๐‘  was arbitrarily chosen it followsthat ๐‘  โŠ‚ โˆฉ๐‘šโˆˆโ„•๐‘ ๐‘š. Now, let ๐‘ โˆˆ โˆฉ๐‘šโˆˆโ„ค๐‘ ๐‘š. Then for every ๐‘š โˆˆ โ„•0 we have that

โˆžโˆ‘๐‘›=0

(1 + ๐‘›2

)๐‘š โˆฃ๐‘๐‘›โˆฃ2 < +โˆž,

from where lim๐‘›โˆ’โ†’โˆž

(1 + ๐‘›2

)๐‘š โˆฃ๐‘๐‘›โˆฃ2 = 0. Therefore lim๐‘›โˆ’โ†’โˆž๐‘›๐‘ก๐‘๐‘› = 0 for every ๐‘ก โ‰ค 2๐‘š.

Since ๐‘š was arbitrarily chosen then lim๐‘›โˆ’โ†’โˆž๐‘›๐‘ก๐‘๐‘› = 0 for every ๐‘ก โˆˆ โ„•0. Conse-

quently, ๐‘ โˆˆ ๐‘  and since ๐‘ โˆˆ โˆฉ๐‘šโˆˆโ„•๐‘ ๐‘š was arbitrarily chosen we conclude thatโˆฉ๐‘šโˆˆโ„•๐‘ ๐‘š โŠ‚ ๐‘ . โ–ก

In the sequel, consider the countable family of semi-norms on ๐‘ 

โˆฅ๐‘โˆฅ2๐‘š =

โˆžโˆ‘๐‘›=0

(1 + ๐‘›2

)๐‘š โˆฃ๐‘๐‘›โˆฃ2 .Lemma 2.4. ๐‘  is completely a Hausdorff space.

Proof. If ๐‘ โˆˆ ๐‘  and โˆฅ๐‘โˆฅ๐‘š = 0 we getโˆ‘โˆž๐‘›=0

(1 + ๐‘›2)๐‘š โˆฃ๐‘๐‘›โˆฃ2 = 0.

Whence, ๐‘๐‘› = 0 for every natural ๐‘› (including zero), and consequently ๐‘ = 0. It

follows that ๐‘  is a Hausdorff space. Now, let {๐‘๐‘˜๐‘›} โˆ’โ†’๐‘˜โˆ’โ†’โˆž {๐‘๐‘›}, i.e., lim๐‘˜โˆ’โ†’โˆž

๐‘๐‘˜๐‘› =

๐‘๐‘› for every ๐‘› โˆˆ โ„•0. Then โˆฅโˆฅ๐‘๐‘˜ โˆ’ ๐‘โˆฅโˆฅ๐‘šโˆ’โ†’๐‘˜โˆ’โ†’โˆž 0.

It follows that ๐‘  is completely a space. โ–ก

Page 136: Quaternion and Clifford Fourier Transforms and Wavelets

6. Bochnerโ€“Minlos Theorem and Quaternion Fourier Transform 111

Let us define the metric

๐œŒ(๐‘, ๐‘ž) =

โˆžโˆ‘๐‘š=0

โˆฅ๐‘โˆ’ ๐‘žโˆฅ๐‘š1 + โˆฅ๐‘โˆ’ ๐‘žโˆฅ๐‘š

2โˆ’๐‘š

for ๐‘, ๐‘ž โˆˆ ๐‘ . Evidently, the above metric has the translation property. In otherwords, from the countable family of seminorms we can define a metric with thetranslation property. From this follows the result that

Lemma 2.5. ๐‘  is a Frechet space.

Now, let ๐‘ โ€ฒ denote the topological dual space to ๐‘  given by ๐‘ โ€ฒ = โˆช๐‘šโˆˆโ„ค๐‘ ๐‘š.We will denote the set of all sequences by โ„โ„•0 , and we equip the space ๐‘ โ€ฒ withcylindrical topology. Every element ๐‘โ€ฒ โˆˆ ๐‘ โ€ฒ acts on each element ๐‘ โˆˆ ๐‘  as follows

โŸจ๐‘โ€ฒ, ๐‘โŸฉ =โˆžโˆ‘๐‘›=0

๐‘โ€ฒ๐‘›๐‘๐‘›; lim๐‘›โˆ’โ†’โˆž ๐‘โ€ฒ๐‘› = ๐‘โ€ฒ, lim

๐‘›โˆ’โ†’โˆž ๐‘๐‘› = ๐‘.

3. Asymptotic Behaviour of the QFT

There are numerous questions that remain untouched about the behaviour of theQFT. We will fill in some of these gaps and discuss some rudiments of the asymp-totic behaviour of (1.1).

We begin by proving the following result, which provides an interesting andefficient convergence characterization of the QFT.

Theorem 3.1. Let ๐‘Ž, ๐‘, ๐‘, ๐‘‘ โˆˆ โ„ and ๐‘“ โˆˆ ๐ฟ1((๐‘Ž, ๐‘)ร—(๐‘, ๐‘‘);โ„), then โ„ฑ(๐‘“) is uniformlycontinuous and bounded. Moreover, it satisfies

lim๐œ”1โˆ’โ†’ยฑโˆž

โ„ฑ(๐‘“)(๐œ”1, ๐œ”2) = 0

uniformly in ๐œ”2, and

lim๐œ”2โˆ’โ†’ยฑโˆž

โ„ฑ(๐‘“)(๐œ”1, ๐œ”2) = 0

uniformly in ๐œ”1. The results hold with the same proof when the region (๐‘Ž, ๐‘)ร—(๐‘, ๐‘‘)

is replaced by its topological closure (๐‘Ž, ๐‘)ร— (๐‘, ๐‘‘) (๐‘Ž, ๐‘, ๐‘, ๐‘‘ can be ยฑโˆž) or anyregion ๐บ (or ๐บ) in the space โ„2.

Proof. It is easy to show that

โˆฃโ„ฑ(๐‘“)(๐œ”1, ๐œ”2)โˆฃ โ‰คโˆซ ๐‘

๐‘Ž

โˆซ ๐‘‘

๐‘

โˆฃ๐‘“(๐‘ฅ1, ๐‘ฅ2)โˆฃ ๐‘‘๐‘ฅ1๐‘‘๐‘ฅ2

= โˆฅ๐‘“โˆฅ๐ฟ1((๐‘Ž,๐‘)ร—(๐‘,๐‘‘);โ„) . (3.1)

So, the transform โ„ฑ(๐‘“) is bounded.To prove the limit assertions, we use a density argument as in the classical

case (Riemannโ€“Lebesgue Lemma). We first assume that both ๐‘“ and โˆ‚๐‘ฅ1๐‘“ arecontinuous with compact support. Obviously, such functions form a dense subspace

Page 137: Quaternion and Clifford Fourier Transforms and Wavelets

112 S. Georgiev, J. Morais, K.I. Kou and W. SproรŸig

in ๐ฟ1((๐‘Ž, ๐‘)ร— (๐‘, ๐‘‘);โ„). By using integration by parts to the ๐‘ฅ1-variable, with theiterated integration, we have

โ„ฑ(๐‘“)(๐œ”1, ๐œ”2) =

โˆซ ๐‘

๐‘Ž

(๐‘“(๐‘, ๐‘ฅ2)

1

i๐œ”1๐‘’โˆ’i๐œ”1๐‘ ๐‘’โˆ’j๐œ”2๐‘ฅ2 โˆ’ ๐‘“(๐‘Ž, ๐‘ฅ2)

1

i๐œ”1๐‘’โˆ’i๐œ”1๐‘Ž ๐‘’โˆ’j๐œ”2๐‘ฅ2

)๐‘‘๐‘ฅ2

โˆ’โˆซ ๐‘

๐‘Ž

โˆซ ๐‘

๐‘Ž

โˆ‚๐‘ฅ1๐‘“(๐‘ฅ1, ๐‘ฅ2)1

i๐œ”1๐‘’โˆ’i๐œ”1๐‘ฅ1 ๐‘’โˆ’j๐œ”2๐‘ฅ2 ๐‘‘๐‘ฅ1๐‘‘๐‘ฅ2

= โˆ’โˆซ ๐‘

๐‘Ž

โˆซ ๐‘‘

๐‘

โˆ‚๐‘ฅ1๐‘“(๐‘ฅ1, ๐‘ฅ2)1

i๐œ”1๐‘’โˆ’i๐œ”1๐‘ฅ1 ๐‘’โˆ’j๐œ”2๐‘ฅ2 ๐‘‘๐‘ฅ1๐‘‘๐‘ฅ2.

Therefore,

โˆฃโ„ฑ(๐‘“)(๐œ”1, ๐œ”2)โˆฃ โ‰ค 1

โˆฃ๐œ”1โˆฃ โˆฅโˆ‚๐‘ฅ1๐‘“โˆฅ๐ฟ1((๐‘Ž,๐‘)ร—(๐‘,๐‘‘);โ„) . (3.2)

So,

lim๐œ”1โˆ’โ†’ยฑโˆž

โ„ฑ(๐‘“)(๐œ”1, ๐œ”2) = 0

uniformly in ๐œ”2. Similarly we can prove

lim๐œ”2โˆ’โ†’ยฑโˆž

โ„ฑ(๐‘“)(๐œ”1, ๐œ”2) = 0

uniformly in ๐œ”1.

Now assume ๐‘“ โˆˆ ๐ฟ1((๐‘Ž, ๐‘) ร— (๐‘, ๐‘‘);โ„). For any given ๐œ€ > 0, there exists afunction ๐‘“๐œ€ in the above-mentioned dense class, such that

โˆฅ๐‘“ โˆ’ ๐‘“๐œ€โˆฅ๐ฟ1((๐‘Ž,๐‘)ร—(๐‘,๐‘‘);โ„) < ๐œ€.

By (3.1), we have

โˆฃโ„ฑ(๐‘“)(๐œ”1, ๐œ”2)โˆฃ โ‰ค โˆฃโ„ฑ(๐‘“๐œ€)(๐œ”1, ๐œ”2)โˆฃ+ โˆฅ๐‘“ โˆ’ ๐‘“๐œ€โˆฅ๐ฟ1((๐‘Ž,๐‘)ร—(๐‘,๐‘‘);โ„)

โ‰ค โˆฃโ„ฑ(๐‘“๐œ€)(๐œ”1, ๐œ”2)โˆฃ+ ๐œ€.

By using the result just proved for the density class, we have

lim๐œ”1โ†’ยฑโˆž

โˆฃโ„ฑ(๐‘“)(๐œ”1, ๐œ”2)โˆฃ โ‰ค ๐œ€,

uniformly in ๐œ”2. Since ๐œ€ is arbitrary, we have

lim๐œ”1โ†’ยฑโˆž

โ„ฑ(๐‘“)(๐œ”1, ๐œ”2) = 0 (3.3)

uniformly in ๐œ”2. Similarly,

lim๐œ”2โ†’ยฑโˆž

โ„ฑ(๐‘“)(๐œ”1, ๐œ”2) = 0, (3.4)

uniformly in ๐œ”1.

Now we show the uniform continuity of โ„ฑ(๐‘“)(๐œ”1, ๐œ”2). Given (3.3) and (3.4),since continuous functions are uniform continuous in compact sets, it suffices to

Page 138: Quaternion and Clifford Fourier Transforms and Wavelets

6. Bochnerโ€“Minlos Theorem and Quaternion Fourier Transform 113

show that โ„ฑ(๐‘“) is continuous at every point (๐œ”1, ๐œ”2). In fact,

โ„ฑ(๐‘“)(๐œ”1 + ๐œŒ1, ๐œ”2 + ๐œŒ2)โˆ’โ„ฑ(๐‘“)(๐œ”1, ๐œ”2)

=

โˆซ ๐‘

๐‘Ž

โˆซ ๐‘‘

๐‘

๐‘“(๐‘ฅ1, ๐‘ฅ2)[๐‘’โˆ’๐’Š๐‘ฅ1(๐œ”1+๐œŒ1)๐‘’โˆ’๐’‹๐‘ฅ2(๐œ”2+๐œŒ2) โˆ’ ๐‘’โˆ’๐’Š๐‘ฅ2๐œ”1๐‘’โˆ’๐’‹๐‘ฅ2๐œ”2

]๐‘‘๐‘ฅ1๐‘‘๐‘ฅ2.

For any ๐œŒ1, ๐œŒ2 > 0, the integrand is dominated by a constant multiple of โˆฃ๐‘“(๐‘ฅ1, ๐‘ฅ2)โˆฃ.Since the factor in the straight brackets tends to zero, by the Lebesgue DominatedConvergence Theorem, we have

lim๐œŒ1,๐œŒ2โ†’0

โ„ฑ(๐‘“)(๐œ”1 + ๐œŒ1, ๐œ”2 + ๐œŒ2)โˆ’โ„ฑ(๐‘“)(๐œ”1, ๐œ”2) = 0,

proving the desired continuity. โ–ก

4. Bochnerโ€“Minlos Theorem

In this section we extend the classical Bochnerโ€“Minlos theorem (named afterBochner and Adolโ€™fovich Minlos) to the framework of quaternion analysis. Theresulting theorem guarantees the existence of the corresponding probability mea-sure defined on a dual space. In particular, some interesting properties of theunderlying measure are extended in this setting.

Definition 4.1. Let ๐œ‡ be a finite positive measure on โ„2. The QFT of ๐œ‡ is thefunction โ„ฑ๐’Š๐’‹(๐œ‡) : โ„

2 โˆ’โ†’ โ„ given by

โ„ฑ๐’Š๐’‹(๐œ‡)(๐œ”1, ๐œ”2) :=

โˆซโ„2

๐‘’โˆ’๐’Š๐œ”1๐‘ฅ1๐‘’โˆ’๐’‹๐œ”2๐‘ฅ2๐‘‘๐œ‡(๐‘ฅ1, ๐‘ฅ2),

or the function โ„ฑ๐’‹๐’Š(๐œ‡) : โ„2 โˆ’โ†’ โ„ given by

โ„ฑ๐’‹๐’Š(๐œ‡)(๐œ”1, ๐œ”2) :=

โˆซโ„2

๐‘’โˆ’๐’‹๐œ”2๐‘ฅ2๐‘’โˆ’๐’Š๐œ”1๐‘ฅ1๐‘‘๐œ‡(๐‘ฅ1, ๐‘ฅ2).

Proposition 4.2. Let ๐œ‡ be a finite positive measure on โ„2. The functionals โ„ฑ๐’Š๐’‹(๐œ‡)and โ„ฑ๐’‹๐’Š(๐œ‡) satisfy the following basic properties:

1. โ„ฑ๐’Š๐’‹(๐œ‡)(0, 0) = โ„ฑ๐’‹๐’Š(๐œ‡)(0, 0) = 1;

2. โ„ฑ๐’Š๐’‹(๐œ‡)(โˆ’๐œ”1,โˆ’๐œ”2) = โ„ฑ๐’‹๐’Š(๐œ‡)(๐œ”1, ๐œ”2);

3. โ„ฑ๐’‹๐’Š(๐œ‡)(โˆ’๐œ”1,โˆ’๐œ”2) = โ„ฑ๐’Š๐’‹(๐œ‡)(๐œ”1, ๐œ”2);4. โ„ฑ๐’Š๐’‹(๐œ‡)(โˆ’๐œ”1,โˆ’๐œ”2) + โ„ฑ๐’Š๐’‹(๐œ‡)(๐œ”1, ๐œ”2)

= 2

โˆซโ„2

(cos(๐œ”1๐‘ฅ1) cos(๐œ”2๐‘ฅ2) + ๐’Œ sin(๐œ”1๐‘ฅ1) sin(๐œ”2๐‘ฅ2)) ๐‘‘๐œ‡(๐‘ฅ1, ๐‘ฅ2);

5. โ„ฑ๐’Š๐’‹(๐œ‡)(๐œ”1, ๐œ”2) + โ„ฑ๐’‹๐’Š(๐œ‡)(โˆ’๐œ”1,โˆ’๐œ”2) = 2

โˆซโ„2

cos(๐œ”1๐‘ฅ1) cos(๐œ”2๐‘ฅ2)๐‘‘๐œ‡(๐‘ฅ1, ๐‘ฅ2).

Proof. For the first statement, note that

โ„ฑ๐’Š๐’‹(๐œ‡)(0, 0) =

โˆซโ„2

๐‘‘๐œ‡(๐‘ฅ1, ๐‘ฅ2) = ๐œ‡(โ„2).

Page 139: Quaternion and Clifford Fourier Transforms and Wavelets

114 S. Georgiev, J. Morais, K.I. Kou and W. SproรŸig

For Statement 2 a straightforward computation shows that

โ„ฑ๐’Š๐’‹(๐œ‡)(โˆ’๐œ”1,โˆ’๐œ”2) =

โˆซโ„2

๐‘’๐’Š๐œ”1๐‘ฅ1๐‘’๐’‹๐œ”2๐‘ฅ2๐‘‘๐œ‡(๐‘ฅ1, ๐‘ฅ2) =

โˆซโ„2

๐‘’โˆ’๐’‹๐œ”2๐‘ฅ2๐‘’โˆ’๐’Š๐œ”1๐‘ฅ1๐‘‘๐œ‡(๐‘ฅ1, ๐‘ฅ2)

=

โˆซโ„2

๐‘’โˆ’๐’‹๐œ”2๐‘ฅ2๐‘’โˆ’๐’Š๐œ”1๐‘ฅ1๐‘‘๐œ‡(๐‘ฅ1, ๐‘ฅ2) = โ„ฑ๐’‹๐’Š(๐œ‡)(๐œ”1, ๐œ”2).

The proof of Statement 3 will be omitted, being similar to the previous one. Now,taking into account that

๐‘’โˆ’๐’Š๐œ”1๐‘ฅ1๐‘’โˆ’๐’‹๐œ”2๐‘ฅ2 = cos(๐œ”1๐‘ฅ1) cos(๐œ”2๐‘ฅ2)โˆ’ ๐’Š sin(๐œ”1๐‘ฅ1) cos(๐œ”2๐‘ฅ2)

โˆ’ ๐’‹ cos(๐œ”1๐‘ฅ1) sin(๐œ”2๐‘ฅ2) + ๐’Œ sin(๐œ”1๐‘ฅ1) sin(๐œ”2๐‘ฅ2),

and

๐‘’๐’Š๐œ”1๐‘ฅ1๐‘’๐’‹๐œ”2๐‘ฅ2 = cos(๐œ”1๐‘ฅ1) cos(๐œ”2๐‘ฅ2) + ๐’Š sin(๐œ”1๐‘ฅ1) cos(๐œ”2๐‘ฅ2)

+ ๐’‹ cos(๐œ”1๐‘ฅ1) sin(๐œ”2๐‘ฅ2) + ๐’Œ sin(๐œ”1๐‘ฅ1) sin(๐œ”2๐‘ฅ2),

we obtain

โ„ฑ๐’Š๐’‹(๐œ‡)(๐œ”1, ๐œ”2) + โ„ฑ๐’Š๐’‹(๐œ‡)(โˆ’๐œ”1,โˆ’๐œ”2)

=

โˆซโ„2

(๐‘’โˆ’๐’Š๐œ”1๐‘ฅ1๐‘’โˆ’๐’‹๐œ”2๐‘ฅ2 + ๐‘’๐’Š๐œ”1๐‘ฅ1๐‘’๐’‹๐œ”2๐‘ฅ2

)๐‘‘๐œ‡(๐‘ฅ1, ๐‘ฅ2)

= 2

โˆซโ„2

(cos(๐œ”1๐‘ฅ1) cos(๐œ”2๐‘ฅ2) + ๐’Œ sin(๐œ”1๐‘ฅ1) sin(๐œ”2๐‘ฅ2)) ๐‘‘๐œ‡(๐‘ฅ1, ๐‘ฅ2).

For the last statement we use the relation

๐‘’๐’‹๐‘ค2๐‘ฅ2๐‘’๐’Š๐œ”1๐‘ฅ1 = cos(๐œ”1๐‘ฅ1) cos(๐œ”2๐‘ฅ2) + ๐’Š sin(๐œ”1๐‘ฅ1) cos(๐œ”2๐‘ฅ2)

+ ๐’‹ cos(๐œ”1๐‘ฅ1) sin(๐œ”2๐‘ฅ2)โˆ’ ๐’Œ sin(๐œ”1๐‘ฅ1) sin(๐œ”2๐‘ฅ2).

Therefore, it follows

โ„ฑ๐’Š๐’‹(๐œ‡)(๐œ”1, ๐œ”2) + โ„ฑ๐’‹๐’Š(๐œ‡)(โˆ’๐œ”1,โˆ’๐œ”2)

=

โˆซโ„2

(๐‘’โˆ’๐’Š๐œ”1๐‘ฅ1๐‘’โˆ’๐’‹๐œ”2๐‘ฅ2 + ๐‘’๐’‹๐œ”2๐‘ฅ2๐‘’๐’Š๐œ”1๐‘ฅ1

)๐‘‘๐œ‡(๐‘ฅ1, ๐‘ฅ2)

= 2

โˆซโ„2

cos(๐œ”1๐‘ฅ1) cos(๐œ”2๐‘ฅ2)๐‘‘๐œ‡(๐‘ฅ1, ๐‘ฅ2). โ–ก

In the sequel, let us denote by ๐•Š(โ„2) the Schwartz space of smooth quaternionfunctions on โ„2. We formulate a first result.

Proposition 4.3. Let ๐œ™ โˆˆ ๐•Š(โ„2) and ๐œ‡ be a finite positive measure on โ„2. Then

1.

โˆซโ„2

โ„ฑ๐’Š๐’‹(๐œ‡)(๐œ”1, ๐œ”2)๐œ™(๐œ”1, ๐œ”2)๐‘‘๐œ”1๐‘‘๐œ”2 =

โˆซโ„2

โ„ฑ๐’Š๐’‹(๐œ™)(๐‘ฅ1, ๐‘ฅ2)๐‘‘๐œ‡(๐‘ฅ1, ๐‘ฅ2);

2.

โˆซโ„2

โ„ฑ๐’‹๐’Š(๐œ‡)(๐œ”1, ๐œ”2)๐œ™(๐œ”1, ๐œ”2)๐‘‘๐œ”1๐‘‘๐œ”2 =

โˆซโ„2

โ„ฑ๐’‹๐’Š(๐œ™)(๐‘ฅ1, ๐‘ฅ2)๐‘‘๐œ‡(๐‘ฅ1, ๐‘ฅ2).

Page 140: Quaternion and Clifford Fourier Transforms and Wavelets

6. Bochnerโ€“Minlos Theorem and Quaternion Fourier Transform 115

Proof. For simplicity we just present the computations of the first equality. Theproof of the second one is similar. A direct computation shows thatโˆซ

โ„2

โ„ฑ๐’Š๐’‹(๐œ‡)(๐œ”1, ๐œ”2)๐œ™(๐œ”1, ๐œ”2)๐‘‘๐œ”1๐‘‘๐œ”2

=

โˆซโ„2

โˆซโ„2

๐‘’โˆ’๐’Š๐œ”1๐‘ฅ1๐‘’โˆ’๐’‹๐œ”2๐‘ฅ2๐‘‘๐œ‡(๐‘ฅ1, ๐‘ฅ2)๐œ™(๐œ”1, ๐œ”2)๐‘‘๐œ”1๐‘‘๐œ”2

=

โˆซโ„2

โˆซโ„2

๐‘’โˆ’๐’Š๐œ”1๐‘ฅ1๐‘’โˆ’๐’‹๐œ”2๐‘ฅ2๐œ™(๐œ”1, ๐œ”2)๐‘‘๐œ”1๐‘‘๐œ”2๐‘‘๐œ‡(๐‘ฅ1, ๐‘ฅ2)

=

โˆซโ„2

โ„ฑ๐’Š๐’‹(๐œ™)(๐‘ฅ1, ๐‘ฅ2)๐‘‘๐œ‡(๐‘ฅ1, ๐‘ฅ2). โ–ก

We now analyze some key properties of the above-mentioned functionals.

Proposition 4.4. Let ๐œ‡ and ๐œˆ be finite positive measures on โ„2. The functionalsโ„ฑ๐’Š๐’‹(๐œ‡) and โ„ฑ๐’‹๐’Š(๐œ‡) are linear, i.e., for every ๐‘, ๐‘‘ โˆˆ โ„ it holds:

โ„ฑ๐’Š๐’‹(๐œ‡๐‘+ ๐œˆ๐‘‘) = โ„ฑ๐’Š๐’‹(๐œ‡)๐‘+ โ„ฑ๐’Š๐’‹(๐œˆ)๐‘‘,

โ„ฑ๐’‹๐’Š(๐œ‡๐‘+ ๐œˆ๐‘‘) = โ„ฑ๐’‹๐’Š(๐œ‡)๐‘+ โ„ฑ๐’‹๐’Š(๐œˆ)๐‘‘.

Proposition 4.5. Let ๐œ‡ be a finite positive measure on โ„2. For any ๐‘Ž๐‘– โˆˆ โ„ โˆ– {0}(๐‘– = 1, 2) the following conditions hold:

1. โ„ฑ๐’Š๐’‹(๐œ‡(๐‘Ž1๐‘ฅ1, ๐‘Ž2๐‘ฅ2)) = โ„ฑ๐’Š๐’‹(๐œ‡(๐‘ฅ1, ๐‘ฅ2))(๐œ”1๐‘Ž1

, ๐œ”2๐‘Ž2

);

2. โ„ฑ๐’‹๐’Š(๐œ‡(๐‘Ž1๐‘ฅ1, ๐‘Ž2๐‘ฅ2)) = โ„ฑ๐’‹๐’Š(๐œ‡(๐‘ฅ1, ๐‘ฅ2))(๐œ”1๐‘Ž1

, ๐œ”2๐‘Ž2

).

Proof. For simplicity we just present the proof of the first condition. A straight-forward computation shows that

โ„ฑ๐’Š๐’‹(๐œ‡(๐‘Ž1๐‘ฅ1, ๐‘Ž2๐‘ฅ2)) =

โˆซโ„2

๐‘’โˆ’๐’Š๐œ”1๐‘ฅ1๐‘’โˆ’๐’‹๐œ”2๐‘ฅ2๐‘‘๐œ‡(๐‘Ž1๐‘ฅ1, ๐‘Ž2๐‘ฅ2)

=

โˆซโ„2

๐‘’โˆ’๐’Š๐œ”1๐‘Ž1

(๐‘Ž1๐‘ฅ1)๐‘’โˆ’๐’‹ ๐œ”2๐‘Ž2

(๐‘Ž2๐‘ฅ2)๐‘‘๐œ‡(๐‘Ž1๐‘ฅ1, ๐‘Ž2๐‘ฅ2)

=

โˆซโ„2

๐‘’โˆ’๐’Š๐œ”1๐‘Ž1

๐‘ฆ1๐‘’โˆ’๐’‹ ๐œ”2๐‘Ž2

๐‘ฆ2๐‘‘๐œ‡(๐‘ฆ1, ๐‘ฆ2)

= โ„ฑ๐’Š๐’‹(๐œ‡(๐‘ฅ1, ๐‘ฅ2))

(๐œ”1

๐‘Ž1,๐œ”2

๐‘Ž2

). โ–ก

We proceed to define the notion of positive definitely function in the contextof quaternion analysis.

Definition 4.6. Let ๐‘“ be a quaternion function on โ„2 that is continuous andbounded. For every finite positive measure ๐œ‡ on โ„2 the function ๐‘“ is said tobe positive definite if

๐‘โˆ‘๐‘˜,๐‘™=1,๐‘˜<๐‘™

๐‘ง๐‘˜๐‘ง๐‘™๐‘“(๐œ†๐‘˜ โˆ’ ๐œ†๐‘™) +๐‘โˆ‘

๐‘˜,๐‘™=1,๐‘˜<๐‘™

๐‘“(๐œ†๐‘˜ โˆ’ ๐œ†๐‘™)๐‘ง๐‘™๐‘ง๐‘˜ +๐‘โˆ‘๐‘˜=1

โˆฃ๐‘ง๐‘˜โˆฃ2 ๐œ‡(โ„2) โ‰ฅ 0

Page 141: Quaternion and Clifford Fourier Transforms and Wavelets

116 S. Georgiev, J. Morais, K.I. Kou and W. SproรŸig

for every ๐œ†1, ๐œ†2, . . . , ๐œ†๐‘ โˆˆ โ„2, ๐‘ง1, ๐‘ง2, . . . , ๐‘ง๐‘ โˆˆ โ„. These parameters are measuredsuch that:

1. When ๐œ†1 = ๐œ†2 = โ‹… โ‹… โ‹… = ๐œ†๐‘ , and ๐‘ง1 = ๐‘ง2 = โ‹… โ‹… โ‹… = ๐‘ง๐‘ it follows

2๐‘“(0, 0) + ๐œ‡(โ„2) โ‰ฅ 0;

2. When ๐‘ = 2, ๐œ†1 = (๐‘ฅ1, ๐‘ฅ2), and ๐œ†2 = (0, 0), we have

๐‘ง1๐‘ง2๐‘“(๐‘ฅ1, ๐‘ฅ2) + ๐‘“(โˆ’๐‘ฅ1,โˆ’๐‘ฅ2)๐‘ง2๐‘ง1 +(โˆฃ๐‘ง1โˆฃ2 + โˆฃ๐‘ง2โˆฃ2

)๐œ‡(โ„2) โ‰ฅ 0,

which is valid if ๐‘“(โˆ’๐‘ฅ1,โˆ’๐‘ฅ2) = ๐‘“(๐‘ฅ1, ๐‘ฅ2).

Proposition 4.7. The functional โ„ฑ๐’Š๐’‹(๐œ‡) is positive definite and bounded.

Proof. Let ๐œ†1, ๐œ†2, . . . , ๐œ†๐‘ โˆˆ โ„2 such that ๐œ†๐‘– = (๐œ†1๐‘˜, ๐œ†2๐‘˜), and ๐‘ง1, ๐‘ง2, . . . , ๐‘ง๐‘ โˆˆ โ„.Direct computations show that

๐‘โˆ‘๐‘˜,๐‘™,๐‘˜<๐‘™

๐‘ง๐‘˜๐‘ง๐‘™โ„ฑ๐’Š๐’‹(๐œ‡)(๐œ†๐‘˜ โˆ’ ๐œ†๐‘™) +

๐‘โˆ‘๐‘˜,๐‘™=1,๐‘˜<๐‘™

โ„ฑij(๐œ‡)(๐œ†๐‘˜ โˆ’ ๐œ†๐‘™)๐‘ง๐‘™๐‘ง๐‘˜ +

๐‘โˆ‘๐‘˜=1

โˆฃ๐‘ง๐‘˜โˆฃ2 ๐œ‡ (โ„2)

=

โˆซโ„2

๐‘โˆ‘๐‘˜,๐‘™=1,๐‘˜<๐‘™

๐‘ง๐‘˜๐‘ง๐‘™๐‘’โˆ’๐’Š(๐œ†1๐‘˜โˆ’๐œ†1๐‘™)๐‘ฅ1๐‘’โˆ’๐’‹(๐œ†2๐‘˜โˆ’๐œ†2๐‘™)๐‘ฅ2๐‘‘๐œ‡(๐‘ฅ1, ๐‘ฅ2)

+

โˆซโ„2

๐‘โˆ‘๐‘˜,๐‘™=1,๐‘˜<๐‘™

๐‘’โˆ’๐’‹(๐œ†2๐‘˜โˆ’๐œ†2๐‘™)๐‘ฅ2๐‘’โˆ’๐’Š(๐œ†1๐‘˜โˆ’๐œ†1๐‘™)๐‘ฅ1๐‘ง๐‘™๐‘ง๐‘˜๐‘‘๐œ‡(๐‘ฅ1, ๐‘ฅ2)

+

โˆซโ„2

๐‘โˆ‘๐‘˜=1

โˆฃ๐‘ง๐‘˜โˆฃ2 ๐‘‘๐œ‡(๐‘ฅ1, ๐‘ฅ2)

=

โˆซโ„2

๐‘โˆ‘๐‘˜,๐‘™=1,๐‘˜<๐‘™

๐‘ง๐‘˜๐‘ง๐‘™๐‘’โˆ’๐’Š(๐œ†1๐‘˜โˆ’๐œ†1๐‘™)๐‘ฅ1๐‘’โˆ’๐’‹(๐œ†2๐‘˜โˆ’๐œ†2๐‘™)๐‘ฅ2๐‘‘๐œ‡(๐‘ฅ1, ๐‘ฅ2)

+

โˆซโ„2

๐‘โˆ‘๐‘˜,๐‘™=1,๐‘˜<๐‘™

๐‘ง๐‘˜๐‘ง๐‘™๐‘’โˆ’๐’Š(๐œ†1๐‘˜โˆ’๐œ†1๐‘™)๐‘ฅ1๐‘’โˆ’๐’‹(๐œ†2๐‘˜โˆ’๐œ†2๐‘™)๐‘ฅ2๐‘‘๐œ‡(๐‘ฅ1, ๐‘ฅ2)

+

โˆซโ„2

๐‘โˆ‘๐‘˜=1

โˆฃ๐‘ง๐‘˜โˆฃ2 ๐‘‘๐œ‡(๐‘ฅ1, ๐‘ฅ2)

=

โˆซโ„2

โŽกโŽฃ ๐‘โˆ‘๐‘˜=1

โˆฃ๐‘ง๐‘˜โˆฃ2 + 2

๐‘โˆ‘๐‘˜,๐‘™=1,๐‘˜<๐‘™

S(๐‘ง๐‘˜๐‘ง๐‘™๐‘’

โˆ’๐’Š(๐œ†1๐‘˜โˆ’๐œ†1๐‘™)๐‘ฅ1๐‘’โˆ’๐’‹(๐œ†2๐‘˜โˆ’๐œ†2๐‘™)๐‘ฅ2

)โŽคโŽฆ ๐‘‘๐œ‡(๐‘ฅ1, ๐‘ฅ2)

โ‰ฅโˆซโ„2

โŽ›โŽ ๐‘โˆ‘๐‘˜=1

โˆฃ๐‘ง๐‘˜โˆฃ2 โˆ’ 2

๐‘โˆ‘๐‘˜,๐‘™=1,๐‘˜<๐‘™

โˆฃ๐‘ง๐‘˜โˆฃ โˆฃ๐‘ง๐‘™โˆฃโŽžโŽ  ๐‘‘๐œ‡(๐‘ฅ1, ๐‘ฅ2) โ‰ฅ 0.

Furthermore, it follows that

โˆฃโ„ฑ๐’Š๐’‹(๐œ‡)(๐œ”1, ๐œ”2)โˆฃ =โˆฃโˆฃโˆซ

โ„2 ๐‘’โˆ’๐’Š๐œ”1๐‘ฅ1๐‘’โˆ’๐’‹๐œ”2๐‘ฅ2๐‘‘๐œ‡(๐‘ฅ1, ๐‘ฅ2)

โˆฃโˆฃ

Page 142: Quaternion and Clifford Fourier Transforms and Wavelets

6. Bochnerโ€“Minlos Theorem and Quaternion Fourier Transform 117

โ‰คโˆซโ„2

โˆฃ๐‘’โˆ’๐’Š๐œ”1๐‘ฅ1๐‘’โˆ’๐’‹๐œ”2๐‘ฅ2 โˆฃ ๐‘‘๐œ‡(๐‘ฅ1, ๐‘ฅ2) = ๐œ‡(โ„2)< +โˆž. โ–ก

Likewise we can prove the following proposition.

Proposition 4.8. The functional โ„ฑ๐’‹๐’Š(๐œ‡) is positive definite and bounded.

Below we shall assume that ๐œ‡ is a probably measure on ๐‘ โ€ฒ. For every elements๐‘Ž โˆˆ ๐‘  and ๐‘Žโ€ฒ โˆˆ ๐‘ โ€ฒ we define the functionals ๐‘”๐’Š๐’‹ and ๐‘”๐’‹๐’Š on ๐‘  as follows:

๐‘”๐’Š๐’‹ : ๐‘  โˆ’โ†’ ๐‘ , ๐‘Ž ๏ฟฝโˆ’โ†’ ๐‘”๐’Š๐’‹(๐‘Ž) :=

โˆซ๐‘ โ€ฒ๐‘’๐’ŠโŸจ๐‘Žโ€ฒ,๐‘ŽโŸฉ๐‘’๐’‹โŸจ๐‘Žโ€ฒ,๐‘ŽโŸฉ๐‘‘๐œ‡(๐‘Žโ€ฒ)

and

๐‘”๐’‹๐’Š : ๐‘  โˆ’โ†’ ๐‘ , ๐‘Ž ๏ฟฝโˆ’โ†’ ๐‘”๐’‹๐’Š(๐‘Ž) :=

โˆซ๐‘ โ€ฒ๐‘’๐’‹โŸจ๐‘Žโ€ฒ,๐‘ŽโŸฉ๐‘’๐’ŠโŸจ๐‘Žโ€ฒ,๐‘ŽโŸฉ๐‘‘๐œ‡(๐‘Žโ€ฒ).

Next we present a generalization of the classical Bochnerโ€“Minlos theorem on pos-itive definite functions to the case of quaternion functions.

Theorem 4.9 (Bochnerโ€“Minlos theorem). The functional ๐‘”๐’Š๐’‹ satisfies the followingthree conditions:

1. Normalization: ๐‘”๐’Š๐’‹(0) = 1;2. Positivity:

๐‘›โˆ‘๐‘˜,๐‘™=1,๐‘˜<๐‘™

๐‘ง๐‘˜๐‘ง๐‘™๐‘”๐’Š๐’‹(๐‘Ž๐‘˜ โˆ’ ๐‘Ž๐‘™) +

๐‘›โˆ‘๐‘˜,๐‘™=1,๐‘˜<๐‘™

๐‘”ij(๐‘Ž๐‘˜ โˆ’ ๐‘Ž๐‘™)๐‘ง๐‘™๐‘ง๐‘˜ +โˆ‘๐‘˜

โˆฃ๐‘ง๐‘˜โˆฃ2 โ‰ฅ 0;

3. Continuity: ๐‘”๐’Š๐’‹ is continuous in the sense of Frechet topology.

Proof. We begin the proof by noting that

๐‘”๐’Š๐’‹(0) =

โˆซ๐‘ โ€ฒ๐‘‘๐œ‡(๐‘Žโ€ฒ) = ๐œ‡(๐‘ โ€ฒ) = 1.

For simplicity we will prove Statement 2 in the case ๐‘› = 2 only, i.e., we will provethat

๐‘ง1๐‘ง2 ๐‘”๐’Š๐’‹(๐‘Ž1 โˆ’ ๐‘Ž2) + ๐‘”ij(๐‘Ž1 โˆ’ ๐‘Ž2)๐‘ง2๐‘ง1 + โˆฃ๐‘ง1โˆฃ2 + โˆฃ๐‘ง2โˆฃ2 โ‰ฅ 0.

For the sake of convenience we set ๐‘ง = ๐‘Ž1 โˆ’ ๐‘Ž2. It follows that

๐‘ง1๐‘ง2 ๐‘”๐’Š๐’‹(๐‘ง) + ๐‘”ij(๐‘ง)๐‘ง2๐‘ง1 + โˆฃ๐‘ง1โˆฃ2 + โˆฃ๐‘ง2โˆฃ2

=

โˆซ๐‘ โ€ฒ

(๐‘ง1๐‘ง2๐‘’

๐’ŠโŸจ๐‘Žโ€ฒ,๐‘งโŸฉ๐‘’๐’‹โŸจ๐‘Žโ€ฒ,๐‘งโŸฉ + ๐‘ง1๐‘ง2๐‘’๐’ŠโŸจ๐‘Žโ€ฒ,๐‘งโŸฉ๐‘’๐’‹โŸจ๐‘Žโ€ฒ,๐‘งโŸฉ + โˆฃ๐‘ง1โˆฃ2 + โˆฃ๐‘ง2โˆฃ2

)๐‘‘๐œ‡(๐‘Žโ€ฒ)

=

โˆซ๐‘ โ€ฒ

[2 S(๐‘ง1๐‘ง2๐‘’

๐’ŠโŸจ๐‘Žโ€ฒ,๐‘งโŸฉ๐‘’๐’‹โŸจ๐‘Žโ€ฒ,๐‘งโŸฉ + โˆฃ๐‘ง1โˆฃ2 + โˆฃ๐‘ง2โˆฃ2)]

๐‘‘๐œ‡(๐‘Žโ€ฒ).(4.1)

Notice that the last equality follows from the relation

๐‘ง1๐‘ง2 ๐‘”๐’Š๐’‹(๐‘ง) = ๐‘”๐’‹๐’Š(โˆ’๐‘ง)๐‘ง2๐‘ง1.

Now, let ๐‘ง๐‘– = โˆฃ๐‘ง๐‘–โˆฃ ๐‘’V(๐‘ง๐‘–)

โˆฃV(๐‘ง๐‘–)โˆฃ ๐œƒ๐‘– , with ๐œƒ๐‘– = arg(๐‘ง๐‘–) (๐‘– = 1, 2). Then

S(๐‘ง1๐‘ง2 ๐‘”๐’Š๐’‹(๐‘ง)) โ‰ฅ โˆ’ โˆฃ๐‘ง1โˆฃ โˆฃ๐‘ง2โˆฃ .

Page 143: Quaternion and Clifford Fourier Transforms and Wavelets

118 S. Georgiev, J. Morais, K.I. Kou and W. SproรŸig

From here and (4.1) we obtain

๐‘ง1๐‘ง2 ๐‘”๐’Š๐’‹(๐‘ง) + ๐‘”๐’‹๐’Š(โˆ’๐‘ง)๐‘ง2๐‘ง1 + โˆฃ๐‘ง1โˆฃ2 + โˆฃ๐‘ง2โˆฃ2

โ‰ฅโˆซ๐‘ โ€ฒ

(โˆฃ๐‘ง1โˆฃ2 + โˆฃ๐‘ง2โˆฃ2 โˆ’ 2 โˆฃ๐‘ง1โˆฃ โˆฃ๐‘ง2โˆฃ

)๐‘‘๐œ‡(๐‘Žโ€ฒ) โ‰ฅ 0.

Using induction we may conclude that Statement 2 is valid for every natural ๐‘›.For the proof of the remaining statement, let lim๐‘›โˆ’โ†’โˆž ๐‘Ž๐‘› = ๐‘Ž be understood inthe sense of the topology of Frechet. Then lim๐‘›โˆ’โ†’โˆž ๐‘Ž๐‘› = ๐‘Ž holds in the usualsense. From here and from the definition of the functional ๐‘”๐’Š๐’‹ we conclude thatlim๐‘›โˆ’โ†’โˆž ๐‘”๐’Š๐’‹(๐‘Ž๐‘›) = ๐‘”๐’Š๐’‹(๐‘Ž). Therefore for every ๐œ– > 0 a natural number ๐‘ =๐‘(๐œ–) > 0 can be found so that for ๐‘˜ > ๐‘ the following holds

โˆฅ๐‘”(๐‘Ž๐‘›)โˆ’ ๐‘”(๐‘Ž)โˆฅ๐‘˜ < ๐œ–.

Consequently, it follows that

๐œŒ (๐‘”(๐‘Ž๐‘›), ๐‘”(๐‘Ž)) =โˆžโˆ‘

๐‘+1

โˆฅ๐‘”(๐‘Ž๐‘›)โˆ’ ๐‘”(๐‘Ž)โˆฅ๐‘˜1 + โˆฅ๐‘”(๐‘Ž๐‘›)โˆ’ ๐‘”(๐‘Ž)โˆฅ๐‘˜

2โˆ’๐‘˜ โ‰ค ๐œ–โˆžโˆ‘

๐‘+1

2โˆ’๐‘˜. โ–ก

Proposition 4.10. For every element ๐‘Ž โˆˆ ๐‘  the functionals ๐‘”๐’Š๐’‹ and ๐‘”๐’‹๐’Š satisfy theadditional properties:

1. ๐‘”๐’Š๐’‹(โˆ’๐‘Ž) = ๐‘”๐’‹๐’Š(๐‘Ž);

2. ๐‘”๐’‹๐’Š(โˆ’๐‘Ž) = ๐‘”๐’Š๐’‹(๐‘Ž).

Though the significance of our approach to concrete applications, such as thecharacterization of measurement configurations for functional spaces, was the mainreason for restricting ourselves to the quaternionic case, doubtless, the reduction incalculations for proving the results played an important role too. As was alreadymentioned, it is possible to perform an analogous study to generalized Cliffordalgebras following the same ideas. Further investigations will be presented in aforthcoming paper.

Acknowledgement

Partial support from the Foundation for Science and Technology (FCT) via thegrant DD-VU-02/90, Bulgaria is acknowledged by the first named author. The sec-ond named author acknowledges financial support from the Foundation for Scienceand Technology (FCT) via the post-doctoral grant SFRH/ BPD/66342/2009. Thiswork was supported by FEDER funds through COM PETE โ€“ Operational Pro-gramme Factors of Competitiveness (โ€˜Programa Operacional Factores de Compet-itividadeโ€™) and by Portuguese funds through the Center for Research and Develop-ment in Mathematics and Applications (University of Aveiro) and the PortugueseFoundation for Science and Technology (โ€˜FCT โ€“ Fundacao para a Ciencia e aTecnologiaโ€™), within project PEst-C/MAT/UI4106/2011 with COMPETE numberFCOMP-01-0124-FEDER-022690. The third named author acknowledges financialsupport from the research grant of the University of Macau No. MYRG142(Y1-L2)-FST11-KKI.

Page 144: Quaternion and Clifford Fourier Transforms and Wavelets

6. Bochnerโ€“Minlos Theorem and Quaternion Fourier Transform 119

References

[1] M. Bahri. Generalized Fourier transform in real clifford algebra ๐‘๐‘™(0, ๐‘›). Far EastJournal of Mathematical Sciences, 48(1):11โ€“24, Jan. 2011.

[2] P. Bas, N. Le Bihan, and J.M. Chassery. Color image watermarking using quaternionFourier transform. In Proceedings of the IEEE International Conference on AcousticsSpeech and Signal Processing, ICASSP, volume 3, pages 521โ€“524. Hong-Kong, 2003.

[3] E. Bayro-Corrochano, N. Trujillo, and M. Naranjo. Quaternion Fourier descriptorsfor preprocessing and recognition of spoken words using images of spatiotemporalrepresentations. Mathematical Imaging and Vision, 28(2):179โ€“190, 2007.

[4] F. Brackx, N. De Schepper, and F. Sommen. The Cliffordโ€“Fourier transform. Journalof Fourier Analysis and Applications, 11(6):669โ€“681, 2005.

[5] F. Brackx, N. De Schepper, and F. Sommen. The Fourier transform in Cliffordanalysis. Advances in Imaging and Electron Physics, 156:55โ€“201, 2009.

[6] F. Brackx, R. Delanghe, and F. Sommen. Clifford Analysis, volume 76. Pitman,Boston, 1982.

[7] T. Bulow. Hypercomplex Spectral Signal Representations for the Processing and Anal-ysis of Images. PhD thesis, University of Kiel, Germany, Institut fur Informatik undPraktische Mathematik, Aug. 1999.

[8] T. Bulow, M. Felsberg, and G. Sommer. Non-commutative hypercomplex Fouriertransforms of multidimensional signals. In G. Sommer, editor, Geometric computingwith Clifford Algebras: Theoretical Foundations and Applications in Computer Visionand Robotics, pages 187โ€“207, Berlin, 2001. Springer.

[9] J. Ebling and G. Scheuermann. Clifford Fourier transform on vector fields. IEEETransactions on Visualization and Computer Graphics, 11(4):469โ€“479, July/Aug.2005.

[10] T.A. Ell. Quaternion-Fourier transforms for analysis of 2-dimensional linear time-invariant partial-differential systems. In Proceedings of the 32nd Conference on De-cision and Control, pages 1830โ€“1841, San Antonio, Texas, USA, 15โ€“17 December1993. IEEE Control Systems Society.

[11] T.A. Ell and S.J. Sangwine. Hypercomplex Fourier transforms of color images. IEEETransactions on Image Processing, 16(1):22โ€“35, Jan. 2007.

[12] S. Georgiev. Bochnerโ€“Minlos theorem and quaternion Fourier transform. In Gurle-beck [14].

[13] S. Georgiev, J. Morais, and W. SproรŸig. Trigonometric integrals in the framework ofquaternionic analysis. In Gurlebeck [14].

[14] K. Gurlebeck, editor. 9th International Conference on Clifford Algebras and theirApplications, Weimar, Germany, 15โ€“20 July 2011.

[15] K. Gurlebeck and W. SproรŸig. Quaternionic Analysis and Elliptic Boundary ValueProblems. Berlin: Akademie-Verlag, Berlin, 1989.

[16] K. Gurlebeck and W. SproรŸig. Quaternionic and Clifford Calculus for Physicists andEngineers. Wiley, Aug. 1997.

[17] E. Hitzer. Quaternion Fourier transform on quaternion fields and generalizations.Advances in Applied Clifford Algebras, 17(3):497โ€“517, May 2007.

Page 145: Quaternion and Clifford Fourier Transforms and Wavelets

120 S. Georgiev, J. Morais, K.I. Kou and W. SproรŸig

[18] E.M.S. Hitzer and B. Mawardi. Clifford Fourier transform on multivector fields anduncertainty principles for dimensions ๐‘› = 2(mod 4) and ๐‘› = 3(mod 4). Advances inApplied Clifford Algebras, 18(3-4):715โ€“736, 2008.

[19] V.V. Kravchenko. Applied Quaternionic Analysis, volume 28 of Research and Expo-sition in Mathematics. Heldermann Verlag, Lemgo, Germany, 2003.

[20] B. Mawardi. Generalized Fourier transform in Clifford algebra ๐’žโ„“0,3. Far East Jour-nal of Mathematical Sciences, 44(2):143โ€“154, 2010.

[21] B. Mawardi, E. Hitzer, A. Hayashi, and R. Ashino. An uncertainty principlefor quaternion Fourier transform. Computers and Mathematics with Applications,56(9):2411โ€“2417, 2008.

[22] B. Mawardi and E.M.S. Hitzer. Clifford Fourier transformation and uncertainty prin-ciple for the Clifford algebra ๐ถโ„“3,0. Advances in Applied Clifford Algebras, 16(1):41โ€“61, 2006.

[23] S.-C. Pei, J.-J. Ding, and J.-H. Chang. Efficient implementation of quaternionFourier transform, convolution, and correlation by 2-D complex FFT. IEEE Trans-actions on Signal Processing, 49(11):2783โ€“2797, Nov. 2001.

[24] M. Shapiro and N.L. Vasilevski. Quaternionic ๐œ“-hyperholomorphic functions, singu-lar integral operators and boundary value problems I. ๐œ“-hyperholomorphic functiontheory. Complex Variables, Theory and Application, 27(1):17โ€“46, 1995.

[25] M. Shapiro and N.L. Vasilevski. Quaternionic ๐œ“-hyperholomorphic functions, singu-lar integral operators and boundary value problems II. Algebras of singular integraloperators and Riemann type boundary value problems. Complex Variables, TheoryAppl., 27(1):67โ€“96, 1995.

S. GeorgievDepartment of Differential Equations, University of SofiaSofia, Bulgariae-mail: [email protected]

J. MoraisCentro de Investigacao e Desenvolvimento em Matematica e Aplicacoes (CIDMA)Universidade de Aveiro, 3810-193 Aveiro, Portugale-mail: [email protected]

K.I. KouDepartment of Mathematics, Faculty of Science and TechnologyUniversity of Macau, Macaue-mail: [email protected]

W. SproรŸigFreiberg University of Mining and TechnologyFreiberg, Germanye-mail: [email protected]

Page 146: Quaternion and Clifford Fourier Transforms and Wavelets

Part II

Clifford Algebra

Page 147: Quaternion and Clifford Fourier Transforms and Wavelets

Quaternion and Cliffordโ€“Fourier Transforms and Wavelets

Trends in Mathematics, 123โ€“153cโƒ 2013 Springer Basel

7 Square Roots of โˆ’1 in RealClifford Algebras

Eckhard Hitzer, Jacques Helmstetter and Rafal Ablamowicz

Abstract. It is well known that Clifford (geometric) algebra offers a geomet-ric interpretation for square roots of โˆ’1 in the form of blades that squareto minus 1. This extends to a geometric interpretation of quaternions as theside face bivectors of a unit cube. Systematic research has been done [33] onthe biquaternion roots of โˆ’1, abandoning the restriction to blades. Biquater-nions are isomorphic to the Clifford (geometric) algebra ๐ถโ„“3,0 of โ„3. Furtherresearch on general algebras ๐ถโ„“๐‘,๐‘ž has explicitly derived the geometric rootsof โˆ’1 for ๐‘+ ๐‘ž โ‰ค 4 [20]. The current research abandons this dimension limitand uses the Clifford algebra to matrix algebra isomorphisms in order to al-gebraically characterize the continuous manifolds of square roots of โˆ’1 foundin the different types of Clifford algebras, depending on the type of associ-ated ring (โ„, โ„, โ„2, โ„2, or โ„‚). At the end of the chapter explicit computergenerated tables of representative square roots of โˆ’1 are given for all Cliffordalgebras with ๐‘› = 5, 7, and ๐‘  = 3 (mod 4) with the associated ring โ„‚. Thisincludes, e.g., ๐ถโ„“0,5 important in Clifford analysis, and ๐ถโ„“4,1 which in appli-cations is at the foundation of conformal geometric algebra. All these rootsof โˆ’1 are immediately useful in the construction of new types of geometricCliffordโ€“Fourier transformations.

Mathematics Subject Classification (2010). Primary 15A66; secondary 11E88,42A38, 30G35.

Keywords. Algebra automorphism, inner automorphism, center, centralizer,Clifford algebra, conjugacy class, determinant, primitive idempotent, trace.

1. Introduction

The young London Goldsmith professor of applied mathematics W.K. Cliffordcreated his geometric algebras1 in 1878 inspired by the works of Hamilton on

1In his original publication [11] Clifford first used the term geometric algebras. Subsequently inmathematics the new term Clifford algebras [28] has become the proper mathematical term. Foremphasizing the geometric nature of the algebra, some researchers continue [9, 16, 17] to use theoriginal term geometric algebra(s).

Page 148: Quaternion and Clifford Fourier Transforms and Wavelets

124 E. Hitzer, J. Helmstetter and R. Ablamowicz

quaternions and by Grassmannโ€™s exterior algebra. Grassmann invented the anti-symmetric outer product of vectors, that regards the oriented parallelogram areaspanned by two vectors as a new type of number, commonly called bivector. Thebivector represents its own plane, because outer products with vectors in the planevanish. In three dimensions the outer product of three linearly independent vectorsdefines a so-called trivector with the magnitude of the volume of the parallelepipedspanned by the vectors. Its orientation (sign) depends on the handedness of thethree vectors.

In the Clifford algebra [16] of โ„3 the three bivector side faces of a unit cube{๐‘’1๐‘’2, ๐‘’2๐‘’3, ๐‘’3๐‘’1} oriented along the three coordinate directions {๐‘’1, ๐‘’2, ๐‘’3} cor-respond to the three quaternion units ๐’Š, ๐’‹, and ๐’Œ. Like quaternions, these threebivectors square to minus one and generate the rotations in their respective planes.

Beyond that Clifford algebra allows to extend complex numbers to higherdimensions [7, 17] and systematically generalize our knowledge of complex num-bers, holomorphic functions and quaternions into the realm of Clifford analysis.It has found rich applications in symbolic computation, physics, robotics, com-puter graphics, etc. [8, 9, 12, 14, 27]. Since bivectors and trivectors in the Cliffordalgebras of Euclidean vector spaces square to minus one, we can use them tocreate new geometric kernels for Fourier transformations. This leads to a largevariety of new Fourier transformations, which all deserve to be studied in theirown right [5, 6, 9, 13, 18, 19, 22,23,26, 29โ€“32].

In our current research we will treat square roots of โˆ’1 in Clifford algebras๐ถโ„“๐‘,๐‘ž of both Euclidean (positive definite metric) and non-Euclidean (indefinitemetric) non-degenerate vector spaces, โ„๐‘› = โ„๐‘›,0 and โ„๐‘,๐‘ž, respectively. We knowfrom Einsteinโ€™s special theory of relativity that non-Euclidean vector spaces are offundamental importance in nature [15]. They are further, e.g., used in computervision and robotics [12] and for general algebraic solutions to contact problems [27].Therefore this chapter is about characterizing square roots of โˆ’1 in all Cliffordalgebras ๐ถโ„“๐‘,๐‘ž, extending previous limited research on ๐ถโ„“3,0 in [33] and ๐ถโ„“๐‘,๐‘ž, ๐‘› =๐‘ + ๐‘ž โ‰ค 4 in [20]. The manifolds of square roots of โˆ’1 in ๐ถโ„“๐‘,๐‘ž, ๐‘› = ๐‘ + ๐‘ž = 2,compare Table 1 of [20], are visualized in Figure 1.

First, we introduce necessary background knowledge of Clifford algebras andmatrix ring isomorphisms and explain in more detail how we will characterize andclassify the square roots of โˆ’1 in Clifford algebras in Section 2. Next, we treatsection by section (in Sections 3 to 7) the square roots of โˆ’1 in Clifford algebraswhich are isomorphic to matrix algebras with associated rings โ„, โ„, โ„2, โ„2, andโ„‚, respectively. The term associated means that the isomorphic matrices will onlyhave matrix elements from the associated ring. The square roots of โˆ’1 in Section 7with associated ring โ„‚ are of particular interest, because of the existence of classesof exceptional square roots of โˆ’1, which all include a nontrivial term in the centralelement of the respective algebra different from the identity. Section 7 thereforeincludes a detailed discussion of all classes of square roots of โˆ’1 in the algebras๐ถโ„“4,1, the isomorphic ๐ถโ„“0,5, and in ๐ถโ„“7,0. Finally, we add Appendix A with tablesof square roots of โˆ’1 for all Clifford algebras with ๐‘› = 5, 7, and ๐‘  = 3 (mod 4).

Page 149: Quaternion and Clifford Fourier Transforms and Wavelets

7. Square Roots of โˆ’1 in Real Clifford Algebras 125

Figure 1. Manifolds of square roots ๐‘“ of โˆ’1 in ๐ถโ„“2,0 (left), ๐ถโ„“1,1 (cen-ter), and ๐ถโ„“0,2 โˆผ= โ„ (right). The square roots are ๐‘“ = ๐›ผ+ ๐‘1๐‘’1 + ๐‘2๐‘’2 +๐›ฝ๐‘’12, with ๐›ผ, ๐‘1, ๐‘2, ๐›ฝ โˆˆ โ„, ๐›ผ = 0, and ๐›ฝ2 = ๐‘21๐‘’

22 + ๐‘22๐‘’

21 + ๐‘’21๐‘’

22.

The square roots of โˆ’1 in Section 7 and in Appendix A were all computed withthe Maple package CLIFFORD [2], as explained in Appendix B.

2. Background and Problem Formulation

Let ๐ถโ„“๐‘,๐‘ž be the algebra (associative with unit 1) generated overโ„ by ๐‘+๐‘ž elements๐‘’๐‘˜ (with ๐‘˜ = 1, 2, . . . , ๐‘ + ๐‘ž) with the relations ๐‘’2๐‘˜ = 1 if ๐‘˜ โ‰ค ๐‘, ๐‘’2๐‘˜ = โˆ’1 if ๐‘˜ > ๐‘and ๐‘’โ„Ž๐‘’๐‘˜ + ๐‘’๐‘˜๐‘’โ„Ž = 0 whenever โ„Ž โˆ•= ๐‘˜, see [28]. We set the vector space dimension๐‘› = ๐‘+ ๐‘ž and the signature ๐‘  = ๐‘โˆ’ ๐‘ž. This algebra has dimension 2๐‘›, and its evensubalgebra ๐ถโ„“0(๐‘, ๐‘ž) has dimension 2๐‘›โˆ’1 (if ๐‘› > 0). We are concerned with squareroots of โˆ’1 contained in ๐ถโ„“๐‘,๐‘ž or ๐ถโ„“0(๐‘, ๐‘ž). If the dimension of ๐ถโ„“๐‘,๐‘ž or, ๐ถโ„“0(๐‘, ๐‘ž)is โ‰ค 2, it is isomorphic to โ„ โˆผ= ๐ถโ„“0,0, โ„

2 โˆผ= ๐ถโ„“1,0, or โ„‚ โˆผ= ๐ถโ„“0,1, and it is clear thatthere is no square root of โˆ’1 in โ„ and โ„2 = โ„ร—โ„, and that there are two squaresroots ๐‘– and โˆ’๐‘– in โ„‚. Therefore we only consider algebras of dimension โ‰ฅ 4. Squareroots of โˆ’1 have been computed explicitly in [33] for ๐ถโ„“3,0, and in [20] for algebrasof dimensions 2๐‘› โ‰ค 16.

An algebra ๐ถโ„“๐‘,๐‘ž or ๐ถโ„“0(๐‘, ๐‘ž) of dimension โ‰ฅ 4 is isomorphic to one of thefive matrix algebras:โ„ณ(2๐‘‘,โ„),โ„ณ(๐‘‘,โ„),โ„ณ(2๐‘‘,โ„2),โ„ณ(๐‘‘,โ„2) orโ„ณ(2๐‘‘,โ„‚). Theinteger ๐‘‘ depends on ๐‘›. According to the parity of ๐‘›, it is either 2(๐‘›โˆ’2)/2 or 2(๐‘›โˆ’3)/2

for ๐ถโ„“๐‘,๐‘ž, and, either 2(๐‘›โˆ’4)/2 or 2(๐‘›โˆ’3)/2 for ๐ถโ„“0(๐‘, ๐‘ž). The associated ring (either

โ„, โ„, โ„2, โ„2, or โ„‚) depends on ๐‘  in this way2:

2Compare Chapter 16 on matrix representations and periodicity of 8, as well as Table 1 on p.217 of [28].

Page 150: Quaternion and Clifford Fourier Transforms and Wavelets

126 E. Hitzer, J. Helmstetter and R. Ablamowicz

๐‘  mod 8 0 1 2 3 4 5 6 7

associated ring for ๐ถโ„“๐‘,๐‘ž โ„ โ„2 โ„ โ„‚ โ„ โ„2 โ„ โ„‚

associated ring for ๐ถโ„“0(๐‘, ๐‘ž) โ„2 โ„ โ„‚ โ„ โ„2 โ„ โ„‚ โ„

Therefore we shall answer the following question: what can we say about the squareroots of โˆ’1 in an algebra ๐’œ that is isomorphic toโ„ณ(2๐‘‘,โ„),โ„ณ(๐‘‘,โ„),โ„ณ(2๐‘‘,โ„2),โ„ณ(๐‘‘,โ„2), or, โ„ณ(2๐‘‘,โ„‚)? They constitute an algebraic submanifold in ๐’œ; howmany connected components3 (for the usual topology) does it contain? Which aretheir dimensions? This submanifold is invariant by the action of the group Inn(๐’œ)of inner automorphisms4 of ๐’œ, i.e., for every ๐‘Ÿ โˆˆ ๐’œ, ๐‘Ÿ2 = โˆ’1โ‡’ ๐‘“(๐‘Ÿ)2 = โˆ’1 โˆ€๐‘“ โˆˆInn(๐’œ). The orbits of Inn(๐’œ) are called conjugacy classes5; how many conjugacyclasses are there in this submanifold? If the associated ring is โ„2 or โ„2 or โ„‚, thegroup Aut(๐’œ) of all automorphisms of ๐’œ is larger than Inn(๐’œ), and the action ofAut(๐’œ) in this submanifold shall also be described.

We recall some properties of ๐’œ that do not depend on the associated ring.The group Inn(๐’œ) contains as many connected components as the group G(๐’œ) ofinvertible elements in ๐’œ. We recall that this assertion is true for โ„ณ(2๐‘‘,โ„) butnot for โ„ณ(2๐‘‘ + 1,โ„) which is not one of the relevant matrix algebras. If ๐‘“ is anelement of ๐’œ, let Cent(๐‘“) be the centralizer of ๐‘“ , that is, the subalgebra of all๐‘” โˆˆ ๐’œ such that ๐‘“๐‘” = ๐‘”๐‘“ . The conjugacy class of ๐‘“ contains as many connectedcomponents6 as G(๐’œ) if (and only if) Cent(๐‘“)

โˆฉG(๐’œ) is contained in the neutral7

connected component of G(๐’œ), and the dimension of its conjugacy class is

dim(๐’œ)โˆ’ dim(Cent(๐‘“)). (2.1)

Note that for invertible ๐‘” โˆˆ Cent(๐‘“) we have ๐‘”โˆ’1๐‘“๐‘” = ๐‘“ .Besides, let Z(๐’œ) be the center of ๐’œ, and let [๐’œ,๐’œ] be the subspace spanned

by all [๐‘“, ๐‘”] = ๐‘“๐‘” โˆ’ ๐‘”๐‘“ . In all cases ๐’œ is the direct sum of Z(๐’œ) and [๐’œ,๐’œ]. For

3Two points are in the same connected component of a manifold, if they can be joined by acontinuous path inside the manifold under consideration. (This applies to all topological spacessatisfying the property that each neighborhood of any point contains a neighborhood in whichevery pair of points can always be joined by a continuous path.)4An inner automorphism ๐‘“ of ๐’œ is defined as ๐‘“ : ๐’œ โ†’ ๐’œ, ๐‘“(๐‘ฅ) = ๐‘Žโˆ’1๐‘ฅ๐‘Ž, โˆ€๐‘ฅ โˆˆ ๐’œ, with givenfixed ๐‘Ž โˆˆ ๐’œ. The composition of two inner automorphisms ๐‘”(๐‘“(๐‘ฅ)) = ๐‘โˆ’1๐‘Žโˆ’1๐‘ฅ๐‘Ž๐‘ = (๐‘Ž๐‘)โˆ’1๐‘ฅ(๐‘Ž๐‘)is again an inner automorphism. With this operation the inner automorphisms form the groupInn(๐’œ), compare [35].5The conjugacy class (similarity class) of a given ๐‘Ÿ โˆˆ ๐’œ, ๐‘Ÿ2 = โˆ’1 is {๐‘“(๐‘Ÿ) : ๐‘“ โˆˆ Inn(๐’œ)}, compare[34]. Conjugation is transitive, because the composition of inner automorphisms is again an innerautomorphism.6According to the general theory of groups acting on sets, the conjugacy class (as a topologicalspace) of a square root ๐‘“ of โˆ’1 is isomorphic to the quotient of G(๐’œ) and Cent(๐‘“) (the subgroupof stability of ๐‘“). Quotient means here the set of left handed classes modulo the subgroup. Ifthe subgroup is contained in the neutral connected component of G(๐’œ), then the number of

connected components is the same in the quotient as in G(๐’œ). See also [10].7Neutral means to be connected to the identity element of ๐’œ.

Page 151: Quaternion and Clifford Fourier Transforms and Wavelets

7. Square Roots of โˆ’1 in Real Clifford Algebras 127

example,8 Z(โ„ณ(2๐‘‘,โ„)) = {๐‘Ž1 โˆฃ ๐‘Ž โˆˆ โ„} and Z(โ„ณ(2๐‘‘,โ„‚)) = {๐‘1 โˆฃ ๐‘ โˆˆ โ„‚}. If theassociated ring is โ„ or โ„ (that is for even ๐‘›), then Z(๐’œ) is canonically isomorphicto โ„, and from the projection ๐’œ โ†’ Z(๐’œ) we derive a linear form Scal : ๐’œ โ†’ โ„.When the associated ring9 is โ„2 or โ„2 or โ„‚, then Z(๐’œ) is spanned by 1 (the unitmatrix10) and some element ๐œ” such that ๐œ”2 = ยฑ1. Thus, we get two linear formsScal and Spec such that Scal(๐‘“)1+Spec(๐‘“)๐œ” is the projection of ๐‘“ in Z(๐’œ) for every๐‘“ โˆˆ ๐’œ. Instead of ๐œ” we may use โˆ’๐œ” and replace Spec with โˆ’Spec. The followingassertion holds for every ๐‘“ โˆˆ ๐’œ: The trace of each multiplication11 ๐‘” ๏ฟฝโ†’ ๐‘“๐‘” or๐‘” ๏ฟฝโ†’ ๐‘”๐‘“ is equal to the product

tr(๐‘“) = dim(๐’œ) Scal(๐‘“). (2.2)

The word โ€œtraceโ€ (when nothing more is specified) means a matrix trace in โ„,which is the sum of its diagonal elements. For example, the matrix ๐‘€ โˆˆ โ„ณ(2๐‘‘,โ„)

with elements ๐‘š๐‘˜๐‘™ โˆˆ โ„, 1 โ‰ค ๐‘˜, ๐‘™ โ‰ค 2๐‘‘ has the trace tr(๐‘€) =โˆ‘2๐‘‘

๐‘˜=1 ๐‘š๐‘˜๐‘˜ [24].

We shall prove that in all cases Scal(๐‘“) = 0 for every square root of โˆ’1 in๐’œ. Then, we may distinguish ordinary square roots of โˆ’1, and exceptional ones.In all cases the ordinary square roots of โˆ’1 constitute a unique12 conjugacy classof dimension dim(๐’œ)/2 which has as many connected components as G(๐’œ), andthey satisfy the equality Spec(๐‘“) = 0 if the associated ring is โ„2 or โ„2 or โ„‚. Theexceptional square roots of โˆ’1 only exist13 if ๐’œ โˆผ= โ„ณ(2๐‘‘,โ„‚). In โ„ณ(2๐‘‘,โ„‚) thereare 2๐‘‘ conjugacy classes of exceptional square roots of โˆ’1, each one characterizedby an equality Spec(๐‘“) = ๐‘˜/๐‘‘ with ยฑ๐‘˜ โˆˆ {1, 2, . . . , ๐‘‘} [see Section 7], and theirdimensions are< dim(๐’œ)/2 [see equation (7.5)]. For instance, ๐œ” (mentioned above)and โˆ’๐œ” are central square roots of โˆ’1 inโ„ณ(2๐‘‘,โ„‚) which constitute two conjugacyclasses of dimension 0. Obviously, Spec(๐œ”) = 1.

For symbolic computer algebra systems (CAS), like MAPLE, there exist Clif-ford algebra packages, e.g., CLIFFORD [2], which can compute idempotents [3]and square roots of โˆ’1. This will be of especial interest for the exceptional squareroots of โˆ’1 in โ„ณ(2๐‘‘,โ„‚).

Regarding a square root ๐‘Ÿ of โˆ’1, a Clifford algebra is the direct sum of thesubspaces Cent(๐‘Ÿ) (all elements that commute with ๐‘Ÿ) and the skew-centralizer

8A matrix algebra based proof is, e.g., given in [4].9This is the case for ๐‘› (and ๐‘ ) odd. Then the pseudoscalar ๐œ” โˆˆ ๐ถโ„“๐‘,๐‘ž is also in Z(๐ถโ„“๐‘,๐‘ž).10The number 1 denotes the unit of the Clifford algebra ๐’œ, whereas the bold face 1 denotes theunit of the isomorphic matrix algebra โ„ณ.11These multiplications are bilinear over the center of ๐’œ.12Let ๐’œ be an algebra โ„ณ(๐‘š,๐•‚) where ๐•‚ is a division ring. Thus two elements ๐‘“ and ๐‘” of ๐’œinduce ๐•‚-linear endomorphisms ๐‘“ โ€ฒ and ๐‘”โ€ฒ on ๐•‚๐‘š; if ๐•‚ is not commutative, ๐•‚ operates on ๐•‚๐‘š

on the right side. The matrices ๐‘“ and ๐‘” are conjugate (or similar) if and only if there are two๐•‚-bases ๐ต1 and ๐ต2 of ๐•‚๐‘š such that ๐‘“ โ€ฒ operates on ๐ต1 in the same way as ๐‘”โ€ฒ operates on ๐ต2.This theorem allows us to recognize that in all cases but the last one (with exceptional squareroots of โˆ’1), two square roots of โˆ’1 are always conjugate.13The pseudoscalars of Clifford algebras whose isomorphic matrix algebra has ring โ„2 or โ„2

square to ๐œ”2 = +1.

Page 152: Quaternion and Clifford Fourier Transforms and Wavelets

128 E. Hitzer, J. Helmstetter and R. Ablamowicz

SCent(๐‘Ÿ) (all elements that anticommute with ๐‘Ÿ). Every Clifford algebra multivec-tor has a unique split by this Lemma.

Lemma 2.1. Every multivector ๐ด โˆˆ ๐ถโ„“๐‘,๐‘ž has, with respect to a square root ๐‘Ÿ โˆˆ๐ถโ„“๐‘,๐‘ž of โˆ’1, i.e., ๐‘Ÿโˆ’1 = โˆ’๐‘Ÿ, the unique decomposition

๐ดยฑ =1

2(๐ดยฑ ๐‘Ÿโˆ’1๐ด๐‘Ÿ), ๐ด = ๐ด+ +๐ดโˆ’, ๐ด+๐‘Ÿ = ๐‘Ÿ๐ด+, ๐ดโˆ’๐‘Ÿ = โˆ’๐‘Ÿ๐ดโˆ’. (2.3)

Proof. For ๐ด โˆˆ ๐ถโ„“๐‘,๐‘ž and a square root ๐‘Ÿ โˆˆ ๐ถโ„“๐‘,๐‘ž of โˆ’1, we compute

๐ดยฑ๐‘Ÿ =1

2(๐ดยฑ ๐‘Ÿโˆ’1๐ด๐‘Ÿ)๐‘Ÿ =

1

2(๐ด๐‘Ÿ ยฑ ๐‘Ÿโˆ’1๐ด(โˆ’1)) ๐‘Ÿโˆ’1=โˆ’๐‘Ÿ

=1

2(๐‘Ÿ๐‘Ÿโˆ’1๐ด๐‘Ÿ ยฑ ๐‘Ÿ๐ด)

= ยฑ๐‘Ÿ1

2(๐ดยฑ ๐‘Ÿโˆ’1๐ด๐‘Ÿ). โ–ก

For example, in Clifford algebras ๐ถโ„“๐‘›,0 [23] of dimensions ๐‘› = 2 mod 4,Cent(๐‘Ÿ) is the even subalgebra ๐ถโ„“0(๐‘›, 0) for the unit pseudoscalar ๐‘Ÿ, and thesubspace ๐ถโ„“1(๐‘›, 0) spanned by all ๐‘˜-vectors of odd degree ๐‘˜, is SCent(๐‘Ÿ). Themost interesting case is โ„ณ(2๐‘‘,โ„‚), where a whole range of conjugacy classes be-comes available. These results will therefore be particularly relevant for construct-ing Cliffordโ€“Fourier transformations using the square roots of โˆ’1.

3. Square Roots of โˆ’1 in ํ“œ(2๐’…,โ„)

Here ๐’œ = โ„ณ(2๐‘‘,โ„), whence dim(๐’œ) = (2๐‘‘)2 = 4๐‘‘2. The group G(๐’œ) has twoconnected components determined by the inequalities det(๐‘”) > 0 and det(๐‘”) < 0.

For the case ๐‘‘ = 1 we have, e.g., the algebra ๐ถโ„“2,0 isomorphic to โ„ณ(2,โ„).The basis {1, ๐‘’1, ๐‘’2, ๐‘’12} of ๐ถโ„“2,0 is mapped to{(

1 00 1

),

(0 11 0

),

(1 00 โˆ’1

),

(0 โˆ’11 0

)}.

The general element ๐›ผ+ ๐‘1๐‘’1 + ๐‘2๐‘’2 + ๐›ฝ๐‘’12 โˆˆ ๐ถโ„“2,0 is thus mapped to(๐›ผ+ ๐‘2 โˆ’๐›ฝ + ๐‘1๐›ฝ + ๐‘1 ๐›ผโˆ’ ๐‘2

)(3.1)

in โ„ณ(2,โ„). Every element ๐‘“ of ๐’œ =โ„ณ(2๐‘‘,โ„) is treated as an โ„-linear endomor-phism of ๐‘‰ = โ„2๐‘‘. Thus, its scalar component and its trace (2.2) are related asfollows: tr(๐‘“) = 2๐‘‘Scal(๐‘“). If ๐‘“ is a square root of โˆ’1, it turns ๐‘‰ into a vectorspace over โ„‚ (if the complex number ๐‘– operates like ๐‘“ on ๐‘‰ ). If (๐‘’1, ๐‘’2, . . . , ๐‘’๐‘‘) isa โ„‚-basis of ๐‘‰ , then (๐‘’1, ๐‘“(๐‘’1), ๐‘’2, ๐‘“(๐‘’2), . . . , ๐‘’๐‘‘, ๐‘“(๐‘’๐‘‘)) is an โ„-basis of ๐‘‰ , and the2๐‘‘ร— 2๐‘‘ matrix of ๐‘“ in this basis is

diag

((0 โˆ’11 0

), . . . ,

(0 โˆ’11 0

)๏ธธ ๏ธท๏ธท ๏ธธ

๐‘‘

)(3.2)

Consequently all square roots of โˆ’1 in ๐’œ are conjugate. The centralizer of asquare root ๐‘“ of โˆ’1 is the algebra of all โ„‚-linear endomorphisms ๐‘” of ๐‘‰ (since

Page 153: Quaternion and Clifford Fourier Transforms and Wavelets

7. Square Roots of โˆ’1 in Real Clifford Algebras 129

๐‘– operates like ๐‘“ on ๐‘‰ ). Therefore, the โ„‚-dimension of Cent(๐‘“) is ๐‘‘2 and itsโ„-dimension is 2๐‘‘2. Finally, the dimension (2.1) of the conjugacy class of ๐‘“ isdim(๐’œ) โˆ’ dim(Cent(๐‘“)) = 4๐‘‘2 โˆ’ 2๐‘‘2 = 2๐‘‘2 = dim(๐’œ)/2. The two connected com-ponents of G(๐’œ) are determined by the sign of the determinant. Because of thenext lemma, the โ„-determinant of every element of Cent(๐‘“) is โ‰ฅ 0. Therefore, theintersection Cent(๐‘“)

โˆฉG(๐’œ) is contained in the neutral connected component of

G(๐’œ) and, consequently, the conjugacy class of ๐‘“ has two connected componentslike G(๐’œ). Because of the next lemma, the โ„-trace of ๐‘“ vanishes (indeed its โ„‚-traceis ๐‘‘๐‘–, because ๐‘“ is the multiplication by the scalar ๐‘–: ๐‘“(๐‘ฃ) = ๐‘–๐‘ฃ for all ๐‘ฃ) whenceScal(๐‘“) = 0. This equality is corroborated by the matrix written above.

We conclude that the square roots of โˆ’1 constitute one conjugacy class withtwo connected components of dimension dim(๐’œ)/2 contained in the hyperplanedefined by the equation

Scal(๐‘“) = 0. (3.3)

Before stating the lemma that here is so helpful, we show what happens inthe easiest case ๐‘‘ = 1. The square roots of โˆ’1 in โ„ณ(2,โ„) are the real matrices(

๐‘Ž ๐‘๐‘ โˆ’๐‘Ž

)with

(๐‘Ž ๐‘๐‘ โˆ’๐‘Ž

)(๐‘Ž ๐‘๐‘ โˆ’๐‘Ž

)= (๐‘Ž2 + ๐‘๐‘)1 = โˆ’1; (3.4)

hence ๐‘Ž2 + ๐‘๐‘ = โˆ’1, a relation between ๐‘Ž, ๐‘, ๐‘ which is equivalent to (๐‘ โˆ’ ๐‘)2 =(๐‘ + ๐‘)2 + 4๐‘Ž2 + 4 โ‡’ (๐‘ โˆ’ ๐‘)2 โ‰ฅ 4 โ‡’ ๐‘ โˆ’ ๐‘ โ‰ฅ 2 (one component) or ๐‘ โˆ’ ๐‘ โ‰ฅ 2(second component). Thus, we recognize the two connected components of squareroots of โˆ’1: The inequality ๐‘ โ‰ฅ ๐‘+ 2 holds in one connected component, and theinequality ๐‘ โ‰ฅ ๐‘+ 2 in the other one, compare Figure 2.

Figure 2. Two components of square roots of โˆ’1 in โ„ณ(2,โ„).

In terms of ๐ถโ„“2,0 coefficients (3.1) with ๐‘โˆ’ ๐‘ = ๐›ฝ + ๐‘1 โˆ’ (โˆ’๐›ฝ + ๐‘1) = 2๐›ฝ, weget the two component conditions simply as

๐›ฝ โ‰ฅ 1 (one component), ๐›ฝ โ‰ค โˆ’1 (second component). (3.5)

Rotations (det(๐‘”) = 1) leave the pseudoscalar ๐›ฝ๐‘’12 invariant (and thus preserve thetwo connected components of square roots of โˆ’1), but reflections (det(๐‘”โ€ฒ) = โˆ’1)change its sign ๐›ฝ๐‘’12 โ†’ โˆ’๐›ฝ๐‘’12 (thus interchanging the two components).

Page 154: Quaternion and Clifford Fourier Transforms and Wavelets

130 E. Hitzer, J. Helmstetter and R. Ablamowicz

Because of the previous argument involving a complex structure on the realspace ๐‘‰ , we conversely consider the complex space โ„‚๐‘‘ with its structure of vectorspace over โ„. If (๐‘’1, ๐‘’2, . . . , ๐‘’๐‘‘) is a โ„‚-basis of โ„‚๐‘‘, then (๐‘’1, ๐‘–๐‘’1, ๐‘’2, ๐‘–๐‘’2, . . . , ๐‘’๐‘‘, ๐‘–๐‘’๐‘‘)is an โ„-basis. Let ๐‘” be a โ„‚-linear endomorphism of โ„‚๐‘‘ (i.e., a complex ๐‘‘ ร— ๐‘‘matrix), let trโ„‚(๐‘”) and detโ„‚(๐‘”) be the trace and determinant of ๐‘” in โ„‚, and trโ„(๐‘”)and detโ„(๐‘”) its trace and determinant for the real structure of โ„‚๐‘‘.

Example. For ๐‘‘ = 1 an endomorphism of โ„‚1 is given by a complex number ๐‘” =๐‘Ž+ ๐‘–๐‘, ๐‘Ž, ๐‘ โˆˆ โ„. Its matrix representation is according to (3.2)(

๐‘Ž โˆ’๐‘๐‘ ๐‘Ž

)with

(๐‘Ž โˆ’๐‘๐‘ ๐‘Ž

)2

= (๐‘Ž2 โˆ’ ๐‘2)

(1 00 1

)+ 2๐‘Ž๐‘

(0 โˆ’11 0

). (3.6)

Then we have trโ„‚(๐‘”) = ๐‘Ž + ๐‘–๐‘, trโ„

(๐‘Ž โˆ’๐‘๐‘ ๐‘Ž

)= 2๐‘Ž = 2โ„œ(trโ„‚(๐‘”)) and detโ„‚(๐‘”) =

๐‘Ž+ ๐‘–๐‘, detโ„

(๐‘Ž โˆ’๐‘๐‘ ๐‘Ž

)= ๐‘Ž2 + ๐‘2 = โˆฃ detโ„‚(๐‘”)โˆฃ2 โ‰ฅ 0.

Lemma 3.1. For every โ„‚-linear endomorphism ๐‘” we can write trโ„(๐‘”) = 2โ„œ(trโ„‚(๐‘”))and detโ„(๐‘”) = โˆฃ detโ„‚(๐‘”)โˆฃ2 โ‰ฅ 0.

Proof. There is a โ„‚-basis in which the โ„‚-matrix of ๐‘” is triangular [then detโ„‚(๐‘”)is the product of the entries of ๐‘” on the main diagonal]. We get the โ„-matrixof ๐‘” in the derived โ„-basis by replacing every entry ๐‘Ž + ๐‘๐‘– of the โ„‚-matrix with

the elementary matrix

(๐‘Ž โˆ’๐‘๐‘ ๐‘Ž

). The conclusion soon follows. The fact that the

determinant of a block triangular matrix is the product of the determinants of theblocks on the main diagonal is used. โ–ก

4. Square Roots of โˆ’1 in ํ“œ(2๐’…,โ„2)

Here ๐’œ = โ„ณ(2๐‘‘,โ„2) = โ„ณ(2๐‘‘,โ„) ร— โ„ณ(2๐‘‘,โ„), whence dim(๐’œ) = 8๐‘‘2. Thegroup G(๐’œ) has four14 connected components. Every element (๐‘“, ๐‘“ โ€ฒ) โˆˆ ๐’œ (with๐‘“, ๐‘“ โ€ฒ โˆˆ โ„ณ(2๐‘‘,โ„)) has a determinant in โ„2 which is obviously (det(๐‘“), det(๐‘“ โ€ฒ)),and the four connected components of G(๐’œ) are determined by the signs of thetwo components of detโ„2(๐‘“, ๐‘“ โ€ฒ).

The lowest-dimensional example (๐‘‘ = 1) is ๐ถโ„“2,1 isomorphic to โ„ณ(2,โ„2).Here the pseudoscalar ๐œ” = ๐‘’123 has square ๐œ”2 = +1. The center of the algebra is{1, ๐œ”} and includes the idempotents ๐œ–ยฑ = (1ยฑ๐œ”)/2, ๐œ–2ยฑ = ๐œ–ยฑ, ๐œ–+๐œ–โˆ’ = ๐œ–โˆ’๐œ–+ = 0.The basis of the algebra can thus be written as {๐œ–+, ๐‘’1๐œ–+, ๐‘’2๐œ–+, ๐‘’12๐œ–+, ๐œ–โˆ’, ๐‘’1๐œ–โˆ’,๐‘’2๐œ–โˆ’, ๐‘’12๐œ–โˆ’}, where the first (and the last) four elements form a basis of the

14In general, the number of connected components of G(๐’œ) is two if ๐’œ = โ„ณ(๐‘š,โ„), and one if๐’œ = โ„ณ(๐‘š,โ„‚) or ๐’œ = โ„ณ(๐‘š,โ„), because in all cases every matrix can be joined by a continuouspath to a diagonal matrix with entries 1 or โˆ’1. When an algebra ๐’œ is a direct product of two

algebras โ„ฌ and ๐’ž, then G(๐’œ) is the direct product of G(โ„ฌ) and G(๐’ž), and the number of connectedcomponents of G(๐’œ) is the product of the numbers of connected components of G(โ„ฌ) and G(๐’ž).

Page 155: Quaternion and Clifford Fourier Transforms and Wavelets

7. Square Roots of โˆ’1 in Real Clifford Algebras 131

subalgebra ๐ถโ„“2,0 isomorphic toโ„ณ(2,โ„). In terms of matrices we have the identitymatrix (1,1) representing the scalar part, the idempotent matrices (1, 0), (0,1),and the ๐œ” matrix (1,โˆ’1), with 1 the unit matrix of โ„ณ(2,โ„).

The square roots of (โˆ’1,โˆ’1) in ๐’œ are pairs of two square roots of โˆ’1 inโ„ณ(2๐‘‘,โ„). Consequently they constitute a unique conjugacy class with four con-nected components of dimension 4๐‘‘2 = dim(๐’œ)/2. This number can be obtained intwo ways. First, since every element (๐‘“, ๐‘“ โ€ฒ) โˆˆ ๐’œ (with ๐‘“, ๐‘“ โ€ฒ โˆˆโ„ณ(2๐‘‘,โ„)) has twicethe dimension of the components ๐‘“ โˆˆโ„ณ(2๐‘‘,โ„) of Section 3, we get the componentdimension 2โ‹…2๐‘‘2 = 4๐‘‘2. Second, the centralizer Cent(๐‘“, ๐‘“ โ€ฒ) has twice the dimensionof Cent(๐‘“) ofโ„ณ(2๐‘‘,โ„), therefore dim(๐’œ)โˆ’Cent(๐‘“, ๐‘“ โ€ฒ) = 8๐‘‘2 โˆ’ 4๐‘‘2 = 4๐‘‘2. In theabove example for ๐‘‘ = 1 the four components are characterized according to (3.5)by the values of the coefficients of ๐›ฝ๐‘’12๐œ–+ and ๐›ฝโ€ฒ๐‘’12๐œ–โˆ’ as

๐‘1 : ๐›ฝ โ‰ฅ 1, ๐›ฝโ€ฒ โ‰ฅ 1,

๐‘2 : ๐›ฝ โ‰ฅ 1, ๐›ฝโ€ฒ โ‰ค โˆ’1,๐‘3 : ๐›ฝ โ‰ค โˆ’1, ๐›ฝโ€ฒ โ‰ฅ 1,

๐‘4 : ๐›ฝ โ‰ค โˆ’1, ๐›ฝโ€ฒ โ‰ค โˆ’1. (4.1)

For every (๐‘“, ๐‘“ โ€ฒ) โˆˆ ๐’œ we can with (2.2) write tr(๐‘“) + tr(๐‘“ โ€ฒ) = 2๐‘‘Scal(๐‘“, ๐‘“ โ€ฒ) and

tr(๐‘“)โˆ’ tr(๐‘“ โ€ฒ) = 2๐‘‘Spec(๐‘“, ๐‘“ โ€ฒ) if ๐œ” = (1,โˆ’1); (4.2)

whence Scal(๐‘“, ๐‘“ โ€ฒ) = Spec(๐‘“, ๐‘“ โ€ฒ) = 0 if (๐‘“, ๐‘“ โ€ฒ) is a square root of (โˆ’1,โˆ’1), compare(3.3).

The group Aut(๐’œ) is larger than Inn(๐’œ), because it contains the swap auto-morphism (๐‘“, ๐‘“ โ€ฒ) ๏ฟฝโ†’ (๐‘“ โ€ฒ, ๐‘“) which maps the central element ๐œ” to โˆ’๐œ”, and inter-changes the two idempotents ๐œ–+ and ๐œ–โˆ’. The group Aut(๐’œ) has eight connectedcomponents which permute the four connected components of the submanifold ofsquare roots of (โˆ’1,โˆ’1). The permutations induced by Inn(๐’œ) are the permu-tations of the Klein group. For example for ๐‘‘ = 1 of (4.1) we get the followingInn(โ„ณ(2,โ„2)) permutations

det(๐‘”) > 0, det(๐‘”โ€ฒ) > 0 : identity,

det(๐‘”) > 0, det(๐‘”โ€ฒ) < 0 : (๐‘1, ๐‘2), (๐‘3, ๐‘4),

det(๐‘”) < 0, det(๐‘”โ€ฒ) > 0 : (๐‘1, ๐‘3), (๐‘2, ๐‘4),

det(๐‘”) < 0, det(๐‘”โ€ฒ) < 0 : (๐‘1, ๐‘4), (๐‘2, ๐‘3). (4.3)

Beside the identity permutation, Inn(๐’œ) gives the three permutations that permutetwo elements and also the other two ones.

The automorphisms outside Inn(๐’œ) are(๐‘“, ๐‘“ โ€ฒ) ๏ฟฝโ†’ (๐‘”๐‘“ โ€ฒ๐‘”โˆ’1, ๐‘”โ€ฒ๐‘“๐‘”โ€ฒโˆ’1) for some (๐‘”, ๐‘”โ€ฒ) โˆˆ G(๐’œ). (4.4)

If det(๐‘”) and det(๐‘”โ€ฒ) have opposite signs, it is easy to realize that this automor-phism induces a circular permutation on the four connected components of squareroots of (โˆ’1,โˆ’1): If det(๐‘”) and det(๐‘”โ€ฒ) have the same sign, this automorphismleaves globally invariant two connected components, and permutes the other two

Page 156: Quaternion and Clifford Fourier Transforms and Wavelets

132 E. Hitzer, J. Helmstetter and R. Ablamowicz

ones. For example, for ๐‘‘ = 1 the automorphisms (4.4) outside Inn(๐’œ) permute thecomponents (4.1) of square roots of (โˆ’1,โˆ’1) in โ„ณ(2,โ„2) as follows

det(๐‘”) > 0, det(๐‘”โ€ฒ) > 0 : (๐‘1), (๐‘2, ๐‘3), (๐‘4),

det(๐‘”) > 0, det(๐‘”โ€ฒ) < 0 : ๐‘1 โ†’ ๐‘2 โ†’ ๐‘4 โ†’ ๐‘3 โ†’ ๐‘1,

det(๐‘”) < 0, det(๐‘”โ€ฒ) > 0 : ๐‘1 โ†’ ๐‘3 โ†’ ๐‘4 โ†’ ๐‘2 โ†’ ๐‘1,

det(๐‘”) < 0, det(๐‘”โ€ฒ) < 0 : (๐‘1, ๐‘4), (๐‘2), (๐‘3). (4.5)

Consequently, the quotient of the group Aut(๐’œ) by its neutral connected compo-nent is isomorphic to the group of isometries of a square in a Euclidean plane.

5. Square Roots of โˆ’1 in ํ“œ(๐’…,โ„)

Let us first consider the easiest case ๐‘‘ = 1, when ๐’œ = โ„, e.g., of ๐ถโ„“0,2. The squareroots of โˆ’1 in โ„ are the quaternions ๐‘Ž๐‘– + ๐‘๐‘— + ๐‘๐‘–๐‘— with ๐‘Ž2 + ๐‘2 + ๐‘2 = 1. Theyconstitute a compact and connected manifold of dimension 2. Every square root๐‘“ of โˆ’1 is conjugate with ๐‘–, i.e., there exists ๐‘ฃ โˆˆ โ„ : ๐‘ฃโˆ’1๐‘“๐‘ฃ = ๐‘– โ‡” ๐‘“๐‘ฃ = ๐‘ฃ๐‘–. If weset ๐‘ฃ = โˆ’๐‘“๐‘–+ 1 = ๐‘Ž+ ๐‘๐‘–๐‘— โˆ’ ๐‘๐‘— + 1 we have

๐‘“๐‘ฃ = โˆ’๐‘“2๐‘–+ ๐‘“ = ๐‘“ + ๐‘– = (๐‘“(โˆ’๐‘–) + 1)๐‘– = ๐‘ฃ๐‘–.

๐‘ฃ is invertible, except when ๐‘“ = โˆ’๐‘–. But ๐‘– is conjugate with โˆ’๐‘– because ๐‘–๐‘— = ๐‘—(โˆ’๐‘–),hence, by transitivity ๐‘“ is also conjugate with โˆ’๐‘–.

Here ๐’œ = โ„ณ(๐‘‘,โ„), whence dim(๐ด) = 4๐‘‘2. The ring โ„ is the algebra overโ„ generated by two elements ๐‘– and ๐‘— such that ๐‘–2 = ๐‘—2 = โˆ’1 and ๐‘—๐‘– = โˆ’๐‘–๐‘—. Weidentify โ„‚ with the subalgebra generated by15 ๐‘– alone.

The group G(๐’œ) has only one connected component. We shall soon prove thatevery square root of โˆ’1 in ๐’œ is conjugate with ๐‘–1. Therefore, the submanifold ofsquare roots of โˆ’1 is a conjugacy class, and it is connected. The centralizer of๐‘–1 in ๐’œ is the subalgebra of all matrices with entries in โ„‚. The โ„‚-dimension ofCent(๐‘–1) is ๐‘‘2, its โ„-dimension is 2๐‘‘2, and, consequently, the dimension (2.1) ofthe submanifold of square roots of โˆ’1 is 4๐‘‘2 โˆ’ 2๐‘‘2 = 2๐‘‘2 = dim(๐’œ)/2.

Here ๐‘‰ = โ„๐‘‘ is treated as a (unitary) module over โ„ on the right side:The product of a line vector ๐‘ก๐‘ฃ = (๐‘ฅ1, ๐‘ฅ2, . . . , ๐‘ฅ๐‘‘) โˆˆ ๐‘‰ by ๐‘ฆ โˆˆ โ„ is ๐‘ก๐‘ฃ ๐‘ฆ =(๐‘ฅ1๐‘ฆ, ๐‘ฅ2๐‘ฆ, . . . , ๐‘ฅ๐‘‘๐‘ฆ). Thus, every ๐‘“ โˆˆ ๐’œ determines an โ„-linear endomorphism of๐‘‰ : The matrix ๐‘“ multiplies the column vector ๐‘ฃ = ๐‘ก(๐‘ฅ1, ๐‘ฅ2, . . . , ๐‘ฅ๐‘‘) on the leftside ๐‘ฃ ๏ฟฝโ†’ ๐‘“๐‘ฃ. Since โ„‚ is a subring of โ„, ๐‘‰ is also a vector space of dimension 2๐‘‘over โ„‚. The scalar ๐‘– always operates on the right side (like every scalar in โ„). If(๐‘’1, ๐‘’2, . . . , ๐‘’๐‘‘) is an โ„-basis of ๐‘‰ , then (๐‘’1, ๐‘’1๐‘—, ๐‘’2, ๐‘’2๐‘—, . . . , ๐‘’๐‘‘, ๐‘’๐‘‘๐‘—) is a โ„‚-basis of๐‘‰ . Let ๐‘“ be a square root of โˆ’1, then the eigenvalues of ๐‘“ in โ„‚ are +๐‘– or โˆ’๐‘–.If we treat ๐‘‰ as a 2๐‘‘ vector space over โ„‚, it is the direct (โ„‚-linear) sum of theeigenspaces

๐‘‰ + = {๐‘ฃ โˆˆ ๐‘‰ โˆฃ ๐‘“(๐‘ฃ) = ๐‘ฃ๐‘–} and ๐‘‰ โˆ’ = {๐‘ฃ โˆˆ ๐‘‰ โˆฃ ๐‘“(๐‘ฃ) = โˆ’๐‘ฃ๐‘–}, (5.1)

15This choice is usual and convenient.

Page 157: Quaternion and Clifford Fourier Transforms and Wavelets

7. Square Roots of โˆ’1 in Real Clifford Algebras 133

representing ๐‘“ as a 2๐‘‘ร— 2๐‘‘ โ„‚-matrix w.r.t. the โ„‚-basis of ๐‘‰ , with โ„‚-scalar eigen-values (multiplied from the right): ๐œ†ยฑ = ยฑ๐‘–.

Since ๐‘–๐‘— = โˆ’๐‘—๐‘–, the multiplication ๐‘ฃ ๏ฟฝโ†’ ๐‘ฃ๐‘— permutes ๐‘‰ + and ๐‘‰ โˆ’, as ๐‘“(๐‘ฃ) =ยฑ๐‘ฃ๐‘– is mapped to ๐‘“(๐‘ฃ)๐‘— = ยฑ๐‘ฃ๐‘–๐‘— = โˆ“(๐‘ฃ๐‘—)๐‘–. Therefore, if (๐‘’1, ๐‘’2, . . . , ๐‘’๐‘Ÿ) is a โ„‚-basisof ๐‘‰ +, then (๐‘’1๐‘—, ๐‘’2๐‘—, . . . , ๐‘’๐‘Ÿ๐‘—) is a โ„‚-basis of ๐‘‰ โˆ’, consequently (๐‘’1, ๐‘’1๐‘—, ๐‘’2, ๐‘’2๐‘—,. . ., ๐‘’๐‘Ÿ, ๐‘’๐‘Ÿ๐‘—) is a โ„‚-basis of ๐‘‰ , and (๐‘’1, ๐‘’2, . . . , ๐‘’๐‘Ÿ=๐‘‘) is an โ„-basis of ๐‘‰ . Since ๐‘“ by๐‘“(๐‘’๐‘˜) = ๐‘’๐‘˜๐‘– for ๐‘˜ = 1, 2, . . . , ๐‘‘ operates on the โ„-basis (๐‘’1, ๐‘’2, . . . , ๐‘’๐‘‘) in the sameway as ๐‘–1 on the natural โ„-basis of ๐‘‰ , we conclude that ๐‘“ and ๐‘–1 are conjugate.

Besides, Scal(๐‘–1) = 0 because 2๐‘–1 = [๐‘—1, ๐‘–๐‘—1] โˆˆ [๐’œ,๐’œ], thus ๐‘–1 /โˆˆ Z(๐’œ).Whence,16

Scal(๐‘“) = 0 for every square root of โˆ’ 1. (5.2)

These results are easily verified in the above example of ๐‘‘ = 1 when ๐’œ = โ„.

6. Square Roots of โˆ’1 in ํ“œ(๐’…,โ„2)

Here, ๐’œ = โ„ณ(๐‘‘,โ„2) = โ„ณ(๐‘‘,โ„) ร—โ„ณ(๐‘‘,โ„), whence dim(๐ด) = 8๐‘‘2. The groupG(๐’œ) has only one connected component (see Footnote 14).

The square roots of (โˆ’1,โˆ’1) in ๐’œ are pairs of two square roots of โˆ’1 inโ„ณ(๐‘‘,โ„). Consequently, they constitute a unique conjugacy class which is con-nected and its dimension is 2ร— 2๐‘‘2 = 4๐‘‘2 = dim(๐’œ)/2.

For every (๐‘“, ๐‘“ โ€ฒ) โˆˆ ๐’œ we can write Scal(๐‘“) + Scal(๐‘“ โ€ฒ) = 2 Scal(๐‘“, ๐‘“ โ€ฒ) and,similarly to (4.2),

Scal(๐‘“)โˆ’ Scal(๐‘“ โ€ฒ) = 2 Spec(๐‘“, ๐‘“ โ€ฒ) if ๐œ” = (1,โˆ’1); (6.1)

whence Scal(๐‘“, ๐‘“ โ€ฒ) = Spec(๐‘“, ๐‘“ โ€ฒ) = 0 if (๐‘“, ๐‘“ โ€ฒ) is a square root of (โˆ’1,โˆ’1), comparewith (5.2).

The group Aut(๐’œ) has two17 connected components; the neutral componentis Inn(๐’œ), and the other component contains the swap automorphism (๐‘“, ๐‘“ โ€ฒ) ๏ฟฝโ†’(๐‘“ โ€ฒ, ๐‘“).

The simplest example is ๐‘‘ = 1, ๐’œ = โ„2, where we have the identity pair(1, 1) representing the scalar part, the idempotents (1, 0), (0, 1), and ๐œ” as the pair(1,โˆ’1).

๐’œ = โ„2 is isomorphic to ๐ถโ„“0,3. The pseudoscalar ๐œ” = ๐‘’123 has the square๐œ”2 = +1. The center of the algebra is {1, ๐œ”}, and includes the idempotents ๐œ–ยฑ =12 (1ยฑ๐œ”), ๐œ–2ยฑ = ๐œ–ยฑ, ๐œ–+๐œ–โˆ’ = ๐œ–โˆ’๐œ–+ = 0. The basis of the algebra can thus be writtenas {๐œ–+, ๐‘’1๐œ–+, ๐‘’2๐œ–+, ๐‘’12๐œ–+, ๐œ–โˆ’, ๐‘’1๐œ–โˆ’, ๐‘’2๐œ–โˆ’, ๐‘’12๐œ–โˆ’} where the first (and the last) fourelements form a basis of the subalgebra ๐ถโ„“0,2 isomorphic to โ„.

16Compare the definition of Scal(๐‘“) in Section 2, remembering that in the current section the

associated ring is โ„.17Compare Footnote 14.

Page 158: Quaternion and Clifford Fourier Transforms and Wavelets

134 E. Hitzer, J. Helmstetter and R. Ablamowicz

7. Square Roots of โˆ’1 in ํ“œ(2๐’…,โ„‚)

The lowest-dimensional example for ๐‘‘ = 1 is the Pauli matrix algebra๐’œ =โ„ณ(2,โ„‚)isomorphic to the geometric algebra ๐ถโ„“3,0 of the 3D Euclidean space and ๐ถโ„“1,2.The ๐ถโ„“3,0 vectors ๐‘’1, ๐‘’2, ๐‘’3 correspond one-to-one to the Pauli matrices

๐œŽ1 =

(0 11 0

), ๐œŽ2 =

(0 โˆ’๐‘–๐‘– 0

), ๐œŽ3 =

(1 00 โˆ’1

), (7.1)

with ๐œŽ1๐œŽ2 = ๐‘–๐œŽ3 =

(๐‘– 00 โˆ’๐‘–

). The element ๐œ” = ๐œŽ1๐œŽ2๐œŽ3 = ๐‘–1 represents the

central pseudoscalar ๐‘’123 of ๐ถโ„“3,0 with square ๐œ”2 = โˆ’1. The Pauli algebra has thefollowing idempotents

๐œ–1 = ๐œŽ21 = 1, ๐œ–0 = (1/2)(1+ ๐œŽ3), ๐œ–โˆ’1 = 0 . (7.2)

The idempotents correspond via

๐‘“ = ๐‘–(2๐œ–โˆ’ 1), (7.3)

to the square roots of โˆ’1:๐‘“1 = ๐‘–1 =

(๐‘– 00 ๐‘–

), ๐‘“0 = ๐‘–๐œŽ3 =

(๐‘– 00 โˆ’๐‘–

), ๐‘“โˆ’1 = โˆ’๐‘–1 =

(โˆ’๐‘– 00 โˆ’๐‘–

), (7.4)

where by complex conjugation ๐‘“โˆ’1 = ๐‘“1. Let the idempotent ๐œ–โ€ฒ0 = 12 (1โˆ’๐œŽ3) corre-

spond to the matrix ๐‘“ โ€ฒ0 = โˆ’๐‘–๐œŽ3. We observe that ๐‘“0 is conjugate to ๐‘“ โ€ฒ0 = ๐œŽโˆ’11 ๐‘“0๐œŽ1 =

๐œŽ1๐œŽ2 = ๐‘“0 using ๐œŽโˆ’11 = ๐œŽ1 but ๐‘“1 is not conjugate to ๐‘“โˆ’1. Therefore, only ๐‘“1, ๐‘“0, ๐‘“โˆ’1

lead to three distinct conjugacy classes of square roots of โˆ’1 inโ„ณ(2,โ„‚). CompareAppendix B for the corresponding computations with CLIFFORD for Maple.

In general, if ๐’œ = โ„ณ(2๐‘‘,โ„‚), then dim(๐’œ) = 8๐‘‘2. The group G(๐’œ) has oneconnected component. The square roots of โˆ’1 in ๐’œ are in bijection with theidempotents ๐œ– [3] according to (7.3). According18 to (7.3) and its inverse ๐œ– =12 (1 โˆ’ ๐‘–๐‘“) the square root of โˆ’1 with Spec(๐‘“โˆ’) = ๐‘˜/๐‘‘ = โˆ’1, i.e., ๐‘˜ = โˆ’๐‘‘ (seebelow), always corresponds to the trival idempotent ๐œ–โˆ’ = 0, and the square rootof โˆ’1 with Spec(๐‘“+) = ๐‘˜/๐‘‘ = +1, ๐‘˜ = +๐‘‘, corresponds to the identity idempotent๐œ–+ = 1.

If ๐‘“ is a square root ofโˆ’1, then ๐‘‰ = โ„‚2๐‘‘ is the direct sum of the eigenspaces19

associated with the eigenvalues ๐‘– and โˆ’๐‘–. There is an integer ๐‘˜ such that thedimensions of the eigenspaces are respectively ๐‘‘ + ๐‘˜ and ๐‘‘ โˆ’ ๐‘˜. Moreover, โˆ’๐‘‘ โ‰ค๐‘˜ โ‰ค ๐‘‘. Two square roots of โˆ’1 are conjugate if and only if they give the same

18On the other hand it is clear that complex conjugation always leads to ๐‘“โˆ’ = ๐‘“+, wherethe overbar means complex conjugation in โ„ณ(2๐‘‘,โ„‚) and Clifford conjugation in the isomorphicClifford algebra ๐ถโ„“๐‘,๐‘ž. So either the trivial idempotent ๐œ–โˆ’ = 0 is included in the bijection (7.3) ofidempotents and square roots of โˆ’1, or alternatively the square root of โˆ’1 with Spec(๐‘“โˆ’) = โˆ’1is obtained from ๐‘“โˆ’ = ๐‘“+.19The following theorem is sufficient for a matrix ๐‘“ in โ„ณ(๐‘š,๐•‚), if ๐•‚ is a (commutative) field.The matrix ๐‘“ is diagonalizable if and only if ๐‘ƒ (๐‘“) = 0 for some polynomial ๐‘ƒ that has only simpleroots, all of them in the field ๐•‚. (This implies that ๐‘ƒ is a multiple of the minimal polynomial,but we do not need to know whether ๐‘ƒ is or is not the minimal polynomial.)

Page 159: Quaternion and Clifford Fourier Transforms and Wavelets

7. Square Roots of โˆ’1 in Real Clifford Algebras 135

integer ๐‘˜. Then, all elements of Cent(๐‘“) consist of diagonal block matrices with 2square blocks of (๐‘‘+๐‘˜)ร—(๐‘‘+๐‘˜) matrices and (๐‘‘โˆ’๐‘˜)ร—(๐‘‘โˆ’๐‘˜) matrices. Therefore,the โ„‚-dimension of Cent(๐‘“) is (๐‘‘+ ๐‘˜)2 + (๐‘‘โˆ’ ๐‘˜)2. Hence the โ„-dimension (2.1) ofthe conjugacy class of ๐‘“ :

8๐‘‘2 โˆ’ 2(๐‘‘+ ๐‘˜)2 โˆ’ 2(๐‘‘โˆ’ ๐‘˜)2 = 4(๐‘‘2 โˆ’ ๐‘˜2). (7.5)

Also, from the equality tr(๐‘“) = (๐‘‘+๐‘˜)๐‘–โˆ’(๐‘‘โˆ’๐‘˜)๐‘– = 2๐‘˜๐‘– we deduce that Scal(๐‘“) = 0and that Spec(๐‘“) = (2๐‘˜๐‘–)/(2๐‘‘๐‘–) = ๐‘˜/๐‘‘ if ๐œ” = ๐‘–1 (whence tr(๐œ”) = 2๐‘‘๐‘–).

As announced on page 127, we consider that a square root of โˆ’1 is ordinaryif the associated integer ๐‘˜ vanishes, and that it is exceptional if ๐‘˜ โˆ•= 0. Thus thefollowing assertion is true in all cases: the ordinary square roots of โˆ’1 in ๐’œ con-stitute one conjugacy class of dimension dim(๐’œ)/2 which has as many connectedcomponents as G(๐’œ), and the equality Spec(๐‘“) = 0 holds for every ordinary squareroot of โˆ’1 when the linear form Spec exists. All conjugacy classes of exceptionalsquare roots of โˆ’1 have a dimension < dim(๐’œ)/2.

All square roots of โˆ’1 in โ„ณ(2๐‘‘,โ„‚) constitute (2๐‘‘ + 1) conjugacy classes20

which are also the connected components of the submanifold of square roots of โˆ’1because of the equality Spec(๐‘“) = ๐‘˜/๐‘‘, which is conjugacy class specific.

When ๐’œ = โ„ณ(2๐‘‘,โ„‚), the group Aut(๐’œ) is larger than Inn(๐’œ) since it con-tains the complex conjugation (that maps every entry of a matrix to the conjugatecomplex number). It is clear that the class of ordinary square roots of โˆ’1 is invari-ant by complex conjugation. But the class associated with an integer ๐‘˜ other than0 is mapped by complex conjugation to the class associated with โˆ’๐‘˜. In particularthe complex conjugation maps the class {๐œ”} (associated with ๐‘˜ = ๐‘‘) to the class{โˆ’๐œ”} associated with ๐‘˜ = โˆ’๐‘‘.

All these observations can easily verified for the above example of ๐‘‘ = 1 ofthe Pauli matrix algebra ๐’œ = โ„ณ(2,โ„‚). For ๐‘‘ = 2 we have the isomorphism of๐’œ = โ„ณ(4,โ„‚) with ๐ถโ„“0,5, ๐ถโ„“2,3 and ๐ถโ„“4,1. While ๐ถโ„“0,5 is important in Cliffordanalysis, ๐ถโ„“4,1 is both the geometric algebra of the Lorentz space โ„4,1 and theconformal geometric algebra of 3D Euclidean geometry. Its set of square roots ofโˆ’1 is therefore of particular practical interest.

Example. Let ๐ถโ„“4,1 โˆผ= ๐’œ where ๐’œ = โ„ณ(4,โ„‚) for ๐‘‘ = 2. The ๐ถโ„“4,1 1-vectors canbe represented21 by the following matrices:

๐‘’1 =

โŽ›โŽœโŽœโŽ1 0 0 00 โˆ’1 0 00 0 โˆ’1 00 0 0 1

โŽžโŽŸโŽŸโŽ  , ๐‘’2 =

โŽ›โŽœโŽœโŽ0 1 0 01 0 0 00 0 0 10 0 1 0

โŽžโŽŸโŽŸโŽ  , ๐‘’3 =

โŽ›โŽœโŽœโŽ0 โˆ’๐‘– 0 0๐‘– 0 0 00 0 0 โˆ’๐‘–0 0 ๐‘– 0

โŽžโŽŸโŽŸโŽ  ,

20Two conjugate (similar) matrices have the same eigenvalues and the same trace. This sufficesto recognize that 2๐‘‘+ 1 conjugacy classes are obtained.21For the computations of this example in the Maple package CLIFFORD we have used theidentification ๐‘– = ๐‘’23. Yet the results obtained for the square roots of โˆ’1 are independent of thissetting (we can alternatively use, e.g., ๐‘– = ๐‘’12345 , or the imaginary unit ๐‘– โˆˆ โ„‚), as can easilybe checked for ๐‘“1 of (7.7), ๐‘“0 of (7.8) and ๐‘“โˆ’1 of (7.9) by only assuming the standard Cliffordproduct rules for ๐‘’1 to ๐‘’5.

Page 160: Quaternion and Clifford Fourier Transforms and Wavelets

136 E. Hitzer, J. Helmstetter and R. Ablamowicz

๐‘’4 =

โŽ›โŽœโŽœโŽ0 0 1 00 0 0 โˆ’11 0 0 00 โˆ’1 0 0

โŽžโŽŸโŽŸโŽ  , ๐‘’5 =

โŽ›โŽœโŽœโŽ0 0 โˆ’1 00 0 0 11 0 0 00 โˆ’1 0 0

โŽžโŽŸโŽŸโŽ  . (7.6)

We find five conjugacy classes of roots ๐‘“๐‘˜ of โˆ’1 in ๐ถโ„“4,1 for ๐‘˜ โˆˆ {0,ยฑ1,ยฑ2}: fourexceptional and one ordinary. Since ๐‘“๐‘˜ is a root of ๐‘(๐‘ก) = ๐‘ก2 +1 which factors overโ„‚ into (๐‘ก โˆ’ ๐‘–)(๐‘ก + ๐‘–), the minimal polynomial ๐‘š๐‘˜(๐‘ก) of ๐‘“๐‘˜ is one of the following:๐‘ก โˆ’ ๐‘–, ๐‘ก+ ๐‘–, or (๐‘ก โˆ’ ๐‘–)(๐‘ก + ๐‘–). Respectively, there are three classes of characteristicpolynomial ฮ”๐‘˜(๐‘ก) of the matrix โ„ฑ๐‘˜ in โ„ณ(4,โ„‚) which corresponds to ๐‘“๐‘˜, namely,(๐‘กโˆ’๐‘–)4, (๐‘ก+๐‘–)4, and (๐‘กโˆ’๐‘–)๐‘›1(๐‘ก+๐‘–)๐‘›2 , where ๐‘›1+๐‘›2 = 2๐‘‘ = 4 and ๐‘›1 = ๐‘‘+๐‘˜ = 2+๐‘˜,๐‘›2 = ๐‘‘ โˆ’ ๐‘˜ = 2 โˆ’ ๐‘˜. As predicted by the above discussion, the ordinary rootcorresponds to ๐‘˜ = 0 whereas the exceptional roots correspond to ๐‘˜ โˆ•= 0.

1. For ๐‘˜ = 2, we have ฮ”2(๐‘ก) = (๐‘กโˆ’ ๐‘–)4, ๐‘š2(๐‘ก) = ๐‘กโˆ’ ๐‘–, and so โ„ฑ2 = diag(๐‘–, ๐‘–, ๐‘–, ๐‘–)which in the above representation (7.6) corresponds to the non-trivial centralelement ๐‘“2 = ๐œ” = ๐‘’12345. Clearly, Spec(๐‘“2) = 1 = ๐‘˜

๐‘‘ ; Scal(๐‘“2) = 0; theโ„‚-dimension of the centralizer Cent(๐‘“2) is 16; and the โ„-dimension of theconjugacy class of ๐‘“2 is zero as it contains only ๐‘“2 since ๐‘“2 โˆˆ Z(๐’œ). Thus, theโ„-dimension of the class is again zero in agreement with (7.5).

2. For ๐‘˜ = โˆ’2, we have ฮ”โˆ’2(๐‘ก) = (๐‘ก + ๐‘–)4, ๐‘šโˆ’2(๐‘ก) = ๐‘ก + ๐‘–, and โ„ฑโˆ’2 =diag(โˆ’๐‘–,โˆ’๐‘–,โˆ’๐‘–,โˆ’๐‘–) which corresponds to the central element ๐‘“โˆ’2 = โˆ’๐œ” =โˆ’๐‘’12345. Again, Spec(๐‘“โˆ’2) = โˆ’1 = ๐‘˜

๐‘‘ ; Scal(๐‘“โˆ’2) = 0; the โ„‚-dimension ofthe centralizer Cent(๐‘“โˆ’2) is 16 and the conjugacy class of ๐‘“โˆ’2 contains only๐‘“โˆ’2 since ๐‘“โˆ’2 โˆˆ Z(๐’œ). Thus, the โ„-dimension of the class is again zero inagreement with (7.5).

3. For ๐‘˜ โˆ•= ยฑ2, we consider three subcases when ๐‘˜ = 1, ๐‘˜ = 0, and ๐‘˜ = โˆ’1.When ๐‘˜ = 1, then ฮ”1(๐‘ก) = (๐‘กโˆ’ ๐‘–)3(๐‘ก+ ๐‘–) and ๐‘š1(๐‘ก) = (๐‘กโˆ’ ๐‘–)(๐‘ก+ ๐‘–). Then theroot โ„ฑ1 = diag(๐‘–, ๐‘–, ๐‘–,โˆ’๐‘–) corresponds to

๐‘“1 =1

2(๐‘’23 + ๐‘’123 โˆ’ ๐‘’2345 + ๐‘’12345). (7.7)

Note that Spec(๐‘“1) =12 = ๐‘˜

๐‘‘ so ๐‘“1 is an exceptional root of โˆ’1.When ๐‘˜ = 0, then ฮ”0(๐‘ก) = (๐‘กโˆ’ ๐‘–)2(๐‘ก+ ๐‘–)2 and ๐‘š0(๐‘ก) = (๐‘กโˆ’ ๐‘–)(๐‘ก+ ๐‘–). Thus theroot of โˆ’1 in this case is โ„ฑ0 = diag(๐‘–, ๐‘–,โˆ’๐‘–,โˆ’๐‘–) which corresponds to just

๐‘“0 = ๐‘’123. (7.8)

Note that Spec(๐‘“0) = 0 thus ๐‘“0 = ๐‘’123 is an ordinary root of โˆ’1.When ๐‘˜ = โˆ’1, then ฮ”โˆ’1(๐‘ก) = (๐‘กโˆ’ ๐‘–)(๐‘ก+ ๐‘–)3 and ๐‘šโˆ’1(๐‘ก) = (๐‘กโˆ’ ๐‘–)(๐‘ก+ ๐‘–). Then,the root of โˆ’1 in this case is โ„ฑโˆ’1 = diag(๐‘–,โˆ’๐‘–,โˆ’๐‘–,โˆ’๐‘–) which corresponds to

๐‘“โˆ’1 =1

2(๐‘’23 + ๐‘’123 + ๐‘’2345 โˆ’ ๐‘’12345). (7.9)

Since Scal(๐‘“โˆ’1) = โˆ’ 12 = ๐‘˜

๐‘‘ , we gather that ๐‘“โˆ’1 is an exceptional root.

Page 161: Quaternion and Clifford Fourier Transforms and Wavelets

7. Square Roots of โˆ’1 in Real Clifford Algebras 137

As expected, we can also see that the roots ๐œ” and โˆ’๐œ” are related viathe grade involution whereas ๐‘“1 = โˆ’๐‘“โˆ’1 where หœ denotes the reversion in๐ถโ„“4,1.

Example. Let ๐ถโ„“0,5 โˆผ= ๐’œ where ๐’œ = โ„ณ(4,โ„‚) for ๐‘‘ = 2. The ๐ถโ„“0,5 1-vectors canbe represented22 by the following matrices:

๐‘’1 =

โŽ›โŽœโŽœโŽ0 โˆ’1 0 01 0 0 00 0 0 โˆ’10 0 1 0

โŽžโŽŸโŽŸโŽ  , ๐‘’2 =

โŽ›โŽœโŽœโŽ0 โˆ’๐‘– 0 0โˆ’๐‘– 0 0 00 0 0 โˆ’๐‘–0 0 โˆ’๐‘– 0

โŽžโŽŸโŽŸโŽ  , ๐‘’3 =

โŽ›โŽœโŽœโŽโˆ’๐‘– 0 0 00 ๐‘– 0 00 0 ๐‘– 00 0 0 โˆ’๐‘–

โŽžโŽŸโŽŸโŽ  ,

๐‘’4 =

โŽ›โŽœโŽœโŽ0 0 โˆ’1 00 0 0 11 0 0 00 โˆ’1 0 0

โŽžโŽŸโŽŸโŽ  , ๐‘’5 =

โŽ›โŽœโŽœโŽ0 0 โˆ’๐‘– 00 0 0 ๐‘–โˆ’๐‘– 0 0 00 ๐‘– 0 0

โŽžโŽŸโŽŸโŽ  , (7.10)

Like for ๐ถโ„“4,1, we have five conjugacy classes of the roots ๐‘“๐‘˜ of โˆ’1 in ๐ถโ„“0,5 for๐‘˜ โˆˆ {0,ยฑ1,ยฑ2}: four exceptional and one ordinary. Using the same notation as inExample 7, we find the following representatives of the conjugacy classes.

1. For ๐‘˜ = 2, we have ฮ”2(๐‘ก) = (๐‘ก โˆ’ ๐‘–)4, ๐‘š2(๐‘ก) = ๐‘ก โˆ’ ๐‘–, and โ„ฑ2 = diag(๐‘–, ๐‘–, ๐‘–, ๐‘–)which in the above representation (7.10) corresponds to the non-trivial cen-tral element ๐‘“2 = ๐œ” = ๐‘’12345. Then, Spec(๐‘“2) = 1 = ๐‘˜

๐‘‘ ; Scal(๐‘“2) = 0; theโ„‚-dimension of the centralizer Cent(๐‘“2) is 16; and the โ„-dimension of theconjugacy class of ๐‘“2 is zero as it contains only ๐‘“2 since ๐‘“2 โˆˆ Z(๐’œ). Thus, theโ„-dimension of the class is again zero in agreement with (7.5).

2. For ๐‘˜ = โˆ’2, we have ฮ”โˆ’2(๐‘ก) = (๐‘ก + ๐‘–)4, ๐‘šโˆ’2(๐‘ก) = ๐‘ก + ๐‘–, and โ„ฑโˆ’2 =diag(โˆ’๐‘–,โˆ’๐‘–,โˆ’๐‘–,โˆ’๐‘–) which corresponds to the central element ๐‘“โˆ’2= โˆ’ ๐œ” =โˆ’๐‘’12345. Again, Spec(๐‘“โˆ’2) = โˆ’1 = ๐‘˜

๐‘‘ ; Scal(๐‘“โˆ’2) = 0; the โ„‚-dimension ofthe centralizer Cent(๐‘“โˆ’2) is 16 and the conjugacy class of ๐‘“โˆ’2 contains only๐‘“โˆ’2 since ๐‘“โˆ’2 โˆˆ Z(๐’œ). Thus, the โ„-dimension of the class is again zero inagreement with (7.5).

3. For ๐‘˜ โˆ•= ยฑ2, we consider three subcases when ๐‘˜ = 1, ๐‘˜ = 0, and ๐‘˜ = โˆ’1.When ๐‘˜ = 1, then ฮ”1(๐‘ก) = (๐‘กโˆ’ ๐‘–)3(๐‘ก+ ๐‘–) and ๐‘š1(๐‘ก) = (๐‘กโˆ’ ๐‘–)(๐‘ก+ ๐‘–). Then theroot โ„ฑ1 = diag(๐‘–, ๐‘–, ๐‘–,โˆ’๐‘–) corresponds to

๐‘“1 =1

2(๐‘’3 + ๐‘’12 + ๐‘’45 + ๐‘’12345). (7.11)

Since Spec(๐‘“1) =12 = ๐‘˜

๐‘‘ , ๐‘“1 is an exceptional root of โˆ’1.

22For the computations of this example in the Maple package CLIFFORD we have used theidentification ๐‘– = ๐‘’3. Yet the results obtained for the square roots of โˆ’1 are independent of thissetting (we can alternatively use, e.g., ๐‘– = ๐‘’12345, or the imaginary unit ๐‘– โˆˆ โ„‚), as can easily be

checked for ๐‘“1 of (7.11), ๐‘“0 of (7.12) and ๐‘“โˆ’1 of (7.13) by only assuming the standard Cliffordproduct rules for ๐‘’1 to ๐‘’5.

Page 162: Quaternion and Clifford Fourier Transforms and Wavelets

138 E. Hitzer, J. Helmstetter and R. Ablamowicz

When ๐‘˜ = 0, then ฮ”0(๐‘ก) = (๐‘ก โˆ’ ๐‘–)2(๐‘ก + ๐‘–)2 and ๐‘š0(๐‘ก) = (๐‘ก โˆ’ ๐‘–)(๐‘ก + ๐‘–). Thusthe root of โˆ’1 is this case is โ„ฑ0 = diag(๐‘–, ๐‘–,โˆ’๐‘–,โˆ’๐‘–) which corresponds to just

๐‘“0 = ๐‘’45. (7.12)

Note that Spec(๐‘“0) = 0 thus ๐‘“0 = ๐‘’45 is an ordinary root of โˆ’1.When ๐‘˜ = โˆ’1, then ฮ”โˆ’1(๐‘ก) = (๐‘กโˆ’ ๐‘–)(๐‘ก+ ๐‘–)3 and ๐‘šโˆ’1(๐‘ก) = (๐‘กโˆ’ ๐‘–)(๐‘ก+ ๐‘–). Then,the root of โˆ’1 in this case is โ„ฑโˆ’1 = diag(๐‘–,โˆ’๐‘–,โˆ’๐‘–,โˆ’๐‘–) which corresponds to

๐‘“โˆ’1 =1

2(โˆ’๐‘’3 + ๐‘’12 + ๐‘’45 โˆ’ ๐‘’12345). (7.13)

Since Scal(๐‘“โˆ’1) = โˆ’ 12 = ๐‘˜

๐‘‘ , we gather that ๐‘“โˆ’1 is an exceptional root.Again we can see that the roots ๐‘“2 and ๐‘“โˆ’2 are related via the grade

involution whereas ๐‘“1 = โˆ’๐‘“โˆ’1 where หœ denotes the reversion in ๐ถโ„“0,5.

Example. Let ๐ถโ„“7,0 โˆผ= ๐’œ where ๐’œ = โ„ณ(8,โ„‚) for ๐‘‘ = 4. We have nine conjugacyclasses of roots ๐‘“๐‘˜ of โˆ’1 for ๐‘˜ โˆˆ {0,ยฑ1,ยฑ2 ยฑ 3 ยฑ 4}. Since ๐‘“๐‘˜ is a root of apolynomial ๐‘(๐‘ก) = ๐‘ก2 + 1 which factors over โ„‚ into (๐‘ก โˆ’ ๐‘–)(๐‘ก + ๐‘–), its minimalpolynomial ๐‘š(๐‘ก) will be one of the following: ๐‘กโˆ’ ๐‘–, ๐‘ก+ ๐‘–, or (๐‘กโˆ’ ๐‘–)(๐‘ก+ ๐‘–) = ๐‘ก2 + 1.

Respectively, each conjugacy class is characterized by a characteristic poly-nomial ฮ”๐‘˜(๐‘ก) of the matrix ๐‘€๐‘˜ โˆˆ โ„ณ(8,โ„‚) which represents ๐‘“๐‘˜. Namely, we have

ฮ”๐‘˜(๐‘ก) = (๐‘กโˆ’ ๐‘–)๐‘›1(๐‘ก+ ๐‘–)๐‘›2 ,

where ๐‘›1 + ๐‘›2 = 2๐‘‘ = 8 and ๐‘›1 = ๐‘‘ + ๐‘˜ = 4 + ๐‘˜ and ๐‘›2 = ๐‘‘ โˆ’ ๐‘˜ = 4 โˆ’ ๐‘˜. Theordinary root of โˆ’1 corresponds to ๐‘˜ = 0 whereas the exceptional roots correspondto ๐‘˜ โˆ•= 0.

1. When ๐‘˜ = 4, we have ฮ”4(๐‘ก) = (๐‘กโˆ’ ๐‘–)8, ๐‘š4(๐‘ก) = ๐‘กโˆ’ ๐‘–, and โ„ฑ4 = diag(

8๏ธท ๏ธธ๏ธธ ๏ธท๐‘–, . . . , ๐‘–)

which in the representation used by CLIFFORD [2] corresponds to the non-trivial central element ๐‘“4 = ๐œ” = ๐‘’1234567. Clearly, Spec(๐‘“4) = 1 = ๐‘˜

๐‘‘ ;Scal(๐‘“4) = 0; the โ„‚-dimension of the centralizer Cent(๐‘“4) is 64; and theโ„-dimension of the conjugacy class of ๐‘“4 is zero since ๐‘“4 โˆˆ Z(๐’œ). Thus, theโ„-dimension of the class is again zero in agreement with (7.5).

2. When ๐‘˜ = โˆ’4, we have ฮ”โˆ’4(๐‘ก) = (๐‘ก + ๐‘–)8, ๐‘šโˆ’4(๐‘ก) = ๐‘ก + ๐‘–, and โ„ฑโˆ’4 =

diag(

8๏ธท ๏ธธ๏ธธ ๏ธทโˆ’๐‘–, . . . ,โˆ’๐‘–) which corresponds to ๐‘“โˆ’4 = โˆ’๐œ” = โˆ’๐‘’1234567. Again,

Spec(๐‘“โˆ’4) = โˆ’1 =๐‘˜

๐‘‘; Scal(๐‘“โˆ’4) = 0;

the โ„‚-dimension of the centralizer Cent(๐‘“) is 64 and the conjugacy class of๐‘“โˆ’4 contains only ๐‘“โˆ’4 since ๐‘“โˆ’4 โˆˆ Z(๐’œ). Thus, the โ„-dimension of the classis again zero in agreement with (7.5).

3. When ๐‘˜ โˆ•= ยฑ4, we consider seven subcases when ๐‘˜ = ยฑ3, ๐‘˜ = ยฑ2, ๐‘˜ = ยฑ1,and ๐‘˜ = 0.

Page 163: Quaternion and Clifford Fourier Transforms and Wavelets

7. Square Roots of โˆ’1 in Real Clifford Algebras 139

When ๐‘˜ = 3, then ฮ”3(๐‘ก) = (๐‘กโˆ’ ๐‘–)7(๐‘ก+ ๐‘–) and ๐‘š3(๐‘ก) = (๐‘กโˆ’ ๐‘–)(๐‘ก+ ๐‘–). Then the

root โ„ฑ3 = diag(

7๏ธท ๏ธธ๏ธธ ๏ธท๐‘–, . . . , ๐‘–,โˆ’๐‘–) corresponds to

๐‘“3 =1

4(๐‘’23 โˆ’ ๐‘’45 + ๐‘’67 โˆ’ ๐‘’123 + ๐‘’145 โˆ’ ๐‘’167 + ๐‘’234567 + 3๐‘’1234567). (7.14)

Since Spec(๐‘“3) =34 = ๐‘˜

๐‘‘ , ๐‘“3 is an exceptional root of โˆ’1.When ๐‘˜ = 2, then ฮ”2(๐‘ก) = (๐‘ก โˆ’ ๐‘–)6(๐‘ก + ๐‘–)2 and ๐‘š2(๐‘ก) = (๐‘ก โˆ’ ๐‘–)(๐‘ก + ๐‘–). Then

the root โ„ฑ2 = diag(

6๏ธท ๏ธธ๏ธธ ๏ธท๐‘–, . . . , ๐‘–,โˆ’๐‘–,โˆ’๐‘–) corresponds to

๐‘“2 =1

2(๐‘’67 โˆ’ ๐‘’45 โˆ’ ๐‘’123 + ๐‘’1234567). (7.15)

Since Spec(๐‘“2) =12 = ๐‘˜

๐‘‘ , ๐‘“2 is also an exceptional root.

When ๐‘˜ = 1, then ฮ”1(๐‘ก) = (๐‘ก โˆ’ ๐‘–)5(๐‘ก + ๐‘–)3 and ๐‘š1(๐‘ก) = (๐‘ก โˆ’ ๐‘–)(๐‘ก + ๐‘–). Then

the root โ„ฑ1 = diag(

5๏ธท ๏ธธ๏ธธ ๏ธท๐‘–, . . . , ๐‘–,โˆ’๐‘–,โˆ’๐‘–,โˆ’๐‘–) corresponds to

๐‘“1 =1

4(๐‘’23 โˆ’ ๐‘’45 + 3๐‘’67 โˆ’ ๐‘’123 + ๐‘’145 + ๐‘’167 โˆ’ ๐‘’234567 + ๐‘’1234567). (7.16)

Since Spec(๐‘“1) =14 = ๐‘˜

๐‘‘ , ๐‘“1 is another exceptional root.

When ๐‘˜ = 0, then ฮ”0(๐‘ก) = (๐‘ก โˆ’ ๐‘–)4(๐‘ก + ๐‘–)4 and ๐‘š0(๐‘ก) = (๐‘ก โˆ’ ๐‘–)(๐‘ก + ๐‘–). Thenthe root โ„ฑ0 = diag(๐‘–, ๐‘–, ๐‘–, ๐‘–,โˆ’๐‘–,โˆ’๐‘–,โˆ’๐‘–,โˆ’๐‘–) corresponds to

๐‘“0 =1

2(๐‘’23 โˆ’ ๐‘’45 + ๐‘’67 โˆ’ ๐‘’234567). (7.17)

Since Spec(๐‘“0) = 0 = ๐‘˜๐‘‘ , we see that ๐‘“0 is an ordinary root of โˆ’1.

When ๐‘˜ = โˆ’1, then ฮ”โˆ’1(๐‘ก) = (๐‘ก โˆ’ ๐‘–)3(๐‘ก + ๐‘–)5 and ๐‘šโˆ’1(๐‘ก) = (๐‘ก โˆ’ ๐‘–)(๐‘ก + ๐‘–).

Then the root โ„ฑโˆ’1 = diag(๐‘–, ๐‘–, ๐‘–,

5๏ธท ๏ธธ๏ธธ ๏ธทโˆ’๐‘–, . . . ,โˆ’๐‘–) corresponds to

๐‘“โˆ’1 =1

4(๐‘’23 โˆ’ ๐‘’45 + 3๐‘’67 + ๐‘’123 โˆ’ ๐‘’145 โˆ’ ๐‘’167 โˆ’ ๐‘’234567 โˆ’ ๐‘’1234567). (7.18)

Thus, Spec(๐‘“โˆ’1) = โˆ’ 14 = ๐‘˜

๐‘‘ and so ๐‘“โˆ’1 is another exceptional root.

When ๐‘˜ = โˆ’2, then ฮ”โˆ’2(๐‘ก) = (๐‘ก โˆ’ ๐‘–)2(๐‘ก + ๐‘–)6 and ๐‘šโˆ’2(๐‘ก) = (๐‘ก โˆ’ ๐‘–)(๐‘ก + ๐‘–).

Then the root โ„ฑโˆ’2 = diag(๐‘–, ๐‘–,

6๏ธท ๏ธธ๏ธธ ๏ธทโˆ’๐‘–, . . . ,โˆ’๐‘–) corresponds to

๐‘“โˆ’2 =1

2(๐‘’67 โˆ’ ๐‘’45 + ๐‘’123 โˆ’ ๐‘’1234567). (7.19)

Since Spec(๐‘“โˆ’2) = โˆ’ 12 = ๐‘˜

๐‘‘ , we see that ๐‘“โˆ’2 is also an exceptional root.

When ๐‘˜ = โˆ’3, then ฮ”โˆ’3(๐‘ก) = (๐‘กโˆ’ ๐‘–)(๐‘ก+ ๐‘–)7 and ๐‘šโˆ’3(๐‘ก) = (๐‘กโˆ’ ๐‘–)(๐‘ก+ ๐‘–). Then

the root โ„ฑโˆ’3 = diag(๐‘–,

7๏ธท ๏ธธ๏ธธ ๏ธทโˆ’๐‘–, . . . ,โˆ’๐‘–) corresponds to

๐‘“โˆ’3 =1

4(๐‘’23 โˆ’ ๐‘’45 + ๐‘’67 + ๐‘’123 โˆ’ ๐‘’145 + ๐‘’167 + ๐‘’234567 โˆ’ 3๐‘’1234567). (7.20)

Page 164: Quaternion and Clifford Fourier Transforms and Wavelets

140 E. Hitzer, J. Helmstetter and R. Ablamowicz

Again, Spec(๐‘“โˆ’3) = โˆ’ 34 = ๐‘˜

๐‘‘ and so ๐‘“โˆ’3 is another exceptional root of โˆ’1.As expected, we can also see that the roots ๐œ” and โˆ’๐œ” are related via

the reversion whereas ๐‘“3 = โˆ’๐‘“โˆ’3, ๐‘“2 = โˆ’๐‘“โˆ’2, ๐‘“1 = โˆ’๐‘“โˆ’1 where ยฏ denotesthe conjugation in ๐ถโ„“7,0.

8. Conclusions

We proved that in all cases Scal(๐‘“) = 0 for every square root of โˆ’1 in ๐’œ isomorphicto ๐ถโ„“๐‘,๐‘ž. We distinguished ordinary square roots of โˆ’1, and exceptional ones.

In all cases the ordinary square roots ๐‘“ of โˆ’1 constitute a unique conjugacyclass of dimension dim(๐’œ)/2 which has as many connected components as thegroup G(๐’œ) of invertible elements in ๐’œ. Furthermore, we have Spec(๐‘“) = 0 (zeropseudoscalar part) if the associated ring is โ„2, โ„2, or โ„‚. The exceptional squareroots of โˆ’1 only exist if ๐’œ โˆผ=โ„ณ(2๐‘‘,โ„‚) (see Section 7).

For ๐’œ =โ„ณ(2๐‘‘,โ„) of Section 3, the centralizer and the conjugacy class of asquare root ๐‘“ of โˆ’1 both have โ„-dimension 2๐‘‘2 with two connected components,pictured in Figure 2 for ๐‘‘ = 1.

For ๐’œ =โ„ณ(2๐‘‘,โ„2) =โ„ณ(2๐‘‘,โ„)ร—โ„ณ(2๐‘‘,โ„) of Section 4, the square roots of(โˆ’1,โˆ’1) are pairs of two square roots of โˆ’1 inโ„ณ(2๐‘‘,โ„). They constitute a uniqueconjugacy class with four connected components, each of dimension 4๐‘‘2. Regardingthe four connected components, the group Inn(๐’œ) induces the permutations of theKlein group whereas the quotient group Aut(๐’œ)/Inn(๐’œ) is isomorphic to the groupof isometries of a Euclidean square in 2D.

For ๐’œ =โ„ณ(๐‘‘,โ„) of Section 5, the submanifold of the square roots ๐‘“ of โˆ’1is a single connected conjugacy class of โ„-dimension 2๐‘‘2 equal to the โ„-dimensionof the centralizer of every ๐‘“ . The easiest example is โ„ itself for ๐‘‘ = 1.

For ๐’œ =โ„ณ(๐‘‘,โ„2) =โ„ณ(2๐‘‘,โ„)ร—โ„ณ(2๐‘‘,โ„) of Section 6, the square roots of(โˆ’1,โˆ’1) are pairs of two square roots (๐‘“, ๐‘“ โ€ฒ) of โˆ’1 in โ„ณ(2๐‘‘,โ„) and constitute aunique connected conjugacy class of โ„-dimension 4๐‘‘2. The group Aut(๐’œ) has twoconnected components: the neutral component Inn(๐’œ) connected to the identityand the second component containing the swap automorphism (๐‘“, ๐‘“ โ€ฒ) ๏ฟฝโ†’ (๐‘“ โ€ฒ, ๐‘“).The simplest case for ๐‘‘ = 1 is โ„2 isomorphic to ๐ถโ„“0,3.

For ๐’œ = โ„ณ(2๐‘‘,โ„‚) of Section 7, the square roots of โˆ’1 are in bijection tothe idempotents. First, the ordinary square roots of โˆ’1 (with ๐‘˜ = 0) constitutea conjugacy class of โ„-dimension 4๐‘‘2 of a single connected component which isinvariant under Aut(๐’œ). Second, there are 2๐‘‘ conjugacy classes of exceptionalsquare roots of โˆ’1, each composed of a single connected component, characterizedby equality Spec(๐‘“) = ๐‘˜/๐‘‘ (the pseudoscalar coefficient) with ยฑ๐‘˜ โˆˆ {1, 2, . . . , ๐‘‘},and their โ„-dimensions are 4(๐‘‘2 โˆ’ ๐‘˜2). The group Aut(๐’œ) includes conjugationof the pseudoscalar ๐œ” ๏ฟฝโ†’ โˆ’๐œ” which maps the conjugacy class associated with ๐‘˜to the class associated with โˆ’๐‘˜. The simplest case for ๐‘‘ = 1 is the Pauli matrixalgebra isomorphic to the geometric algebra ๐ถโ„“3,0 of 3D Euclidean space โ„3, andto complex biquaternions [33].

Page 165: Quaternion and Clifford Fourier Transforms and Wavelets

7. Square Roots of โˆ’1 in Real Clifford Algebras 141

Section 7 includes explicit examples for ๐‘‘ = 2: ๐ถโ„“4,1 and ๐ถโ„“0,5, and for ๐‘‘ = 4:๐ถโ„“7,0. Appendix A summarizes the square roots of โˆ’1 in all ๐ถโ„“๐‘,๐‘ž โˆผ= โ„ณ(2๐‘‘,โ„‚)for ๐‘‘ = 1, 2, 4. Appendix B contains details on how square roots of โˆ’1 can becomputed using the package CLIFFORD for Maple.

Among the many possible applications of this research, the possibility of newintegral transformations in Clifford analysis is very promising. This field thus ob-tains essential algebraic information, which can, e.g., be used to create steerabletransformations, which may be steerable within a connected component of a sub-manifold of square roots of โˆ’1.

Appendix A. Summary of Roots of โˆ’1 in ๐‘ชโ„“๐’‘,๐’’ โˆผ=ํ“œ(2๐’…,โ„‚)for ๐’… = 1, 2, 4

In this appendix we summarize roots of โˆ’1 for Clifford algebras ๐ถโ„“๐‘,๐‘ž โˆผ=โ„ณ(2๐‘‘,โ„‚)for ๐‘‘ = 1, 2, 4. These roots have been computed with CLIFFORD [2]. Maple [25]worksheets written to derive these roots are posted at [21].

Table 1. Square roots of โˆ’1 in ๐ถโ„“3,0 โˆผ=โ„ณ(2,โ„‚), ๐‘‘ = 1

๐‘˜ ๐‘“๐‘˜ ฮ”๐‘˜(๐‘ก)

1 ๐œ” = ๐‘’123 (๐‘กโˆ’ ๐‘–)2

0 ๐‘’23 (๐‘กโˆ’ ๐‘–)(๐‘ก+ ๐‘–)

โˆ’1 โˆ’๐œ” = โˆ’๐‘’123 (๐‘ก+ ๐‘–)2

Table 2. Square roots of โˆ’1 in ๐ถโ„“4,1 โˆผ=โ„ณ(4,โ„‚), ๐‘‘ = 2

๐‘˜ ๐‘“๐‘˜ ฮ”๐‘˜(๐‘ก)

2 ๐œ” = ๐‘’12345 (๐‘กโˆ’ ๐‘–)4

1 12 (๐‘’23 + ๐‘’123 โˆ’ ๐‘’2345 + ๐‘’12345) (๐‘กโˆ’ ๐‘–)3(๐‘ก+ ๐‘–)

0 ๐‘’123 (๐‘กโˆ’ ๐‘–)2(๐‘ก+ ๐‘–)2

โˆ’1 12 (๐‘’23 + ๐‘’123 + ๐‘’2345 โˆ’ ๐‘’12345) (๐‘กโˆ’ ๐‘–)(๐‘ก+ ๐‘–)3

โˆ’2 โˆ’๐œ” = โˆ’๐‘’12345 (๐‘ก+ ๐‘–)4

Page 166: Quaternion and Clifford Fourier Transforms and Wavelets

142 E. Hitzer, J. Helmstetter and R. Ablamowicz

Table 3. Square roots of โˆ’1 in ๐ถโ„“0,5 โˆผ=โ„ณ(4,โ„‚), ๐‘‘ = 2

๐‘˜ ๐‘“๐‘˜ ฮ”๐‘˜(๐‘ก)

2 ๐œ” = ๐‘’12345 (๐‘กโˆ’ ๐‘–)4

1 12 (๐‘’3 + ๐‘’12 + ๐‘’45 + ๐‘’12345) (๐‘กโˆ’ ๐‘–)3(๐‘ก+ ๐‘–)

0 ๐‘’45 (๐‘กโˆ’ ๐‘–)2(๐‘ก+ ๐‘–)2

โˆ’1 12 (โˆ’๐‘’3 + ๐‘’12 + ๐‘’45 โˆ’ ๐‘’12345) (๐‘กโˆ’ ๐‘–)(๐‘ก+ ๐‘–)3

โˆ’2 โˆ’๐œ” = โˆ’๐‘’12345 (๐‘ก+ ๐‘–)4

Table 4. Square roots of โˆ’1 in ๐ถโ„“2,3 โˆผ=โ„ณ(4,โ„‚), ๐‘‘ = 2

๐‘˜ ๐‘“๐‘˜ ฮ”๐‘˜(๐‘ก)

2 ๐œ” = ๐‘’12345 (๐‘กโˆ’ ๐‘–)4

1 12 (๐‘’3 + ๐‘’134 + ๐‘’235 + ๐œ”) (๐‘กโˆ’ ๐‘–)3(๐‘ก+ ๐‘–)

0 ๐‘’134 (๐‘กโˆ’ ๐‘–)2(๐‘ก+ ๐‘–)2

โˆ’1 12 (โˆ’๐‘’3 + ๐‘’134 + ๐‘’235 โˆ’ ๐œ”) (๐‘กโˆ’ ๐‘–)(๐‘ก+ ๐‘–)3

โˆ’2 โˆ’๐œ” = โˆ’๐‘’12345 (๐‘ก+ ๐‘–)4

Table 5. Square roots of โˆ’1 in ๐ถโ„“7,0 โˆผ=โ„ณ(8,โ„‚), ๐‘‘ = 4

๐‘˜ ๐‘“๐‘˜ ฮ”๐‘˜(๐‘ก)

4 ๐œ” = ๐‘’1234567 (๐‘กโˆ’ ๐‘–)8

3 14 (๐‘’23 โˆ’ ๐‘’45 + ๐‘’67 โˆ’ ๐‘’123 + ๐‘’145

โˆ’ ๐‘’167 + ๐‘’234567 +3๐œ”)(๐‘กโˆ’ ๐‘–)7(๐‘ก+ ๐‘–)

2 12 (๐‘’67 โˆ’ ๐‘’45 โˆ’ ๐‘’123 + ๐œ”) (๐‘กโˆ’ ๐‘–)6(๐‘ก+ ๐‘–)2

1 14 (๐‘’23 โˆ’ ๐‘’45 + 3๐‘’67 โˆ’ ๐‘’123 + ๐‘’145

+ ๐‘’167 โˆ’ ๐‘’234567 + ๐œ”)(๐‘กโˆ’ ๐‘–)5(๐‘ก+ ๐‘–)3

0 12 (๐‘’23 โˆ’ ๐‘’45 + ๐‘’67 โˆ’ ๐‘’234567) (๐‘กโˆ’ ๐‘–)4(๐‘ก+ ๐‘–)4

โˆ’1 14 (๐‘’23 โˆ’ ๐‘’45 + 3๐‘’67 + ๐‘’123 โˆ’ ๐‘’145

โˆ’ ๐‘’167 โˆ’ ๐‘’234567 โˆ’ ๐œ”)(๐‘กโˆ’ ๐‘–)3(๐‘ก+ ๐‘–)5

โˆ’2 12 (๐‘’67 โˆ’ ๐‘’45 + ๐‘’123 โˆ’ ๐œ”) (๐‘กโˆ’ ๐‘–)2(๐‘ก+ ๐‘–)6

โˆ’3 14 (๐‘’23 โˆ’ ๐‘’45 + ๐‘’67 + ๐‘’123 โˆ’ ๐‘’145

+ ๐‘’167 + ๐‘’234567โˆ’ 3๐œ”)(๐‘กโˆ’ ๐‘–)(๐‘ก+ ๐‘–)7

โˆ’4 โˆ’๐œ” = โˆ’๐‘’1234567 (๐‘ก+ ๐‘–)8

Page 167: Quaternion and Clifford Fourier Transforms and Wavelets

7. Square Roots of โˆ’1 in Real Clifford Algebras 143

Table 6. Square roots of โˆ’1 in ๐ถโ„“1,6 โˆผ=โ„ณ(8,โ„‚), ๐‘‘ = 4

๐‘˜ ๐‘“๐‘˜ ฮ”๐‘˜(๐‘ก)

4 ๐œ” = ๐‘’1234567 (๐‘กโˆ’ ๐‘–)8

3 14 (๐‘’4 โˆ’ ๐‘’23 โˆ’ ๐‘’56 + ๐‘’1237 + ๐‘’147

+ ๐‘’1567โˆ’ ๐‘’23456 +3๐œ”)(๐‘กโˆ’ ๐‘–)7(๐‘ก+ ๐‘–)

2 12 (โˆ’๐‘’23 โˆ’ ๐‘’56 + ๐‘’147 + ๐œ”) (๐‘กโˆ’ ๐‘–)6(๐‘ก+ ๐‘–)2

1 14 (โˆ’๐‘’4 โˆ’ ๐‘’23 โˆ’ 3๐‘’56 โˆ’ ๐‘’1237 + ๐‘’147

+ ๐‘’1567 โˆ’ ๐‘’23456 + ๐œ”)(๐‘กโˆ’ ๐‘–)5(๐‘ก+ ๐‘–)3

0 12 (๐‘’4 + ๐‘’23 + ๐‘’56 + ๐‘’23456) (๐‘กโˆ’ ๐‘–)4(๐‘ก+ ๐‘–)4

โˆ’1 14 (โˆ’๐‘’4 โˆ’ ๐‘’23 โˆ’ 3๐‘’56 + ๐‘’1237 โˆ’ ๐‘’147

โˆ’ ๐‘’1567 โˆ’ ๐‘’23456 โˆ’ ๐œ”)(๐‘กโˆ’ ๐‘–)3(๐‘ก+ ๐‘–)5

โˆ’2 12 (โˆ’๐‘’23 โˆ’ ๐‘’56 โˆ’ ๐‘’147 โˆ’ ๐œ”) (๐‘กโˆ’ ๐‘–)2(๐‘ก+ ๐‘–)6

โˆ’3 14 (๐‘’4 โˆ’ ๐‘’23 โˆ’ ๐‘’56 โˆ’ ๐‘’1237 โˆ’ ๐‘’147

โˆ’ ๐‘’1567โˆ’ ๐‘’23456โˆ’ 3๐œ”)(๐‘กโˆ’ ๐‘–)(๐‘ก+ ๐‘–)7

โˆ’4 โˆ’๐œ” = โˆ’๐‘’1234567 (๐‘ก+ ๐‘–)8

Table 7. Square roots of โˆ’1 in ๐ถโ„“3,4 โˆผ=โ„ณ(8,โ„‚), ๐‘‘ = 4

๐‘˜ ๐‘“๐‘˜ ฮ”๐‘˜(๐‘ก)

4 ๐œ” = ๐‘’1234567 (๐‘กโˆ’ ๐‘–)8

3 14 (๐‘’4 + ๐‘’145 + ๐‘’246 + ๐‘’347 โˆ’ ๐‘’12456

โˆ’๐‘’13457โˆ’๐‘’23467+3๐œ”)(๐‘กโˆ’ ๐‘–)7(๐‘ก+ ๐‘–)

2 12 (๐‘’145 โˆ’ ๐‘’12456 โˆ’ ๐‘’13457 + ๐œ”) (๐‘กโˆ’ ๐‘–)6(๐‘ก+ ๐‘–)2

1 14 (โˆ’๐‘’4 + ๐‘’145 + ๐‘’246 โˆ’ ๐‘’347 โˆ’ 3๐‘’12456

โˆ’ ๐‘’13457โˆ’ ๐‘’23467 +๐œ”)(๐‘กโˆ’ ๐‘–)5(๐‘ก+ ๐‘–)3

0 12 (๐‘’4 + ๐‘’12456 + ๐‘’13457 + ๐‘’23467) (๐‘กโˆ’ ๐‘–)4(๐‘ก+ ๐‘–)4

โˆ’1 14 (โˆ’๐‘’4 โˆ’ ๐‘’145 โˆ’ ๐‘’246 + ๐‘’347 โˆ’ 3๐‘’12456

โˆ’ ๐‘’13457โˆ’ ๐‘’23467โˆ’๐œ”)(๐‘กโˆ’ ๐‘–)3(๐‘ก+ ๐‘–)5

โˆ’2 12 (โˆ’๐‘’145 โˆ’ ๐‘’12456 โˆ’ ๐‘’13457 โˆ’ ๐œ”) (๐‘กโˆ’ ๐‘–)2(๐‘ก+ ๐‘–)6

โˆ’3 14 (๐‘’4 โˆ’ ๐‘’145 โˆ’ ๐‘’246 โˆ’ ๐‘’347 โˆ’ ๐‘’12456

โˆ’๐‘’13457โˆ’๐‘’23467โˆ’3๐œ”)(๐‘กโˆ’ ๐‘–)(๐‘ก+ ๐‘–)7

โˆ’4 โˆ’๐œ” = โˆ’๐‘’1234567 (๐‘ก+ ๐‘–)8

Page 168: Quaternion and Clifford Fourier Transforms and Wavelets

144 E. Hitzer, J. Helmstetter and R. Ablamowicz

Table 8. Square roots of โˆ’1 in ๐ถโ„“5,2 โˆผ=โ„ณ(8,โ„‚), ๐‘‘ = 4

๐‘˜ ๐‘“๐‘˜ ฮ”๐‘˜(๐‘ก)

4 ๐œ” = ๐‘’1234567 (๐‘กโˆ’ ๐‘–)8

3 14 (โˆ’๐‘’23 + ๐‘’123 + ๐‘’2346 + ๐‘’2357 โˆ’ ๐‘’12346

โˆ’๐‘’12357+๐‘’234567+3๐œ”)(๐‘กโˆ’ ๐‘–)7(๐‘ก+ ๐‘–)

2 12 (๐‘’123 โˆ’ ๐‘’12346 โˆ’ ๐‘’12357 + ๐œ”) (๐‘กโˆ’ ๐‘–)6(๐‘ก+ ๐‘–)2

1 14 (โˆ’๐‘’23 + ๐‘’123 โˆ’ ๐‘’2346 + ๐‘’2357 โˆ’ 3๐‘’12346

โˆ’๐‘’12357โˆ’๐‘’234567+๐œ”)(๐‘กโˆ’ ๐‘–)5(๐‘ก+ ๐‘–)3

0 12 (๐‘’23 + ๐‘’12346 + ๐‘’12357 + ๐‘’234567) (๐‘กโˆ’ ๐‘–)4(๐‘ก+ ๐‘–)4

โˆ’1 14 (โˆ’๐‘’23 โˆ’ ๐‘’123 + ๐‘’2346 โˆ’ ๐‘’2357 โˆ’ 3๐‘’12346

โˆ’๐‘’12357โˆ’๐‘’234567โˆ’๐œ”)(๐‘กโˆ’ ๐‘–)3(๐‘ก+ ๐‘–)5

โˆ’2 12 (โˆ’๐‘’123 โˆ’ ๐‘’12346 โˆ’ ๐‘’12357 โˆ’ ๐œ”) (๐‘กโˆ’ ๐‘–)2(๐‘ก+ ๐‘–)6

โˆ’3 14 (โˆ’๐‘’23 โˆ’ ๐‘’123 โˆ’ ๐‘’2346 โˆ’ ๐‘’2357 โˆ’ ๐‘’12346

โˆ’๐‘’12357+๐‘’234567โˆ’3๐œ”)(๐‘กโˆ’ ๐‘–)(๐‘ก+ ๐‘–)7

โˆ’4 โˆ’๐œ” = โˆ’๐‘’1234567 (๐‘ก+ ๐‘–)8

Appendix B. A Sample Maple Worksheet

In this appendix we show a computation of roots of โˆ’1 in ๐ถโ„“3,0 in CLIFFORD.Although these computations certainly can be performed by hand, as shown inSection 7, they illustrate how CLIFFORD can be used instead especially whenextending these computations to higher dimensions.23 To see the actual Mapleworksheets where these computations have been performed, see [21].> restart:with(Clifford):with(linalg):with(asvd):> p,q:=3,0; ##<<-- selecting signature> B:=diag(1$p,-1$q): ##<<-- defining diagonal bilinear form> eval(makealiases(p+q)): ##<<-- defining aliases> clibas:=cbasis(p+q); ##assigning basis for Cl(3,0)

๐‘, ๐‘ž := 3, 0

clibas := [Id , e1 , e2 , e3 , e12 , e13 , e23 , e123 ]

> data:=clidata(); ##<<-- displaying information about Cl(3,0)

data := [complex , 2, simple,Id

2+e1

2, [Id , e2 , e3 , e23 ], [Id , e23 ], [Id , e2 ]]

> MM:=matKrepr(); ##<<-- displaying default matrices to generators

Cliplus has been loaded. Definitions for type/climon andtype/clipolynom now include &C and &C[K]. Type ?cliprod forhelp.

23In showing Maple display we have edited Maple output to save space. Package asvd is a

supplementary package written by the third author and built into CLIFFORD. The primarypurpose of asvd is to compute Singular Value Decomposition in Clifford algebras [1].

Page 169: Quaternion and Clifford Fourier Transforms and Wavelets

7. Square Roots of โˆ’1 in Real Clifford Algebras 145

MM := [e1 =

โŽกโŽฃ 1 0

0 โˆ’1

โŽคโŽฆ , e2 =

โŽกโŽฃ 0 1

1 0

โŽคโŽฆ , e3 =

โŽกโŽฃ 0 โˆ’e23e23 0

โŽคโŽฆ]

Pauli algebra representation displayed in (7.1):> sigma[1]:=evalm(rhs(MM[1]));> sigma[2]:=evalm(rhs(MM[2]));> sigma[3]:=evalm(rhs(MM[3]));

๐œŽ1, ๐œŽ2, ๐œŽ3 :=

โŽกโŽฃ 0 1

1 0

โŽคโŽฆ ,

โŽกโŽฃ 0 โˆ’e23e23 0

โŽคโŽฆ ,

โŽกโŽฃ 1 0

0 โˆ’1

โŽคโŽฆ

We show how we represent the imaginary unit ๐‘– in the field โ„‚ and the diagonalmatrix diag(๐‘–, ๐‘–) :> ii:=e23; ##<<-- complex imaginary unit> II:=diag(ii,ii); ##<<-- diagonal matrix diag(i,i)

ii := e23

II :=

โŽกโŽฃ e23 0

0 e23

โŽคโŽฆ

We compute matrices ๐‘š1,๐‘š2, . . . ,๐‘š8 representing each basis element in ๐ถโ„“3,0isomorphic with โ„‚(2). Note that in our representation element ๐‘’23 in ๐ถโ„“3,0 is usedto represent the imaginary unit ๐‘–.> for i from 1 to nops(clibas) do

lprint(โ€˜The basis elementโ€˜,clibas[i],โ€˜is represented by the followingmatrix:โ€˜);M[i]:=subs(Id=1,matKrepr(clibas[i])) od;

โ€˜The basis elementโ€˜, Id, โ€˜is represented by the following matrix:โ€˜

๐‘€1 :=

โŽกโŽฃ 1 0

0 1

โŽคโŽฆ

โ€˜The basis elementโ€˜, e1, โ€˜is represented by the following matrix:โ€˜

๐‘€2 :=

โŽกโŽฃ 1 0

0 โˆ’1

โŽคโŽฆ

โ€˜The basis elementโ€˜, e2, โ€˜is represented by the following matrix:โ€˜

๐‘€3 :=

โŽกโŽฃ 0 1

1 0

โŽคโŽฆ

โ€˜The basis elementโ€˜, e3, โ€˜is represented by the following matrix:โ€˜

๐‘€4 :=

โŽกโŽฃ 0 โˆ’e23e23 0

โŽคโŽฆ

Page 170: Quaternion and Clifford Fourier Transforms and Wavelets

146 E. Hitzer, J. Helmstetter and R. Ablamowicz

โ€˜The basis elementโ€˜, e12, โ€˜is represented by the following matrix:โ€˜

๐‘€5 :=

โŽกโŽฃ 0 1

โˆ’1 0

โŽคโŽฆ

โ€˜The basis elementโ€˜, e13, โ€˜is represented by the following matrix:โ€˜

๐‘€6 :=

โŽกโŽฃ 0 โˆ’e23

โˆ’e23 0

โŽคโŽฆ

โ€˜The basis elementโ€˜, e23, โ€˜is represented by the following matrix:โ€˜

๐‘€7 :=

โŽกโŽฃ e23 0

0 โˆ’e23

โŽคโŽฆ

โ€˜The basis elementโ€˜, e123, โ€˜is represented by the following matrix:โ€˜

๐‘€8 :=

โŽกโŽฃ e23 0

0 e23

โŽคโŽฆ

We will use the procedure phi from the asvd package which gives an isomor-phism from โ„‚(2) to ๐ถโ„“3,0. This way we can find the image in ๐ถโ„“3,0 of any complex2 ร— 2 complex matrix ๐ด. Knowing the image of each matrix ๐‘š1,๐‘š2, . . . ,๐‘š8 interms of the Clifford polynomials in ๐ถโ„“3,0, we can easily find the image of ๐ด inour default spinor representation of ๐ถโ„“3,0 which is built into CLIFFORD.

Procedure Centralizer computes a centralizer of ๐‘“ with respect to the Clif-ford basis ๐ฟ:> Centralizer:=proc(f,L) local c,LL,m,vars,i,eq,sol;

m:=add(c[i]*L[i],i=1..nops(L));vars:=[seq(c[i],i=1..nops(L))];eq:=clicollect(cmul(f,m)-cmul(m,f));if eq=0 then return L end if:sol:=op(clisolve(eq,vars));m:=subs(sol,m);m:=collect(m,vars);return sort([coeffs(m,vars)],bygrade);end proc:

Procedures Scal and Spec compute the scalar and the pseudoscalar parts of ๐‘“ .> Scal:=proc(f) local p: return scalarpart(f); end proc:> Spec:=proc(f) local N; global p,q;

N:=p+q:return coeff(vectorpart(f,N),op(cbasis(N,N)));end proc:

The matrix idempotents in โ„‚(2) displayed in (7.2) are as follows:> d:=1:Eps[1]:=sigma[1] &cm sigma[1];

Page 171: Quaternion and Clifford Fourier Transforms and Wavelets

7. Square Roots of โˆ’1 in Real Clifford Algebras 147

> Eps[0]:=evalm(1/2*(1+sigma[3]));> Eps[-1]:=diag(0,0);

Eps1, Eps0, Epsโˆ’1 :=

โŽกโŽฃ 1 0

0 1

โŽคโŽฆ ,

โŽกโŽฃ 1 0

0 0

โŽคโŽฆ ,

โŽกโŽฃ 0 0

0 0

โŽคโŽฆ

This function ff computes matrix square root of โˆ’1 corresponding to the matrixidempotent ๐‘’๐‘๐‘ :> ff:=eps->evalm(II &cm (2*eps-1));

ff := eps โ†’ evalm(II &cm (2 eps โˆ’ 1))

We compute matrix square roots of โˆ’1 which correspond to the idempotents๐ธ๐‘๐‘ 1, ๐ธ๐‘๐‘ 0, ๐ธ๐‘๐‘ โˆ’1, and their characteristic and minimal polynomials. Note thatin Maple the default imaginary unit is denoted by ๐ผ.> F[1]:=ff(Eps[1]); ##<<-- this square root of -1 corresponds to Eps[1]

Delta[1]:=charpoly(subs(e23=I,evalm(F[1])),t);Mu[1]:=minpoly(subs(e23=I,evalm(F[1])),t);

๐น1 :=

โŽกโŽฃ e23 0

0 e23

โŽคโŽฆ , ฮ”1 := (๐‘กโˆ’ ๐ผ)2, ๐‘€1 := ๐‘กโˆ’ ๐ผ

> F[0]:=ff(Eps[0]); ##<<-- this square root of -1 corresponds to Eps[0]Delta[0]:=charpoly(subs(e23=I,evalm(F[0])),t);Mu[0]:=minpoly(subs(e23=I,evalm(F[0])),t);

๐น0 :=

โŽกโŽฃ e23 0

0 โˆ’e23

โŽคโŽฆ , ฮ”0 := (๐‘กโˆ’ ๐ผ) (๐‘ก+ ๐ผ), ๐‘€0 := 1 + ๐‘ก2

> F[-1]:=ff(Eps[-1]); ##<<-- this square root of -1 corresponds to Eps[-1]Delta[-1]:=charpoly(subs(e23=I,evalm(F[-1])),t);Mu[-1]:=minpoly(subs(e23=I,evalm(F[-1])),t);

๐นโˆ’1 :=

โŽกโŽฃ โˆ’e23 0

0 โˆ’e23

โŽคโŽฆ , ฮ”โˆ’1 := (๐‘ก+ ๐ผ)2, ๐‘€โˆ’1 := ๐‘ก+ ๐ผ

Now, we can find square roots of โˆ’1 in ๐ถโ„“3,0 which correspond to the matrixsquare roots ๐นโˆ’1, ๐น0, ๐น1 via the isomorphism ๐œ™ : ๐ถโ„“3,0 โ†’ โ„‚(2) realized with theprocedure phi.

First, we let reprI denote element in ๐ถโ„“3,0 which represents the diagonal(2๐‘‘) ร— (2๐‘‘) with ๐ผ = ๐‘– on the diagonal where ๐‘–2 = โˆ’1. This element will replacethe imaginary unit ๐ผ in the minimal polynomials.> reprI:=phi(diag(I$(2*d)),M);

reprI := e123

Page 172: Quaternion and Clifford Fourier Transforms and Wavelets

148 E. Hitzer, J. Helmstetter and R. Ablamowicz

Now, we compute the corresponding square roots ๐‘“1, ๐‘“0, ๐‘“โˆ’1 in ๐ถโ„“3,0.> f[1]:=phi(F[1],M); ##<<-- element in Cl(3,0) corresponding to F[1]

cmul(f[1],f[1]); ##<<-- checking that this element is a root of -1Mu[1]; ##<<-- recalling minpoly of matrix F[1]subs(e23=I,evalm(subs(t=evalm(F[1]),Mu[1]))); ##<<-- F[1] in Mu[1]mu[1]:=subs(I=reprI,Mu[1]); ##<<-- defining minpoly of f[1]cmul(f[1]-reprI,Id); ##<<-- verifying that f[1] satisfies mu[1]

๐‘“1 := e123

โˆ’Id , ๐‘กโˆ’ ๐ผ,

โŽกโŽฃ 0 0

0 0

โŽคโŽฆ

๐œ‡1 := ๐‘กโˆ’ e123 , 0

> f[0]:=phi(F[0],M); ##<<-- element in Cl(3,0) corresponding to F[0]cmul(f[0],f[0]); ##<<-- checking that this element is a root of -1Mu[0]; ##<<-- recalling minpoly of matrix F[0]subs(e23=I,evalm(subs(t=evalm(F[0]),Mu[0]))); ##<<-- F[0] in Mu[0]mu[0]:=subs(I=reprI,Mu[0]); ##<<-- defining minpoly of f[0]cmul(f[0]-reprI,f[0]+reprI); ##<<-- f[0] satisfies mu[0]

๐‘“0 := e23

โˆ’Id , 1 + ๐‘ก2,

โŽกโŽฃ 0 0

0 0

โŽคโŽฆ

๐œ‡0 := 1 + ๐‘ก2, 0

> f[-1]:=phi(F[-1],M); ##<<-- element in Cl(3,0) corresponding to F[-1]cmul(f[-1],f[-1]); ##<<-- checking that this element is a root of -1Mu[-1]; ##<<-- recalling minpoly of matrix F[-1]subs(e23=I,evalm(subs(t=evalm(F[-1]),Mu[-1]))); ##<<-- F[-1] in Mu[-1]mu[-1]:=subs(I=reprI,Mu[-1]); ##<<-- defining minpoly of f[-1]cmul(f[-1]+reprI,Id); ##<<-- f[-1] satisfies mu[-1]

๐‘“โˆ’1 := โˆ’e123

โˆ’Id , ๐‘ก+ ๐ผ,

โŽกโŽฃ 0 0

0 0

โŽคโŽฆ

๐œ‡โˆ’1 := ๐‘ก+ e123 , 0

Functions RdimCentralizer and RdimConjugClass of ๐‘‘ and ๐‘˜ compute thereal dimension of the centralizer Cent(๐‘“) and the conjugacy class of ๐‘“ (see (7.4)).> RdimCentralizer:=(d,k)->2*((d+k)ห†2+(d-k)ห†2); ##<<-- from the theory> RdimConjugClass:=(d,k)->4*(dห†2-kห†2); ##<<-- from the theory

RdimCentralizer := (๐‘‘, ๐‘˜) โ†’ 2 (๐‘‘+ ๐‘˜)2 + 2 (๐‘‘โˆ’ ๐‘˜)2

RdimConjugClass := (๐‘‘, ๐‘˜) โ†’ 4 ๐‘‘2 โˆ’ 4 ๐‘˜2

Page 173: Quaternion and Clifford Fourier Transforms and Wavelets

7. Square Roots of โˆ’1 in Real Clifford Algebras 149

Now, we compute the centralizers of the roots and use notation ๐‘‘, ๐‘˜, ๐‘›1, ๐‘›2 dis-played in Examples.Case ๐‘˜ = 1 :> d:=1:k:=1:n1:=d+k;n2:=d-k;

A1:=diag(I$n1,-I$n2); ##<<-- this is the first matrix root of -1

n1 := 2, n2 := 0, A1 :=

โŽกโŽฃ ๐ผ 0

0 ๐ผ

โŽคโŽฆ

> f[1]:=phi(A1,M); cmul(f[1],f[1]); Scal(f[1]), Spec(f[1]);

๐‘“1 := e123 , โˆ’Id , 0, 1

> LL1:=Centralizer(f[1],clibas); ##<<-- centralizer of f[1]dimCentralizer:=nops(LL1); ##<<-- real dimension of centralizer of f[1]RdimCentralizer(d,k); ##<<-- dimension of centralizer of f[1] from theoryevalb(dimCentralizer=RdimCentralizer(d,k)); ##<<-- checkingequality

LL1 := [Id , e1 , e2 , e3 , e12 , e13 , e23 , e123 ]dimCentralizer := 8, 8, true

Case ๐‘˜ = 0 :> d:=1:k:=0:n1:=d+k;n2:=d-k;

A0:=diag(I$n1,-I$n2); ##<<-- this is the second matrix root of -1

n1 := 1, n2 := 1, A0 :=

โŽกโŽฃ ๐ผ 0

0 โˆ’๐ผ

โŽคโŽฆ

> f[0]:=phi(A0,M); cmul(f[0],f[0]); Scal(f[0]), Spec(f[0]);

๐‘“0 := e23 , โˆ’Id , 0, 0

> LL0:=Centralizer(f[0],clibas); ##<<-- centralizer of f[0]dimCentralizer:=nops(LL0); ##<<-- real dimension of centralizer of f[0]RdimCentralizer(d,k); ##<<-- dimension of centralizer of f[0] from theoryevalb(dimCentralizer=RdimCentralizer(d,k)); ##<<-- checking equality

LL0 := [Id , e1 , e23 , e123 ]dimCentralizer := 4, 4, true

Case ๐‘˜ = โˆ’1 :> d:=1:k:=-1:n1:=d+k;n2:=d-k;

Am1:=diag(I$n1,-I$n2); ##<<-- this is the third matrix root of -1

n1 := 0, n2 := 2, Am1 :=

โŽกโŽฃ โˆ’๐ผ 0

0 โˆ’๐ผ

โŽคโŽฆ

> f[-1]:=phi(Am1,M); cmul(f[-1],f[-1]); Scal(f[-1]), Spec(f[-1]);

๐‘“โˆ’1 := โˆ’e123 , โˆ’Id , 0, โˆ’1

Page 174: Quaternion and Clifford Fourier Transforms and Wavelets

150 E. Hitzer, J. Helmstetter and R. Ablamowicz

> LLm1:=Centralizer(f[-1],clibas); ##<<-- centralizer of f[-1]dimCentralizer:=nops(LLm1); ##<<-- real dimension of centralizer of f[-1]RdimCentralizer(d,k); ##<<--dimension of centralizer of f[-1] from theoryevalb(dimCentralizer=RdimCentralizer(d,k)); ##<<-- checking equality

LLm1 := [Id , e1 , e2 , e3 , e12 , e13 , e23 , e123 ]

dimCentralizer := 8, 8, true

We summarize roots of โˆ’1 in ๐ถโ„“3,0:> โ€™F[1]โ€™=evalm(F[1]); ##<<-- square root of -1 in C(2)

Mu[1]; ##<<-- minpoly of matrix F[1]โ€™f[1]โ€™=f[1]; ##<<-- square root of -1 in Cl(3,0)mu[1]; ##<<-- minpoly of element f[1]

๐น1 =

โŽกโŽฃ e23 0

0 e23

โŽคโŽฆ , ๐‘กโˆ’ ๐ผ

๐‘“1 = e123 , ๐‘กโˆ’ e123

> โ€™F[0]โ€™=evalm(F[0]); ##<<-- square root of -1 in C(2)Mu[0]; ##<<-- minpoly of matrix F[0]โ€™f[0]โ€™=f[0]; ##<<-- square root of -1 in Cl(3,0)mu[0]; ##<<-- minpoly of element f[0]

๐น0 =

โŽกโŽฃ e23 0

0 โˆ’e23

โŽคโŽฆ , 1 + ๐‘ก2

๐‘“0 = e23 , 1 + ๐‘ก2

> โ€™F[-1]โ€™=evalm(F[-1]); ##<<-- square root of -1 in C(2)Mu[-1]; ##<<-- minpoly of matrix F[-1]โ€™f[-1]โ€™=f[-1]; ##<<-- square root of -1 in Cl(3,0)mu[-1]; ##<<-- minpoly of element f[-1]

๐นโˆ’1 =

โŽกโŽฃ โˆ’e23 0

0 โˆ’e23

โŽคโŽฆ , ๐‘ก+ ๐ผ

๐‘“โˆ’1 = โˆ’e123 , ๐‘ก+ e123

Finaly, we verify that roots ๐‘“1 and ๐‘“โˆ’1 are related via the reversion:> reversion(f[1])=f[-1]; evalb(%);

โˆ’e123 = โˆ’e123 , true

References

[1] R. Ablamowicz. Computations with Clifford and Grassmann algebras. Advances inApplied Clifford Algebras, 19(3โ€“4):499โ€“545, 2009.

Page 175: Quaternion and Clifford Fourier Transforms and Wavelets

7. Square Roots of โˆ’1 in Real Clifford Algebras 151

[2] R. Ablamowicz and B. Fauser. CLIFFORD with bigebra โ€“ a Maple package forcomputations with Clifford and Grassmann algebras. Available at http://math.

tntech.edu/rafal/, cโƒ1996โ€“2012.

[3] R. Ablamowicz, B. Fauser, K. Podlaski, and J. Rembielinski. Idempotents of Cliffordalgebras. Czechoslovak Journal of Physics, 53(11):949โ€“954, 2003.

[4] J. Armstrong. The center of an algebra. Weblog, available athttp://unapologetic.wordpress.com/2010/10/06/the-center-of-an-algebra/,accessed 22 March 2011.

[5] M. Bahri, E. Hitzer, R. Ashino, and R. Vaillancourt. Windowed Fourier transformof two-dimensional quaternionic signals. Applied Mathematics and Computation,216(8):2366โ€“2379, June 2010.

[6] M. Bahri, E.M.S. Hitzer, and S. Adji. Two-dimensional Clifford windowed Fouriertransform. In E.J. Bayro-Corrochano and G. Scheuermann, editors, Geometric Al-gebra Computing in Engineering and Computer Science, pages 93โ€“106. Springer,London, 2010.

[7] F. Brackx, R. Delanghe, and F. Sommen. Clifford Analysis, volume 76. Pitman,Boston, 1982.

[8] T. Bulow. Hypercomplex Spectral Signal Representations for the Processing and Anal-ysis of Images. PhD thesis, University of Kiel, Germany, Institut fur Informatik undPraktische Mathematik, Aug. 1999.

[9] T. Bulow, M. Felsberg, and G. Sommer. Non-commutative hypercomplex Fouriertransforms of multidimensional signals. In G. Sommer, editor, Geometric computingwith Clifford Algebras: Theoretical Foundations and Applications in Computer Visionand Robotics, pages 187โ€“207, Berlin, 2001. Springer.

[10] C. Chevalley. The Theory of Lie Groups. Princeton University Press, Princeton,1957.

[11] W.K. Clifford. Applications of Grassmannโ€™s extensive algebra. American Journal ofMathematics, 1(4):350โ€“358, 1878.

[12] L. Dorst and J. Lasenby, editors. Guide to Geometric Algebra in Practice. Springer,Berlin, 2011.

[13] J. Ebling and G. Scheuermann. Clifford Fourier transform on vector fields. IEEETransactions on Visualization and Computer Graphics, 11(4):469โ€“479, July 2005.

[14] M. Felsberg. Low-Level Image Processing with the Structure Multivector. PhD thesis,Christian-Albrechts-Universitat, Institut fur Informatik und Praktische Mathematik,Kiel, 2002.

[15] D. Hestenes. Space-Time Algebra. Gordon and Breach, London, 1966.

[16] D. Hestenes. New Foundations for Classical Mechanics. Kluwer, Dordrecht, 1999.

[17] D. Hestenes and G. Sobczyk. Clifford Algebra to Geometric Calculus. D. ReidelPublishing Group, Dordrecht, Netherlands, 1984.

[18] E. Hitzer. Quaternion Fourier transform on quaternion fields and generalizations.Advances in Applied Clifford Algebras, 17(3):497โ€“517, May 2007.

[19] E. Hitzer. OPS-QFTs: A new type of quaternion Fourier transform based on theorthogonal planes split with one or two general pure quaternions. In InternationalConference on Numerical Analysis and Applied Mathematics, volume 1389 of AIP

Page 176: Quaternion and Clifford Fourier Transforms and Wavelets

152 E. Hitzer, J. Helmstetter and R. Ablamowicz

Conference Proceedings, pages 280โ€“283, Halkidiki, Greece, 19โ€“25 September 2011.American Institute of Physics.

[20] E. Hitzer and R. Ablamowicz. Geometric roots of โˆ’1 in Clifford algebras ๐ถโ„“๐‘,๐‘ž with๐‘ + ๐‘ž โ‰ค 4. Advances in Applied Clifford Algebras, 21(1):121โ€“144, 2010. Publishedonline 13 July 2010.

[21] E. Hitzer, J. Helmstetter, and R. Ablamowicz. Maple worksheets created withCLIFFORD for a verification of results presented in this chapter. Available at: http://math.tntech.edu/rafal/publications.html, cโƒ2012.

[22] E. Hitzer and B. Mawardi. Uncertainty principle for Clifford geometric algebras๐ถโ„“๐‘›,0, ๐‘› = 3(mod 4) based on Clifford Fourier transform. In T. Qian, M.I. Vai, andY. Xu, editors,Wavelet Analysis and Applications, Applied and Numerical HarmonicAnalysis, pages 47โ€“56. Birkhauser Basel, 2007.

[23] E.M.S. Hitzer and B. Mawardi. Clifford Fourier transform on multivector fields anduncertainty principles for dimensions ๐‘› = 2(mod 4) and ๐‘› = 3(mod 4). Advances inApplied Clifford Algebras, 18(3-4):715โ€“736, 2008.

[24] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press, Cam-bridge, 1985.

[25] W.M. Incorporated. Maple, a general purpose computer algebra system. http://www.maplesoft.com, cโƒ 2012.

[26] C. Li, A. McIntosh, and T. Qian. Clifford algebras, Fourier transform and singu-lar convolution operators on Lipschitz surfaces. Revista Matematica Iberoamericana,10(3):665โ€“695, 1994.

[27] H. Li. Invariant Algebras and Geometric Reasoning. World Scientific, Singapore,2009.

[28] P. Lounesto. Clifford Algebras and Spinors, volume 286 of London MathematicalSociety Lecture Notes. Cambridge University Press, 1997.

[29] B. Mawardi and E.M.S. Hitzer. Clifford Fourier transformation and uncertainty prin-ciple for the Clifford algebra ๐ถโ„“3,0. Advances in Applied Clifford Algebras, 16(1):41โ€“61, 2006.

[30] A. McIntosh. Clifford algebras, Fourier theory, singular integrals, and harmonic func-tions on Lipschitz domains. In J. Ryan, editor, Clifford Algebras in Analysis andRelated Topics, chapter 1. CRC Press, Boca Raton, 1996.

[31] T. Qian. Paley-Wiener theorems and Shannon sampling in the Clifford analysis set-ting. In R. Ablamowicz, editor, Clifford Algebras โ€“ Applications to Mathematics,Physics, and Engineering, pages 115โ€“124. Birkauser, Basel, 2004.

[32] S. Said, N. Le Bihan, and S.J. Sangwine. Fast complexified quaternion Fourier trans-form. IEEE Transactions on Signal Processing, 56(4):1522โ€“1531, Apr. 2008.

[33] S.J. Sangwine. Biquaternion (complexified quaternion) roots of โˆ’1. Advances inApplied Clifford Algebras, 16(1):63โ€“68, June 2006.

[34] Wikipedia article. Conjugacy class. Available at http://en.wikipedia.org/wiki/

Conjugacy_class, accessed 19 March 2011.

[35] Wikipedia article. Inner automorphism. Available at http://en.wikipedia.org/

wiki/Inner_automorphism, accessed 19 March 2011.

Page 177: Quaternion and Clifford Fourier Transforms and Wavelets

7. Square Roots of โˆ’1 in Real Clifford Algebras 153

Eckhard HitzerCollege of Liberal Arts, Department of Material ScienceInternational Christian University181-8585 Tokyo, Japane-mail: [email protected]

Jacques HelmstetterUnivesite Grenoble IInstitut Fourier (Mathematiques)B.P. 74F-38402 Saint-Martin dโ€™Heres, Francee-mail: [email protected]

Rafal AblamowiczDepartment of Mathematics, Box 5054Tennessee Technological UniversityCookeville, TN 38505, USAe-mail: [email protected]

Page 178: Quaternion and Clifford Fourier Transforms and Wavelets

Quaternion and Cliffordโ€“Fourier Transforms and Wavelets

Trends in Mathematics, 155โ€“176cโƒ 2013 Springer Basel

8 A General Geometric Fourier Transform

Roxana Bujack, Gerik Scheuermann and Eckhard Hitzer

Abstract. The increasing demand for Fourier transforms on geometric alge-bras has resulted in a large variety. Here we introduce one single straight-forward definition of a general geometric Fourier transform covering mostversions in the literature. We show which constraints are additionally neces-sary to obtain certain features such as linearity or a shift theorem. As a result,we provide guidelines for the target-oriented design of yet unconsidered trans-forms that fulfill requirements in a specific application context. Furthermore,the standard theorems do not need to be shown in a slightly different formevery time a new geometric Fourier transform is developed since they areproved here once and for all.

Mathematics Subject Classification (2010). Primary 15A66, 11E88; secondary42A38, 30G35.

Keywords. Fourier transform, geometric algebra, Clifford algebra, image pro-cessing, linearity, scaling, shift.

1. Introduction

The Fourier transform by Jean Baptiste Joseph Fourier is an indispensable toolin many fields of mathematics, physics, computer science and engineering, espe-cially for the analysis and solution of differential equations, or in signal and imageprocessing, fields which cannot be imagined without it. The kernel of the Fouriertransform consists of the complex exponential function. With the square root ofminus one, the imaginary unit ๐‘–, as part of the argument it is periodic and thereforesuitable for the analysis of oscillating systems.

William Kingdon Clifford created the geometric algebras in 1878, [8]. Theyusually contain continuous submanifolds of geometric square roots of โˆ’1 [16, 17].Each multivector has a natural geometric interpretation so the generalization ofthe Fourier transform to multivector-valued functions in the geometric algebras isvery reasonable. It helps to interpret the transform, apply it in a target-oriented

Page 179: Quaternion and Clifford Fourier Transforms and Wavelets

156 R. Bujack, G. Scheuermann and E. Hitzer

way to the specific underlying problem and it allows a new point of view on fluidmechanics.

Many different application-oriented definitions of Fourier transforms in geo-metric algebras have been developed. For example the Cliffordโ€“Fourier transformintroduced by Jancewicz [19] and expanded by Ebling and Scheuermann [10]and Hitzer and Mawardi [18] or the one established by Sommen in [21] and re-established by Bulow [7]. Further we have the quaternionic Fourier transform byEll [11] and later by Bulow [7], the spacetime Fourier transform by Hitzer [15], theCliffordโ€“Fourier transform for colour images by Batard et al. [1], the CylindricalFourier transform by Brackx et al. [6], the transforms by Felsberg [13] or Ell andSangwine [20, 12]. All these transforms have different interesting properties anddeserve to be studied independently from one another. But the analysis of theirsimilarities reveals a lot about their qualities, too. We concentrate on this matterand summarize all of them in one general definition.

Recently there have been very successful approaches by De Bie, Brackx, DeSchepper and Sommen to construct Cliffordโ€“Fourier transforms from operator ex-ponentials and differential equations [3, 4, 9, 5]. The definition presented in thischapter does not cover all of them, partly because their closed integral form is notalways known or is highly complicated, and partly because they can be producedby combinations and functions of our transforms.

We focus on continuous geometric Fourier transforms over flat spaces โ„๐‘,๐‘ž intheir integral representation. That way their finite, regular discrete equivalents asused in computational signal and image processing can be intuitively constructedand direct applicability to the existing practical issues and easy numerical man-ageability are ensured.

2. Definition of the GFT

We examine geometric algebras ๐ถโ„“๐‘,๐‘ž, ๐‘+ ๐‘ž = ๐‘› โˆˆ โ„• over โ„๐‘+๐‘ž [14] generated bythe associative, bilinear geometric product with neutral element 1 satisfying

๐’†๐‘—๐’†๐‘˜ + ๐’†๐‘˜๐’†๐‘— = ๐œ–๐‘—๐›ฟ๐‘—๐‘˜, (2.1)

for all ๐‘—, ๐‘˜ โˆˆ {1, . . . , ๐‘›} with the Kronecker symbol ๐›ฟ and

๐œ–๐‘— =

{1 โˆ€๐‘— = 1, . . . , ๐‘,

โˆ’1 โˆ€๐‘— = ๐‘+ 1, . . . , ๐‘›.(2.2)

For the sake of brevity we want to refer to arbitrary multivectors

๐‘จ =

๐‘›โˆ‘๐‘˜=0

โˆ‘1โ‰ค๐‘—1<โ‹…โ‹…โ‹…<๐‘—๐‘˜โ‰ค๐‘›

๐‘Ž๐‘—1...๐‘—๐‘˜๐’†๐‘—1 . . .๐’†๐‘—๐‘˜ โˆˆ ๐ถโ„“๐‘,๐‘ž, (2.3)

where ๐‘Ž๐‘—1...๐‘—๐‘˜ โˆˆ โ„, as

๐‘จ =โˆ‘๐’‹

๐‘Ž๐’‹๐’†๐’‹ . (2.4)

Page 180: Quaternion and Clifford Fourier Transforms and Wavelets

8. A General Geometric Fourier Transform 157

where each of the 2๐‘› multi-indices ๐’‹ โŠ† {1, . . . , ๐‘›} indicates a basis vector of ๐ถโ„“๐‘,๐‘žby ๐’†๐’‹ = ๐’†๐‘—1 . . .๐’†๐‘—๐‘˜ , 1 โ‰ค ๐‘—1 < โ‹… โ‹… โ‹… < ๐‘—๐‘˜ โ‰ค ๐‘›, ๐’†โˆ… = ๐’†0 = 1 and its associatedcoefficient ๐‘Ž๐’‹ = ๐‘Ž๐‘—1...๐‘—๐‘˜ โˆˆ โ„.

Definition 2.1. The exponential function of a multivector ๐‘จ โˆˆ ๐ถโ„“๐‘,๐‘ž is defined bythe power series

๐‘’๐‘จ :=โˆ‘โˆž

๐‘—=0

๐‘จ๐‘—

๐‘—!. (2.5)

Lemma 2.2. For two multivectors ๐‘จ๐‘ฉ = ๐‘ฉ๐‘จ that commute we have

๐‘’๐‘จ+๐‘ฉ = ๐‘’๐‘จ๐‘’๐‘ฉ. (2.6)

Proof. Analogous to the exponent rule of real matrices. โ–กNotation 2.3. For each geometric algebra๐ถโ„“๐‘,๐‘ž we will write I ๐‘,๐‘ž = {๐‘– โˆˆ ๐ถโ„“๐‘,๐‘ž, ๐‘–

2 โˆˆโ„โˆ’} to denote the real multiples of all geometric square roots of โˆ’1 , compare [16]and [17]. We choose the symbol I to be reminiscent of the imaginary numbers.

Definition 2.4. Let ๐ถโ„“๐‘,๐‘ž be a geometric algebra, ๐‘จ : โ„๐‘š โ†’ ๐ถโ„“๐‘,๐‘ž be a mul-tivector field and ๐’™,๐’– โˆˆ โ„๐‘š vectors. A Geometric Fourier Transform (GFT)โ„ฑ๐น1,๐น2(๐‘จ) is defined by two ordered finite sets ๐น1 = {๐‘“1(๐’™,๐’–), . . . , ๐‘“๐œ‡(๐’™,๐’–)}, ๐น2 ={๐‘“๐œ‡+1(๐’™,๐’–), . . . , ๐‘“๐œˆ(๐’™,๐’–)} of mappings ๐‘“๐‘˜(๐’™,๐’–) : โ„

๐‘šร—โ„๐‘š โ†’ I ๐‘,๐‘ž, โˆ€๐‘˜ = 1, . . . , ๐œˆand the calculation rule

โ„ฑ๐น1,๐น2(๐‘จ)(๐’–) :=

โˆซโ„๐‘š

โˆ๐‘“โˆˆ๐น1

๐‘’โˆ’๐‘“(๐’™,๐’–)๐‘จ(๐’™)โˆ๐‘“โˆˆ๐น2

๐‘’โˆ’๐‘“(๐’™,๐’–) d๐‘š๐’™. (2.7)

This definition combines many Fourier transforms into a single general one. Itenables us to prove the well-known theorems which depend only on the propertiesof the chosen mappings.

Example. Depending on the choice of ๐น1 and ๐น2 we obtain previously publishedtransforms.

1. In the case of ๐‘จ : โ„๐‘› โ†’ ๐’ข๐‘›,0, ๐‘› = 2 (mod 4) or ๐‘› = 3 (mod 4), we canreproduce the Cliffordโ€“Fourier transform introduced by Jancewicz [19] for๐‘› = 3 and expanded by Ebling and Scheuermann [10] for ๐‘› = 2 and HitzerandMawardi [18] for ๐‘› = 2 (mod 4) or ๐‘› = 3 (mod 4) using the configuration

๐น1 = โˆ…,๐น2 = {๐‘“1},

๐‘“1(๐’™,๐’–) = 2๐œ‹๐‘–๐‘›๐’™ โ‹… ๐’–,(2.8)

with ๐‘–๐‘› being the pseudoscalar of ๐บ๐‘›,0.2. Choosing multivector fields โ„๐‘› โ†’ ๐’ข0,๐‘›,

๐น1 = โˆ…,๐น2 = {๐‘“1, . . . , ๐‘“๐‘›},

๐‘“๐‘˜(๐’™,๐’–) = 2๐œ‹๐’†๐‘˜๐‘ฅ๐‘˜๐‘ข๐‘˜, โˆ€๐‘˜ = 1, . . . , ๐‘›

(2.9)

we have the Sommenโ€“Bulowโ€“Cliffordโ€“Fourier transform from [21, 7].

Page 181: Quaternion and Clifford Fourier Transforms and Wavelets

158 R. Bujack, G. Scheuermann and E. Hitzer

3. For๐‘จ : โ„2 โ†’ ๐’ข0,2 โ‰ˆ โ„ the quaternionic Fourier transform [11, 7] is generatedby

๐น1 = {๐‘“1},๐น2 = {๐‘“2},

๐‘“1(๐’™,๐’–) = 2๐œ‹๐‘–๐‘ฅ1๐‘ข1,

๐‘“2(๐’™,๐’–) = 2๐œ‹๐‘—๐‘ฅ2๐‘ข2.

(2.10)

4. Using ๐’ข3,1 we can build the spacetime, respectively the volume-time, Fouriertransform from [15]1 with the ๐’ข3,1-pseudoscalar ๐‘–4 as follows

๐น1 = {๐‘“1},๐น2 = {๐‘“2},

๐‘“1(๐’™,๐’–) = ๐’†4๐‘ฅ4๐‘ข4,

๐‘“2(๐’™,๐’–) = ๐œ–4๐’†4๐‘–4(๐‘ฅ1๐‘ข1 + ๐‘ฅ2๐‘ข2 + ๐‘ฅ3๐‘ข3).

(2.11)

5. The Cliffordโ€“Fourier transform for colour images by Batard, Berthier andSaint-Jean [1] for ๐‘š = 2, ๐‘› = 4,๐‘จ : โ„2 โ†’ ๐’ข4,0, a fixed bivector ๐‘ฉ, and thepseudoscalar ๐‘– can intuitively be written as

๐น1 = {๐‘“1},๐น2 = {๐‘“2},

๐‘“1(๐’™,๐’–) =1

2(๐‘ฅ1๐‘ข1 + ๐‘ฅ2๐‘ข2)(๐‘ฉ + ๐‘–๐‘ฉ),

๐‘“2(๐’™,๐’–) = โˆ’1

2(๐‘ฅ1๐‘ข1 + ๐‘ฅ2๐‘ข2)(๐‘ฉ + ๐‘–๐‘ฉ),

(2.12)

but (๐‘ฉ+ ๐‘–๐‘ฉ) does not square to a negative real number, see [16]. The specialproperty that ๐‘ฉ and ๐‘–๐‘ฉ commute allows us to express the formula using

๐น1 = {๐‘“1, ๐‘“2},๐น2 = {๐‘“3, ๐‘“4},

๐‘“1(๐’™,๐’–) =1

2(๐‘ฅ1๐‘ข1 + ๐‘ฅ2๐‘ข2)๐‘ฉ,

๐‘“2(๐’™,๐’–) =1

2(๐‘ฅ1๐‘ข1 + ๐‘ฅ2๐‘ข2)๐‘–๐‘ฉ,

๐‘“3(๐’™,๐’–) = โˆ’1

2(๐‘ฅ1๐‘ข1 + ๐‘ฅ2๐‘ข2)๐‘ฉ,

๐‘“4(๐’™,๐’–) = โˆ’1

2(๐‘ฅ1๐‘ข1 + ๐‘ฅ2๐‘ข2)๐‘–๐‘ฉ,

(2.13)

which fulfills the conditions of Definition 2.4.

1Please note that Hitzer uses a different notation in [15]. His ๐’™ = ๐‘ก๐’†0 + ๐‘ฅ1๐’†1 + ๐‘ฅ2๐’†2 + ๐‘ฅ3๐’†3corresponds to our ๐’™ = ๐‘ฅ1๐’†1 + ๐‘ฅ2๐’†2 + ๐‘ฅ3๐’†3 + ๐‘ฅ4๐’†4, with ๐’†0๐’†0 = ๐œ–0 = โˆ’1 being equivalent toour ๐’†4๐’†4 = ๐œ–4 = โˆ’1.

Page 182: Quaternion and Clifford Fourier Transforms and Wavelets

8. A General Geometric Fourier Transform 159

6. Using ๐’ข0,๐‘› and

๐น1 = {๐‘“1},๐น2 = โˆ…,

๐‘“1(๐’™,๐’–) = โˆ’๐’™ โˆง ๐’–

(2.14)

produces the cylindrical Fourier transform as introduced by Brackx, de Schep-per and Sommen in [6].

3. General Properties

First we prove general properties valid for arbitrary sets ๐น1, ๐น2.

Theorem 3.1 (Existence). The geometric Fourier transform exists for all integrablemultivector fields ๐‘จ โˆˆ ๐ฟ1(โ„

๐‘›).

Proof. The property

๐‘“2๐‘˜ (๐’™,๐’–) โˆˆ โ„โˆ’ (3.1)

of the mappings ๐‘“๐‘˜ for ๐‘˜ = 1, . . . , ๐œˆ leads to

๐‘“2๐‘˜ (๐’™,๐’–)

โˆฃ๐‘“2๐‘˜ (๐’™,๐’–)โˆฃ

= โˆ’1 (3.2)

for all ๐‘“๐‘˜(๐’™,๐’–) โˆ•= 0. So using the decomposition

๐‘“๐‘˜(๐’™,๐’–) =๐‘“๐‘˜(๐’™,๐’–)

โˆฃ๐‘“๐‘˜(๐’™,๐’–)โˆฃ โˆฃ๐‘“๐‘˜(๐’™,๐’–)โˆฃ (3.3)

we can write โˆ€๐‘— โˆˆ โ„•

๐‘“ ๐‘—๐‘˜(๐’™,๐’–) =

โŽงโŽจโŽฉ(โˆ’1)๐‘™โˆฃ๐‘“๐‘˜(๐’™,๐’–)โˆฃ๐‘— for ๐‘— = 2๐‘™, ๐‘™ โˆˆ โ„•0

(โˆ’1)๐‘™ ๐‘“๐‘˜(๐’™,๐’–)โˆฃ๐‘“๐‘˜(๐’™,๐’–)โˆฃ โˆฃ๐‘“๐‘˜(๐’™,๐’–)โˆฃ

๐‘— for ๐‘— = 2๐‘™ + 1, ๐‘™ โˆˆ โ„•0(3.4)

which results in

๐‘’โˆ’๐‘“๐‘˜(๐’™,๐’–) =

โˆžโˆ‘๐‘—=0

(โˆ’๐‘“๐‘˜(๐’™,๐’–))๐‘—

๐‘—!

=

โˆžโˆ‘๐‘—=0

(โˆ’1)๐‘—โˆฃ๐‘“๐‘˜(๐’™,๐’–)โˆฃ2๐‘—(2๐‘—)!

โˆ’ ๐‘“๐‘˜(๐’™,๐’–)

โˆฃ๐‘“๐‘˜(๐’™,๐’–)โˆฃโˆžโˆ‘๐‘—=0

(โˆ’1)๐‘— โˆฃ๐‘“๐‘˜(๐’™,๐’–)โˆฃ2๐‘—+1

(2๐‘— + 1)!

= cos (โˆฃ๐‘“๐‘˜(๐’™,๐’–)โˆฃ)โˆ’ ๐‘“๐‘˜(๐’™,๐’–)

โˆฃ๐‘“๐‘˜(๐’™,๐’–)โˆฃ sin (โˆฃ๐‘“๐‘˜(๐’™,๐’–)โˆฃ) .

(3.5)

Page 183: Quaternion and Clifford Fourier Transforms and Wavelets

160 R. Bujack, G. Scheuermann and E. Hitzer

Because of

โˆฃ๐‘’โˆ’๐‘“๐‘˜(๐’™,๐’–)โˆฃ =โˆฃโˆฃโˆฃโˆฃcos (โˆฃ๐‘“๐‘˜(๐’™,๐’–)โˆฃ)โˆ’ ๐‘“๐‘˜(๐’™,๐’–)

โˆฃ๐‘“๐‘˜(๐’™,๐’–)โˆฃ sin (โˆฃ๐‘“๐‘˜(๐’™,๐’–)โˆฃ)โˆฃโˆฃโˆฃโˆฃ

โ‰ค โˆฃcos (โˆฃ๐‘“๐‘˜(๐’™,๐’–)โˆฃ)โˆฃ+โˆฃโˆฃโˆฃโˆฃ ๐‘“๐‘˜(๐’™,๐’–)โˆฃ๐‘“๐‘˜(๐’™,๐’–)โˆฃ

โˆฃโˆฃโˆฃโˆฃ โˆฃsin (โˆฃ๐‘“๐‘˜(๐’™,๐’–)โˆฃ)โˆฃโ‰ค 2

(3.6)

the magnitude of the improper integral

โˆฃโ„ฑ๐น1,๐น2(๐‘จ)(๐’–)โˆฃ =โˆฃโˆฃโˆฃโˆฃโˆฃโˆฃโˆซโ„๐‘š

โˆ๐‘“โˆˆ๐น1

๐‘’โˆ’๐‘“(๐’™,๐’–)๐‘จ(๐’™)โˆ๐‘“โˆˆ๐น2

๐‘’โˆ’๐‘“(๐’™,๐’–) d๐‘š๐’™

โˆฃโˆฃโˆฃโˆฃโˆฃโˆฃโ‰คโˆซโ„๐‘š

โˆ๐‘“โˆˆ๐น1

โˆฃโˆฃโˆฃ๐‘’โˆ’๐‘“(๐’™,๐’–)โˆฃโˆฃโˆฃ โˆฃ๐‘จ(๐’™)โˆฃ

โˆ๐‘“โˆˆ๐น2

โˆฃโˆฃโˆฃ๐‘’โˆ’๐‘“(๐’™,๐’–)โˆฃโˆฃโˆฃ d๐‘š๐’™

โ‰คโˆซโ„๐‘š

โˆ๐‘“โˆˆ๐น1

2 โˆฃ๐‘จ(๐’™)โˆฃโˆ๐‘“โˆˆ๐น2

2 d๐‘š๐’™

= 2๐œˆโˆซโ„๐‘š

โˆฃ๐‘จ(๐’™)โˆฃ d๐‘š๐’™

(3.7)

is finite and therefore the geometric Fourier transform exists. โ–ก

Theorem 3.2 (Scalar linearity). The geometric Fourier transform is linear with re-spect to scalar factors. Let ๐‘, ๐‘ โˆˆ โ„ and ๐‘จ,๐‘ฉ,๐‘ช : โ„๐‘š โ†’ ๐ถโ„“๐‘,๐‘ž be three multivectorfields that satisfy ๐‘จ(๐’™) = ๐‘๐‘ฉ(๐’™) + ๐‘๐‘ช(๐’™), then

โ„ฑ๐น1,๐น2(๐‘จ)(๐’–) = ๐‘โ„ฑ๐น1,๐น2(๐‘ฉ)(๐’–) + ๐‘โ„ฑ๐น1,๐น2(๐‘ช)(๐’–). (3.8)

Proof. The assertion is an easy consequence of the distributivity of the geomet-ric product over addition, the commutativity of scalars and the linearity of theintegral. โ–ก

4. Bilinearity

All geometric Fourier transforms from the introductory example can also be ex-pressed in terms of a stronger claim. The mappings ๐‘“1, . . . , ๐‘“๐œˆ, with the first ๐œ‡terms to the left of the argument function and the ๐œˆ โˆ’ ๐œ‡ others on the right of it,are all bilinear and therefore take the form

๐‘“๐‘˜(๐’™,๐’–) = ๐‘“๐‘˜

(๐‘šโˆ‘๐‘—=1

๐‘ฅ๐‘—๐’†๐‘— ,๐‘šโˆ‘๐‘™=1

๐‘ข๐‘™๐’†๐‘™

)

=๐‘šโˆ‘

๐‘—,๐‘™=1

๐‘ฅ๐‘—๐‘“๐‘˜(๐’†๐‘— , ๐’†๐‘™)๐‘ข๐‘™ = ๐’™๐‘‡๐‘€๐‘˜๐’–,

(4.1)

โˆ€๐‘˜ = 1, . . . , ๐œˆ, where ๐‘€๐‘˜ โˆˆ (I ๐‘,๐‘ž)๐‘šร—๐‘š, (๐‘€๐‘˜)๐‘—๐‘™ = ๐‘“๐‘˜(๐’†๐‘— , ๐’†๐‘™) according to Nota-tion 2.3.

Page 184: Quaternion and Clifford Fourier Transforms and Wavelets

8. A General Geometric Fourier Transform 161

Example. Ordered in the same way as in the previous example, the geometricFourier transforms expressed in the way of (4.1) take the following shapes:

1. In the Cliffordโ€“Fourier transform ๐‘“1 can be written with

๐‘€1 = 2๐œ‹๐‘–๐‘› Id . (4.2)

2. The ๐œˆ = ๐‘š = ๐‘› mappings ๐‘“๐‘˜, ๐‘˜ = 1, . . . , ๐‘› of the Bulowโ€“Cliffordโ€“Fouriertransform can be expressed using

(๐‘€๐‘˜)๐‘™๐‘— =

{2๐œ‹๐’†๐‘˜ for ๐‘˜ = ๐‘™ = ๐‘—,

0 otherwise.(4.3)

3. Similarly the quaternionic Fourier transform is generated using

(๐‘€1)๐‘™๐œ„ =

{2๐œ‹๐‘– for ๐‘™ = ๐œ„ = 1,

0 otherwise,

(๐‘€2)๐‘™๐œ„ =

{2๐œ‹๐‘— for ๐‘™ = ๐œ„ = 2,

0 otherwise.

(4.4)

4. We can build the spacetime Fourier transform with

(๐‘€1)๐‘™๐‘— =

{๐’†4 for ๐‘™ = ๐‘— = 1,

0 otherwise,

(๐‘€2)๐‘™๐‘— =

{๐œ–4๐’†4๐‘–4 for ๐‘™ = ๐‘— โˆˆ {2, 3, 4},0 otherwise.

(4.5)

5. The Cliffordโ€“Fourier transform for colour images can be described by

๐‘€1 =1

2๐‘ฉ Id,

๐‘€2 =1

2๐‘–๐‘ฉ Id,

๐‘€3 = โˆ’1

2๐‘ฉ Id,

๐‘€4 = โˆ’1

2๐‘–๐‘ฉ Id .

(4.6)

6. The cylindrical Fourier transform can also be reproduced with mappingssatisfying (4.1) because we can write

๐’™ โˆง ๐’– = ๐’†1๐’†2๐‘ฅ1๐‘ข2 โˆ’ ๐’†1๐’†2๐‘ฅ2๐‘ข1

+ โ‹… โ‹… โ‹…+ ๐’†๐‘šโˆ’1๐’†๐‘š๐‘ฅ๐‘šโˆ’1๐‘ข๐‘š โˆ’ ๐’†๐‘šโˆ’1๐’†๐‘š๐‘ฅ๐‘š๐‘ข๐‘šโˆ’1

(4.7)

and set

(๐‘€1)๐‘™๐‘— =

{0 for ๐‘™ = ๐‘—,

๐’†๐‘™๐’†๐‘— otherwise.(4.8)

Page 185: Quaternion and Clifford Fourier Transforms and Wavelets

162 R. Bujack, G. Scheuermann and E. Hitzer

Theorem 4.1 (Scaling). Let 0 โˆ•= ๐‘Ž โˆˆ โ„ be a real number, ๐‘จ(๐’™) = ๐‘ฉ(๐‘Ž๐’™) twomultivector fields and all ๐น1, ๐น2 be bilinear mappings then the geometric Fouriertransform satisfies

โ„ฑ๐น1,๐น2(๐‘จ)(๐’–) = โˆฃ๐‘Žโˆฃโˆ’๐‘šโ„ฑ๐น1,๐น2(๐‘ฉ)(๐’–๐‘Ž

). (4.9)

Proof. A change of coordinates together with the bilinearity proves the assertion by

โ„ฑ๐น1,๐น2(๐‘จ)(๐’–) =

โˆซโ„๐‘š

โˆ๐‘“โˆˆ๐น

๐‘’โˆ’๐‘“(๐’™,๐’–)๐‘ฉ(๐‘Ž๐’™)โˆ๐‘“โˆˆ๐ต

๐‘’โˆ’๐‘“(๐’™,๐’–) d๐‘š๐’™

๐‘Ž๐’™=๐’š=

โˆซโ„๐‘š

โˆ๐‘“โˆˆ๐น

๐‘’โˆ’๐‘“(๐’š๐‘Ž ,๐’–)๐‘ฉ(๐’š)

โˆ๐‘“โˆˆ๐ต

๐‘’โˆ’๐‘“(๐’š๐‘Ž ,๐’–)โˆฃ๐‘Žโˆฃโˆ’๐‘š d๐‘š๐’š

๐‘“ bilin.= โˆฃ๐‘Žโˆฃโˆ’๐‘š

โˆซโ„๐‘š

โˆ๐‘“โˆˆ๐น

๐‘’โˆ’๐‘“(๐’š,๐’–๐‘Ž )๐‘ฉ(๐’š)

โˆ๐‘“โˆˆ๐ต

๐‘’โˆ’๐‘“(๐’š,๐’–๐‘Ž ) d๐‘š๐’š (4.10)

= โˆฃ๐‘Žโˆฃโˆ’๐‘šโ„ฑ๐น1,๐น2(๐‘ฉ)(๐’–๐‘Ž

). โ–ก

5. Products with Invertible Factors

To obtain properties of the GFT like linearity with respect to arbitrary multi-vectors or a shift theorem we will have to change the order of multivectors andproducts of exponentials. Since the geometric product usually is neither commu-tative nor anticommutative this is not trivial. In this section we provide usefulLemmata that allow a swap if at least one of the factors is invertible. For moreinformation see [14] and [17].

Remark 5.1. Every multiple of a square root of โˆ’1, ๐‘– โˆˆ I ๐‘,๐‘ž is invertible, sincefrom ๐‘–2 = โˆ’๐‘Ÿ, ๐‘Ÿ โˆˆ โ„ โˆ– {0} follows ๐‘–โˆ’1 = โˆ’๐‘–/๐‘Ÿ. Because of that, for all ๐’–,๐’™ โˆˆ โ„๐‘š afunction ๐‘“๐‘˜(๐’™,๐’–) : โ„

๐‘š ร— โ„๐‘š โ†’ I ๐‘,๐‘ž is pointwise invertible.

Definition 5.2. For an invertible multivector ๐‘ฉ โˆˆ ๐ถโ„“๐‘,๐‘ž and an arbitrary multivec-tor ๐‘จ โˆˆ ๐ถโ„“๐‘,๐‘ž we define

๐‘จ๐’„0(๐‘ฉ) =1

2(๐‘จ+๐‘ฉโˆ’1๐‘จ๐‘ฉ),

๐‘จ๐’„1(๐‘ฉ) =1

2(๐‘จโˆ’๐‘ฉโˆ’1๐‘จ๐‘ฉ).

(5.1)

Lemma 5.3. Let ๐‘ฉ โˆˆ ๐ถโ„“๐‘,๐‘ž be invertible with the unique inverse ๐‘ฉโˆ’1 = ๏ฟฝ๏ฟฝ/๐‘ฉ2,

๐‘ฉ2 โˆˆ โ„ โˆ– {0}. Every multivector ๐‘จ โˆˆ ๐ถโ„“๐‘,๐‘ž can be expressed unambiguously by thesum of ๐‘จ๐’„0(๐‘ฉ) โˆˆ ๐ถโ„“๐‘,๐‘ž that commutes and ๐‘จ๐’„1(๐‘ฉ) โˆˆ ๐ถโ„“๐‘,๐‘ž that anticommutes withrespect to ๐‘ฉ. That means

๐‘จ = ๐‘จ๐’„0(๐‘ฉ) +๐‘จ๐’„1(๐‘ฉ),

๐‘จ๐’„0(๐‘ฉ)๐‘ฉ = ๐‘ฉ๐‘จ๐’„0(๐‘ฉ),

๐‘จ๐’„1(๐‘ฉ)๐‘ฉ = โˆ’๐‘ฉ๐‘จ๐’„1(๐‘ฉ).

(5.2)

Page 186: Quaternion and Clifford Fourier Transforms and Wavelets

8. A General Geometric Fourier Transform 163

Proof. We will only prove the assertion for ๐‘จ๐’„0(๐‘ฉ).

Existence: With Definition 5.2 we get

๐‘จ๐’„0(๐‘ฉ) +๐‘จ๐’„1(๐‘ฉ) =1

2(๐‘จ+๐‘ฉโˆ’1๐‘จ๐‘ฉ +๐‘จโˆ’๐‘ฉโˆ’1๐‘จ๐‘ฉ)

= ๐‘จ(5.3)

and considering

๐‘ฉโˆ’1๐‘จ๐‘ฉ =๏ฟฝ๏ฟฝ๐‘จ๐‘ฉ

๐‘ฉ2 = ๐‘ฉ๐‘จ๐‘ฉโˆ’1 (5.4)

we also get

๐‘จ๐’„0(๐‘ฉ)๐‘ฉ =1

2(๐‘จ+๐‘ฉโˆ’1๐‘จ๐‘ฉ)๐‘ฉ

=1

2(๐‘จ+๐‘ฉ๐‘จ๐‘ฉโˆ’1)๐‘ฉ

=1

2(๐‘จ๐‘ฉ +๐‘ฉ๐‘จ)

= ๐‘ฉ1

2(๐‘ฉโˆ’1๐‘จ๐‘ฉ +๐‘จ)

= ๐‘ฉ๐‘จ๐’„0(๐‘ฉ)

(5.5)

Uniqueness: From the first claim in (5.2) we get

๐‘จ๐’„1(๐‘ฉ) = ๐‘จโˆ’๐‘จ๐’„0(๐‘ฉ), (5.6)

together with the third one this leads to

(๐‘จโˆ’๐‘จ๐’„0(๐‘ฉ))๐‘ฉ = โˆ’๐‘ฉ(๐‘จโˆ’๐‘จ๐’„0(๐‘ฉ))

๐‘จ๐‘ฉ โˆ’๐‘จ๐’„0(๐‘ฉ)๐‘ฉ = โˆ’๐‘ฉ๐‘จ+๐‘ฉ๐‘จ๐’„0(๐‘ฉ)

๐‘จ๐‘ฉ +๐‘ฉ๐‘จ = ๐‘จ๐’„0(๐‘ฉ)๐‘ฉ +๐‘ฉ๐‘จ๐’„0(๐‘ฉ)

(5.7)

and from the second claim finally follows

๐‘จ๐‘ฉ +๐‘ฉ๐‘จ = 2๐‘ฉ๐‘จ๐’„0(๐‘ฉ)

1

2(๐‘ฉโˆ’1๐‘จ๐‘ฉ +๐‘จ) = ๐‘จ๐’„0(๐‘ฉ).

(5.8)

The derivation of the expression for ๐‘จ๐’„1(๐‘ฉ) works analogously. โ–กCorollary 5.4 (Decomposition w.r.t. commutativity). Let ๐‘ฉ โˆˆ ๐ถโ„“๐‘,๐‘ž be invertible,then โˆ€๐‘จ โˆˆ ๐ถโ„“๐‘,๐‘ž

๐‘ฉ๐‘จ = (๐‘จ๐’„0(๐‘ฉ) โˆ’๐‘จ๐’„1(๐‘ฉ))๐‘ฉ. (5.9)

Definition 5.5. For ๐‘‘ โˆˆ โ„•,๐‘จ โˆˆ ๐ถโ„“๐‘,๐‘ž, the ordered set ๐ต = {๐‘ฉ1, . . . ,๐‘ฉ๐‘‘} of invert-ible multivectors and any multi-index ๐’‹ โˆˆ {0, 1}๐‘‘ we define

๐‘จ๐’„๐’‹(โˆ’โ†’๐ต )

: = ((๐‘จ๐’„๐‘—1 (๐‘ฉ1))๐’„๐‘—2 (๐‘ฉ2) . . .)๐’„๐‘—๐‘‘ (๐‘ฉ๐‘‘),

๐‘จ๐’„๐’‹(โ†โˆ’๐ต )

: = ((๐‘จ๐’„๐‘—๐‘‘ (๐‘ฉ๐‘‘))๐’„๐‘—๐‘‘โˆ’1 (๐‘ฉ๐‘‘โˆ’1). . .)๐’„๐‘—1 (๐‘ฉ1)

(5.10)

recursively with ๐’„0, ๐’„1 as in Definition 5.2.

Page 187: Quaternion and Clifford Fourier Transforms and Wavelets

164 R. Bujack, G. Scheuermann and E. Hitzer

Example. Let ๐‘จ = ๐‘Ž0 + ๐‘Ž1๐’†1 + ๐‘Ž2๐’†2 + ๐‘Ž12๐’†12 โˆˆ ๐’ข2,0 then, for example

๐‘จ๐’„0(๐’†1) =1

2(๐‘จ+ ๐’†โˆ’1

1 ๐‘จ๐’†1)

=1

2(๐‘จ+ ๐‘Ž0 + ๐‘Ž1๐’†1 โˆ’ ๐‘Ž2๐’†2 โˆ’ ๐‘Ž12๐’†12)

= ๐‘Ž0 + ๐‘Ž1๐’†1

(5.11)

and further

๐‘จ๐’„0,0(โˆ’โˆ’โˆ’โ†’๐’†1,๐’†2) = (๐‘จ๐’„0(๐’†1))๐’„0(๐’†2)

= (๐‘Ž0 + ๐‘Ž1๐’†1)๐’„0(๐’†2) = ๐‘Ž0.(5.12)

The computation of the other multi-indices with ๐‘‘ = 2 works analogously andtherefore

๐‘จ =โˆ‘

๐’‹โˆˆ{0,1}๐‘‘๐‘จ๐’„๐’‹(๐’†1,๐’†2)

= ๐‘จ๐’„00(โˆ’โˆ’โˆ’โ†’๐’†1,๐’†2) +๐‘จ๐’„01(โˆ’โˆ’โˆ’โ†’๐’†1,๐’†2) +๐‘จ๐’„10(โˆ’โˆ’โˆ’โ†’๐’†1,๐’†2) +๐‘จ๐’„11(โˆ’โˆ’โˆ’โ†’๐’†1,๐’†2)

= ๐‘Ž0 + ๐‘Ž1๐’†1 + ๐‘Ž2๐’†2 + ๐‘Ž12๐’†12.

(5.13)

Lemma 5.6. Let ๐‘‘ โˆˆ โ„•, ๐ต = {๐‘ฉ1, . . . ,๐‘ฉ๐‘‘} be invertible multivectors and for ๐’‹ โˆˆ{0, 1}๐‘‘ let โˆฃ๐’‹โˆฃ :=โˆ‘๐‘‘

๐‘˜=1 ๐‘—๐‘˜, then โˆ€๐‘จ โˆˆ ๐ถโ„“๐‘,๐‘ž

๐‘จ =โˆ‘

๐’‹โˆˆ{0,1}๐‘‘๐‘จ

๐’„๐’‹(โˆ’โ†’๐ต )

,

๐‘จ๐‘ฉ1 . . .๐‘ฉ๐‘‘ = ๐‘ฉ1 . . .๐‘ฉ๐‘‘

โˆ‘๐’‹โˆˆ{0,1}๐‘‘

(โˆ’1)โˆฃ๐’‹โˆฃ๐‘จ๐’„๐’‹(โˆ’โ†’๐ต )

,

๐‘ฉ1 . . .๐‘ฉ๐‘‘๐‘จ =โˆ‘

๐’‹โˆˆ{0,1}๐‘‘(โˆ’1)โˆฃ๐’‹โˆฃ๐‘จ

๐’„๐’‹(โ†โˆ’๐ต )

๐‘ฉ1 . . .๐‘ฉ๐‘‘.

(5.14)

Proof. Apply Lemma 5.3 repeatedly. โ–ก

Remark 5.7. The distinction of the two directions can be omitted using the equality

๐‘จ๐’„๐’‹(โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โ†’๐‘ฉ1,...,๐‘ฉ๐‘‘)

= ๐‘จ๐’„๐’‹(โ†โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’๐‘ฉ๐‘‘,...,๐‘ฉ1)

. (5.15)

We established it for the sake of notational brevity and will not formulate norprove every assertion for both directions.

Lemma 5.8. Let ๐น = {๐‘“1(๐’™,๐’–), . . . , ๐‘“๐‘‘(๐’™,๐’–)} be a set of pointwise invertible func-tions then the ordered product of their exponentials and an arbitrary multivector๐‘จ โˆˆ ๐ถโ„“๐‘,๐‘ž satisfies

๐‘‘โˆ๐‘˜=1

๐‘’โˆ’๐‘“๐‘˜(๐’™,๐’–)๐‘จ =โˆ‘

๐’‹โˆˆ{0,1}๐‘‘๐‘จ

๐’„๐’‹(โ†โˆ’๐น )

(๐’™,๐’–)

๐‘‘โˆ๐‘˜=1

๐‘’โˆ’(โˆ’1)๐‘—๐‘˜๐‘“๐‘˜(๐’™,๐’–), (5.16)

where ๐ด๐’„๐’‹(โ†โˆ’๐น )

(๐’™,๐’–) := ๐ด๐’„๐’‹(โ†โˆ’โˆ’โˆ’โˆ’๐น (๐’™,๐’–))

is a multivector-valued function โ„๐‘š ร— โ„๐‘š โ†’๐ถโ„“๐‘,๐‘ž.

Page 188: Quaternion and Clifford Fourier Transforms and Wavelets

8. A General Geometric Fourier Transform 165

Proof. For all ๐’™,๐’– โˆˆ โ„๐‘š the commutation properties of ๐‘“๐‘˜(๐’™,๐’–) dictate the prop-erties of ๐‘’โˆ’๐‘“๐‘˜(๐’™,๐’–) by

๐‘’โˆ’๐‘“๐‘˜(๐’™,๐’–)๐‘จDef. 2.1=

โˆžโˆ‘๐‘™=0

(โˆ’๐‘“๐‘˜(๐’™,๐’–))๐‘™

๐‘™!๐‘จ

Lem. 5.3=

โˆžโˆ‘๐‘™=0

(โˆ’๐‘“๐‘˜(๐’™,๐’–))๐‘™

๐‘™!

(๐‘จ๐’„0(๐‘“๐‘˜(๐’™,๐’–)) +๐‘จ๐’„1(๐‘“๐‘˜(๐’™,๐’–))

).

(5.17)

The shape of this decomposition of ๐‘จ may depend on ๐’™ and ๐’–. To stress this factwe will interpret ๐‘จ๐’„0(๐‘“๐‘˜(๐’™,๐’–)) as a multivector function and write ๐‘จ๐’„0(๐‘“๐‘˜)(๐’™,๐’–).According to Lemma 5.3 we can move ๐‘จ๐’„0(๐‘“๐‘˜)(๐’™,๐’–) through all factors, because itcommutes. Analogously swapping ๐‘จ๐’„1(๐‘“๐‘˜)(๐’™,๐’–) will change the sign of each factorbecause it anticommutes. Hence we get

= ๐‘จ๐’„0(๐‘“๐‘˜)(๐’™,๐’–)

โˆžโˆ‘๐‘™=0

(โˆ’๐‘“๐‘˜(๐’™,๐’–))๐‘™

๐‘™!+๐‘จ๐’„1(๐‘“๐‘˜)(๐’™,๐’–)

โˆžโˆ‘๐‘™=0

(๐‘“๐‘˜(๐’™,๐’–))๐‘™

๐‘™!

= ๐‘จ๐’„0(๐‘“๐‘˜)(๐’™,๐’–)๐‘’โˆ’๐‘“๐‘˜(๐’™,๐’–) +๐‘จ๐’„1(๐‘“๐‘˜)(๐’™,๐’–)๐‘’

๐‘“๐‘˜(๐’™,๐’–).

(5.18)

Applying this repeatedly to the product we can deduce

๐‘‘โˆ๐‘˜=1

๐‘’โˆ’๐‘“๐‘˜(๐’™,๐’–)๐‘จ =

๐‘‘โˆ’1โˆ๐‘˜=1

๐‘’โˆ’๐‘“๐‘˜(๐’™,๐’–)

(๐‘จ๐’„0(๐‘“๐‘‘)(๐’™,๐’–)๐‘’

โˆ’๐‘“๐‘‘(๐’™,๐’–)

+๐‘จ๐’„1(๐‘“๐‘‘)(๐’™,๐’–)๐‘’๐‘“๐‘‘(๐’™,๐’–)

)

=

๐‘‘โˆ’2โˆ๐‘˜=1

๐‘’โˆ’๐‘“๐‘˜(๐’™,๐’–)

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ๐‘จ

๐’„0,0(โ†โˆ’โˆ’โˆ’โˆ’โˆ’๐‘“๐‘‘โˆ’1,๐‘“๐‘‘)

(๐’™,๐’–)๐‘’โˆ’๐‘“๐‘‘โˆ’1(๐’™,๐’–)๐‘’โˆ’๐‘“๐‘‘(๐’™,๐’–)

+๐‘จ๐’„1,0(

โ†โˆ’โˆ’โˆ’โˆ’โˆ’๐‘“๐‘‘โˆ’1,๐‘“๐‘‘)

(๐’™,๐’–)๐‘’๐‘“๐‘‘โˆ’1(๐’™,๐’–)๐‘’โˆ’๐‘“๐‘‘(๐’™,๐’–)

+๐‘จ๐’„0,1(

โ†โˆ’โˆ’โˆ’โˆ’โˆ’๐‘“๐‘‘โˆ’1,๐‘“๐‘‘)

(๐’™,๐’–)๐‘’โˆ’๐‘“๐‘‘โˆ’1(๐’™,๐’–)๐‘’๐‘“๐‘‘(๐’™,๐’–)

+๐‘จ๐’„1,1(

โ†โˆ’โˆ’โˆ’โˆ’โˆ’๐‘“๐‘‘โˆ’1,๐‘“๐‘‘)

(๐’™,๐’–)๐‘’๐‘“๐‘‘โˆ’1(๐’™,๐’–)๐‘’๐‘“๐‘‘(๐’™,๐’–)

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ ...

...... (5.19)

=โˆ‘

๐’‹โˆˆ{0,1}๐‘‘๐‘จ

๐’„๐’‹(โ†โˆ’๐น )

(๐’™,๐’–)๐‘‘โˆ

๐‘˜=1

๐‘’โˆ’(โˆ’1)๐‘—๐‘˜๐‘“๐‘˜(๐’™,๐’–). โ–ก

6. Separable GFT

From now on we want to restrict ourselves to an important group of geometricFourier transforms whose square roots of โˆ’1 are independent from the first argu-ment.

Definition 6.1. We call a GFT left (right) separable, if

๐‘“๐‘™ = โˆฃ๐‘“๐‘™ (๐’™,๐’–)โˆฃ ๐‘–๐‘™(๐’–), (6.1)

โˆ€๐‘™ = 1, . . . , ๐œ‡, (๐‘™ = ๐œ‡+1, . . . , ๐œˆ), where โˆฃ๐‘“๐‘™(๐’™,๐’–)โˆฃ : โ„๐‘šร—โ„๐‘š โ†’ โ„ is a real functionand ๐‘–๐‘™ : โ„

๐‘š โ†’ I ๐‘,๐‘ž a function that does not depend on ๐’™.

Page 189: Quaternion and Clifford Fourier Transforms and Wavelets

166 R. Bujack, G. Scheuermann and E. Hitzer

Example. The first five transforms from the introductory example are separable,while the cylindrical transform (vi) can not be expressed as in (6.1) except for thetwo-dimensional case.

We have seen in the proof of Lemma 5.8 that the decomposition of a con-stant multivector ๐‘จ with respect to a product of exponentials generally resultsin multivector-valued functions ๐‘จ๐’„๐’‹(๐น )(๐’™,๐’–) of ๐’™ and ๐’–. Separability guaranteesindependence from ๐’™ and therefore allows separation from the integral.

Corollary 6.2 (Decomposition independent from ๐’™). Consider a set of functions๐น = {๐‘“1(๐’™,๐’–), . . . , ๐‘“๐‘‘(๐’™,๐’–)} satisfying condition (6.1) then the ordered product oftheir exponentials and an arbitrary multivector ๐‘จ โˆˆ ๐ถโ„“๐‘,๐‘ž satisfies

๐‘‘โˆ๐‘˜=1

๐‘’โˆ’๐‘“๐‘˜(๐’™,๐’–)๐‘จ =โˆ‘

๐’‹โˆˆ{0,1}๐‘‘๐‘จ

๐’„๐’‹(โ†โˆ’๐น )

(๐’–)

๐‘‘โˆ๐‘˜=1

๐‘’โˆ’(โˆ’1)๐‘—๐‘˜๐‘“๐‘˜(๐’™,๐’–). (6.2)

Remark 6.3. If a GFT can be expressed as in 6.1 but with multiples of squareroots of โˆ’1, ๐‘–๐‘˜ โˆˆ I ๐‘,๐‘ž, which are independent from ๐’™ and ๐’–, the parts ๐‘จ

๐’„๐’‹(โ†โˆ’๐น )

of ๐‘จ will be constants. Note that the first five GFTs from the reference examplesatisfy this stronger condition, too.

Definition 6.4. For a set of functions ๐น = {๐‘“1(๐’™,๐’–), . . . , ๐‘“๐‘‘(๐’™,๐’–)} and a multi-index ๐’‹ โˆˆ {0, 1}๐‘‘, we define the set of functions ๐น (๐’‹) by

๐น (๐’‹) :={(โˆ’1)๐‘—1๐‘“1(๐’™,๐’–), . . . , (โˆ’1)๐‘—๐‘‘๐‘“๐‘‘(๐’™,๐’–)

}. (6.3)

Theorem 6.5 (Left and right products). Let ๐‘ช โˆˆ ๐ถโ„“๐‘,๐‘ž and ๐‘จ,๐‘ฉ : โ„๐‘š โ†’ ๐ถโ„“๐‘,๐‘ž betwo multivector fields with ๐‘จ(๐’™) = ๐‘ช๐‘ฉ(๐’™) then a left separable geometric Fouriertransform obeys

โ„ฑ๐น1,๐น2(๐‘จ)(๐’–) =โˆ‘

๐’‹โˆˆ{0,1}๐œ‡๐‘ช

๐’„๐’‹(โ†โˆ’๐น1)

(๐’–)โ„ฑ๐น1(๐’‹),๐น2(๐‘ฉ)(๐’–). (6.4)

If ๐‘จ(๐’™) = ๐‘ฉ(๐’™)๐‘ช we analogously get

โ„ฑ๐น1,๐น2(๐‘จ)(๐’–) =โˆ‘

๐’Œโˆˆ{0,1}(๐œˆโˆ’๐œ‡)

โ„ฑ๐น1,๐น2(๐’Œ)(๐‘ฉ)(๐’–)๐‘ช๐’„๐’Œ(โˆ’โ†’๐น2)

(๐’–)(6.5)

for a right separable GFT.

Proof. We restrict ourselves to the proof of the first assertion.

โ„ฑ๐น1,๐น2(๐‘จ)(๐’–) =

โˆซโ„๐‘š

โˆ๐‘“โˆˆ๐น1

๐‘’โˆ’๐‘“(๐’™,๐’–)๐‘ช๐‘ฉ(๐’™)โˆ๐‘“โˆˆ๐น2

๐‘’โˆ’๐‘“(๐’™,๐’–) d๐‘š๐’™

Lem. 5.8=

โˆซโ„๐‘š

โŽ›โŽ โˆ‘๐’‹โˆˆ{0,1}๐œ‡

๐‘ช๐’„๐’‹(โ†โˆ’๐น1)

(๐’–)

๐œ‡โˆ๐‘™=1

๐‘’โˆ’(โˆ’1)๐‘—๐‘™๐‘“๐‘™(๐’™,๐’–)

โŽžโŽ ๐‘ฉ(๐’™)

โˆ๐‘“โˆˆ๐น2

๐‘’โˆ’๐‘“(๐’™,๐’–) d๐‘š๐’™

Page 190: Quaternion and Clifford Fourier Transforms and Wavelets

8. A General Geometric Fourier Transform 167

=โˆ‘

๐’‹โˆˆ{0,1}๐œ‡๐‘ช

๐’„๐’‹(โ†โˆ’๐น1)

(๐’–)

โˆซโ„๐‘š

๐œ‡โˆ๐‘™=1

๐‘’โˆ’(โˆ’1)๐‘—๐‘™๐‘“๐‘™(๐’™,๐’–)

๐‘ฉ(๐’™)โˆ๐‘“โˆˆ๐น2

๐‘’โˆ’๐‘“(๐’™,๐’–) d๐‘š๐’™

=โˆ‘

๐’‹โˆˆ{0,1}๐œ‡๐‘ช

๐’„๐’‹(โ†โˆ’๐น1)

(๐’–)โ„ฑ๐น1(๐’‹),๐น2(๐‘ฉ)(๐’–).

The second one follows in the same way. โ–ก

Corollary 6.6 (Uniform constants). Let the claims from Theorem 6.5 hold. If theconstant ๐‘ช satisfies ๐‘ช = ๐‘ช

๐’„๐’‹(โ†โˆ’๐น1)

(๐’–) for a multi-index ๐’‹ โˆˆ {0, 1}๐œ‡ then the theorem

simplifies to

โ„ฑ๐น1,๐น2(๐‘จ)(๐’–) = ๐‘ชโ„ฑ๐น1(๐’‹),๐น2(๐‘ฉ)(๐’–) (6.6)

for ๐‘จ(๐’™) = ๐‘ช๐‘ฉ(๐’™) respectively

โ„ฑ๐น1,๐น2(๐‘จ)(๐’–) = โ„ฑ๐น1,๐น2(๐’Œ)(๐‘ฉ)(๐’–)๐‘ช (6.7)

for ๐‘จ(๐’™) = ๐‘ฉ(๐’™)๐‘ช and ๐‘ช = ๐‘ช๐’„๐’Œ(โˆ’โ†’๐น2)

(๐’–) for a multi-index ๐’Œ โˆˆ {0, 1}(๐œˆโˆ’๐œ‡).2

Corollary 6.7 (Left and right linearity). The geometric Fourier transform is left(respectively right) linear if ๐น1 (respectively ๐น2) consists only of functions ๐‘“๐‘˜ withvalues in the center of ๐ถโ„“๐‘,๐‘ž, that means โˆ€๐’™,๐’– โˆˆ โ„๐‘š, โˆ€๐‘จ โˆˆ ๐ถโ„“๐‘,๐‘ž : ๐‘จ๐‘“๐‘˜(๐’™,๐’–) =๐‘“๐‘˜(๐’™,๐’–)๐‘จ.

Remark 6.8. Note that for empty sets ๐น1 (or ๐น2) necessarily all elements satisfycommutativity and therefore the condition in Corollary 6.7.

The different appearances of Theorem 6.5 are summarized in Table 1 andTable 2.

We have seen how to change the order of a multivector and a product ofexponentials in the previous section. To get a shift theorem we will have to separatesums appearing in the exponent and sort the resulting exponentials with respect tothe summands. Note that Corollary 6.2 can be applied in two ways here, becauseexponentials appear on both sides.

Not every factor will need to be swapped with every other. So, to keep thingsshort, we will make use of the notation ๐’„(๐ฝ)๐‘™(๐‘“1, . . . , ๐‘“๐‘™, 0, . . . , 0) for ๐‘™ โˆˆ {1, . . . , ๐‘‘}instead of distinguishing between differently sized multi-indices for every ๐‘™ thatappears. The zeros at the end substitutionally indicate real numbers. They com-mute with every multivector. That implies, that for the last ๐‘‘โˆ’ ๐‘™ factors no swapand therefore no separation needs to be made. It would also be possible to use thenotation ๐’„(๐ฝ)๐‘™(๐‘“1, . . . , ๐‘“๐‘™โˆ’1, 0, . . . , 0) for ๐‘™ โˆˆ {1, . . . , ๐‘‘}, because every function com-mutes with itself. The choice we have made means that no exceptional treatment

2Corollary 6.6 follows directly from (๐‘ช๐’„๐’‹(

โ†โˆ’๐น1)

)๐’„๐’Œ(

โ†โˆ’๐น1)

= 0 for all ๐’Œ โˆ•= ๐’‹ because no non-zero

component of ๐‘ช can commute and anticommute with respect to a function in ๐น1.

Page 191: Quaternion and Clifford Fourier Transforms and Wavelets

168 R. Bujack, G. Scheuermann and E. Hitzer

Table 1. Theorem 6.5 (Left products) applied to the GFTs of the firstexample enumerated in the same order.Notations: on the LHS โ„ฑ๐น1,๐น2 = โ„ฑ๐น1,๐น2(๐‘จ)(๐’–), on the RHS โ„ฑ๐น โ€ฒ

1,๐นโ€ฒ2=

โ„ฑ๐น โ€ฒ1,๐น

โ€ฒ2(๐‘ฉ)(๐’–)

GFT ๐‘จ(๐’™) = ๐‘ช๐‘ฉ(๐’™)

1. Clifford โ„ฑ๐‘“1 = ๐‘ชโ„ฑ๐‘“1

2. Bulow โ„ฑ๐‘“1,...,๐‘“๐‘› = ๐‘ชโ„ฑ๐‘“1,...,๐‘“๐‘›

3. Quaternionic โ„ฑ๐‘“1,๐‘“2 = ๐‘ช๐’„0(๐‘–)โ„ฑ๐‘“1,๐‘“2 +๐‘ช๐’„1(๐‘–)โ„ฑโˆ’๐‘“1,๐‘“24. Spacetime โ„ฑ๐‘“1,๐‘“2 = ๐‘ช๐’„0(๐’†4)โ„ฑ๐‘“1,๐‘“2 +๐‘ช๐’„1(๐’†4)โ„ฑโˆ’๐‘“1,๐‘“25. Colour Image โ„ฑ๐‘“1,๐‘“2,๐‘“3,๐‘“4 = ๐‘ช

๐’„00(โ†โˆ’โˆ’โˆ’๐‘ฉ,๐‘–๐‘ฉ)

โ„ฑ๐‘“1,๐‘“2,๐‘“3,๐‘“4

+๐‘ช๐’„10(

โ†โˆ’โˆ’โˆ’๐‘ฉ,๐‘–๐‘ฉ)

โ„ฑโˆ’๐‘“1,๐‘“2,๐‘“3,๐‘“4+๐‘ช

๐’„01(โ†โˆ’โˆ’โˆ’๐‘ฉ,๐‘–๐‘ฉ)

โ„ฑ๐‘“1,โˆ’๐‘“2,๐‘“3,๐‘“4

+๐‘ช๐’„11(

โ†โˆ’โˆ’โˆ’๐‘ฉ,๐‘–๐‘ฉ)

โ„ฑโˆ’๐‘“1,โˆ’๐‘“2,๐‘“3,๐‘“46. Cylindrical ๐‘› = 2 โ„ฑ๐‘“1 = ๐‘ช๐’„0(๐’†12)โ„ฑ๐‘“1 +๐‘ช๐’„1(๐’†12)โ„ฑโˆ’๐‘“1

Cylindrical ๐‘› โˆ•= 2 -

of ๐‘“1 is necessary. But please note that the multivectors (๐ฝ)๐‘™ indicating the com-mutative and anticommutative parts will all have zeros from ๐‘™ to ๐‘‘ and thereforeform a strictly triangular matrix.

Lemma 6.9. Let a set of functions ๐น = {๐‘“1(๐’™,๐’–), . . . , ๐‘“๐‘‘(๐’™,๐’–)} fulfil (6.1) and belinear with respect to ๐’™. Further let ๐ฝ โˆˆ {0, 1}๐‘‘ร—๐‘‘ be a strictly lower triangularmatrix, that is associated column by column with a multi-index ๐’‹ โˆˆ {0, 1}๐‘‘ by โˆ€๐‘˜ =

1, . . . , ๐‘‘ : (โˆ‘๐‘‘

๐‘™=1 ๐ฝ๐‘™,๐‘˜) mod 2 = ๐‘—๐‘˜, with (๐ฝ)๐‘™ being its ๐‘™th row, then

๐‘‘โˆ๐‘™=1

๐‘’โˆ’๐‘“๐‘™(๐’™+๐’š,๐’–) =โˆ‘

๐’‹โˆˆ{0,1}๐‘‘

โˆ‘๐ฝโˆˆ{0,1}๐‘‘ร—๐‘‘,โˆ‘

๐‘‘๐‘™=1(๐ฝ)๐‘™ mod 2=๐’‹

๐‘‘โˆ๐‘™=1

๐‘’โˆ’๐‘“๐‘™(๐’™,๐’–)

๐’„(๐ฝ)๐‘™ (โ†โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’๐‘“1,...,๐‘“๐‘™,0,...,0)

๐‘‘โˆ๐‘™=1

๐‘’โˆ’(โˆ’1)๐‘—๐‘™๐‘“๐‘™(๐’š,๐’–)

(6.8)or alternatively with strictly upper triangular matrices ๐ฝ :

๐‘‘โˆ๐‘™=1

๐‘’โˆ’๐‘“๐‘™(๐’™+๐’š,๐’–) =โˆ‘

๐’‹โˆˆ{0,1}๐‘‘

โˆ‘๐ฝโˆˆ{0,1}๐‘‘ร—๐‘‘,โˆ‘๐‘‘

๐‘™=1(๐ฝ)๐‘™ mod 2=๐’‹

๐‘‘โˆ๐‘™=1

๐‘’โˆ’(โˆ’1)๐‘—๐‘™๐‘“๐‘™(๐’™,๐’–)๐‘‘โˆ

๐‘™=1

๐‘’โˆ’๐‘“๐‘™(๐’š,๐’–)

๐’„(๐ฝ)๐‘™ (โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โ†’0,...,0,๐‘“๐‘™,...,๐‘“๐‘‘)

.

(6.9)

We do not explicitly indicate the dependence of the partition on ๐’– as in Corol-lary 6.2, because the functions in the exponents already contain this dependence.Please note that the decomposition is pointwise.

Page 192: Quaternion and Clifford Fourier Transforms and Wavelets

8. A General Geometric Fourier Transform 169

Table 2. Theorem 6.5 (Right products) applied to the GFTs of thefirst example, enumerated in the same order.Notations: on the LHS โ„ฑ๐น1,๐น2 = โ„ฑ๐น1,๐น2(๐‘จ)(๐’–), on the RHS โ„ฑ๐น โ€ฒ

1,๐นโ€ฒ2=

โ„ฑ๐น โ€ฒ1,๐น

โ€ฒ2(๐‘ฉ)(๐’–)

GFT ๐‘จ(๐’™) = ๐‘ฉ(๐’™)๐‘ช

1. Clif. ๐‘› = 2 (mod 4) โ„ฑ๐‘“1 = โ„ฑ๐‘“1๐‘ช๐’„0(๐‘–) + โ„ฑโˆ’๐‘“1๐‘ช๐’„1(๐‘–)

Clif. ๐‘› = 3 (mod 4) โ„ฑ๐‘“1 = โ„ฑ๐‘“1๐‘ช

2. Bulow โ„ฑ๐‘“1,...,๐‘“๐‘›

=โˆ‘

๐’Œโˆˆ{0,1}๐‘› โ„ฑ(โˆ’1)๐‘˜1๐‘“1,...,(โˆ’1)๐‘˜๐‘›๐‘“๐‘›๐‘ช๐’„๐’Œ(โˆ’โˆ’โˆ’โˆ’โˆ’โ†’๐‘“1,...,๐‘“๐‘›)

3. Quaternionic โ„ฑ๐‘“1,๐‘“2 = โ„ฑ๐‘“1,๐‘“2๐‘ช๐’„0(๐‘—) + โ„ฑ๐‘“1,โˆ’๐‘“2๐‘ช๐’„1(๐‘—)

4. Spacetime โ„ฑ๐‘“1,๐‘“2 = โ„ฑ๐‘“1,๐‘“2๐‘ช๐’„0(๐’†4๐‘–4) + โ„ฑ๐‘“1,โˆ’๐‘“2๐‘ช๐’„1(๐’†4๐‘–4)

5. Colour Image โ„ฑ๐‘“1,๐‘“2,๐‘“3,๐‘“4 = โ„ฑ๐‘“1,๐‘“2,๐‘“3,๐‘“4๐‘ช๐’„00(โˆ’โˆ’โˆ’โ†’๐‘ฉ,๐‘–๐‘ฉ)

+โ„ฑ๐‘“1,๐‘“2,โˆ’๐‘“3,๐‘“4๐‘ช๐’„10(โˆ’โˆ’โˆ’โ†’๐‘ฉ,๐‘–๐‘ฉ)

+โ„ฑ๐‘“1,๐‘“2,๐‘“3,โˆ’๐‘“4๐‘ช๐’„01(โˆ’โˆ’โˆ’โ†’๐‘ฉ,๐‘–๐‘ฉ)

+โ„ฑ๐‘“1,๐‘“2,โˆ’๐‘“3,โˆ’๐‘“4๐‘ช๐’„11(โˆ’โˆ’โˆ’โ†’๐‘ฉ,๐‘–๐‘ฉ)

6. Cylindrical โ„ฑ๐‘“1 = โ„ฑ๐‘“1๐‘ช

Proof. We will only prove the first assertion. The second one follows analogouslyby applying Corollary 6.2 the other way around.

๐‘‘โˆ๐‘™=1

๐‘’โˆ’๐‘“๐‘™(๐’™+๐’š,๐’–) ๐น lin.=

๐‘‘โˆ๐‘™=1

๐‘’โˆ’๐‘“๐‘™(๐’™,๐’–)โˆ’๐‘“๐‘™(๐’š,๐’–) (6.10)

Lem. 2.2=

๐‘‘โˆ๐‘™=1

๐‘’โˆ’๐‘“๐‘™(๐’™,๐’–)๐‘’โˆ’๐‘“๐‘™(๐’š,๐’–) (6.11)

= ๐‘’โˆ’๐‘“1(๐’™,๐’–)๐‘’โˆ’๐‘“1(๐’š,๐’–)๐‘‘โˆ

๐‘™=2

๐‘’โˆ’๐‘“๐‘™(๐’™,๐’–)๐‘’โˆ’๐‘“๐‘™(๐’š,๐’–) (6.12)

Cor. 6.2= ๐‘’โˆ’๐‘“1(๐’™,๐’–)(๐‘’

โˆ’๐‘“2(๐’™,๐’–)๐’„0(๐‘“1)

๐‘’โˆ’๐‘“1(๐’š,๐’–)๐‘’โˆ’๐‘“2(๐’š,๐’–)

+ ๐‘’โˆ’๐‘“2(๐’™,๐’–)๐’„1(๐‘“1)

๐‘’๐‘“1(๐’š,๐’–)๐‘’โˆ’๐‘“2(๐’š,๐’–))

๐‘‘โˆ๐‘™=3

๐‘’โˆ’๐‘“๐‘™(๐’™,๐’–)๐‘’โˆ’๐‘“๐‘™(๐’š,๐’–). (6.13)

Now we use Corollary 6.2 to step by step rearrange the order of the product.

Cor. 6.2= ๐‘’โˆ’๐‘“1(๐’™,๐’–)

(๐‘’โˆ’๐‘“2(๐’™,๐’–)๐’„0(๐‘“1)

๐‘’โˆ’๐‘“3(๐’™,๐’–)

๐’„00(โ†โˆ’โˆ’โˆ’๐‘“1,๐‘“2)

๐‘’โˆ’๐‘“1(๐’š,๐’–)๐‘’โˆ’๐‘“2(๐’š,๐’–)๐‘’โˆ’๐‘“3(๐’š,๐’–)

Page 193: Quaternion and Clifford Fourier Transforms and Wavelets

170 R. Bujack, G. Scheuermann and E. Hitzer

+ ๐‘’โˆ’๐‘“2(๐’™,๐’–)๐’„0(๐‘“1)

๐‘’โˆ’๐‘“3(๐’™,๐’–)

๐’„01(โ†โˆ’โˆ’โˆ’๐‘“1,๐‘“2)

๐‘’โˆ’๐‘“1(๐’š,๐’–)๐‘’๐‘“2(๐’š,๐’–)๐‘’โˆ’๐‘“3(๐’š,๐’–)

+ ๐‘’โˆ’๐‘“2(๐’™,๐’–)๐’„0(๐‘“1)

๐‘’โˆ’๐‘“3(๐’™,๐’–)

๐’„10(โ†โˆ’โˆ’โˆ’๐‘“1,๐‘“2)

๐‘’๐‘“1(๐’š,๐’–)๐‘’โˆ’๐‘“2(๐’š,๐’–)๐‘’โˆ’๐‘“3(๐’š,๐’–)

+ ๐‘’โˆ’๐‘“2(๐’™,๐’–)๐’„0(๐‘“1)

๐‘’โˆ’๐‘“3(๐’™,๐’–)

๐’„11(โ†โˆ’โˆ’โˆ’๐‘“1,๐‘“2)

๐‘’๐‘“1(๐’š,๐’–)๐‘’๐‘“2(๐’š,๐’–)๐‘’โˆ’๐‘“3(๐’š,๐’–)

+ ๐‘’โˆ’๐‘“2(๐’™,๐’–)๐’„1(๐‘“1)

๐‘’โˆ’๐‘“3(๐’™,๐’–)

๐’„00(โ†โˆ’โˆ’โˆ’๐‘“1,๐‘“2)

๐‘’๐‘“1(๐’š,๐’–)๐‘’โˆ’๐‘“2(๐’š,๐’–)๐‘’โˆ’๐‘“3(๐’š,๐’–)

+ ๐‘’โˆ’๐‘“2(๐’™,๐’–)๐’„1(๐‘“1)

๐‘’โˆ’๐‘“3(๐’™,๐’–)

๐’„01(โ†โˆ’โˆ’โˆ’๐‘“1,๐‘“2)

๐‘’๐‘“1(๐’š,๐’–)๐‘’๐‘“2(๐’š,๐’–)๐‘’โˆ’๐‘“3(๐’š,๐’–)

+ ๐‘’โˆ’๐‘“2(๐’™,๐’–)๐’„1(๐‘“1)

๐‘’โˆ’๐‘“3(๐’™,๐’–)

๐’„10(โ†โˆ’โˆ’โˆ’๐‘“1,๐‘“2)

๐‘’โˆ’๐‘“1(๐’š,๐’–)๐‘’โˆ’๐‘“2(๐’š,๐’–)๐‘’โˆ’๐‘“3(๐’š,๐’–)

+ ๐‘’โˆ’๐‘“2(๐’™,๐’–)๐’„1(๐‘“1)

๐‘’โˆ’๐‘“3(๐’™,๐’–)

๐’„11(โ†โˆ’โˆ’โˆ’๐‘“1,๐‘“2)

๐‘’โˆ’๐‘“1(๐’š,๐’–)๐‘’๐‘“2(๐’š,๐’–)๐‘’โˆ’๐‘“3(๐’š,๐’–)

)๐‘‘โˆ

๐‘™=4

๐‘’โˆ’๐‘“๐‘™(๐’™,๐’–)๐‘’โˆ’๐‘“๐‘™(๐’š,๐’–). (6.14)

There are only 2๐›ฟ ways of distributing the signs of ๐›ฟ exponents, so some of thesummands can be combined.

= ๐‘’โˆ’๐‘“1(๐’™,๐’–)

((๐‘’โˆ’๐‘“2(๐’™,๐’–)๐’„0(๐‘“1)

๐‘’โˆ’๐‘“3(๐’™,๐’–)

๐’„00(โ†โˆ’โˆ’โˆ’๐‘“1,๐‘“2)

+ ๐‘’โˆ’๐‘“2(๐’™,๐’–)๐’„1(๐‘“1)

๐‘’โˆ’๐‘“3(๐’™,๐’–)

๐’„10(โ†โˆ’โˆ’โˆ’๐‘“1,๐‘“2)

)๐‘’โˆ’๐‘“1(๐’š,๐’–)๐‘’โˆ’๐‘“2(๐’š,๐’–)๐‘’โˆ’๐‘“3(๐’š,๐’–)

+(๐‘’โˆ’๐‘“2(๐’™,๐’–)๐’„0(๐‘“1)

๐‘’โˆ’๐‘“3(๐’™,๐’–)

๐’„01(โ†โˆ’โˆ’โˆ’๐‘“1,๐‘“2)

+ ๐‘’โˆ’๐‘“2(๐’™,๐’–)๐’„1(๐‘“1)

๐‘’โˆ’๐‘“3(๐’™,๐’–)

๐’„11(โ†โˆ’โˆ’โˆ’๐‘“1,๐‘“2)

)๐‘’โˆ’๐‘“1(๐’š,๐’–)๐‘’๐‘“2(๐’š,๐’–)๐‘’โˆ’๐‘“3(๐’š,๐’–)

+(๐‘’โˆ’๐‘“2(๐’™,๐’–)๐’„0(๐‘“1)

๐‘’โˆ’๐‘“3(๐’™,๐’–)

๐’„10(โ†โˆ’โˆ’โˆ’๐‘“1,๐‘“2)

+ ๐‘’โˆ’๐‘“2(๐’™,๐’–)๐’„1(๐‘“1)

๐‘’โˆ’๐‘“3(๐’™,๐’–)

๐’„00(โ†โˆ’โˆ’โˆ’๐‘“1,๐‘“2)

)๐‘’๐‘“1(๐’š,๐’–)๐‘’โˆ’๐‘“2(๐’š,๐’–)๐‘’โˆ’๐‘“3(๐’š,๐’–)

+(๐‘’โˆ’๐‘“2(๐’™,๐’–)๐’„0(๐‘“1)

๐‘’โˆ’๐‘“3(๐’™,๐’–)

๐’„11(โ†โˆ’โˆ’โˆ’๐‘“1,๐‘“2)

+ ๐‘’โˆ’๐‘“2(๐’™,๐’–)๐’„1(๐‘“1)

๐‘’โˆ’๐‘“3(๐’™,๐’–)

๐’„01(โ†โˆ’โˆ’โˆ’๐‘“1,๐‘“2)

)๐‘’๐‘“1(๐’š,๐’–)

๐‘’๐‘“2(๐’š,๐’–)๐‘’โˆ’๐‘“3(๐’š,๐’–)

) ๐‘‘โˆ๐‘™=4

๐‘’โˆ’๐‘“๐‘™(๐’™,๐’–)๐‘’โˆ’๐‘“๐‘™(๐’š,๐’–). (6.15)

To get a compact notation we expand all multi-indices by adding zeros untilthey have the same length. Note that the last non-zero argument in terms like

๐’„000(โ†โˆ’โˆ’โˆ’โˆ’๐‘“1, 0, 0) always coincides with the exponent of the corresponding factor. Be-

cause of that it will always commute and could also be replaced by a zero.

= ๐‘’โˆ’๐‘“1(๐’™,๐’–)

๐’„000(โ†โˆ’โˆ’โˆ’๐‘“1,0,0)((

๐‘’โˆ’๐‘“2(๐’™,๐’–)

๐’„000(โ†โˆ’โˆ’โˆ’โˆ’๐‘“1,๐‘“2,0)

๐‘’โˆ’๐‘“3(๐’™,๐’–)

๐’„000(โ†โˆ’โˆ’โˆ’โˆ’โˆ’๐‘“1,๐‘“2,๐‘“3)

+ ๐‘’โˆ’๐‘“2(๐’™,๐’–)

๐’„100(โ†โˆ’โˆ’โˆ’โˆ’๐‘“1,๐‘“2,0)

๐‘’โˆ’๐‘“3(๐’™,๐’–)

๐’„100(โ†โˆ’โˆ’โˆ’โˆ’โˆ’๐‘“1,๐‘“2,๐‘“3)

)๐‘’โˆ’๐‘“1(๐’š,๐’–)๐‘’โˆ’๐‘“2(๐’š,๐’–)๐‘’โˆ’๐‘“3(๐’š,๐’–)

Page 194: Quaternion and Clifford Fourier Transforms and Wavelets

8. A General Geometric Fourier Transform 171

+(๐‘’โˆ’๐‘“2(๐’™,๐’–)

๐’„000(โ†โˆ’โˆ’โˆ’โˆ’๐‘“1,๐‘“2,0)

๐‘’โˆ’๐‘“3(๐’™,๐’–)

๐’„010(โ†โˆ’โˆ’โˆ’โˆ’โˆ’๐‘“1,๐‘“2,๐‘“3)

+ ๐‘’โˆ’๐‘“2(๐’™,๐’–)

๐’„100(โ†โˆ’โˆ’โˆ’โˆ’๐‘“1,๐‘“2,0)

๐‘’โˆ’๐‘“3(๐’™,๐’–)

๐’„110(โ†โˆ’โˆ’โˆ’โˆ’โˆ’๐‘“1,๐‘“2,๐‘“3)

)๐‘’โˆ’๐‘“1(๐’š,๐’–)๐‘’๐‘“2(๐’š,๐’–)๐‘’โˆ’๐‘“3(๐’š,๐’–)

+(๐‘’โˆ’๐‘“2(๐’™,๐’–)

๐’„000(โ†โˆ’โˆ’โˆ’โˆ’๐‘“1,๐‘“2,0)

๐‘’โˆ’๐‘“3(๐’™,๐’–)

๐’„100(โ†โˆ’โˆ’โˆ’โˆ’โˆ’๐‘“1,๐‘“2,๐‘“3)

+ ๐‘’โˆ’๐‘“2(๐’™,๐’–)

๐’„100(โ†โˆ’โˆ’โˆ’โˆ’๐‘“1,๐‘“2,0)

๐‘’โˆ’๐‘“3(๐’™,๐’–)

๐’„000(โ†โˆ’โˆ’โˆ’โˆ’โˆ’๐‘“1,๐‘“2,๐‘“3)

)๐‘’๐‘“1(๐’š,๐’–)๐‘’โˆ’๐‘“2(๐’š,๐’–)๐‘’โˆ’๐‘“3(๐’š,๐’–)

+(๐‘’โˆ’๐‘“2(๐’™,๐’–)

๐’„000(โ†โˆ’โˆ’โˆ’โˆ’๐‘“1,๐‘“2,0)

๐‘’โˆ’๐‘“3(๐’™,๐’–)

๐’„110(โ†โˆ’โˆ’โˆ’โˆ’โˆ’๐‘“1,๐‘“2,๐‘“3)

+ ๐‘’โˆ’๐‘“2(๐’™,๐’–)

๐’„100(โ†โˆ’โˆ’โˆ’โˆ’๐‘“1,๐‘“2,0)

๐‘’๐‘“3(๐’™,๐’–)

๐’„010(โ†โˆ’โˆ’โˆ’โˆ’โˆ’๐‘“1,๐‘“2,๐‘“3)

)๐‘’๐‘“1(๐’š,๐’–)๐‘’๐‘“2(๐’š,๐’–)๐‘’โˆ’๐‘“3(๐’š,๐’–)

) ๐‘‘โˆ๐‘™=4

๐‘’โˆ’๐‘“๐‘™(๐’™,๐’–)๐‘’โˆ’๐‘“๐‘™(๐’š,๐’–) (6.16)

For ๐›ฟ = 3 we look at all strictly lower triangular matrices ๐ฝ โˆˆ {0, 1}๐›ฟร—๐›ฟ with theproperty

โˆ€๐‘˜ = 1, . . . , ๐›ฟ :

(๐›ฟโˆ‘

๐‘™=1

(๐ฝ)๐‘™,๐‘˜

)mod 2 = ๐‘—๐‘˜. (6.17)

That means the ๐‘™th row (๐ฝ)๐‘™ of ๐ฝ contains a multi-index (๐ฝ)๐‘™ โˆˆ {0, 1}๐›ฟ, with thelast ๐›ฟ โˆ’ ๐‘™ โˆ’ 1 entries being zero and the ๐‘˜th column sum being even when ๐‘—๐‘˜ = 0and odd when ๐‘—๐‘˜ = 1. For example, the first multi-index is ๐’‹ = (0, 0, 0). There areonly two different strictly lower triangular matrices that have columns summingup to even numbers:

๐ฝ =

โŽ›โŽ0 0 00 0 00 0 0

โŽžโŽ  and ๐ฝ =

โŽ›โŽ0 0 01 0 01 0 0

โŽžโŽ  . (6.18)

The first row of each contains the multi-index that belongs to ๐‘’โˆ’๐‘“1(๐’™,๐’–), the sec-ond one belongs to ๐‘’โˆ’๐‘“2(๐’™,๐’–) and so on. So the summands with exactly thesemulti-indices are the ones assigned to the product of exponentials whose signs areinvariant during the reordering. With this notation and all ๐ฝ โˆˆ {0, 1}3ร—3 thatsatisfy the property (6.17) we can write

๐‘‘โˆ๐‘™=1

๐‘’โˆ’๐‘“๐‘™(๐’™+๐’š,๐’–) =โˆ‘

๐’‹โˆˆ{0,1}3

โˆ‘๐ฝ

3โˆ๐‘™=1

๐‘’โˆ’๐‘“๐‘™(๐’™,๐’–)

๐’„(๐ฝ)๐‘™ (โ†โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’๐‘“1,...,๐‘“๐‘™,0,...,0)

3โˆ๐‘™=1

๐‘’โˆ’(โˆ’1)๐‘—๐‘™๐‘“๐‘™(๐’š,๐’–)

๐‘‘โˆ๐‘™=4

๐‘’โˆ’๐‘“๐‘™(๐’™,๐’–)๐‘’โˆ’๐‘“๐‘™(๐’š,๐’–).

(6.19)

Using mathematical induction with matrices ๐ฝ โˆˆ {0, 1}๐›ฟร—๐›ฟ as introduced abovefor growing ๐›ฟ and Corollary 6.2 repeatedly until we reach ๐›ฟ = ๐‘‘ we get

=โˆ‘

๐’‹โˆˆ{0,1}๐‘‘

โˆ‘๐ฝ

๐‘‘โˆ๐‘™=1

๐‘’โˆ’๐‘“๐‘™(๐’™,๐’–)

๐’„(๐ฝ)๐‘™ (โ†โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’๐‘“1,...,๐‘“๐‘™,0,...,0)

๐‘‘โˆ๐‘™=1

๐‘’โˆ’(โˆ’1)๐‘—๐‘™๐‘“๐‘™(๐’š,๐’–). (6.20)

โ–ก

Page 195: Quaternion and Clifford Fourier Transforms and Wavelets

172 R. Bujack, G. Scheuermann and E. Hitzer

Remark 6.10. The number of summands actually appearing is usually much smallerthan in Theorem 6.11. It is determined by the number of distinct strictly lower(upper) triangular matrices ๐ฝ with entries being either zero or one, namely:

2๐‘‘(๐‘‘โˆ’1)

2 . (6.21)

Theorem 6.11 (Shift). Let ๐‘จ(๐’™) = ๐‘ฉ(๐’™ โˆ’ ๐’™0) be multivector fields, ๐น1, ๐น2, lin-ear with respect to ๐’™, and let ๐’‹ โˆˆ {0, 1}๐œ‡,๐’Œ โˆˆ {0, 1}(๐œˆโˆ’๐œ‡) be multi-indices, and๐น1(๐’‹), ๐น2(๐’Œ) be as introduced in Definition 6.4, then a separable GFT suffices

โ„ฑ๐น1,๐น2(๐‘จ)(๐’–) =โˆ‘๐’‹,๐’Œ

โˆ‘๐ฝ,๐พ

๐œ‡โˆ๐‘™=1

๐‘’โˆ’๐‘“๐‘™(๐’™0,๐’–)

๐’„(๐ฝ)๐‘™ (โ†โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’๐‘“1,...,๐‘“๐‘™,0,...,0)

โ„ฑ๐น1(๐’‹),๐น2(๐’Œ)(๐‘ฉ)(๐’–)

๐œˆโˆ๐‘™=๐œ‡+1

๐‘’โˆ’๐‘“๐‘™(๐’™0,๐’–)

๐’„(๐พ)๐‘™โˆ’๐œ‡ (โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โ†’0,...,0,๐‘“๐‘™,...,๐‘“๐œˆ)

,

(6.22)

where ๐ฝ โˆˆ {0, 1}๐œ‡ร—๐œ‡ and ๐พ โˆˆ {0, 1}(๐œˆโˆ’๐œ‡)ร—(๐œˆโˆ’๐œ‡) are the strictly lower, respectivelyupper, triangular matrices with rows (๐ฝ)๐‘™, (๐พ)๐‘™โˆ’๐œ‡ summing up to (

โˆ‘๐œ‡๐‘™=1(๐ฝ)๐‘™) mod

2 = ๐’‹ respectively(โˆ‘๐œˆ

๐‘™=๐œ‡+1(๐พ)๐‘™โˆ’๐œ‡)mod 2 = ๐’Œ as in Lemma 6.9.

Proof. First we rewrite the transformed function in terms of ๐‘ฉ(๐’š) using a changeof coordinates.

โ„ฑ๐น1,๐น2(๐‘จ)(๐’–) =

โˆซโ„๐‘š

๐œ‡โˆ๐‘™=1

๐‘’โˆ’๐‘“๐‘™(๐’™,๐’–)๐‘จ(๐’™)๐œˆโˆ

๐‘™=๐œ‡+1

๐‘’โˆ’๐‘“๐‘™(๐’™,๐’–) d๐‘š๐’™

=

โˆซโ„๐‘š

๐œ‡โˆ๐‘™=1

๐‘’โˆ’๐‘“๐‘™(๐’™,๐’–)๐‘ฉ(๐’™โˆ’ ๐’™0)

๐œˆโˆ๐‘™=๐œ‡+1

๐‘’โˆ’๐‘“๐‘™(๐’™,๐’–) d๐‘š๐’™

๐’š=๐’™โˆ’๐’™0=

โˆซโ„๐‘š

๐œ‡โˆ๐‘™=1

๐‘’โˆ’๐‘“๐‘™(๐’š+๐’™0,๐’–)๐‘ฉ(๐’š)

๐œˆโˆ๐‘™=๐œ‡+1

๐‘’โˆ’๐‘“๐‘™(๐’š+๐’™0,๐’–) d๐‘š๐’š

(6.23)

Now we separate and sort the factors using Lemma 6.9.

Lem. 6.9=

โˆซโ„๐‘š

โˆ‘๐’‹โˆˆ{0,1}๐œ‡

โˆ‘๐ฝโˆˆ{0,1}๐œ‡ร—๐œ‡

โˆ‘(๐ฝ)๐‘™ mod 2=๐’‹

๐œ‡โˆ๐‘™=1

๐‘’โˆ’๐‘“๐‘™(๐’™0,๐’–)

๐’„(๐ฝ)๐‘™ (โ†โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’๐‘“1,...,๐‘“๐‘™,0,...,0)

๐œ‡โˆ๐‘™=1

๐‘’โˆ’(โˆ’1)๐‘—๐‘™๐‘“๐‘™(๐’š,๐’–)๐‘ฉ(๐’š)โˆ‘๐’Œโˆˆ{0,1}(๐œˆโˆ’๐œ‡)

โˆ‘๐พโˆˆ{0,1}(๐œˆโˆ’๐œ‡)ร—(๐œˆโˆ’๐œ‡)โˆ‘

(๐พ)๐‘™ mod 2=๐’Œ

๐œˆโˆ๐‘™=๐œ‡+1

๐‘’โˆ’(โˆ’1)๐‘˜๐‘™โˆ’๐œ‡๐‘“๐‘™(๐’š,๐’–)๐œˆโˆ

๐‘™=๐œ‡+1

๐‘’โˆ’๐‘“๐‘™(๐’™0,๐’–)

๐’„(๐พ)๐‘™โˆ’๐œ‡ (โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โ†’0,...,0,๐‘“๐‘™,...,๐‘“๐œˆ)

d๐‘š๐’š

Page 196: Quaternion and Clifford Fourier Transforms and Wavelets

8. A General Geometric Fourier Transform 173

=โˆ‘๐’‹,๐’Œ

โˆ‘๐ฝ,๐พ

๐œ‡โˆ๐‘™=1

๐‘’โˆ’๐‘“๐‘™(๐’™0,๐’–)

๐’„(๐ฝ)๐‘™ (โ†โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’๐‘“1,...,๐‘“๐‘™,0,...,0)

(6.24)

โ„ฑ๐น1(๐’‹),๐น2(๐’Œ)(๐‘ฉ)(๐’–)

๐œˆโˆ๐‘™=๐œ‡+1

๐‘’โˆ’๐‘“๐‘™(๐’™0,๐’–)

๐’„(๐พ)๐‘™โˆ’๐œ‡ (โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โ†’0,...,0,๐‘“๐‘™,...,๐‘“๐œˆ)

โ–ก

Corollary 6.12 (Shift). Let ๐‘จ(๐’™) = ๐‘ฉ(๐’™ โˆ’ ๐’™0) be multivector fields, ๐น1 and ๐น2

each consisting of mutually commutative functions3 being linear with respect to ๐’™,then the GFT obeys

โ„ฑ๐น1,๐น2(๐‘จ)(๐’–) =

๐œ‡โˆ๐‘™=1

๐‘’โˆ’๐‘“๐‘™(๐’™0,๐’–)โ„ฑ๐น1,๐น2(๐‘ฉ)(๐’–)

๐œˆโˆ๐‘™=๐œ‡+1

๐‘’โˆ’๐‘“๐‘™(๐’™0,๐’–). (6.25)

Remark 6.13. For sets ๐น1, ๐น2 that each consist of less than two functions thecondition of Corollary 6.12 is necessarily satisfied, compare, e.g., the Cliffordโ€“Fourier transform, the quaternionic transform or the spacetime Fourier transformlisted in the preceeding examples.

The specific forms taken by our standard examples are summarized in Table 3.As expected they are often shorter than what could be expected from Remark 6.10.

7. Conclusions and Outlook

For multivector fields over โ„๐‘,๐‘ž with values in any geometric algebra ๐บ๐‘,๐‘ž we havesuccessfully defined a general geometric Fourier transform. It covers all popularFourier transforms from current literature in the introductory example. Its exis-tence, independent of the specific choice of functions ๐น1, ๐น2, can be proved forall integrable multivector fields, see Theorem 3.1. Theorem 3.2 shows that ourgeometric Fourier transform is generally linear over the field of real numbers. Alltransforms from the reference example consist of bilinear ๐น1 and ๐น2. We provedthat this property is sufficient to ensure the scaling property of Theorem 4.1.

If a general geometric Fourier transform is separable as introduced in Defi-nition 6.1, then Theorem 6.5 (Left and right products) guarantees that constantfactors can be separated from the vector field to be transformed. As a consequencegeneral linearity is achieved by choosing ๐น1, ๐น2 with values in the centre of thegeometric algebra ๐ถโ„“๐‘,๐‘ž, compare Corollary 6.7. All examples except for the cylin-drical Fourier transform [6] satisfy this claim.

Under the condition of linearity with respect to the first argument of thefunctions of the sets ๐น1 and ๐น2 additionally to the separability property just men-tioned, we have also proved a shift property (Theorem 6.11).

In future publications we are going to state the necessary constraints fora generalized convolution theorem, invertibility, derivation theorem and we willexamine how simplifications can be achieved based on symmetry properties of the

3Cross commutativity between ๐น1 and ๐น2 is not necessary.

Page 197: Quaternion and Clifford Fourier Transforms and Wavelets

174 R. Bujack, G. Scheuermann and E. Hitzer

Table 3. Theorem 6.11 (Shift) applied to the GFTs of the first exam-ple, enumerated in the same order.Notations: on the LHS โ„ฑ๐น1,๐น2 = โ„ฑ๐น1,๐น2(๐‘จ)(๐’–), on the RHS โ„ฑ๐น โ€ฒ

1,๐นโ€ฒ2=

โ„ฑ๐น โ€ฒ1,๐น

โ€ฒ2(๐‘ฉ)(๐’–). In the second row ๐พ represents all strictly upper

triangular matrices โˆˆ {0, 1}๐‘›ร—๐‘› with rows (๐พ)๐‘™โˆ’๐œ‡ summing up to(โˆ‘๐œˆ๐‘™=๐œ‡+1(๐พ)๐‘™โˆ’๐œ‡

)mod 2 = ๐’Œ. The simplified shape of the colour im-

age FT results from the commutativity of ๐‘ฉ and ๐‘–๐‘ฉ and application ofLemma 2.2.

GFT ๐‘จ(๐’™) = ๐‘ฉ(๐’™โˆ’ ๐’™0)

1. Clifford โ„ฑ๐‘“1 = โ„ฑ๐‘“1๐‘’โˆ’2๐œ‹๐‘–๐’™0โ‹…๐’–

2. Bulow โ„ฑ๐‘“1,...,๐‘“๐‘› =โˆ‘

๐’Œโˆˆ{0,1}๐‘›โˆ‘

๐พ โ„ฑ(โˆ’1)๐‘˜1๐‘“1,...,(โˆ’1)๐‘˜๐‘›๐‘“๐‘›โˆ๐‘›๐‘™=1 ๐‘’

โˆ’2๐œ‹๐‘ฅ0๐‘˜๐‘ข๐‘˜

๐’„(๐พ)๐‘™ (โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โ†’0,...,0,๐‘“๐‘™,...,๐‘“๐‘›)

3. Quaternionic โ„ฑ๐‘“1,๐‘“2 = ๐‘’โˆ’2๐œ‹๐‘–๐‘ฅ01๐‘ข1โ„ฑ๐‘“1,๐‘“2๐‘’โˆ’2๐œ‹๐‘—๐‘ฅ02๐‘ข2

4. Spacetime โ„ฑ๐‘“1,๐‘“2 = ๐‘’โˆ’๐’†4๐‘ฅ04๐‘ข4โ„ฑ๐‘“1,๐‘“2๐‘’โˆ’๐œ–4๐’†4๐‘–4(๐‘ฅ1๐‘ข1+๐‘ฅ2๐‘ข2+๐‘ฅ3๐‘ข3)

5. Colour Image โ„ฑ๐‘“1,๐‘“2,๐‘“3,๐‘“4 = ๐‘’โˆ’12 (๐‘ฅ01๐‘ข1+๐‘ฅ02๐‘ข2)(๐‘ฉ+๐‘–๐‘ฉ)โ„ฑ๐‘“1,๐‘“2,๐‘“3,๐‘“4

๐‘’12 (๐‘ฅ01๐‘ข1+๐‘ฅ02๐‘ข2)(๐‘ฉ+๐‘–๐‘ฉ)

6. Cyl. ๐‘› = 2 โ„ฑ๐‘“1 = ๐‘’๐’™0โˆง๐’–โ„ฑ๐‘“1

Cyl. ๐‘› โˆ•= 2 -

multivector fields to be transformed. We will also construct generalized geometricFourier transforms in a broad sense from combinations of the ones introduced inthis chapter and from decomposition into their sine and cosine parts which willalso cover the vector and bivector Fourier transforms of [9]. It would further beof interest to extend our approach to Fourier transforms defined on spheres orother non-Euclidean manifolds, to functions in the Schwartz space and to square-integrable functions.

References

[1] T. Batard, M. Berthier, and C. Saint-Jean. Clifford Fourier transform for color imageprocessing. In Bayro-Corrochano and Scheuermann [2], pages 135โ€“162.

[2] E.J. Bayro-Corrochano and G. Scheuermann, editors. Geometric Algebra Computingin Engineering and Computer Science. Springer, London, 2010.

[3] F. Brackx, N. De Schepper, and F. Sommen. The Cliffordโ€“Fourier transform. Journalof Fourier Analysis and Applications, 11(6):669โ€“681, 2005.

[4] F. Brackx, N. De Schepper, and F. Sommen. The two-dimensional Cliffordโ€“Fouriertransform. Journal of Mathematical Imaging and Vision, 26(1):5โ€“18, 2006.

Page 198: Quaternion and Clifford Fourier Transforms and Wavelets

8. A General Geometric Fourier Transform 175

[5] F. Brackx, N. De Schepper, and F. Sommen. The Cliffordโ€“Fourier integral kernel ineven dimensional Euclidean space. Journal of Mathematical Analysis and Applica-tions, 365(2):718โ€“728, 2010.

[6] F. Brackx, N. De Schepper, and F. Sommen. The Cylindrical Fourier Transform. InBayro-Corrochano and Scheuermann [2], pages 107โ€“119.

[7] T. Bulow. Hypercomplex Spectral Signal Representations for the Processing and Anal-ysis of Images. PhD thesis, University of Kiel, Germany, Institut fur Informatik undPraktische Mathematik, Aug. 1999.

[8] W.K. Clifford. Applications of Grassmannโ€™s extensive algebra. American Journal ofMathematics, 1(4):350โ€“358, 1878.

[9] H. De Bie and F. Sommen. Vector and bivector Fourier transforms in Clifford anal-ysis. In K. Guerlebeck and C. Koenke, editors, 18th International Conference on theApplication of Computer Science and Mathematics in Architecture and Civil Engi-neering, page 11, 2009.

[10] J. Ebling. Visualization and Analysis of Flow Fields using Clifford Convolution. PhDthesis, University of Leipzig, Germany, 2006.

[11] T.A. Ell. Quaternion-Fourier transforms for analysis of 2-dimensional linear time-invariant partial-differential systems. In Proceedings of the 32nd Conference on De-cision and Control, pages 1830โ€“1841, San Antonio, Texas, USA, 15โ€“17 December1993. IEEE Control Systems Society.

[12] T.A. Ell and S.J. Sangwine. Hypercomplex Fourier transforms of color images. IEEETransactions on Image Processing, 16(1):22โ€“35, Jan. 2007.

[13] M. Felsberg. Low-Level Image Processing with the Structure Multivector. PhD thesis,Christian-Albrechts-Universitat, Institut fur Informatik und Praktische Mathematik,Kiel, 2002.

[14] D. Hestenes and G. Sobczyk. Clifford Algebra to Geometric Calculus. D. ReidelPublishing Group, Dordrecht, Netherlands, 1984.

[15] E. Hitzer. Quaternion Fourier transform on quaternion fields and generalizations.Advances in Applied Clifford Algebras, 17(3):497โ€“517, May 2007.

[16] E. Hitzer and R. Ablamowicz. Geometric roots of โˆ’1 in Clifford algebras ๐ถโ„“๐‘,๐‘ž with๐‘ + ๐‘ž โ‰ค 4. Advances in Applied Clifford Algebras, 21(1):121โ€“144, 2010. Publishedonline 13 July 2010.

[17] E. Hitzer, J. Helmstetter, and R. Ablamowicz. Square roots of โˆ’1 in real Cliffordalgebras. In K. Gurlebeck, editor, 9th International Conference on Clifford Algebrasand their Applications, Weimar, Germany, 15โ€“20 July 2011. 12 pp.

[18] E.M.S. Hitzer and B. Mawardi. Clifford Fourier transform on multivector fields anduncertainty principles for dimensions ๐‘› = 2(mod 4) and ๐‘› = 3(mod 4). Advances inApplied Clifford Algebras, 18(3-4):715โ€“736, 2008.

[19] B. Jancewicz. Trivector Fourier transformation and electromagnetic field. Journalof Mathematical Physics, 31(8):1847โ€“1852, 1990.

[20] S.J. Sangwine and T.A. Ell. The discrete Fourier transform of a colour image. In J.M.Blackledge and M.J. Turner, editors, Image Processing II Mathematical Methods, Al-gorithms and Applications, pages 430โ€“441, Chichester, 2000. Horwood Publishing forInstitute of Mathematics and its Applications. Proceedings Second IMA Conferenceon Image Processing, De Montfort University, Leicester, UK, September 1998.

Page 199: Quaternion and Clifford Fourier Transforms and Wavelets

176 R. Bujack, G. Scheuermann and E. Hitzer

[21] F. Sommen. Hypercomplex Fourier and Laplace transforms I. Illinois Journal ofMathematics, 26(2):332โ€“352, 1982.

Roxana BujackUniversitat LeipzigInstitut fur InformatikJohannisgasse 26D-04103 Leipzig, Germanye-mail: [email protected]

Gerik ScheuermannUniversitat LeipzigInstitut fur InformatikJohannisgasse 26D-04103 Leipzig, Germanye-mail: [email protected]

Eckhard HitzerCollege of Liberal Arts, Department of Material Science,International Christian University,181-8585 Tokyo, Japane-mail: [email protected]

Page 200: Quaternion and Clifford Fourier Transforms and Wavelets

Quaternion and Cliffordโ€“Fourier Transforms and Wavelets

Trends in Mathematics, 177โ€“195cโƒ 2013 Springer Basel

9 Cliffordโ€“Fourier Transform andSpinor Representation of Images

Thomas Batard and Michel Berthier

Abstract. We propose in this chapter to introduce a spinor representation forimages based on the work of T. Friedrich. This spinor representation gener-alizes the usual Weierstrass representation of minimal surfaces (i.e., surfaceswith constant mean curvature equal to zero) to arbitrary surfaces (immersedin โ„3). We investigate applications to image processing focusing on segmen-tation and Cliffordโ€“Fourier analysis. All these applications involve sections ofthe spinor bundle of image graphs, that is spinor fields, satisfying the so-calledDirac equation.

Mathematics Subject Classification (2010). Primary 68U10, 53C27; secondary53A05, 43A32.

Keywords. Image processing, spin geometry, Cliffordโ€“Fourier transform.

1. Introduction

The idea of this chapter is to perform grey-level image processing using the geo-metric information given by the Gauss map variations of image graphs. While itis well known that one can parameterize the Gauss map of a minimal surface bya meromorphic function (see below), it is a much more recent result (see [5]) thatsuch a parametrization can be extended to arbitrary surfaces of โ„3 when dealingwith spin geometry.

Let us first recall that a minimal surface ฮฃ immersed in โ„3, that is a surfacewith constant mean curvature equal to zero, can be described with one holomor-phic function ๐œ‘ and one meromorphic function ๐œ“ such that the product ๐œ‘๐œ“2 isholomorphic. This is the so-called Weierstrass representation of ฮฃ (see [6] or [8]for details). The function ๐œ“ is nothing else but the composition of the Gauss mapof ฮฃ with the stereographic projection from the unit sphere to the complex plane.

This work was partially supported by ONR Grant N00014-09-1-0493.

Page 201: Quaternion and Clifford Fourier Transforms and Wavelets

178 T. Batard and M. Berthier

The main result of T. Friedrich in [5] states that there is a one-to-one cor-respondance between spinor fields ๐œ‘โˆ— of constant length on a Riemannian surface(ฮฃ, ๐‘”) and satisfying

๐ท๐œ‘โˆ— = ๐ป๐œ‘โˆ— (1.1)

where ๐ท is a Dirac operator in one hand, and isometric immersions of ฮฃ in โ„3

with mean curvature equal to๐ป , on the other hand. The Weierstrass representationappears to be the particular case corresponding to ๐ป โ‰ก 0.

Let us describe now the method introduced in the following. Let

๐œ’ : ฮฉ โŠ‚ โ„2 โˆ’โ†’ โ„3

(๐‘ฅ, ๐‘ฆ) ๏ฟฝโˆ’โ†’ (๐‘ฅ, ๐‘ฆ, ๐ผ(๐‘ฅ, ๐‘ฆ))(1.2)

be the immersion in the three-dimensional Euclidean space of a grey-level image๐ผ defined on a domain ฮฉ of โ„2. The first step (see ยง 2) consists in computing thespinor field ๐œ‘โˆ— that describes the image surface ฮฃ. We follow here the paper of T.Friedrich [5]: ๐œ‘โˆ— is obtained from the restriction to the surface ฮฃ of a parallel spinor๐œ™ on โ„3. The computation of ๐œ‘โˆ— requires us to deal with irreducible representationsof the complex Clifford algebra ๐ถโ„“3,0 โŠ— โ„‚ and with the generalized Weierstrassrepresentation of ฮฃ based on period forms. In practice, ๐œ‘โˆ— is given by a field ofelements of โ„‚2.

As said before, the spinor field ๐œ‘โˆ— characterizes the geometry of the surfaceฮฃ immersed in โ„3 by the parametrization (1.2). In the same way that the normalof a minimal surface is parameterized by the meromorphic function ๐œ“, the normalof the surface ฮฃ is parameterized by the spinor field ๐œ‘โˆ—. The latter explains howthe tangent plane to ฮฃ varies in the ambient space.

There are many reasons to believe that such a generalized Weierstrass para-metrization may reveal itself to be an efficient tool in the context of image pro-cessing:

1. The field ๐œ‘โˆ— of elements of โ„‚2 (see (2.26)) encodes the Riemannian structureof the surface ฮฃ in a very tractable way (although the definition of ๐œ‘โˆ— mayappear quite complicated).

2. The geometrical methods based on the study of the so-called structure tensorinvolve only the eigenvalues of the structure tensor, that means in some sensethe values of the first fundamental form of the surface. The spinor field ๐œ‘โˆ—

contains both intrinsic and extrinsic information. Studying the variations of๐œ‘โˆ— allows us to get not only information about the variations (derivative) ofthe first fundamental form, but also about the geometric embedding of thesurface ฮฃ and in particular about the mean curvature.

3. We are dealing here with first-order instead of zero-order geometric variationsof ฮฃ. As shown later, this appears to be more relevant by taking into accountboth edges and textures.

4. As will be detailed in the sequel, the spinor field ๐œ‘โˆ— can be decomposed as aseries of basic spinor fields using a suitable Cliffordโ€“Fourier transform. Thisseries corresponds to a harmonic decomposition of the surface ฮฃ adapted to

Page 202: Quaternion and Clifford Fourier Transforms and Wavelets

9. Cliffordโ€“Fourier Transform 179

the Riemannian geometry. This is in fact the main novelty of this chaptersince the usual techniques of Fourier analysis do not involve geometric data.

5. One can envisage the possibility of performing diffusion in this context. Theusual Laplace Beltrami operator can be replaced by the squared Atiyah SingerDirac operator [7] (the Atiyah Singer Dirac operator acting as an ellipticoperator of order one on spinor fields).

To illustrate some of these ideas, we investigate rapidly in ยง 3 applications tosegmentation and more precisely to edge and texture detection. As stated before,the basic idea is to replace the usual order-one structure tensor by an order-twostructure tensor called the spinor tensor obtained from the derivative of the spinorfield ๐œ‘โˆ—. This spinor tensor measures the variations of the unit normal of theimage surface. Experiments show that this approach is particularly well adaptedto texture detection.

We define in ยง 4 the Cliffordโ€“Fourier transform of a spinor field. For this,we follow the approach of [3] that relies on a spin generalization of the usualnotion of group character. We are led to compute the group morphisms fromโ„ค/๐‘€โ„คร—โ„ค/๐‘โ„ค to Spin(3). Since this last group acts on the sections of the spinorbundle, a Cliffordโ€“Fourier transform can be defined by averaging this action. Oneof the key ideas here is to split the spinor bundle of the surface according to theClifford multiplication by the bivector coding the tangent plane to the surface.This has two advantages: the first one is to involve the geometry in the process,the second one is to reduce the computation of the Cliffordโ€“Fourier transform totwo usual complex Fourier transforms. It is important to notice that although theFourier transform we propose is, as usual, a global transformation on the image, theway it is computed takes into account local geometric data. We finally introducethe harmonic decomposition mentioned above and show some results of filteringon standard images.

The reader will find in Appendix A the mathematical definitions and resultsused throughout the text.

2. Spinor Representation of Images

This section is devoted to the explicit computation of the spinor field ๐œ‘โˆ— of a givensurface immersed in Euclidean space. It is obtained as the restriction of a constantspinor field of โ„3 the components of which are determined using period forms.

2.1. Spinors and Graphs

Let ๐ผ : ฮฉ โˆ’โ†’ โ„ be a differentiable function defined on a domain ฮฉ of โ„2. Weconsider the surface ฮฃ immersed in โ„3 by the parametrization:

๐œ’(๐‘ฅ, ๐‘ฆ) = (๐‘ฅ, ๐‘ฆ, ๐ผ(๐‘ฅ, ๐‘ฆ)). (2.1)

Also, let ๐‘” be the metric on ฮฃ induced by the Euclidean metric of โ„3. The cou-ple (ฮฃ, ๐‘”) is a Riemannian surface of global chart (ฮฉ, ๐œ’). We denote by ๐‘€ theRiemannian manifold (โ„3, โˆฅ โˆฅ2) and by (๐‘ง1, ๐‘ง2, ๐œˆ) an orthonormal frame field of

Page 203: Quaternion and Clifford Fourier Transforms and Wavelets

180 T. Batard and M. Berthier

๐‘€ with (๐‘ง1, ๐‘ง2) an orthonormal frame field on ฮฃ, and by ๐œˆ the global unit fieldnormal to ฮฃ. One can choose (๐‘ง1, ๐‘ง2, ๐œˆ) with the following matrix representationโŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

๐ผ๐‘ฅโˆš(๐ผ2

๐‘ฅ + ๐ผ2๐‘ฆ )(๐ผ

2๐‘ฅ + ๐ผ2

๐‘ฆ + 1)

โˆ’๐ผ๐‘ฆโˆš๐ผ2๐‘ฅ + ๐ผ2

๐‘ฆ

โˆ’๐ผ๐‘ฅโˆš๐ผ2๐‘ฅ + ๐ผ2

๐‘ฆ + 1

๐ผ๐‘ฆโˆš(๐ผ2

๐‘ฅ + ๐ผ2๐‘ฆ )(๐ผ

2๐‘ฅ + ๐ผ2

๐‘ฆ + 1)

๐ผ๐‘ฅโˆš๐ผ2๐‘ฅ + ๐ผ2

๐‘ฆ

โˆ’๐ผ๐‘ฆโˆš๐ผ2๐‘ฅ + ๐ผ2

๐‘ฆ + 1

๐ผ2๐‘ฅ + ๐ผ2

๐‘ฆโˆš(๐ผ2

๐‘ฅ + ๐ผ2๐‘ฆ )(๐ผ

2๐‘ฅ + ๐ผ2

๐‘ฆ + 1)0

1โˆš๐ผ2๐‘ฅ + ๐ผ2

๐‘ฆ + 1

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ . (2.2)

Note that ๐‘ง1 and ๐‘ง2 are not defined when ๐ผ๐‘ฅ = ๐ผ๐‘ฆ = 0. This has no consequencein the sequel since we deal only with the normal ๐œˆ.

Following [5] the surface ฮฃ can be represented by a spinor field ๐œ‘โˆ— withconstant length satisfying the Dirac equation:

๐ท๐œ‘โˆ— = ๐ป๐œ‘โˆ— (2.3)

where ๐ป denotes the mean curvature of ฮฃ. We recall here the basic idea (seeAppendix A for notations and definitions). Let ๐œ™ be a parallel spinor field of ๐‘€ ,i.e., satisfying

โˆ‡๐‘€๐‘‹ ๐œ™ = 0 (2.4)

for all vector fields ๐‘‹ on ๐‘€ . Let also ๐œ‘ be the restriction ๐œ™โˆฃฮฃ of ๐œ™ to ฮฃ. The spinorfield ๐œ‘ decomposes into

๐œ‘ = ๐œ‘+ + ๐œ‘โˆ’ (2.5)

with

๐œ‘+ =1

2(๐œ‘+ ๐‘–๐œˆ โ‹… ๐œ‘) ๐œ‘โˆ’ =

1

2(๐œ‘โˆ’ ๐‘–๐œˆ โ‹… ๐œ‘) (2.6)

and satisfies

๐ท๐œ‘ = โˆ’๐ป โ‹… ๐œˆ โ‹… ๐œ‘. (2.7)

This last equation reads

๐ท(๐œ‘+ + ๐œ‘โˆ’) = โˆ’๐ป โ‹… ๐œˆ โ‹… (๐œ‘+ + ๐œ‘โˆ’) (2.8)

and implies

๐ท๐œ‘+ = โˆ’๐‘–๐ป๐œ‘โˆ’ ๐ท๐œ‘โˆ’ = ๐‘–๐ป๐œ‘+. (2.9)

If we set ๐œ‘โˆ— = ๐œ‘+ โˆ’ ๐‘–๐œ‘โˆ’ then ๐ท๐œ‘โˆ— = ๐ป๐œ‘โˆ— and ๐œ‘โˆ— is of constant length.

Page 204: Quaternion and Clifford Fourier Transforms and Wavelets

9. Cliffordโ€“Fourier Transform 181

Proposition 2.1. The spinor fields ๐œ‘+, ๐œ‘โˆ’ and ๐œ‘โˆ— are given by

๐œ‘+ =1

2

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

โŽ›โŽ1โˆ’ ๐ผ๐‘ฆโˆš1 + ๐ผ2

๐‘ฅ + ๐ผ2๐‘ฆ

โŽžโŽ  ๐‘ข+

โŽ›โŽ ๐ผ๐‘ฅ โˆ’ ๐‘–โˆš1 + ๐ผ2

๐‘ฅ + ๐ผ2๐‘ฆ

โŽžโŽ  ๐‘ฃ

โŽ›โŽ1 +๐ผ๐‘ฆโˆš

1 + ๐ผ2๐‘ฅ + ๐ผ2

๐‘ฆ

โŽžโŽ  ๐‘ฃ +

โŽ›โŽ ๐ผ๐‘ฅ + ๐‘–โˆš1 + ๐ผ2

๐‘ฅ + ๐ผ2๐‘ฆ

โŽžโŽ  ๐‘ข

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ (2.10)

๐œ‘โˆ’ =1

2

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

โŽ›โŽ1 +๐ผ๐‘ฆโˆš

1 + ๐ผ2๐‘ฅ + ๐ผ2

๐‘ฆ

โŽžโŽ  ๐‘ขโˆ’โŽ›โŽ ๐ผ๐‘ฅ โˆ’ ๐‘–โˆš

1 + ๐ผ2๐‘ฅ + ๐ผ2

๐‘ฆ

โŽžโŽ  ๐‘ฃ

โŽ›โŽ1โˆ’ ๐ผ๐‘ฆโˆš1 + ๐ผ2

๐‘ฅ + ๐ผ2๐‘ฆ

โŽžโŽ  ๐‘ฃ โˆ’โŽ›โŽ ๐ผ๐‘ฅ + ๐‘–โˆš

1 + ๐ผ2๐‘ฅ + ๐ผ2

๐‘ฆ

โŽžโŽ  ๐‘ข

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ (2.11)

and

๐œ‘โˆ— =1

2(1โˆ’ ๐‘–)

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

โŽ›โŽ1โˆ’ ๐‘–๐ผ๐‘ฆโˆš1 + ๐ผ2

๐‘ฅ + ๐ผ2๐‘ฆ

โŽžโŽ  ๐‘ข+

โŽ›โŽ 1 + ๐‘–๐ผ๐‘ฅโˆš1 + ๐ผ2

๐‘ฅ + ๐ผ2๐‘ฆ

โŽžโŽ  ๐‘ฃ

โŽ›โŽ1 +๐‘–๐ผ๐‘ฆโˆš

1 + ๐ผ2๐‘ฅ + ๐ผ2

๐‘ฆ

โŽžโŽ  ๐‘ฃ +

โŽ›โŽ ๐‘–๐ผ๐‘ฅ โˆ’ 1โˆš1 + ๐ผ2

๐‘ฅ + ๐ผ2๐‘ฆ

โŽžโŽ  ๐‘ข

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ (2.12)

where ๐‘ข and ๐‘ฃ are (constant) complex numbers.

Proof. Since ๐œ™ is a parallel spinor field on ๐‘€ , ๐œ™ = (๐‘ข, ๐‘ฃ) where ๐‘ข and ๐‘ฃ are two(constant) complex numbers. Let ๐œŒ2 be the irreducible complex representation ofโ„‚๐‘™(3) described in Appendix A.1. Recall that

๐œˆ =1

ฮ”(โˆ’๐ผ๐‘ฅ๐‘’1 โˆ’ ๐ผ๐‘ฆ๐‘’2 + ๐‘’3) (2.13)

where ฮ” =โˆš

๐ผ2๐‘ฅ + ๐ผ2

๐‘ฆ + 1, so that

๐œŒ2(๐œˆ) = โˆ’๐ผ๐‘ฅฮ”

(0 ๐‘–๐‘– 0

)โˆ’ ๐ผ๐‘ฆ

ฮ”

( โˆ’๐‘– 00 ๐‘–

)+

1

ฮ”

(0 โˆ’11 0

). (2.14)

By definition:

๐œˆ โ‹… ๐œ‘ = ๐œŒ2(๐œˆ)

(๐‘ข๐‘ฃ

). (2.15)

Simple computations lead now to the result. โ–ก

The next step consists in computing the components (๐‘ข, ๐‘ฃ) of the constant field ๐œ™.This is done by considering a quaternionic structure on the spinor bundle ๐‘†(ฮฃ) ofthe surface ฮฃ and period forms.

Page 205: Quaternion and Clifford Fourier Transforms and Wavelets

182 T. Batard and M. Berthier

2.2. Quaternionic Structure and Period Forms

Let ๐ผ be the complex structure on ๐‘†(ฮฃ) given by the multiplication by ๐‘–. A quater-nionic structure on ๐‘†(ฮฃ) is a linear map ๐ฝ that satisfies ๐ฝ2 = โˆ’๐ผ๐‘‘ and ๐ผ๐ฝ = โˆ’๐ฝ๐ผ.In the sequel ๐ฝ is given by

๐ฝ

(๐œ‘1

๐œ‘2

)=

( โˆ’๐œ‘2

๐œ‘1

). (2.16)

If we write ๐œ‘1 = ๐›ผ1 + ๐‘–๐›ฝ1 and ๐œ‘2 = ๐›ผ2 + ๐‘–๐›ฝ2, the corresponding quaternion isgiven by

๐œ‘1 + ๐œ‘2๐‘— = (๐›ผ1 + ๐‘–๐›ฝ1) + (๐›ผ2 + ๐‘–๐›ฝ2)๐‘— = ๐›ผ1 + ๐‘–๐›ฝ1 + ๐›ผ2๐‘— + ๐›ฝ2๐‘˜ (2.17)

and

๐‘—(๐œ‘1 + ๐œ‘2๐‘—) = โˆ’๐œ‘2 + ๐œ‘1๐‘—, (2.18)

i.e., ๐ฝ is the left multiplication by ๐‘—. Since

๐‘†+(ฮฃ) =

{(๐œ‘1

๐œ‘2

), ๐œ‘1 =

๐ผ๐‘ฅ โˆ’ ๐‘–

๐ผ๐‘ฆ +ฮ”๐œ‘2

}(2.19)

and

๐‘†+(ฮฃ) =

{(๐œ‘1

๐œ‘2

), ๐œ‘1 =

๐ผ๐‘ฅ โˆ’ ๐‘–

๐ผ๐‘ฆ โˆ’ฮ”๐œ‘2

}(2.20)

then ๐ฝ๐‘†+(ฮฃ) โŠ‚ ๐‘†โˆ’(ฮฃ) and ๐ฝ๐‘†โˆ’(ฮฃ) โŠ‚ ๐‘†+(ฮฃ). We also denote by ๐ฝ the quater-nionic structure (obtained in the same way) on ๐‘†(๐‘€).

Let us consider ๐œ™ = (๐‘ข, ๐‘ฃ) a constant spinor field on ๐‘€ and ๐œ‘โˆ— its restrictionon ฮฃ. Let also ๐‘“ : โ„3 โˆ’โ†’ โ„ and ๐‘” : โ„3 โˆ’โ†’ โ„‚ be the functions defined by

๐‘“(๐‘š) = โˆ’โ„‘(๐‘š โ‹… ๐œ™, ๐œ™) (2.21)

and

๐‘”(๐‘š) = ๐‘–(๐‘š โ‹… ๐œ™, ๐ฝ(๐œ™)) (2.22)

where ( , ) denotes the Hermitian product. Using the representation ๐œŒ2, one cancheck that

๐‘š โ‹… ๐œ™ =

(โˆ’๐‘–๐‘š2๐‘ข+ (๐‘–๐‘š1 โˆ’๐‘š3)๐‘ฃ

(๐‘–๐‘š1 +๐‘š3)๐‘ข+ ๐‘–๐‘š2๐‘ฃ

)(2.23)

for ๐‘š = (๐‘š1,๐‘š2,๐‘š3). The equations ๐‘“(๐‘š) = ๐‘š1 and ๐‘”(๐‘š) = ๐‘š2 + ๐‘–๐‘š3 areequivalent to:

โˆฃ๐‘ขโˆฃ2 = โˆฃ๐‘ฃโˆฃ2 , ๐‘ข๐‘ฃ = โˆ’1

2(2.24)

and

๐‘ข๐‘ฃ = โˆ’1

2, ๐‘ข2 + ๐‘ฃ2 = 1, ๐‘ข2 = ๐‘ฃ2. (2.25)

This implies ๐‘ข = ยฑ1/โˆš2 and ๐‘ฃ = โˆ’๐‘ข.

Page 206: Quaternion and Clifford Fourier Transforms and Wavelets

9. Cliffordโ€“Fourier Transform 183

Definition 2.2. The spinor representation of the image given by the parametrization(2.1) is defined by

๐œ‘โˆ— =1

2โˆš2(1โˆ’ ๐‘–)

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

โŽ›โŽ1โˆ’ 1 + ๐‘–( ๐ผ๐‘ฅ + ๐ผ๐‘ฆ)โˆš1 + ๐ผ2

๐‘ฅ + ๐ผ2๐‘ฆ

โŽžโŽ โˆ’โŽ›โŽ1 +

1 + ๐‘–(โˆ’๐ผ๐‘ฅ + ๐ผ๐‘ฆ)โˆš1 + ๐ผ2

๐‘ฅ + ๐ผ2๐‘ฆ

โŽžโŽ 

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ . (2.26)

This means that ๐‘ข = 1/โˆš2 and ๐‘ฃ = โˆ’1/โˆš2 in the expression (2.12).

The two 1-forms

๐œ‚๐‘“ (๐‘‹) = 2โ„œ(๐‘‹ โ‹… (๐œ‘โˆ—)+, (๐œ‘โˆ—)โˆ’) = โˆ’โ„‘(๐‘‹ โ‹… ๐œ‘, ๐œ‘) (2.27)

๐œ‚๐‘”(๐‘‹) = ๐‘–(๐‘‹ โ‹… (๐œ‘โˆ—)+, ๐ฝ((๐œ‘โˆ—)+)) + ๐‘–(๐‘‹ โ‹… (๐œ‘โˆ—)โˆ’, ๐ฝ((๐œ‘โˆ—)โˆ’))= ๐‘–(๐‘‹ โ‹… ๐œ‘, ๐ฝ(๐œ‘)) (2.28)

are exact and verify ๐‘‘(๐‘“โˆฃฮฃ) = ๐œ‚๐‘“ , ๐‘‘(๐‘”โˆฃฮฃ) = ๐œ‚๐‘”. The generalized Weierstrass para-metrization is actually given by the isometric immersion:โˆซ

(๐œ‚๐‘“ , ๐œ‚๐‘”) : ฮฃ โˆ’โ†’๐‘€. (2.29)

2.3. Dirac Equation and Mean Curvature

We only mention here some results that can be used when dealing with diffusion.We do not go into further details since we will not treat this problem in the presentchapter. Let (ฮฃ, ๐‘”) be an oriented two-dimensional Riemannian manifold and ๐œ‘ aspinor field without zeros solution of the Dirac equation ๐ท๐œ‘ = ๐œ†๐œ‘. Then ๐œ‘ definesan isometric immersion

(ฮฃ, โˆฃ๐œ‘โˆฃ4๐‘”) โˆ’โ†’ โ„3 (2.30)

with mean curvature ๐ป = ๐œ†/โˆฃ๐œ‘โˆฃ2 (see [5]).

3. Spinors and Segmentation

The aim of this section is to introduce the spinor tensor corresponding to thevariations of the unit normal and to show its capability to detect both edges andtextures.

3.1. The Spinor Tensor

We propose here to deal with a second-order version of the classical approachof edge detection based on the so-called structure tensor (see [10]). Instead ofmeasuring edges from eigenvalues of the Riemannian metric, we focus here on the

Page 207: Quaternion and Clifford Fourier Transforms and Wavelets

184 T. Batard and M. Berthier

eigenvalues of the tensor obtained from the derivative of the spinor field ๐œ‘โˆ—. Moreprecisely let

๐œ‘ =

(๐œ‘1

๐œ‘2

)(3.1)

be a section of the spinor bundle ๐‘†(ฮฃ) given in an orthonormal frame, i.e., โˆฃ๐œ‘โˆฃ2 =

โˆฃ๐œ‘1โˆฃ2 + โˆฃ๐œ‘2โˆฃ2 and let ๐‘‹ = (๐‘‹1, ๐‘‹2) be a section of the tangent bundle ๐‘‡ (ฮฃ). Weconsider the connection โˆ‡ on ๐‘†(ฮฃ) given by the connection 1-form ๐œ” = 0. Thus

โˆ‡๐‘‹๐œ‘ =

โŽ›โŽœโŽœโŽ ๐‘‹1โˆ‚๐œ‘1

โˆ‚๐‘ฅ+๐‘‹2

โˆ‚๐œ‘1

โˆ‚๐‘ฆ

๐‘‹1โˆ‚๐œ‘2

โˆ‚๐‘ฅ+๐‘‹2

โˆ‚๐œ‘2

โˆ‚๐‘ฆ

โŽžโŽŸโŽŸโŽ  (3.2)

and

โˆฃโˆ‡๐‘‹๐œ‘โˆฃ2 = ๐‘‹21

โˆฃโˆฃโˆฃโˆฃโˆ‚๐œ‘1

โˆ‚๐‘ฅ

โˆฃโˆฃโˆฃโˆฃ2 + 2๐‘‹1๐‘‹2โ„œ(โˆ‚๐œ‘1

โˆ‚๐‘ฅ

โˆ‚๐œ‘1

โˆ‚๐‘ฆ

)+๐‘‹2

2

โˆฃโˆฃโˆฃโˆฃโˆ‚๐œ‘1

โˆ‚๐‘ฆ

โˆฃโˆฃโˆฃโˆฃ2+๐‘‹2

1

โˆฃโˆฃโˆฃโˆฃโˆ‚๐œ‘2

โˆ‚๐‘ฅ

โˆฃโˆฃโˆฃโˆฃ2 + 2๐‘‹1๐‘‹2โ„œ(โˆ‚๐œ‘2

โˆ‚๐‘ฅ

โˆ‚๐œ‘2

โˆ‚๐‘ฆ

)+๐‘‹2

2

โˆฃโˆฃโˆฃโˆฃโˆ‚๐œ‘2

โˆ‚๐‘ฆ

โˆฃโˆฃโˆฃโˆฃ2 . (3.3)

If we denote

๐บ๐œ‘ =

โŽ›โŽœโŽœโŽœโŽโˆฃโˆฃโˆฃโˆฃโˆ‚๐œ‘1

โˆ‚๐‘ฅ

โˆฃโˆฃโˆฃโˆฃ2+ โˆฃโˆฃโˆฃโˆฃโˆ‚๐œ‘2

โˆ‚๐‘ฅ

โˆฃโˆฃโˆฃโˆฃ2 โ„œ(โˆ‚๐œ‘1

โˆ‚๐‘ฅ

โˆ‚๐œ‘1

โˆ‚๐‘ฆ+

โˆ‚๐œ‘2

โˆ‚๐‘ฅ

โˆ‚๐œ‘2

โˆ‚๐‘ฆ

)โ„œ(โˆ‚๐œ‘1

โˆ‚๐‘ฅ

โˆ‚๐œ‘1

โˆ‚๐‘ฆ+

โˆ‚๐œ‘2

โˆ‚๐‘ฅ

โˆ‚๐œ‘2

โˆ‚๐‘ฆ

) โˆฃโˆฃโˆฃโˆฃโˆ‚๐œ‘1

โˆ‚๐‘ฆ

โˆฃโˆฃโˆฃโˆฃ2+ โˆฃโˆฃโˆฃโˆฃโˆ‚๐œ‘2

โˆ‚๐‘ฆ

โˆฃโˆฃโˆฃโˆฃ2โŽžโŽŸโŽŸโŽŸโŽ  (3.4)

then

(๐‘‹1 ๐‘‹2)๐บ๐œ‘(๐‘‹1 ๐‘‹2)๐‘‡ = โˆฃโˆ‡๐‘‹๐œ‘โˆฃ2 . (3.5)

๐บ๐œ‘ is a field of real symmetric matrices.As in the case of the usual structure tensor (i.e., Di Zenzo tensor, see [10])

the optima of โˆฃโˆ‡๐‘‹๐œ‘โˆฃ2 under the constraint โˆฅ๐‘‹โˆฅ = 1 (for the Euclidean norm) aregiven by the field of eigenvalues of ๐บ๐œ‘. Applying the above formula to the spinor๐œ‘โˆ— of Definition 2.2 leads to

๐บ๐œ‘โˆ— =1

2(1 + ๐ผ2๐‘ฅ + ๐ผ2

๐‘ฆ )2

(๐บ11

๐œ‘โˆ— ๐บ12๐œ‘โˆ—

๐บ21๐œ‘โˆ— ๐บ22

๐œ‘โˆ—

)(3.6)

with

๐บ11๐œ‘โˆ— = ๐ผ2

๐‘ฅ๐‘ฅ + ๐ผ2๐‘ฅ๐‘ฆ + ๐ผ2

๐‘ฅ๐‘ฅ๐ผ2๐‘ฆ + ๐ผ2

๐‘ฅ๐‘ฆ๐ผ2๐‘ฅ โˆ’ 2๐ผ๐‘ฅ๐‘ฅ๐ผ๐‘ฅ๐‘ฆ๐ผ๐‘ฅ๐ผ๐‘ฆ

๐บ22๐œ‘โˆ— = ๐ผ2

๐‘ฆ๐‘ฆ + ๐ผ2๐‘ฅ๐‘ฆ + ๐ผ2

๐‘ฆ๐‘ฆ๐ผ2๐‘ฅ + ๐ผ2

๐‘ฅ๐‘ฆ๐ผ2๐‘ฆ โˆ’ 2๐ผ๐‘ฆ๐‘ฆ๐ผ๐‘ฅ๐‘ฆ๐ผ๐‘ฅ๐ผ๐‘ฆ

๐บ12๐œ‘โˆ— = ๐ผ๐‘ฅ๐‘ฅ๐ผ๐‘ฅ๐‘ฆ + ๐ผ๐‘ฅ๐‘ฆ๐ผ๐‘ฆ๐‘ฆ + ๐ผ๐‘ฅ๐‘ฅ๐ผ๐‘ฅ๐‘ฆ๐ผ

2๐‘ฆ + ๐ผ๐‘ฅ๐‘ฆ๐ผ๐‘ฆ๐‘ฆ๐ผ

2๐‘ฅ โˆ’ ๐ผ2

๐‘ฅ๐‘ฆ๐ผ๐‘ฅ๐ผ๐‘ฆ โˆ’ ๐ผ๐‘ฅ๐‘ฅ๐ผ๐‘ฆ๐‘ฆ๐ผ๐‘ฅ๐ผ๐‘ฆ

๐บ21๐œ‘โˆ— = ๐บ12

๐œ‘โˆ— .

(3.7)

Page 208: Quaternion and Clifford Fourier Transforms and Wavelets

9. Cliffordโ€“Fourier Transform 185

Definition 3.1. The tensor ๐บ๐œ‘โˆ— is called the spinor tensor of the surface ฮฃ.

Note that as already mentioned this last tensor corresponds to the tensor involvedin the measure of the variations of the unit normal ๐œˆ introduced in ยง 2.1. Indeed,we have

(๐‘‹1 ๐‘‹2)๐บ๐œ‘โˆ—(๐‘‹1 ๐‘‹2)๐‘‡ = โˆฅ๐‘‘๐‘‹๐œˆโˆฅ2. (3.8)

3.2. Experiments

We compare in Figure 1 the edge and texture detection methods based on theusual structure tensor (Figure 1(b) and 1(d)) and on the spinor tensor (Figure 1(e)and 1(f)).

The structure tensor only takes into account the first-order derivatives of thefunction ๐ผ. The subsequent segmentation method detects the strongest grey-levelvariations of the image. As a consequence, this method provides thick edges, ascan be observed.

The spinor tensor takes into account the second-order derivatives of the func-tion ๐ผ too. By definition, it measures the strongest variations of the unit normalto the surface parametrized by the graph of ๐ผ. We observe that this new approachprovides thinner edges than the first one. It appears also to be more relevant todetect textures.

4. Spinors and Cliffordโ€“Fourier Transform

We first define a Cliffordโ€“Fourier transform using spin characters that is groupmorphisms from โ„2 to Spin(3). Then, we introduce a harmonic decomposition ofspinor fields and show some results of filtering applied to images.

4.1. Cliffordโ€“Fourier Transform with Spin Characters

Let us recall the idea of the construction of the Cliffordโ€“Fourier transform forcolour image processing introduced in [3]. From the mathematical viewpoint, aFourier transform is defined through group actions and more precisely throughirreducible and unitary representations of the involved group. This is closely relatedto the well-known shift theorem stating that:

โ„ฑ๐‘“๐›ผ(๐‘ข) = ๐‘’๐‘–๐›ผ๐‘ขโ„ฑ๐‘“(๐‘ข) (4.1)

where ๐‘“๐›ผ(๐‘ข) = ๐‘“(๐›ผ+ ๐‘ข). The group morphism

๐›ผ ๏ฟฝโˆ’โ†’ ๐‘’๐‘–๐›ผ๐‘ข (4.2)

is a so-called character of the additive group (โ„,+), that is an irreducible unitaryrepresentation of dimension 1.

The definition proposed in [3] relies on a Clifford generalization of this notionby introducing spin characters. It can be shown that the group morphisms fromโ„ค/๐‘€โ„คร— โ„ค/๐‘โ„ค to Spin(3) are given by

๐œŒ๐‘ข,๐‘ฃ,๐ต : (๐‘š,๐‘›) ๏ฟฝโˆ’โ†’ ๐‘’2๐œ‹(๐‘ข๐‘š/๐‘€+๐‘ฃ๐‘›/๐‘)๐ต (4.3)

Page 209: Quaternion and Clifford Fourier Transforms and Wavelets

186 T. Batard and M. Berthier

Page 210: Quaternion and Clifford Fourier Transforms and Wavelets

9. Cliffordโ€“Fourier Transform 187

where

๐‘’2๐œ‹(๐‘ข๐‘š๐‘€ + ๐‘ฃ๐‘›

๐‘ )๐ต = cos 2๐œ‹(๐‘ข๐‘š๐‘€ + ๐‘ฃ๐‘›

๐‘

)+ sin 2๐œ‹

(๐‘ข๐‘š๐‘€ + ๐‘ฃ๐‘›

๐‘

)๐ต (4.4)

(๐‘ข, ๐‘ฃ) โˆˆ โ„ค/๐‘€โ„คร— โ„ค/๐‘โ„ค, and

๐ต = ๐›พ1๐‘’1๐‘’2 + ๐›พ2๐‘’1๐‘’3 + ๐›พ3๐‘’2๐‘’3 (4.5)

is a unit bivector, i.e., ๐›พ21 + ๐›พ2

2 + ๐›พ23 = 1. The map ๐œŒ๐‘ข,๐‘ฃ,๐ต is called a spin character

of the group โ„ค/๐‘€โ„ค ร— โ„ค/๐‘โ„ค. Recalling that Spin(3) acts on the sections of thespinor bundle, we are led to propose the following definition.

Definition 4.1. The Cliffordโ€“Fourier transform of a spinor ๐œ‘ of ๐‘†(ฮฃ) is given by

โ„ฑ(๐œ‘)(๐‘ข, ๐‘ฃ) =โˆ‘

๐‘›โˆˆโ„ค/๐‘โ„ค

๐‘šโˆˆโ„ค/๐‘€โ„ค

๐œŒ๐‘ข,๐‘ฃ,๐‘ง1โˆง๐‘ง2 (๐‘š,๐‘›)(โˆ’๐‘š,โˆ’๐‘›) โ‹… ๐œ‘(๐‘š,๐‘›) (4.6)

where (๐‘ง1, ๐‘ง2) is an orthonormal frame of ๐‘‡ (ฮฃ).

Since the spinor bundle of ฮฃ splits into

๐‘†(ฮฃ) = ๐‘†+๐‘ง1โˆง๐‘ง2(ฮฃ)โŠ• ๐‘†โˆ’๐‘ง1โˆง๐‘ง2(ฮฃ) (4.7)

we have

๐œŒ๐‘ข,๐‘ฃ,๐‘ง1โˆง๐‘ง2(๐‘š,๐‘›)(โˆ’๐‘š,โˆ’๐‘›) โ‹… ๐œ‘(๐‘š,๐‘›) = ๐‘’2๐œ‹๐‘–(๐‘ข๐‘š๐‘€ + ๐‘ฃ๐‘›

๐‘

)๐œ‘+(๐‘š,๐‘›) ๐‘ฃโˆ’๐‘–(๐‘š,๐‘›)

+ ๐‘’โˆ’2๐œ‹๐‘–(๐‘ข๐‘š๐‘€ + ๐‘ฃ๐‘›

๐‘

)๐œ‘โˆ’(๐‘š,๐‘›) ๐‘ฃ๐‘–(๐‘š,๐‘›) (4.8)

where ๐‘ฃโˆ’๐‘–, respectively ๐‘ฃ๐‘–, is the unit eigenspinor field of eigenvalueโˆ’๐‘–, respectively๐‘–, relatively to the operator ๐‘ง1 โˆง ๐‘ง2 โ‹… (here โ‹… denotes the Clifford multiplication).Consequently

โ„ฑ(๐œ‘)(๐‘ข, ๐‘ฃ) =(๐œ‘+

โˆ’1(๐‘ข, ๐‘ฃ), ๐œ‘โˆ’(๐‘ข, ๐‘ฃ)

)(4.9)

in the frame (๐‘ฃโˆ’๐‘–, ๐‘ฃ๐‘–), where ห† and ห† โˆ’1 denote the Fourier transform on

๐ฟ2(โ„ค/๐‘€โ„คร— โ„ค/๐‘โ„ค,โ„‚),

also called discrete Fourier transform, and its inverse.

4.2. Spinor Field Decomposition

The inverse Cliffordโ€“Fourier transform of ๐œ‘ is

โ„ฑโˆ’1(๐œ‘)(๐‘ข, ๐‘ฃ) =โˆ‘

๐‘›โˆˆโ„ค/๐‘โ„ค

๐‘šโˆˆโ„ค/๐‘€โ„ค

๐œŒ๐‘ข,๐‘ฃ,๐‘ง1โˆง๐‘ง2(๐‘š,๐‘›)(๐‘š,๐‘›) โ‹… ๐œ‘(๐‘š,๐‘›) (4.10)

This means that every spinor field ๐œ‘ may be written as a superposition of basicspinor fields, i.e.,

๐œ‘ =โˆ‘

๐œ‘๐‘š,๐‘› (4.11)

where

๐œ‘๐‘š,๐‘› : (๐‘ข, ๐‘ฃ) ๏ฟฝโˆ’โ†’ ๐œŒ๐‘ข,๐‘ฃ,๐‘ง1โˆง๐‘ง2(๐‘š,๐‘›)(๐‘š,๐‘›) โ‹… โ„ฑ(๐œ‘)(๐‘š,๐‘›) (4.12)

Page 211: Quaternion and Clifford Fourier Transforms and Wavelets

188 T. Batard and M. Berthier

Following the splitting ๐‘†(ฮฃ) = ๐‘†+๐‘ง1โˆง๐‘ง2(ฮฃ)โŠ• ๐‘†โˆ’๐‘ง1โˆง๐‘ง2(ฮฃ), we have

๐œ‘๐‘š,๐‘› =(๐œ‘+๐‘š,๐‘›, ๐œ‘

โˆ’๐‘š,๐‘›

)in the frame (๐‘ฃโˆ’๐‘–, ๐‘ฃ๐‘–), with

๐œ‘+๐‘š,๐‘› : (๐‘ข, ๐‘ฃ) ๏ฟฝโˆ’โ†’ ๐‘’โˆ’2๐œ‹๐‘–(๐‘ข๐‘š/๐‘€+๐‘ฃ๐‘›/๐‘)๐œ‘+

โˆ’1(๐‘š,๐‘›)

and

๐œ‘โˆ’๐‘š,๐‘› : (๐‘ข, ๐‘ฃ) ๏ฟฝโˆ’โ†’ ๐‘’2๐œ‹๐‘–(๐‘ข๐‘š/๐‘€+๐‘ฃ๐‘›/๐‘)๐œ‘โˆ’(๐‘š,๐‘›)

Moreover,

โˆฃ๐œ‘๐‘š,๐‘›โˆฃ2 = โˆฃ๐œ‘+๐‘š,๐‘›โˆฃ2 + โˆฃ๐œ‘โˆ’๐‘š,๐‘›โˆฃ2

since ๐‘†+๐‘ง1โˆง๐‘ง2(ฮฃ) and ๐‘†โˆ’๐‘ง1โˆง๐‘ง2(ฮฃ) are orthogonal.

4.3. Experiments

Let us now give an example of applications of the Cliffordโ€“Fourier transform onspinor fields to image processing. In order to perform filtering with the decompo-sition (4.11), we proceed as follows. Let ๐ผ be a grey-level image, and ๐œ‘โˆ— be thecorresponding spinor representation given in Definition 2.2. We apply a Gaussianmask ๐‘‡๐œŽ of variance ๐œŽ in the spectrum โ„ฑ๐œ‘โˆ— of ๐œ‘โˆ—. Then, we consider the norm ofits inverse Fourier transform, i.e., โˆฃโ„ฑโˆ’1๐‘‡๐œŽโ„ฑ๐œ‘โˆ—โˆฃ and the function โˆฃโ„ฑโˆ’1๐‘‡๐œŽโ„ฑ๐œ‘โˆ—โˆฃ ๐ผ.

Figures 2 and 3 show results of this process for different values of ๐œŽ (leftcolumn โˆฃโ„ฑโˆ’1๐‘‡๐œŽโ„ฑ๐œ‘โˆ—โˆฃ and right column โˆฃโ„ฑโˆ’1๐‘‡๐œŽโ„ฑ๐œ‘โˆ—โˆฃ ๐ผ). It is clear that for ๐œŽ suffi-ciently high, we have โˆฃโ„ฑโˆ’1๐‘‡๐œŽโ„ฑ๐œ‘โˆ—โˆฃ ๐ผ โ‰ƒ ๐ผ and โˆฃโ„ฑโˆ’1๐‘‡๐œŽโ„ฑ๐œ‘โˆ—โˆฃ โ‰ƒ 1 since โˆฃ๐œ‘โˆ—โˆฃ = 1. Thisexplains why the two left lower images are almost white and the two right lowerimages are almost the same as the originals.

We can see in the left columns of Figures 2 and 3 that the filtering actsthrough ๐œ‘โˆ— as a smoothing of the geometry of the image. More precisely, when ๐œŽis small, the modulus โˆฃโ„ฑโˆ’1๐‘‡๐œŽโ„ฑ๐œ‘โˆ—โˆฃ is small at points corresponding to nearly allthe geometric variations of the image. When ๐œŽ increases the modulus is affectedonly at points corresponding to the strongest geometric variations, i.e., to bothedges and textures (and also where the noise is high).

The right columns of Figures 2 and 3 show that the filtering acts throughโˆฃโ„ฑโˆ’1๐‘‡๐œŽโ„ฑ๐œ‘โˆ—โˆฃ ๐ผ as a diffusion that leaves the geometric data untouched (the higherthe value of ๐œŽ, the more important is the diffusion). This appears clearly in Figure 4(compare the plumes of the hat) or in Figure 5 (compare the hair).

These experiments show that our approach is relevant to deal with harmonicanalysis together with Riemannian geometry.

Conclusion

Spin geometry is a powerful mathematical tool to deal with many theoreticaland applied geometric problems. In this chapter we have shown how to take ad-vantage of the generalized Weierstrass representation to perform grey-level imageprocessing, in particular edge and texture detection. Our main contribution is the

Page 212: Quaternion and Clifford Fourier Transforms and Wavelets

9. Cliffordโ€“Fourier Transform 189

Figure 2. Left: โˆฃโ„ฑโˆ’1(๐‘‡๐œŽ โ„ฑ๐œ‘โˆ—)โˆฃ for ๐œŽ = 100, 1000, 10000, 100000 (fromtop to bottom). Right: โˆฃโ„ฑโˆ’1(๐‘‡๐œŽ โ„ฑ๐œ‘โˆ—)โˆฃ๐ผ

definition of a Cliffordโ€“Fourier transform for spinor fields that relies on a general-ization of the usual notion of character (the spin character). One important factis that this new transform takes into account the Riemannian geometry of the

Page 213: Quaternion and Clifford Fourier Transforms and Wavelets

190 T. Batard and M. Berthier

Figure 3. Left: โˆฃโ„ฑโˆ’1(๐‘‡๐œŽ โ„ฑ๐œ‘โˆ—)โˆฃ for ๐œŽ = 100, 1000, 10000, 100000 (fromtop to bottom). Right: โˆฃโ„ฑโˆ’1(๐‘‡๐œŽ โ„ฑ๐œ‘โˆ—)โˆฃ๐ผ

image surface by involving the spinor field that parameterizes the normal and thebivector field coding the tangent plane. We have also introduced what appears to

Page 214: Quaternion and Clifford Fourier Transforms and Wavelets

9. Cliffordโ€“Fourier Transform 191

Figure 4. Left: original. Right: โˆฃโ„ฑโˆ’1๐‘‡๐œŽโ„ฑ๐œ‘โˆ—โˆฃ ๐ผ with ๐œŽ = 100

Figure 5. Left: original. Right: โˆฃโ„ฑโˆ’1๐‘‡๐œŽโ„ฑ๐œ‘โˆ—โˆฃ ๐ผ with ๐œŽ = 100

be a harmonic decomposition of the parametrization and investigated applicationsto filtering.

Note that there are only two cases where the Grassmannian ๐บ๐‘›,2 of 2-planesin โ„๐‘› admits a rational parametrization. In fact, one can show that ๐บ3,2 โ‰ƒ โ„‚๐‘ƒ 1

and ๐บ4,2 โ‰ƒ โ„‚๐‘ƒ 1 ร—โ„‚๐‘ƒ 1 (see [9]). The case treated here corresponds to ๐บ3,2. As aconsequence the generalization to colour images is not straightforward. Neverthe-less, a quite different approach is possible to tackle this problem and will be thesubject of a forthcoming paper.

Let us also mention that one may envisage performing diffusion on grey-levelimages through the heat equation given by the Dirac operator. The latter is wellknown be a square root of the Laplacian. Preliminary results are discussed in [2]that show that this diffusion better preserves edges and textures than the usualRiemannian approaches.

Page 215: Quaternion and Clifford Fourier Transforms and Wavelets

192 T. Batard and M. Berthier

Appendix A. Mathematical Background

We recall here some definitions and results concerning spin geometry. The readermay refer to [7] for details and conventions. We focus on the particular case of anoriented surface immersed in โ„3.

A.1. Complex Representations of ๐‘ชโ„“3,0 โŠ— โ„‚

Let (๐‘’1, ๐‘’2, ๐‘’3) be an orthonormal basis of โ„3. The Clifford algebra ๐ถโ„“3,0 is thequotient of the tensor algebra of the vectorial space โ„3 by the ideal generatedby the elements ๐‘ขโŠ— ๐‘ข+๐‘„(๐‘ข) where ๐‘„ is the Euclidean quadratic form. It can beshown that ๐ถโ„“3,0 is isomorphic to the product โ„ร—โ„ of two copies of the quaternionalgebra. The complex Clifford algebra ๐ถโ„“3,0โŠ—โ„‚ is isomorphic to โ„‚(2)โŠ•โ„‚(2) whereโ„‚(2) denotes the algebra of 2ร—2-matrices with complex entries. This decompositionis given by

๐ถโ„“3,0 โŠ— โ„‚ โ‰ƒ (๐ถโ„“3,0 โŠ— โ„‚)+ โŠ• (๐ถโ„“3,0 โŠ— โ„‚)โˆ’ (A.1)

where(๐ถโ„“3,0 โŠ— โ„‚)ยฑ = (1ยฑ ๐œ”3)๐ถโ„“3,0 โŠ— โ„‚ (A.2)

and ๐œ”3 is the pseudoscalar ๐’†1๐’†2๐’†3. More precisely, the subalgebra (๐ถโ„“3,0 โŠ—โ„‚)+ isgenerated by the elements

๐›ผ1 =1 + ๐’†1๐’†2๐’†3

2, ๐›ผ2 =

๐’†2๐’†3 โˆ’ ๐’†1

2, ๐›ผ3 =

๐’†2 + ๐’†1๐’†3

2, ๐›ผ4 =

๐’†3 โˆ’ ๐’†1๐’†2

2(A.3)

and an isomorphism with โ„‚(2) is given by sending these elements to the matrices

๐ด1 =

(1 00 1

), ๐ด2 =

(0 ๐‘–๐‘– 0

), ๐ด3 =

(๐‘– 00 โˆ’๐‘–

), ๐ด4 =

(0 1

โˆ’1 0

). (A.4)

In the same way, (๐ถโ„“3,0 โŠ— โ„‚)โˆ’ is generated by

๐›ฝ1 =1โˆ’ ๐’†1๐’†2๐’†3

2, ๐›ฝ2 =

๐’†2๐’†3 + ๐’†1

2, ๐›ฝ3 =

๐’†1๐’†3 โˆ’ ๐’†2

2, ๐›ฝ4 =

โˆ’๐’†3 โˆ’ ๐’†1๐’†2

2(A.5)

and an isomorphism is given by sending these elements to the above matrices ๐ด1,๐ด2, ๐ด3 and ๐ด4.

Let us denote by ๐œŒ the natural representation of โ„‚(2) on โ„‚2. The two equiv-alent classes ๐œŒ1 and ๐œŒ2 of irreducible complex representations of ๐ถโ„“3,0 โŠ— โ„‚ aregiven by

๐œŒ1(๐œ‘1 + ๐œ‘2) = ๐œŒ(๐œ‘1) ๐œŒ2(๐œ‘1 + ๐œ‘2) = ๐œŒ(๐œ‘2). (A.6)

They are characterized by

๐œŒ1(๐œ”3) = ๐ผ๐‘‘ and ๐œŒ2(๐œ”3) = โˆ’๐ผ๐‘‘ (A.7)

For the sake of completeness, let us list these representations explicitly:

๐œŒ1(1) = ๐œŒ(๐›ผ1) = ๐ด1, ๐œŒ1(๐’†1) = ๐œŒ(โˆ’๐›ผ2) = โˆ’๐ด2

๐œŒ1(๐’†2) = ๐œŒ(๐›ผ3) = ๐ด3, ๐œŒ1(๐’†3) = ๐œŒ(๐›ผ4) = ๐ด4

๐œŒ1(๐’†1๐’†2) = ๐œŒ(โˆ’๐›ผ4) = โˆ’๐ด4, ๐œŒ1(๐’†1๐’†3) = ๐œŒ(๐›ผ3) = ๐ด3

๐œŒ1(๐’†2๐’†3) = ๐œŒ(๐›ผ2) = ๐ด2, ๐œŒ1(๐œ”3) = ๐œŒ(๐›ผ1) = ๐ด1

(A.8)

Page 216: Quaternion and Clifford Fourier Transforms and Wavelets

9. Cliffordโ€“Fourier Transform 193

and

๐œŒ2(1) = ๐œŒ(๐›ฝ1) = ๐ด1, ๐œŒ2(๐’†1) = ๐œŒ(๐›ฝ2) = ๐ด2

๐œŒ2(๐’†2) = ๐œŒ(โˆ’๐›ฝ3) = โˆ’๐ด3, ๐œŒ2(๐’†3) = ๐œŒ(โˆ’๐›ฝ4) = โˆ’๐ด4

๐œŒ2(๐’†1๐’†2) = ๐œŒ(โˆ’๐›ฝ4) = โˆ’๐ด4, ๐œŒ2(๐’†1๐’†3) = ๐œŒ(๐›ฝ3) = ๐ด3

๐œŒ2(๐’†2๐’†3) = ๐œŒ(๐›ฝ2) = ๐ด2, ๐œŒ2(๐œ”3) = ๐œŒ(โˆ’๐›ฝ1) = โˆ’๐ด1.

(A.9)

The complex spin representation of Spin(3) is the homomorphism

ฮ”3 : Spin(3) โˆ’โ†’ โ„‚(2) (A.10)

given by restricting an irreducible complex representation of ๐ถโ„“3,0โŠ—โ„‚ to the spinorgroup Spin(3) โŠ‚ (๐ถโ„“3,0 โŠ— โ„‚)0 (see for example [4] for the definition of the Spingroup). Note that ฮ”3 is independant of the chosen representation.

A.2. Spin Structures and Spinor Bundles

Let us denote by ๐‘€ the Riemannian manifold โ„3 and ๐‘ƒ๐‘†๐‘‚(๐‘€) the principal๐‘†๐‘‚(3)-bundle of oriented orthonormal frames of ๐‘€ . A spin structure on ๐‘€ is aprincipal Spin(3)-bundle ๐‘ƒSpin(๐‘€) together with a 2-sheeted covering

๐‘ƒSpin(๐‘€) โˆ’โ†’ ๐‘ƒ๐‘†๐‘‚(๐‘€) (A.11)

that is compatible with ๐‘†๐‘‚(3) and Spin(3) actions. The Spinor bundle ๐‘†(๐‘€)is the bundle associated to the spin structure ๐‘ƒSpin(๐‘€) and the complex spinrepresentation ฮ”3. More precisely, it is the quotient of the product ๐‘ƒSpin(๐‘€)ร—โ„‚2

by the action

Spin(3)ร— ๐‘ƒSpin(๐‘€)ร— โ„‚2 โˆ’โ†’ ๐‘ƒSpin(๐‘€)ร— โ„‚2 (A.12)

that sends (๐œ, ๐‘, ๐‘ง) to (๐‘๐œโˆ’1,ฮ”3(๐œ)๐‘ง). We will write

๐‘†(๐‘€) = ๐‘ƒSpin(๐‘€)ร—ฮ”3 โ„‚2. (A.13)

It appears that the fiber bundle ๐‘†(๐‘€) is a bundle of complex left modules overthe Clifford bundle ๐ถ๐‘™(๐‘€) = ๐‘ƒSpin(๐‘€)ร—๐ด๐‘‘ โ„‚๐‘™(3) of ๐‘€ . In the sequel

(๐‘ข, ๐œ™) ๏ฟฝโˆ’โ†’ ๐‘ข โ‹… ๐œ™ (A.14)

denotes the corresponding multiplication for ๐‘ข โˆˆ ๐‘‡ (๐‘€) and ๐œ™ a section of ๐‘†(๐‘€).We consider now an oriented surface ฮฃ embedded in ๐‘€ . Let us denote by

(๐‘ง1, ๐‘ง2) an orthonormal frame of ๐‘‡ (ฮฃ) and ๐œˆ the global unit field normal to ฮฃ.Using the map

(๐‘ง1, ๐‘ง2) ๏ฟฝโˆ’โ†’ (๐‘ง1, ๐‘ง2, ๐œˆ) (A.15)

it is possible to pull back the bundle ๐‘ƒSpin(๐‘€)โˆฃฮฃ to obtain a spin structure ๐‘ƒSpin(ฮฃ)

on ฮฃ. Since ๐ถโ„“2,0 โŠ— โ„‚ is isomorphic to (๐ถโ„“3,0 โŠ— โ„‚)0 under the map ๐›ผ defined by

๐›ผ(๐œ‚0 + ๐œ‚1) = ๐œ‚0 + ๐œ‚1๐œˆ (A.16)

the algebra ๐ถโ„“2,0 โŠ—โ„‚ acts on โ„‚2 via ๐œŒ2. This representation leads to the complexspinor representation ฮ”2 of Spin(2). It can be shown that the induced bundle

๐‘†(ฮฃ) = ๐‘ƒSpin(ฮฃ)ร—ฮ”3โˆ˜๐›ผ โ„‚2 (A.17)

Page 217: Quaternion and Clifford Fourier Transforms and Wavelets

194 T. Batard and M. Berthier

coincides with the spinor bundle of the induced spin structure on ฮฃ. Once again๐‘†(ฮฃ) is a bundle of complex left modules over the Clifford bundle ๐ถ๐‘™(ฮฃ) of ฮฃ: theClifford multiplication is given by the map

(๐‘ฃ, ๐œ‘) ๏ฟฝโˆ’โ†’ ๐‘ฃ โ‹… ๐œˆ โ‹… ๐œ‘ (A.18)

for ๐‘ฃ โˆˆ ๐‘‡ (ฮฃ) and ๐œ‘ a section of ๐‘‡ (ฮฃ).The Spinor bundle ๐‘†(ฮฃ) decomposes into

๐‘†(ฮฃ) = ๐‘†+(ฮฃ)โŠ• ๐‘†โˆ’(ฮฃ) (A.19)

where

๐‘†ยฑ(ฮฃ) = {๐œ‘ โˆˆ ๐‘†(ฮฃ), ๐‘– โ‹… ๐‘ง1 โ‹… ๐‘ง2 โ‹… ๐œ‘ = ยฑ๐œ‘} (A.20)

(compare [5]). Since ๐œŒ2(๐‘ง1๐‘ง2๐œˆ) is minus the identity, this is equivalent to

๐‘†ยฑ(ฮฃ) = {๐œ‘ โˆˆ ๐‘†(ฮฃ), ๐‘–๐œˆ โ‹… ๐œ‘ = ยฑ๐œ‘}. (A.21)

A.3. Spinor Connections and Dirac Operators

Let โˆ‡๐‘€ and โˆ‡ฮฃ be the Leviโ€“Civita connections on the tangent bundles ๐‘‡ (๐‘€)and ๐‘‡ (ฮฃ) respectively. The classical Gauss formula asserts that

โˆ‡๐‘€๐‘‹ ๐‘Œ = โˆ‡ฮฃ

๐‘‹๐‘Œ โˆ’ โŸจโˆ‡๐‘€๐‘‹ ๐œˆ, ๐‘Œ โŸฉ๐œˆ (A.22)

where ๐‘‹ and ๐‘Œ are vector fields on ฮฃ. A similar formula exists when dealing withspinor fields. Let us first recall that one may construct on ๐‘†(๐‘€) and ๐‘†(ฮฃ) somespinor Leviโ€“Civita connections compatible with the Clifford multiplication, thatis connections which we continue to denote by โˆ‡๐‘€ and โˆ‡ฮฃ verifying

โˆ‡๐‘€๐‘‹ (๐‘Œ โ‹… ๐œ‘) = (โˆ‡๐‘€

๐‘‹ ๐‘Œ ) โ‹… ๐œ‘+ ๐‘Œ โ‹… โˆ‡๐‘€๐‘‹ ๐œ‘ (A.23)

when ๐‘‹ and ๐‘Œ are vector fields on ๐‘€ and ๐œ‘ is a section of ๐‘†(๐‘€) and a similarformula for โˆ‡ฮฃ. The analog of the Gauss formula reads

โˆ‡๐‘€๐‘‹ ๐œ‘ = โˆ‡ฮฃ

๐‘‹๐œ‘โˆ’ 1

2(โˆ‡๐‘€

๐‘‹ ๐œˆ) โ‹… ๐œˆ โ‹… ๐œ‘ (A.24)

for ๐œ‘ a section of ๐‘†(ฮฃ) and ๐‘‹ a vector field on ฮฃ (see [1] for a proof). If (๐‘ง1, ๐‘ง2) isan orthonormal frame of ๐‘‡ (ฮฃ), following [5], the Dirac operator on ๐‘†(ฮฃ) is definedby

๐ท = ๐‘ง1 โ‹… โˆ‡ฮฃ๐‘ง1 + ๐‘ง2 โ‹… โˆ‡ฮฃ

๐‘ง2 (A.25)

and it can be verified that ๐ท๐‘†ยฑ(ฮฃ) โŠ‚ ๐‘†โˆ“(ฮฃ).Let now ๐œ™ and ๐œ‘ be respectively a section of ๐‘†(๐‘€) and the section of ๐‘†(ฮฃ)

given by the restriction ๐œ™โˆฃฮฃ. We obtain from the Gauss spinor formula

๐‘ง1 โ‹… โˆ‡๐‘€๐‘ง1๐œ™+ ๐‘ง2 โ‹… โˆ‡๐‘€

๐‘ง2๐œ™ = ๐ท๐œ‘โˆ’ 1

2(๐‘ง1 โ‹… (โˆ‡๐‘€

๐‘ง1 ๐œˆ) โ‹… ๐œˆ โ‹… ๐œ‘+ ๐‘ง2 โ‹… (โˆ‡๐‘€๐‘ง2 ๐œˆ) โ‹… ๐œˆ โ‹… ๐œ‘). (A.26)

Since

๐‘ง1 โ‹… (โˆ‡๐‘€๐‘ง1 ๐œˆ) + ๐‘ง2 โ‹… (โˆ‡๐‘€

๐‘ง2 ๐œˆ) = โˆ’2๐ป (A.27)

where ๐ป is the mean curvature of ฮฃ, it follows that

๐ท๐œ‘ = ๐‘ง1 โ‹… โˆ‡๐‘€๐‘ง1๐œ™+ ๐‘ง2 โ‹… โˆ‡๐‘€

๐‘ง2๐œ™โˆ’๐ป โ‹… ๐œˆ โ‹… ๐œ‘. (A.28)

Page 218: Quaternion and Clifford Fourier Transforms and Wavelets

9. Cliffordโ€“Fourier Transform 195

References

[1] C. Bar. Metrics with harmonic spinors.Geometric and Functional Analysis, 6(6):899โ€“942, 1996.

[2] T. Batard and M. Berthier. The spinor representation of images. In K. Gurlebeck,editor, 9th International Conference on Clifford Algebras and their Applications,Weimar, Germany, 15โ€“20 July 2011.

[3] T. Batard, M. Berthier, and C. Saint-Jean. Clifford Fourier transform for color im-age processing. In E.J. Bayro-Corrochano and G. Scheuermann, editors, GeometricAlgebra Computing in Engineering and Computer Science, pages 135โ€“162. Springer,London, 2010.

[4] T. Batard, C.S. Jean, and M. Berthier. A metric approach to nD images edge detec-tion with Clifford algebras. Journal of Mathematical Imaging and Vision, 33:296โ€“312,2009.

[5] T. Friedrich. On the spinor representation of surfaces in Euclidean 3-space. Journalof Geometry and Physics, 28:143โ€“157, 1998.

[6] B. Lawson. Lectures on minimal manifolds, volume I, volume 9 of Mathematics Lec-ture Series. Publish or Perish Inc., Wilmington, Del., second edition, 1980.

[7] B. Lawson and M.-L. Michelson. Spin Geometry. Princeton University Press, Prince-ton, New Jersey, 1989.

[8] R. Osserman. A survey of minimal surfaces. Dover Publications, Inc., New York,second edition, 1986.

[9] I.A. Taimanov. Two-dimensional Dirac operator and surface theory. Russian Math-ematical Surveys, 61(1):79โ€“159, 2006.

[10] S.D. Zenzo. A note on the gradient of a multi-image. Computer Vision, Graphics,and Image Processing, 33:116โ€“125, 1986.

Thomas BatardDepartment of Applied MathematicsTel Aviv UniversityRamat AvivTel Aviv 69978, Israele-mail: [email protected]

Michel BerthierMIA LaboratoryLa Rochelle UniversityAvenue Michel CrepeauF-17042 La Rochelle, Francee-mail: [email protected]

Page 219: Quaternion and Clifford Fourier Transforms and Wavelets

Quaternion and Cliffordโ€“Fourier Transforms and Wavelets

Trends in Mathematics, 197โ€“219cโƒ 2013 Springer Basel

10 Analytic Video (2D + ๐’•) SignalsUsing Cliffordโ€“Fourier Transformsin Multiquaternion Grassmannโ€“Hamiltonโ€“Clifford Algebras

P.R. Girard, R. Pujol, P. Clarysse, A. Marion,R. Goutte and P. Delachartre

Abstract. We present an algebraic framework for (2D+ ๐‘ก) video analytic sig-nals and a numerical implementation thereof using Clifford biquaternions andCliffordโ€“Fourier transforms. Though the basic concepts of Cliffordโ€“Fouriertransforms are well known, an implementation of analytic video sequences us-ing multiquaternion algebras does not seem to have been realized so far. Aftera short presentation of multiquaternion Clifford algebras and Cliffordโ€“Fouriertransforms, a brief pedagogical review of 1D and 2D quaternion analytic sig-nals using right quaternion Fourier transforms is given. Then, the biquater-nion algebraic framework is developed to express Cliffordโ€“Fourier transformsand (2D + ๐‘ก) video analytic signals in standard and polar form constitutedby a scalar, a pseudoscalar and six phases. The phase extraction procedure isfully detailed. Finally, a numerical implementation using discrete fast Fouriertransforms of an analytic multiquaternion video signal is provided.

Mathematics Subject Classification (2010). Primary 15A66; secondary 42A38.

Keywords. Multiquaternion Clifford algebras, Clifford biquaternions, Cliffordโ€“Fourier transforms, 2D + ๐‘ก analytic video signals.

1. Introduction

In recent decades, new algebraic structures based on Clifford algebras have beendeveloped [19,31]. Many of these developments use a geometric approach whereaswe propose an algebraic multiquaternion approach [10โ€“12]. This chapter focuses ona (2D+ ๐‘ก) Clifford biquaternion analytic signal using Cliffordโ€“Fourier transforms[1, 29]. After a short pedagogical review of 1D complex and 2D quaternion ana-lytic signals using right quaternion Fourier transforms, we shall provide a concrete

Page 220: Quaternion and Clifford Fourier Transforms and Wavelets

198 P.R. Girard et al.

algebraic Clifford biquaternion framework for the Cliffordโ€“Fourier transform, theanalytic Cliffordโ€“Fourier transform and the analytic signal both in standard andpolar form. Finally, we shall give a numerical implementation, using discrete fastFourier transforms, of a (2D + ๐‘ก) video analytic signal.

2. Multiquaternion Grassmannโ€“Hamiltonโ€“Clifford Algebras

In 1844, in his Ausdehnungslehre, Hermann Gunther Grassmann (1809โ€“1877) laidthe foundations of an ๐‘›-dimensional associative multivector calculus [14โ€“16,27]. Ayear before, in 1843, William Rowan Hamilton (1805โ€“1865) discovered the quater-nions and later on, was to introduce biquaternions [6, 22โ€“24]. In 1878, WilliamKingdon Clifford (1845โ€“1879) was to give a concise definition of Clifford algebrasand to demonstrate a theorem relating Grassmannโ€™s system to Hamiltonโ€™s quater-nions [4],[5, pp. 266โ€“276]. Due to this close connection, we shall refer to Cliffordalgebras also as Grassmannโ€“Hamiltonโ€“Clifford algebras or multiquaternion alge-bras [13, 17, 18].

Definition 2.1. A Clifford algebra ๐ถ๐‘› is an algebra composed of ๐‘› generators๐’†1, ๐’†2, . . . , ๐’†๐‘› multiplying according to the rule ๐’†๐‘–๐’†๐‘— = โˆ’๐’†๐‘—๐’†๐‘– (๐‘– โˆ•= ๐‘—) and suchthat ๐’†2

๐‘– = ยฑ1. The algebra ๐ถ๐‘› contains 2๐‘› elements constituted by the ๐‘› genera-tors, the various products ๐’†๐‘–๐’†๐‘— , ๐’†๐‘–๐’†๐‘—๐’†๐‘˜, . . . and the unit element 1.

Theorem 2.2. If ๐‘› = 2๐‘š (๐‘š : integer), the Clifford algebra ๐ถ2๐‘š is the tensorproduct of ๐‘š quaternion algebras. If ๐‘› = 2๐‘šโˆ’ 1, the Clifford algebra ๐ถ2๐‘šโˆ’1 is thetensor product of ๐‘š โˆ’ 1 quaternion algebras and the algebra (1, ๐œ–) where ๐œ– is theproduct of the 2๐‘š generators (๐œ– = ๐’†1๐’†2 . . .๐’†2๐‘š) of the algebra ๐ถ2๐‘š.

Examples of Clifford algebras are the complex numbers โ„‚ (with ๐’†1 = ๐‘–),quaternionsโ„ (๐’†1 = ๐’Š, ๐’†2 = ๐’‹), biquaternions (๐’†1 = ๐ผ๐’Š, ๐’†2 = ๐ผ๐’‹, ๐’†3 = ๐ผ๐’Œ, ๐ผ2 = โˆ’1,๐ผ commuting with ๐’Š, ๐’‹,๐’Œ, ๐’†2

๐‘– = 1) and tetraquaternions โ„ โŠ— โ„ (๐’†0 = ๐’‹, ๐’†1 =๐’Œ๐‘ฐ, ๐’†2 = ๐’Œ๐‘ฑ , ๐’†3 = ๐’Œ๐‘ฒ, where the small ๐’Š, ๐’‹,๐’Œ commute with the capital ๐‘ฐ,๐‘ฑ ,๐‘ฒ).These examples prove the Clifford theorem up to dimension ๐‘› = 4.

3. Analytic Signal in ๐‘ต Dimensions

Consider a Grassmannโ€“Hamiltonโ€“Clifford algebra having ๐‘› generators ๐’†๐‘› (with๐’†2๐‘› = โˆ’1) and let ๐ด be a general element of this algebra [7, 21]. Call ๐พ[๐ด] the

conjugate of ๐ด such that

๐พ(๐ด๐ต) = ๐พ(๐ต)๐พ(๐ด),๐พ(๐’†๐‘›) = โˆ’๐’†๐‘›. (3.1)

Given a function ๐‘“ (๐’™) having its value in the Clifford algebra with ๐’™ = (๐‘ฅ1, ๐‘ฅ2,. . ., ๐‘ฅ๐‘›), let ๐น (๐’–) with ๐’– = (๐‘ข1, ๐‘ข2, . . . , ๐‘ข๐‘›) denote the Cliffordโ€“Fourier transform

๐น (๐’–) =

โˆซโ„๐‘›

๐‘“(๐’™)๐‘›โˆ

๐‘˜=1

๐‘’โˆ’๐’†๐‘˜2๐œ‹๐‘ข๐‘˜๐‘ฅ๐‘˜๐‘‘๐‘›๐’™. (3.2)

Page 221: Quaternion and Clifford Fourier Transforms and Wavelets

10. Analytic Video (2D + ๐‘ก) Signals 199

The inverse Cliffordโ€“Fourier transform is given by

๐‘“(๐’™) =

โˆซโ„๐‘›

๐น (๐’–)

๐‘›โˆ’1โˆ๐‘˜=0

๐‘’๐’†๐‘›โˆ’๐‘˜2๐œ‹๐‘ข๐‘›โˆ’๐‘˜๐‘ฅ๐‘›โˆ’๐‘˜๐‘‘๐‘›๐’–. (3.3)

Proof. Inserting ๐น (๐’–) in the equation above, one obtains after integration respec-tively over ๐‘‘๐‘›๐’– and ๐‘‘๐‘›๐’™โ€ฒ [29]โˆซ

โ„2๐‘›

๐‘“(๐’™โ€ฒ)๐‘›โˆ

๐‘—=1

๐‘’โˆ’๐’†๐‘—2๐œ‹๐‘ข๐‘—๐‘ฅโ€ฒ๐‘—๐‘‘๐‘›๐’™โ€ฒ

๐‘›โˆ’1โˆ๐‘˜=0

๐‘’๐’†๐‘›โˆ’๐‘˜2๐œ‹๐‘ข๐‘›โˆ’๐‘˜๐‘ฅ๐‘›โˆ’๐‘˜๐‘‘๐‘›๐’– (3.4)

=

โˆซโ„๐‘›

๐‘“(๐’™โ€ฒ)๐›ฟ๐‘› (๐’™โˆ’ ๐’™โ€ฒ) ๐‘‘๐‘›๐’™โ€ฒ = ๐‘“(๐’™). โ–ก

Given two functions ๐‘“ (๐’™) , ๐‘” (๐’™) taking their values in the Clifford algebra,define the following product

โŸจ๐‘“ (๐’™) , ๐‘” (๐’™)โŸฉ = 1

2

โˆซโ„๐‘›

[๐‘“๐พ (๐‘”) + ๐‘”๐พ (๐‘“)] ๐‘‘๐‘›๐’™ (3.5)

and similarly โŸจ๐น (๐’–) , ๐บ (๐’–)โŸฉ. These products satisfy Plancherelโ€™s theorem

โŸจ๐‘“ (๐’™) , ๐‘” (๐’™)โŸฉ = โŸจ๐น (๐’–) , ๐บ (๐’–)โŸฉ (3.6)

Proof.

๐‘“(๐’™) =

โˆซโ„๐‘›

๐น (๐’–)๐‘’๐’†๐‘›2๐œ‹๐‘ข๐‘›๐‘ฅ๐‘› . . . ๐‘’๐’†12๐œ‹๐‘ข1๐‘ฅ1๐‘‘๐‘›๐’– (3.7)

๐พ๐‘”(๐’™) =

โˆซโ„๐‘›

๐‘’โˆ’๐’†12๐œ‹๐‘ขโ€ฒ1๐‘ฅ1 . . . ๐‘’โˆ’๐’†๐‘›2๐œ‹๐‘ขโ€ฒ

๐‘›๐‘ฅ๐‘›๐พ [๐บ(๐’–โ€ฒ)] ๐‘‘๐‘›๐’–โ€ฒ. (3.8)

After integration over ๐‘‘๐‘›๐’™, one has

1

2

โˆซโ„๐‘›

๐‘“ (๐’™)๐พ [๐‘” (๐’™)] ๐‘‘๐‘›๐’™ =1

2

โˆซโ„2๐‘›

๐น (๐’–) ๐›ฟ๐‘› (๐’–โˆ’ ๐’–โ€ฒ)๐พ [๐บ (๐’–โ€ฒ)] ๐‘‘๐‘›๐’–๐‘‘๐‘›๐’–โ€ฒ

=1

2

โˆซโ„๐‘›

๐น (๐’–)๐พ [๐บ (๐’–)] ๐‘‘๐‘›๐’–; (3.9)

similarly,

1

2

โˆซโ„๐‘›

๐‘” (๐’™)๐พ [๐‘“ (๐’™)] ๐‘‘๐‘›๐’™ =1

2

โˆซโ„2๐‘›

๐บ (๐’–) ๐›ฟ๐‘› (๐’–โˆ’ ๐’–โ€ฒ)๐พ [๐น (๐’–โ€ฒ)] ๐‘‘๐‘›๐’–๐‘‘๐‘›๐’–โ€ฒ

=1

2

โˆซโ„๐‘›

๐บ (๐’–)๐พ [๐น (๐’–)] ๐‘‘๐‘›๐’–. (3.10)

Hence, adding the last two equations, one obtains equation (3.5). โ–ก

Page 222: Quaternion and Clifford Fourier Transforms and Wavelets

200 P.R. Girard et al.

Next consider a real scalar function ๐‘“ (๐’™) and its Cliffordโ€“Fourier transform๐น (๐’–), the analytic Cliffordโ€“Fourier transform ๐น๐ด(๐’–) and the analytic signal ๐‘“๐ด(๐’™)are respectively defined by

๐น๐ด(๐’–) =

๐‘›โˆ๐‘˜=1

[1 + sign (๐‘ข๐‘˜)]๐น (๐’–) (3.11)

๐‘“๐ด(๐’™) =

โˆซโ„๐‘›

๐น๐ด(๐’–)

๐‘›โˆ’1โˆ๐‘˜=0

๐‘’๐’†๐‘›โˆ’๐‘˜2๐œ‹๐‘ข๐‘›โˆ’๐‘˜๐‘ฅ๐‘›โˆ’๐‘˜๐‘‘๐‘›๐’– (3.12)

with sign(๐‘ข๐‘˜) yielding โˆ’1, 0, or 1 depending on whether ๐‘ข๐‘˜ is negative, zero orpositive. In particular, the analytic signal satisfies the Parseval relation

โŸจ๐‘“๐ด (๐’™) , ๐‘“๐ด (๐’™)โŸฉ = โŸจ๐น๐ด (๐’–) , ๐น๐ด (๐’–)โŸฉ . (3.13)

4. Analytic Signals in 1 and 2 Dimensions

4.1. Complex 1D Analytic Signal

The one-dimensional analytic signal notion was introduced by D. Gabor [9] andJ. Ville [30] in 1948. Within the Clifford algebra framework it can be presentedas follows. Using the complex numbers as Clifford algebra (๐’†1 = ๐‘–) for modeling1D physics, the Cliffordโ€“Fourier transform of a scalar function ๐‘“(๐‘ฅ1) is simply thestandard Fourier transform

๐น (๐‘ข1) =

โˆซ โˆž

โˆ’โˆž๐‘“(๐‘ฅ1)๐‘’

โˆ’๐‘–2๐œ‹๐‘ข1๐‘ฅ1๐‘‘๐‘ฅ1 (4.1)

with the inverse transformation

๐‘“(๐‘ฅ1) =

โˆซ โˆž

โˆ’โˆž๐น (๐‘ข1)๐‘’

๐‘–2๐œ‹๐‘ข1๐‘ฅ1๐‘‘๐‘ข1. (4.2)

Furthermore, one defines the scalar product of two functions ๐‘“(๐‘ฅ1), ๐‘”(๐‘ฅ1) as

โŸจ๐‘“(๐‘ฅ1), ๐‘”(๐‘ฅ1)โŸฉ = 1

2

โˆซ โˆž

โˆ’โˆž(๐‘“๐‘”โˆ— + ๐‘”๐‘“โˆ—) ๐‘‘๐‘ฅ1 (4.3)

where ๐‘“โˆ—(๐‘ฅ1), ๐‘”โˆ—(๐‘ฅ1) are the complex conjugate functions. A few properties of the

Fourier transform are recalled in Table 1.Under an orthogonal symmetry transforming the basis vector ๐’†1 into โˆ’๐’†1 one

has ๐น (โˆ’๐‘ข1) = ๐น (๐‘ข1)โˆ— where ๐น (๐‘ข1)

โˆ— is the complex conjugate of ๐น (๐‘ข1). Hence,only one orthant (๐‘ข1 โ‰ฅ 0) of the Fourier domain is necessary to obtain the signal.The analytic Fourier transform is defined by

๐น๐ด(๐‘ข1) = [1 + sign(๐‘ข1)]๐น (๐‘ข1) (4.4)

and the analytic signal by

๐‘“๐ด(๐‘ฅ1) =

โˆซ โˆž

โˆ’โˆž๐น๐ด(๐‘ข1)๐‘’

๐‘–2๐œ‹๐‘ข1๐‘ฅ1๐‘‘๐‘ข1. (4.5)

Page 223: Quaternion and Clifford Fourier Transforms and Wavelets

10. Analytic Video (2D + ๐‘ก) Signals 201

Table 1. Properties of the complex Fourier transform (๐‘Ž, ๐‘ โˆˆ โ„)

Property Complex function Fourier transform

Linearity ๐‘Ž๐‘“ (๐‘ฅ1) + ๐‘๐‘” (๐‘ฅ1) ๐‘Ž๐น (๐‘ข1) + ๐‘๐บ (๐‘ข1)Translation ๐‘“ (๐‘ฅ1 โˆ’ ๐‘ฅ0) ๐‘’โˆ’๐‘–2๐œ‹๐‘ข1๐‘ฅ0๐น (๐‘ข1)

Scaling ๐‘“ (๐‘Ž๐‘ฅ1)1โˆฃ๐‘Žโˆฃ๐น

(๐‘ข1๐‘Ž)

Partial derivativeโˆ‚๐‘Ÿ๐‘“ (๐‘ฅ1)

โˆ‚๐‘ฅ๐‘Ÿ1(๐‘–2๐œ‹๐‘ข1)

๐‘Ÿ ๐น (๐‘ข1)

Plancherel โŸจ๐‘“, ๐‘”โŸฉ = โŸจ๐น,๐บโŸฉParseval โŸจ๐‘“, ๐‘“โŸฉ = โŸจ๐น, ๐น โŸฉ

The analytic signal satisfies Plancherelโ€™s theoremโˆซ โˆž

โˆ’โˆžโˆฃ๐‘“๐ด(๐‘ฅ1)โˆฃ2 ๐‘‘๐‘ฅ1 =

โˆซ โˆž

โˆ’โˆžโˆฃ๐น๐ด(๐‘ข1)โˆฃ2 ๐‘‘๐‘ข1. (4.6)

As example, consider the function ๐‘“(๐‘ฅ) = ๐‘Ž cos ๐œ”๐‘ก which yields the analytic signal๐‘“๐ด = ๐‘Ž๐‘’๐‘–๐œ”๐‘ก. The instantaneous amplitude and the instantaneous phase of a realsignal ๐‘“ at a given position ๐‘ฅ can be defined as the modulus and the angularargument of the complex-valued analytic signal. Therefore, the analytic signalplays a key role in one-dimensional signal processing. It is also important to notethat the analytic signal concept is global, i.e., ๐‘“๐ด(๐‘ฅ) depends on the whole of theoriginal signal and not only on values at positions near ๐‘ฅ. This concept can besummarized into three main properties:

1. The analytic signal has a one-sided spectrum;2. The original signal can be reconstructed from its analytic signal (in particular,

the real part of the analytic signal is equal to the original signal);3. The local amplitude (envelope) and the local phase of the original signal

can be derived as the modulus and angular argument of the analytic signalrespectively.

4.2. Quaternion 2D Analytic Signal

4.2.1. Clifford Algebra. The analytic signal notion can be extended to the 2D casein several ways [2, 3, 8, 20, 25]. Taking the quaternions โ„ as a Clifford algebra, itcontains the elements

[1, ๐’†1 = ๐’Š, ๐’†2 = ๐’‹, ๐’†1๐’†2 = ๐’Œ] . (4.7)

Hence, a general element ๐‘ž can be expressed as

๐‘ž = ๐‘ž0 + ๐’Š๐‘ž1 + ๐’‹๐‘ž2 + ๐’Œ๐‘ž3

= [๐‘ž0, ๐‘ž1, ๐‘ž2, ๐‘ž3] (4.8)

the conjugate ๐‘ž๐‘ being

๐‘ž๐‘ = [๐‘ž0,โˆ’๐‘ž1,โˆ’๐‘ž2,โˆ’๐‘ž3] . (4.9)

Page 224: Quaternion and Clifford Fourier Transforms and Wavelets

202 P.R. Girard et al.

Figure 1. Orthogonal symmetry with respect to a straight line.

A 2D vector is expressed by ๐‘‹ = ๐’Š๐‘ž1+๐’‹๐‘ž2 with ๐‘‹๐‘‹๐‘ = โˆ’๐‘‹2 = (๐‘ž1)2+(๐‘ž2)

2,a bivector by ๐ต = ๐’Œ๐‘ž3 and a scalar by ๐‘ž0.

Under an orthogonal symmetry with respect to a straight line passing throughthe origin and perpendicular to the unit vector ๐‘Ž = ๐’Š๐‘Ž1+๐’‹๐‘Ž2, (๐‘Ž๐‘Ž๐‘ = 1), a vector istransformed into the vector ๐‘‹ โ€ฒ = ๐‘Ž๐‘‹๐‘Ž

๐‘Ž๐‘Ž๐‘= ๐‘Ž๐‘‹๐‘Ž [10, p. 76], a bivector ๐ต = ๐‘‹ โˆง๐‘Œ =

โˆ’ 12 (๐‘‹๐‘Œ โˆ’ ๐‘Œ ๐‘‹) into ๐ตโ€ฒ = โˆ’๐‘Ž๐ต๐‘Ž, whereas a scalar remains invariant (Figure 1).

Hence, the entire quaternion transforms as

๐‘žโ€ฒ = ๐‘Žโˆ—๐‘ž๐‘Žโˆ—๐‘ (4.10)

where ๐‘Žโˆ— = ๐’Œ๐‘Ž is the dual of ๐‘Ž (๐‘Žโˆ—๐‘ = ๐‘Ž๐‘๐’Œ๐‘ = ๐‘Ž๐’Œ). One verifies the conservation ofthe square of the norm of the quaternion ๐‘žโ€ฒ๐‘žโ€ฒ๐‘ = ๐‘ž๐‘ž๐‘ under an orthogonal symme-try. Equation (4.10) allows us to deduce the involution formulas developed belowwhich are useful for the comprehension of the properties of the analytic Cliffordquaternion Fourier transform and the extraction of phases. In particular, if ๐‘Ž = ๐’Š(orthogonal symmetry with respect to the ๐‘ฆ-axis), one has

๐‘žโ€ฒ = ๐พ1(๐‘ž) = ๐’Šโˆ—๐‘ž๐’Šโˆ—๐‘ = ๐’Œ๐’Š๐‘ž๐’Š๐’Œ = โˆ’๐’‹๐‘ž๐’‹ = ๐‘ž0 โˆ’ ๐’Š๐‘ž1 + ๐’‹๐‘ž2 โˆ’ ๐’Œ๐‘ž3 (4.11)

where ๐พ1(๐‘ž) is an involution of ๐‘ž. Similarly, if ๐‘Ž = ๐’‹ (orthogonal symmetry withrespect to the ๐‘ฅ-axis)

๐‘žโ€ฒ = ๐พ2(๐‘ž) = ๐’‹โˆ—๐‘ž๐’‹โˆ—๐‘ = ๐’Œ๐’‹๐‘ž๐’‹๐’Œ = โˆ’๐’Š๐‘ž๐’Š = ๐‘ž0 + ๐’Š๐‘ž1 โˆ’ ๐’‹๐‘ž2 โˆ’ ๐’Œ๐‘ž3. (4.12)

A combination of the two above orthogonal symmetries (๐’Š โ†’ โˆ’๐’Š, ๐’‹ โ†’ โˆ’๐’‹) yieldsa rotation of ๐œ‹ around the origin

๐‘žโ€ฒ = ๐พ12(๐‘ž) = ๐’Š๐’‹๐‘ž๐’‹๐’Š = โˆ’๐’Œ๐‘ž๐’Œ = ๐‘ž0 โˆ’ ๐’Š๐‘ž1 โˆ’ ๐’‹๐‘ž2 + ๐’Œ๐‘ž3. (4.13)

Page 225: Quaternion and Clifford Fourier Transforms and Wavelets

10. Analytic Video (2D + ๐‘ก) Signals 203

Table 2. Properties of the right quaternion Fourier transform (๐‘Ž, ๐‘ โˆˆ โ„)

Property scalar functions RQFT

Linearity ๐‘Ž๐‘“ (๐‘ฅ1, ๐‘ฅ2) + ๐‘๐‘” (๐‘ฅ1, ๐‘ฅ2) ๐‘Ž๐น (๐‘ข1, ๐‘ข2) + ๐‘๐บ (๐‘ข1, ๐‘ข2)Translation ๐‘“ (๐‘ฅ1 โˆ’ ๐‘Ž1, ๐‘ฅ2 โˆ’ ๐‘Ž2) ๐‘’โˆ’๐’Š2๐œ‹๐‘ข1๐‘Ž1๐น (๐‘ข1, ๐‘ข2)๐‘’

โˆ’๐’‹2๐œ‹๐‘ข2๐‘Ž2

Scaling ๐‘“ (๐‘Ž1๐‘ฅ1, ๐‘Ž2๐‘ฅ2)1โˆฃ๐‘Ž1โˆฃ

1โˆฃ๐‘Ž2โˆฃ๐น

(๐‘ข1๐‘Ž1

, ๐‘ข2๐‘Ž2

)Partial derivative

โˆ‚๐‘Ÿ๐‘“โˆ‚๐‘ฅ๐‘Ÿ1

(๐‘ฅ1, ๐‘ฅ2) ๐น (๐‘ข1, ๐‘ข2) (๐’Š2๐œ‹๐‘ข1)๐‘Ÿ

(๐‘ž = 4๐‘) (2๐œ‹๐‘ข2)๐‘ž๐น (๐‘ข1, ๐‘ข2)

(๐‘ž = 4๐‘+ 1)โˆ‚๐‘ž๐‘“โˆ‚๐‘ฅ๐‘ž2

(๐‘ฅ1, ๐‘ฅ2) (2๐œ‹๐‘ข2)๐‘ž๐‘—๐พ1[๐น (๐‘ข1, ๐‘ข2)]

(๐‘ž = 4๐‘+ 2) โˆ’ (2๐œ‹๐‘ข2)๐‘ž๐น (๐‘ข1, ๐‘ข2)

(๐‘ž = 4๐‘+ 3) โˆ’ (2๐œ‹๐‘ข2)๐‘ž ๐‘—๐พ1[๐น (๐‘ข1, ๐‘ข2)]

Plancherel โŸจ๐‘“, ๐‘”โŸฉ = โŸจ๐น,๐บโŸฉParseval โŸจ๐‘“, ๐‘“โŸฉ = โŸจ๐น, ๐น โŸฉ

4.2.2. Right Quaternion Fourier Transform (RQFT). As Cliffordโ€“Fourier trans-form, we shall take the right quaternion Fourier transform [1, 26, 28]

๐น (๐‘ข1, ๐‘ข2) =

โˆซโ„2

๐‘“(๐‘ฅ1, ๐‘ฅ2)๐‘’โˆ’๐’Š2๐œ‹๐‘ข1๐‘ฅ1๐‘’โˆ’๐’‹2๐œ‹๐‘ข2๐‘ฅ2๐‘‘๐‘ฅ1๐‘‘๐‘ฅ2 (4.14)

and its inverse transform

๐‘“(๐‘ฅ1, ๐‘ฅ2) =

โˆซโ„2

๐น (๐‘ข1, ๐‘ข2)๐‘’๐’‹2๐œ‹๐‘ข2๐‘ฅ2๐‘’๐’Š2๐œ‹๐‘ข1๐‘ฅ1๐‘‘๐‘ข1๐‘‘๐‘ข2. (4.15)

The scalar product of two quaternion functions ๐‘“(๐’™), ๐‘”(๐’™) with (๐’™) = (๐‘ฅ1, ๐‘ฅ2) isdefined by

โŸจ๐‘“(๐’™), ๐‘”(๐’™)โŸฉ = 1

2

โˆซโ„2

(๐‘“๐‘”๐‘ + ๐‘”๐‘“๐‘) ๐‘‘๐‘ฅ1๐‘‘๐‘ฅ2 (4.16)

where ๐‘”๐‘, ๐‘“๐‘ are the quaternion conjugates. Table 2 lists a few properties of theright Fourier transform.

From the definition of the QFT and the above orthogonal symmetry proper-ties, it follows that with (๐’–) = (๐‘ข1, ๐‘ข2)

๐น (โˆ’๐‘ข1, ๐‘ข2) = ๐พ1 [๐น (๐’–)] = โˆ’๐’‹๐น (๐’–)๐’‹ (4.17)

๐น (๐‘ข1,โˆ’๐‘ข2) = ๐พ2 [๐น (๐’–)] = โˆ’๐’Š๐น (๐’–)๐’Š (4.18)

๐น (โˆ’๐‘ข1,โˆ’๐‘ข2) = ๐พ12 [๐น (๐’–)] = โˆ’๐’Œ๐น (๐’–)๐’Œ (4.19)

Hence, only one orthant of the Fourier space is necessary to represent the entireFourier space (Figure 2).

4.2.3. Analytic Signal. The analytic quaternion Fourier transform (Figure 3) isdefined as

๐น๐ด(๐’–) = [1 + sign(๐‘ข1)] [1 + sign(๐‘ข2)]๐น (๐’–) (4.20)

Page 226: Quaternion and Clifford Fourier Transforms and Wavelets

204 P.R. Girard et al.

๏ฟฝ๐‘ข1

๏ฟฝ๐‘ข2

๐น (๐‘ข1, ๐‘ข2)๐น (โˆ’๐‘ข1, ๐‘ข2)= ๐พ1[๐น (๐‘ข1, ๐‘ข2)]= โˆ’๐’‹๐น (๐‘ข1, ๐‘ข2)๐’‹

๐น (โˆ’๐‘ข1,โˆ’๐‘ข2)= ๐พ12[๐น (๐‘ข1, ๐‘ข2)]= โˆ’๐’Œ๐น (๐‘ข1, ๐‘ข2)๐’Œ

๐น (๐‘ข1,โˆ’๐‘ข2)= ๐พ2[๐น (๐‘ข1, ๐‘ข2)]= โˆ’๐’Š๐น (๐‘ข1, ๐‘ข2)๐’Š

Figure 2. The quaternion Fourier spectrum of a real signal can bereconstructed from only one quadrant of the Fourier plane.

๏ฟฝ๐‘ข1

๏ฟฝ๐‘ข2

4๐น (๐‘ข1, ๐‘ข2)

Figure 3. The spectrum of the analytic quaternion Fourier transformis obtained from only one quadrant.

and the analytic signal by

๐‘“๐ด(๐’™) =

โˆซโ„2

๐น๐ด(๐’–)๐‘’๐’‹2๐œ‹๐‘ข2๐‘ฅ2๐‘’๐’Š2๐œ‹๐‘ข1๐‘ฅ1๐‘‘๐‘ข1๐‘‘๐‘ข2. (4.21)

The analytic signal satisfies Plancherelโ€™s theoremโˆซโ„2

๐‘“๐ด(๐’™) [๐‘“๐ด(๐’™)]๐‘ ๐‘‘๐‘ฅ1๐‘‘๐‘ฅ2 =

โˆซโ„2

๐น๐ด(๐’–) [๐น๐ด(๐’–)]๐‘ ๐‘‘๐‘ข1๐‘‘๐‘ข2. (4.22)

Page 227: Quaternion and Clifford Fourier Transforms and Wavelets

10. Analytic Video (2D + ๐‘ก) Signals 205

Table 3. Examples of analytic signals.

Function Analytic signal

cos๐œ”1๐‘ฅ1 cos๐œ”2๐‘ฅ2 ๐‘’๐’‹๐œ”2๐‘ฅ2๐‘’๐’Š๐œ”1๐‘ฅ1

sin๐œ”1๐‘ฅ1 sin๐œ”2๐‘ฅ2 ๐’Œ๐‘’๐’‹๐œ”2๐‘ฅ2๐‘’๐’Š๐œ”1๐‘ฅ1

sin๐œ”1๐‘ฅ1 cos๐œ”2๐‘ฅ2 โˆ’๐’Š๐‘’๐’‹๐œ”2๐‘ฅ2๐‘’๐’Š๐œ”1๐‘ฅ1

cos๐œ”1๐‘ฅ1 sin๐œ”2๐‘ฅ2 โˆ’๐’‹๐‘’๐’‹๐œ”2๐‘ฅ2๐‘’๐’Š๐œ”1๐‘ฅ1

cos (๐œ”1๐‘ฅ1 ยฑ ๐œ”2๐‘ฅ2 + ๐œ‘) (1โˆ“ ๐’Œ) ๐‘’๐’‹๐œ‘๐‘’๐’‹๐œ”2๐‘ฅ2๐‘’๐’Š๐œ”1๐‘ฅ1

Examples of analytic signals are given in Table 3. The analytic signal being aquaternion, it can be represented as

๐‘ž = โˆฃ๐‘žโˆฃ ๐‘’๐’Œ๐œƒ3๐‘’๐’‹๐œƒ2๐‘’๐’Š๐œƒ1 = โˆฃ๐‘žโˆฃ ๐‘Ÿ (4.23)

with โˆฃ๐‘žโˆฃ = โˆš๐‘ž๐‘ž๐‘ and where ๐‘Ÿ = ๐‘’๐’Œ๐œƒ3๐‘’๐’‹๐œƒ2๐‘’๐’Š๐œƒ1 is a unit quaternion (๐‘Ÿ๐‘Ÿ๐‘ = 1). The

procedure of extracting the triplet of phases (๐œƒ1, ๐œƒ2, ๐œƒ3) is recalled below [29].Using the involutions ๐พ1,๐พ2,๐พ12 defined above one has (with โˆ— representing thequaternion multiplication)

๐‘‘2 = ๐‘Ÿ โˆ— [๐พ2 (๐‘Ÿ)]๐‘

= [cos 2๐œƒ2 cos 2๐œƒ3, 0, sin 2๐œƒ2, cos 2๐œƒ2 sin 2๐œƒ3] (4.24)

๐‘‘12 = [๐พ12 (๐‘Ÿ)]๐‘ โˆ— ๐‘Ÿ= [cos 2๐œƒ1 cos 2๐œƒ2, cos 2๐œƒ2 sin 2๐œƒ1, sin 2๐œƒ2, 0] . (4.25)

From ๐‘‘2 one obtains ๐œƒ2 = 12 arcsin๐‘‘2(3) where ๐‘‘2(3) means the third component

of ๐‘‘2. If cos 2๐œƒ2 โˆ•= 0, one has

๐œƒ3 =Arg [๐‘‘2 (1) + ๐‘–๐‘‘2(4)]

2, ๐œƒ1 =

Arg [๐‘‘12(1) + ๐‘–๐‘‘12(2)]

2. (4.26)

If cos 2๐œƒ2 = 0 (๐œƒ2 = ยฑ๐œ‹/4), one has an indeterminacy and only (๐œƒ1 ยฑ ๐œƒ3) can bedetermined; adopting the choice ๐œƒ3 = 0, one has

๐‘‘1 = ๐‘Ÿ โˆ— [๐พ1 (๐‘Ÿ)]๐‘ = [cos 2๐œƒ1, 0, 0,โˆ“ sin 2๐œƒ1] (4.27)

and thus

๐œƒ1 = โˆ“๐ด๐‘Ÿ๐‘” [๐‘‘1(1) + ๐‘–๐‘‘1(4)]

2. (4.28)

Finally, having determined the phases (๐œƒ1, ๐œƒ2, ๐œƒ3) one computes ๐‘’๐‘˜๐œƒ3๐‘’๐‘—๐œƒ2๐‘’๐‘–๐œƒ1 ; if itis equal to โˆ’๐‘Ÿ and ๐œƒ3 โ‰ฅ 0, one takes ๐œƒ3 โˆ’ ๐œ‹; if one has โˆ’๐‘Ÿ and ๐œƒ3 < 0 then onetakes ๐œƒ3 + ๐œ‹. Hence, the domain of the phases is

(๐œƒ1, ๐œƒ2, ๐œƒ3) โˆˆ[โˆ’๐œ‹

2,๐œ‹

2

]โˆช[โˆ’๐œ‹

2,๐œ‹

2

]โˆช [โˆ’๐œ‹, ๐œ‹[ . (4.29)

Page 228: Quaternion and Clifford Fourier Transforms and Wavelets

206 P.R. Girard et al.

5. Clifford Biquaternion 2D + ๐’• Analytic Signal: Implementation

5.1. Clifford Biquaternion Algebra

In 2D + ๐‘ก dimensions, we shall take as Clifford algebra, Clifford biquaternionshaving as generators (๐’†1 = ๐œ–๐‘–, ๐’†2 = ๐œ–๐‘—, ๐’†3 = ๐œ–๐‘˜, ๐œ– = ๐‘–โ€ฒ๐ผ, ๐œ–2 = 1, ๐’†2

๐‘– = โˆ’1) with ๐‘–โ€ฒ

designating the usual complex imaginary (๐‘–โ€ฒ2 = โˆ’1) and where the tensor product๐ผ = 1โŠ— ๐‘– (๐ผ2 = โˆ’1) commutes with ๐‘– = ๐‘–โŠ— 1, ๐‘— = ๐‘— โŠ— 1, ๐‘˜ = ๐‘˜โŠ— 1; ๐’†1 correspondsto the time axis ๐‘ฅ1, ๐’†2 and ๐’†3 correspond respectively to the ๐‘ฅ2 and ๐‘ฅ3 axes. Thefull algebra contains the elements[

1 ๐‘– = ๐’†2๐’†3 ๐‘— = ๐’†3๐’†1 ๐‘˜ = ๐’†1๐’†2

๐œ– = ๐‘–โ€ฒ๐ผ = โˆ’๐’†1๐’†2๐’†3 ๐’†1 = ๐œ–๐‘– ๐’†2 = ๐œ–๐‘— ๐’†3 = ๐œ–๐‘˜

]. (5.1)

Hence, a general element of the algebra can be expressed as a Clifford biquaternion(a clifbquat for short)

๐ด = ๐‘+ ๐œ–๐‘ž

= (๐‘0 + ๐‘–๐‘1 + ๐‘—๐‘2 + ๐‘˜๐‘3) + ๐œ–(๐‘ž0 + ๐‘–๐‘ž1 + ๐‘—๐‘ž2 + ๐‘˜๐‘ž3)

= [๐‘0, ๐‘1, ๐‘2, ๐‘3] + ๐œ– [๐‘ž0, ๐‘ž1, ๐‘ž2, ๐‘ž3] (5.2)

where ๐‘, ๐‘ž are quaternions. The product of two clifbquats ๐ด and ๐ต = ๐‘โ€ฒ + ๐œ–๐‘žโ€ฒ isgiven by

๐ด๐ต = (๐‘+ ๐œ–๐‘ž) (๐‘โ€ฒ + ๐œ–๐‘žโ€ฒ)

= (๐‘๐‘โ€ฒ + ๐‘ž๐‘žโ€ฒ) + ๐œ– (๐‘๐‘žโ€ฒ + ๐‘ž๐‘โ€ฒ) . (5.3)

The conjugate of ๐ด is

๐ด๐‘ = ๐‘๐‘ + ๐œ–๐‘ž๐‘

= [๐‘0,โˆ’๐‘1,โˆ’๐‘2,โˆ’๐‘3] + ๐œ– [๐‘ž0,โˆ’๐‘ž1,โˆ’๐‘ž2,โˆ’๐‘ž3] (5.4)

where ๐‘๐‘, ๐‘ž๐‘ are respectively the quaternion conjugates of ๐‘ and ๐‘ž. The complexconjugate of ๐ด is

๐ด = ๐‘โˆ’ ๐œ–๐‘ž. (5.5)

A vector is expressed by

๐‘Ž = ๐œ–(๐‘–๐‘Ž1 + ๐‘—๐‘Ž2 + ๐‘˜๐‘Ž3) (5.6)

with ๐‘Ž๐‘Ž๐‘ = ๐‘Ž21 + ๐‘Ž2

2 + ๐‘Ž23, a bivector by ๐ต = ๐‘Ž โˆง ๐‘ = โˆ’ 1

2 (๐‘Ž๐‘โˆ’ ๐‘๐‘Ž) , a trivector by

๐‘‡ = ๐‘ โˆง๐ต = 12 (๐‘๐ต +๐ต๐‘). A unit vector ๐‘Ž is defined by ๐‘Ž๐‘Ž๐‘ = 1.

Under an orthogonal symmetry with respect to a hyperplane (space of dimen-sion ๐‘› โˆ’ 1) perpendicular to a unit vector ๐‘Ž, a vector ๐‘‹ is transformed into thevector ๐‘‹ โ€ฒ = ๐‘Ž๐‘‹๐‘Ž, a bivector ๐ต into ๐ตโ€ฒ = โˆ’๐‘Ž๐ต๐‘Ž and a trivector ๐‘‡ into ๐‘‡ โ€ฒ = ๐‘Ž๐‘‡๐‘Ž,whereas a scalar remains invariant. These formulas allow us to derive the trans-formation of a clifbquat under an arbitrary orthogonal symmetry (Figure 4). Inparticular, if ๐‘Ž = ๐œ–๐‘– (orthogonal symmetry with respect to the hyperplane ๐‘‚๐‘ฅ2๐‘ฅ3),one has the involution

๐ดโ€ฒ = ๐พ1 (๐ด) = [๐‘0, ๐‘1,โˆ’๐‘2,โˆ’๐‘3] + ๐œ– [โˆ’๐‘ž0,โˆ’๐‘ž1, ๐‘ž2, ๐‘ž3] . (5.7)

Page 229: Quaternion and Clifford Fourier Transforms and Wavelets

10. Analytic Video (2D + ๐‘ก) Signals 207

Figure 4. Orthogonal symmetry with respect to a hyperplane.

Similarly, if ๐‘Ž = ๐œ–๐‘— (orthogonal symmetry with respect to the hyperplane ๐‘‚๐‘ฅ1๐‘ฅ3),one has

๐ดโ€ฒ = ๐พ2(๐ด) = [๐‘0,โˆ’๐‘1, ๐‘2,โˆ’๐‘3] + ๐œ– [โˆ’๐‘ž0, ๐‘ž1,โˆ’๐‘ž2, ๐‘ž3] . (5.8)

If ๐‘Ž = ๐œ–๐‘˜, one has

๐ดโ€ฒ = ๐พ3(๐ด) = [๐‘0,โˆ’๐‘1,โˆ’๐‘2, ๐‘3] + ๐œ– [โˆ’๐‘ž0, ๐‘ž1, ๐‘ž2,โˆ’๐‘ž3] . (5.9)

A combination of ๐พ1 followed by ๐พ2 leads to a rotation of ๐œ‹ around the origin

๐ดโ€ฒ = ๐พ12(๐ด) = ๐‘Ÿ๐ด๐‘Ÿ๐‘ = [๐‘0,โˆ’๐‘1,โˆ’๐‘2, ๐‘3] + ๐œ– [๐‘ž0,โˆ’๐‘ž1,โˆ’๐‘ž2, ๐‘ž3] (5.10)

with ๐‘Ÿ = ๐‘—๐‘– = โˆ’๐‘˜. Similarly,

๐ดโ€ฒ = ๐พ13(๐ด) = [๐‘0,โˆ’๐‘1, ๐‘2,โˆ’๐‘3] + ๐œ– [๐‘ž0,โˆ’๐‘ž1, ๐‘ž2,โˆ’๐‘ž3] (5.11)

๐ดโ€ฒ = ๐พ23(๐ด) = [๐‘0, ๐‘1,โˆ’๐‘2,โˆ’๐‘3] + ๐œ– [๐‘ž0, ๐‘ž1,โˆ’๐‘ž2,โˆ’๐‘ž3] . (5.12)

A combination of three symmetries leads to

๐ดโ€ฒ = ๐พ123(๐ด) = [๐‘0, ๐‘1, ๐‘2, ๐‘3] + ๐œ– [โˆ’๐‘ž0,โˆ’๐‘ž1,โˆ’๐‘ž2,โˆ’๐‘ž3] . (5.13)

5.2. Cliffordโ€“Fourier Transform

The Cliffordโ€“Fourier 2D+ ๐‘ก transform and its inverse are respectively defined with๐’™ = (๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3), and ๐’– = (๐‘ข1, ๐‘ข2, ๐‘ข3) by

๐น (๐’–) =

โˆซ๐‘…3

๐‘“(๐’™)๐‘’โˆ’๐œ–๐‘–2๐œ‹๐‘ข1๐‘ฅ1๐‘’โˆ’๐œ–๐‘—2๐œ‹๐‘ข2๐‘ฅ2๐‘’โˆ’๐œ–๐‘˜2๐œ‹๐‘ข3๐‘ฅ3๐‘‘๐‘ฅ1๐‘‘๐‘ฅ2๐‘‘๐‘ฅ3 (5.14)

๐‘“(๐’™) =

โˆซ๐‘…3

๐น (๐’–)๐‘’๐œ–๐‘˜2๐œ‹๐‘ข3๐‘ฅ3๐‘’๐œ–๐‘—2๐œ‹๐‘ข2๐‘ฅ2๐‘’๐œ–2๐œ‹๐‘ข1๐‘ฅ1๐‘‘๐‘ข1๐‘‘๐‘ข2๐‘‘๐‘ข3. (5.15)

Page 230: Quaternion and Clifford Fourier Transforms and Wavelets

208 P.R. Girard et al.

Table 4. Computation principle of the Cliffordโ€“Fourier transform(CFT) with a clifbquat entry (for the inverse CFT, the formulas arethe same except that the FFT is replaced by an IFFT and the integra-tion order is reversed: ๐‘ฅ3, ๐‘ฅ2, ๐‘ฅ1).

CFT of ๐‘“(x) = [๐‘1, ๐‘2, ๐‘3, ๐‘4] + ๐œ– [๐‘5, ๐‘6, ๐‘7, ๐‘8]

real component: ๐‘๐œ‡ (x) = ๐‘Ž (x)FFT on ๐‘ฅ1 : ๐‘Ž1 + ๐œ–๐‘–๐‘Ž2

FFT on ๐‘ฅ2 : (๐‘Ž1๐›ผ + ๐œ–๐‘—๐‘Ž1๐›ฝ) + ๐œ–๐‘– (๐‘Ž2๐›ผ + ๐œ–๐‘—๐‘Ž2๐›ฝ)FFT on ๐‘ฅ3 : (๐‘Ž1๐›ผ๐›พ + ๐œ–๐‘˜๐‘Ž1๐›ผ๐›ฟ) + ๐œ–๐‘— (๐‘Ž1๐›ฝ๐›พ + ๐œ–๐‘˜๐‘Ž1๐›ฝ๐›ฟ)

+๐œ–๐‘– [(๐‘Ž2๐›ผ๐›พ + ๐œ–๐‘˜๐‘Ž2๐›ผ๐›ฟ) + ๐œ–๐‘— (๐‘Ž2๐›ฝ๐›พ + ๐œ–๐‘˜๐‘Ž2๐›ฝ๐›ฟ)]๐น๐œ‡ = ๐ถ๐น๐‘‡ (๐‘๐œ‡) = [๐‘Ž1๐›ผ๐›พ , ๐‘Ž1๐›ฝ๐›ฟ,โˆ’๐‘Ž2๐›ผ๐›ฟ, ๐‘Ž2๐›ฝ๐›พ ] +๐œ– [โˆ’๐‘Ž2๐›ฝ๐›ฟ, ๐‘Ž2๐›ผ๐›พ , ๐‘Ž1๐›ฝ๐›พ , ๐‘Ž1๐›ผ๐›ฟ]

CFT(๐‘“)=(๐น1 + ๐‘–๐น2 + ๐‘—๐น3 + ๐‘˜๐น4) + ๐œ– (๐น5 + ๐‘–๐น6 + ๐‘—๐น7 + ๐‘˜๐น8)

Considering two clifbquat functions ๐‘“(๐’™) and ๐‘”(๐’™), one defines the product

โŸจ๐‘“, ๐‘”โŸฉ = 1

2

โˆซโ„3

(๐‘“๐‘”๐‘ + ๐‘”๐‘“๐‘) ๐‘‘๐‘ฅ1๐‘‘๐‘ฅ2๐‘‘๐‘ฅ3 (5.16)

which satisfies Plancherelโ€™s theorem

โŸจ๐‘“ (๐’™) , ๐‘” (๐’™)โŸฉ = โŸจ๐น (๐’–) , ๐บ (๐’–)โŸฉ . (5.17)

To compute the direct Cliffordโ€“Fourier transform (CFT), one proceeds in cascadeintegrating first with respect to ๐‘ฅ1 using a standard FFT. A second FFT (inte-gration with respect to ๐‘ฅ2) is then applied to each real component of the previouscomplex number. Then, a third FFT (integration on ๐‘ฅ3) is applied on each of theresulting real components. Finally, all the components are properly displayed asa clifbquat. For the inverse Cliffordโ€“Fourier transform, one proceeds in the sameway on each real component of the clifbquat using an IFFT and reversing theorder of integration (see Table 4).

The above involutions lead to the following symmetries of the Cliffordโ€“Fouriertransform of a scalar function ๐‘“(๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3)

๐น (โˆ’๐‘ข1, ๐‘ข2, ๐‘ข3) = ๐พ1 [๐น (๐’–)] , ๐น (๐‘ข1,โˆ’๐‘ข2, ๐‘ข3) = ๐พ2 [๐น (๐’–)] (5.18)

๐น (๐‘ข1, ๐‘ข2,โˆ’๐‘ข3) = ๐พ3 [๐น (๐’–)] , ๐น (โˆ’๐‘ข1,โˆ’๐‘ข2, ๐‘ข3) = ๐พ12 [๐น (๐’–)] (5.19)

๐น (โˆ’๐‘ข1, ๐‘ข2,โˆ’๐‘ข3) = ๐พ13 [๐น (๐’–)] , ๐น (๐‘ข1,โˆ’๐‘ข2,โˆ’๐‘ข3) = ๐พ23 [๐น (๐’–)] (5.20)

๐น (โˆ’๐‘ข1,โˆ’๐‘ข2,โˆ’๐‘ข3) = ๐พ123 [๐น (๐’–)] . (5.21)

Hence, only one orthant of the Fourier space is necessary to represent the en-tire Fourier space. A few properties of the Cliffordโ€“Fourier transform of a scalarfunction are given in Table 5.

5.3. Analytic Signal

The analytic Cliffordโ€“Fourier transform is defined by

๐น๐ด(๐’–) = [1 + sign (๐‘ข1)] [1 + sign (๐‘ข2)] [1 + sign (๐‘ข3)]๐น (๐’–) (5.22)

Page 231: Quaternion and Clifford Fourier Transforms and Wavelets

10. Analytic Video (2D + ๐‘ก) Signals 209

Table 5. Properties of the Cliffordโ€“Fourier transform of a scalar func-tion (๐‘Ž, ๐‘ โˆˆ โ„).

Property Functions CFT

Linearity ๐‘Ž๐‘“ (๐’™) + ๐‘๐‘” (๐’™) ๐‘Ž๐น (๐’–) + ๐‘๐บ (๐’–)Translation ๐‘“ (๐‘ฅ1 โˆ’ ๐‘Ž1, ๐‘ฅ2, ๐‘ฅ3 โˆ’ ๐‘Ž3) ๐‘’โˆ’๐œ–๐‘–2๐œ‹๐‘ข1๐‘Ž1๐น (๐’–)๐‘’โˆ’๐œ–๐‘˜2๐œ‹๐‘ข3๐‘Ž3

Scaling ๐‘“ (๐‘Ž1๐‘ฅ1, ๐‘Ž2๐‘ฅ2, ๐‘Ž3๐‘ฅ3)1โˆฃ๐‘Ž1โˆฃ

1โˆฃ๐‘Ž2โˆฃ

1โˆฃ๐‘Ž3โˆฃ๐น

(๐‘ข1๐‘Ž1

, ๐‘ข2๐‘Ž2

, ๐‘ข3๐‘Ž3

)Partial derivative

โˆ‚๐‘Ÿ๐‘“โˆ‚๐‘ฅ๐‘Ÿ1

(๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3) ๐น (๐’–) (๐œ–๐‘–2๐œ‹๐‘ข1)๐‘Ÿ

(๐‘ž = 4๐‘) (2๐œ‹๐‘ข2)๐‘ž๐น (๐’–)

(๐‘ž = 4๐‘+ 1)โˆ‚๐‘ž๐‘“โˆ‚๐‘ฅ๐‘ž2

(๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3) (2๐œ‹๐‘ข2)๐‘ž๐œ–๐‘—๐พ1[๐น (๐’–)]

(๐‘ž = 4๐‘+ 2) โˆ’ (2๐œ‹๐‘ข2)๐‘ž๐น (๐’–)

(๐‘ž = 4๐‘+ 3) โˆ’ (2๐œ‹๐‘ข2)๐‘ž ๐œ–๐‘—๐พ1[๐น (๐’–)]

โˆ‚๐‘Ÿ๐‘“โˆ‚๐‘ฅ๐‘Ÿ3

(๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3) ๐น (๐’–) (๐œ–๐‘˜2๐œ‹๐‘ข3)๐‘Ÿ

Plancherel โŸจ๐‘“, ๐‘”โŸฉ = โŸจ๐น,๐บโŸฉParseval โŸจ๐‘“, ๐‘“โŸฉ = โŸจ๐น, ๐น โŸฉ

Table 6. Examples of analytic signals.

Function: ๐‘“(๐’™) Analytic signal: ๐‘“๐ด(๐’™)

cos๐œ”1๐‘ฅ1 cos๐œ”2๐‘ฅ2 cos๐œ”3๐‘ฅ3 ๐‘’๐œ–๐‘˜๐œ”3๐‘ฅ3๐‘’๐œ–๐‘—๐œ”2๐‘ฅ2๐‘’๐œ–๐‘–๐œ”1๐‘ฅ1

cos๐œ”1๐‘ฅ1 sin๐œ”2๐‘ฅ2 sin๐œ”3๐‘ฅ3 ๐‘–๐‘’๐œ–๐‘˜๐œ”3๐‘ฅ3๐‘’๐œ–๐‘—๐œ”2๐‘ฅ2๐‘’๐œ–๐‘–๐œ”1๐‘ฅ1

sin๐œ”1๐‘ฅ1 sin๐œ”2๐‘ฅ2 sin๐œ”3๐‘ฅ3 ๐œ–๐‘’๐œ–๐‘˜๐œ”3๐‘ฅ3๐‘’๐œ–๐‘—๐œ”2๐‘ฅ2๐‘’๐œ–๐‘–๐œ”1๐‘ฅ1

cos๐œ”1๐‘ฅ1 cos๐œ”2๐‘ฅ2 sin๐œ”3๐‘ฅ3 โˆ’๐œ–๐‘˜๐‘’๐œ–๐‘˜๐œ”3๐‘ฅ3๐‘’๐œ–๐‘—๐œ”2๐‘ฅ2๐‘’๐œ–๐‘–๐œ”1๐‘ฅ1

cos (๐œ”1๐‘ฅ1 + ๐œ”2๐‘ฅ2 + ๐œ”3๐‘ฅ3) (1โˆ’ ๐‘–+ ๐‘— โˆ’ ๐‘˜) ๐‘’๐œ–๐‘˜๐œ”3๐‘ฅ3๐‘’๐œ–๐‘—๐œ”2๐‘ฅ2๐‘’๐œ–๐‘–๐œ”1๐‘ฅ1

= 2๐‘’๐‘—๐œ‹/4๐‘’โˆ’๐‘˜๐œ‹/4๐‘’๐œ–๐‘˜๐œ”3๐‘ฅ3๐‘’๐œ–๐‘—๐œ”2๐‘ฅ2๐‘’๐œ–๐‘–๐œ”1๐‘ฅ1

and the analytic signal by

๐‘“๐ด(๐’™) =

โˆซ๐‘…3

๐น๐ด(๐’–)๐‘’๐œ–๐‘˜2๐œ‹๐‘ข3๐‘ฅ3๐‘’๐œ–๐‘—2๐œ‹๐‘ข2๐‘ฅ2๐‘’๐œ–๐‘–2๐œ‹๐‘ข1๐‘ฅ1๐‘‘๐‘ข1๐‘‘๐‘ข2๐‘‘๐‘ข3. (5.23)

Examples of analytic signals are given in Table 6. The analytic signal being aClifford biquaternion, it can be represented as ๐ด = ๐œ†๐‘Ž where ๐œ† = ๐›ผ+๐œ–๐›ฝ consists ofa scalar and a pseudo-scalar and where ๐‘Ž is a unit Clifford biquaternion (๐‘Ž๐‘Ž๐‘ = 1).Writing, ๐ด๐ด๐‘ = ๐œ†2 = ๐‘”1 + ๐œ–๐‘”2, one finds

๐›ผ =

โˆš๐‘”1 +

โˆš๐‘”21 โˆ’ ๐‘”2

2

2, ๐›ฝ =

โˆš๐‘”1 โˆ’

โˆš๐‘”21 โˆ’ ๐‘”2

2

2(5.24)

(if ๐›ผ = ๐›ฝ = 0, one adopts the choice ๐‘Ž = 1, in order to have a unit Cliffordbiquaternion ๐‘Ž in all cases). The unit Clifford biquaternion ๐‘Ž is obtained via the

Page 232: Quaternion and Clifford Fourier Transforms and Wavelets

210 P.R. Girard et al.

relation

๐‘Ž = ๐œ†โˆ’1๐ด = (๐›ผ+ ๐œ–๐›ฝ)โˆ’1 ๐ด =

(๐›ผโˆ’ ๐œ–๐›ฝ

๐›ผ2 โˆ’ ๐›ฝ2

)๐ด, (5.25)

and is decomposed according to ๐‘Ž = ๐‘๐‘Ÿ, with ๐‘ = ๐‘1 + ๐œ– (๐’Š๐‘2 + ๐’‹๐‘3 + ๐’Œ๐‘4) being aunit Clifford biquaternion such that ๐‘๐‘ = ๐‘ and where ๐‘Ÿ = ๐‘Ÿ1+๐’Š๐‘Ÿ2+๐’‹๐‘Ÿ3+๐’Œ๐‘Ÿ4 with๐‘Ÿ๐‘Ÿ๐‘ = 1. Using a procedure similar to that used in special relativity [11, p. 82], onehas

๐‘ =1 + ๐‘‘โˆš

2 + ๐‘‘+ ๐‘‘๐‘(5.26)

with ๐‘‘ = ๐‘Ž (๐‘Ž๐‘). If ๐‘‘ = โˆ’1, one has a particular case which has to be treated so asto yield a unit Clifford biquaternion ๐‘ in all cases. For example, if ๐‘Ž = ยฑ๐œ–, (with๐‘‘ = โˆ’1) one takes ๐‘ = ๐œ–๐’Š; if ๐‘Ž = ๐œ– (๐’Š๐‘Ž1 + ๐’‹๐‘Ž2 + ๐’Œ๐‘Ž3), one adopts

๐‘ = ๐œ–(๐’Š๐‘Ž1 + ๐’‹๐‘Ž2 + ๐’Œ๐‘Ž3)โˆš

๐‘Ž21 + ๐‘Ž2

2 + ๐‘Ž23

. (5.27)

The unit Clifford biquaternion ๐‘Ÿ is then obtained as ๐‘Ÿ = ๐‘๐‘๐‘Ž. Both, ๐‘ and ๐‘Ÿ can beput into a polar form, respectively

๐‘ = ๐‘’๐œ–๐‘—๐œ‘2[๐‘’๐œ–๐‘˜๐œ‘3

(๐‘’๐œ–๐‘–๐œ‘1

)๐‘’๐œ–๐‘˜๐œ‘3

]๐‘’๐œ–๐‘—๐œ‘2 (5.28)

= cos๐œ‘1 cos 2๐œ‘2 cos 2๐œ‘3

+ ๐œ–(๐‘– sin๐œ‘1 + ๐‘— cos๐œ‘1 cos 2๐œ‘3 sin 2๐œ‘2 + ๐‘˜ cos๐œ‘1 sin 2๐œ‘3) (5.29)

with ๐‘๐‘ = ๐‘ and ๐‘Ÿ = ๐‘’๐‘–๐œƒ1๐‘’๐‘˜๐œƒ3๐‘’๐‘—๐œƒ2 . The phases of ๐‘ are extracted according to therules:

๐œ‘1 = arcsin ๐‘ (2, 2) (5.30)

where ๐‘ (2, 2) means the second component of the second quaternion of ๐‘. Ifcos๐œ‘1 โˆ•= 0,

๐œ‘3 =1

2arcsin

(๐‘ (2, 4)

cos๐œ‘1

); (5.31)

if cos๐œ‘1 โˆ•= 0 and cos 2๐œ‘3 โˆ•= 0

๐œ‘2 =1

2arcsin

(๐‘ (2, 3)

cos๐œ‘1 cos 2๐œ‘3

). (5.32)

The particular cases are treated as follows. If ๐œ‘1 = ยฑ๐œ‹2 , the choice ๐œ‘2 = ๐œ‘3 = 0

is adopted; if ๐œ‘1 โˆ•= ยฑ๐œ‹2 and ๐œ‘3 = ยฑ๐œ‹

4 , one chooses ๐œ‘2 = 0. The sign of thereconstructed ๐‘ is then compared to that of the initial ๐‘; if it is opposed, ๐œ‘1

is replaced by [๐œ‘1 โˆ’ ๐œ‹ sign (๐œ‘1)]. The phases of ๐‘Ÿ = ๐‘’๐‘–๐œƒ1๐‘’๐‘˜๐œƒ3๐‘’๐‘—๐œƒ2 are extractedaccording to the procedure presented for the 2D analytic signal by Sommer [29,p. 194] (except that eventual phase shifts are reported on ๐œƒ3 rather than on ๐œƒ1).

Page 233: Quaternion and Clifford Fourier Transforms and Wavelets

10. Analytic Video (2D + ๐‘ก) Signals 211

Within the 2D + ๐‘ก Clifford biquaternion framework, the procedure of extractingthe triplet of phases (๐œƒ1, ๐œƒ2, ๐œƒ3) is as follows. From the relations

๐‘‘1 = ๐‘Ÿ โˆ— [๐พ2 (๐‘Ÿ)]๐‘

= [cos 2๐œƒ1 cos 2๐œƒ3, sin 2๐œƒ1 cos 2๐œƒ3, 0, sin 2๐œƒ3] (5.33)

๐‘‘2 = [๐พ1 (๐‘Ÿ)]๐‘ โˆ— ๐‘Ÿ= [cos 2๐œƒ2 cos 2๐œƒ3, 0, cos 2๐œƒ3 sin 2๐œƒ2, sin 2๐œƒ3] (5.34)

one obtains ๐œƒ3 = 12 arcsin๐‘‘1(4) where ๐‘‘1(4) means the fourth component of ๐‘‘1. If

cos 2๐œƒ3 โˆ•= 0, one has

๐œƒ1 =1

2Arg [๐‘‘1 (1) + ๐‘–๐‘‘1(2)] , ๐œƒ2 =

1

2Arg [๐‘‘2(1) + ๐‘–๐‘‘2(3)] . (5.35)

If cos 2๐œƒ3 = 0, one has an indeterminacy and only (๐œƒ1 ยฑ ๐œƒ2) can be determinedfrom the relation

๐‘‘3 = [๐พ12 (๐‘Ÿ)]๐‘ โˆ— ๐‘Ÿ = [cos 2 (๐œƒ1 โˆ“ ๐œƒ2) , 0,โˆ“ sin 2 (๐œƒ1 โˆ“ ๐œƒ2) , 0] ; (5.36)

adopting the choice ๐œƒ1 = 0, one has

๐œƒ2 =1

2Arg [๐‘‘3(1) + ๐‘–๐‘‘3(3)] . (5.37)

Finally, having determined the phases (๐œƒ1, ๐œƒ2, ๐œƒ3) one computes ๐‘’๐‘–๐œƒ1๐‘’๐‘˜๐œƒ3๐‘’๐‘—๐œƒ2 ; if itis equal to โˆ’๐‘Ÿ and ๐œƒ3 โ‰ฅ 0, one takes ๐œƒ3 โˆ’ ๐œ‹; if one has โˆ’๐‘Ÿ and ๐œƒ3 < 0 then onetakes ๐œƒ3 + ๐œ‹. Hence, the phase domains for ๐‘Ÿ and for ๐‘ are respectively

(๐œƒ1, ๐œƒ2, ๐œƒ3) โˆˆ[โˆ’๐œ‹

2,๐œ‹

2

]โˆช[โˆ’๐œ‹

2,๐œ‹

2

]โˆช [โˆ’๐œ‹, ๐œ‹[ (5.38)

(๐œ‘1, ๐œ‘2,๐œ‘3) โˆˆ [โˆ’๐œ‹, ๐œ‹[ โˆช[โˆ’๐œ‹

2,๐œ‹

2

]โˆช[โˆ’๐œ‹

2,๐œ‹

2

]. (5.39)

Finally, the analytic signal is characterized by a scalar, a pseudo-scalar and thesix phases above.

6. Results

6.1. Introductory Example

One considers the function

๐‘“(๐‘ก, ๐‘ฅ, ๐‘ฆ) = cos(๐œ”1๐‘ก+ ๐‘˜1๐‘ฅ+ ๐‘1๐‘ฆ) + cos(๐œ”2๐‘ก+ ๐‘˜2๐‘ฅ+ ๐‘2๐‘ฆ) (6.1)

with ๐œ”๐‘– = ฮฉยฑ ๐œ”2 , ๐‘˜๐‘– = ๐พ ยฑ ๐‘˜

2 , ๐‘ƒ๐‘– = ๐‘ƒ ยฑ ๐‘2 and ๐œ”2 > ๐œ”1, ๐‘˜2 > ๐‘˜1, ๐‘2 > ๐‘1.

Page 234: Quaternion and Clifford Fourier Transforms and Wavelets

212 P.R. Girard et al.

The analytic signal is given by

๐‘“๐ด(๐‘ก, ๐‘ฅ, ๐‘ฆ) =

โŽกโŽขโŽขโŽฃ2 cos(๐œ”๐‘ก+ ๐‘˜๐‘ฅ+ ๐‘๐‘ฆ) cos(ฮฉ๐‘ก+๐พ๐‘ฅ+ ๐‘ƒ๐‘ฆ),

โˆ’2 cos(๐œ”๐‘กโˆ’ ๐‘˜๐‘ฅ+ ๐‘๐‘ฆ) cos(ฮฉ๐‘กโˆ’๐พ๐‘ฅ+ ๐‘ƒ๐‘ฆ),2 cos(๐œ”๐‘ก+ ๐‘˜๐‘ฅโˆ’ ๐‘๐‘ฆ) cos(ฮฉ๐‘กโˆ’๐พ๐‘ฅโˆ’ ๐‘ƒ๐‘ฆ),

โˆ’2 cos(๐œ”๐‘กโˆ’ ๐‘˜๐‘ฅโˆ’ ๐‘๐‘ฆ) cos(ฮฉ๐‘กโˆ’๐พ๐‘ฅโˆ’ ๐‘ƒ๐‘ฆ)

โŽคโŽฅโŽฅโŽฆ

+๐œ–

โŽกโŽขโŽขโŽฃ2 cos(๐œ”๐‘กโˆ’ ๐‘˜๐‘ฅ+ ๐‘๐‘ฆ) sin(ฮฉ๐‘กโˆ’๐พ๐‘ฅ+ ๐‘ƒ๐‘ฆ),2 cos(๐œ”๐‘ก+ ๐‘˜๐‘ฅ+ ๐‘๐‘ฆ) sin(ฮฉ๐‘ก+๐พ๐‘ฅ+ ๐‘ƒ๐‘ฆ),

โˆ’2 cos(๐œ”๐‘กโˆ’ ๐‘˜๐‘ฅโˆ’ ๐‘๐‘ฆ) sin(ฮฉ๐‘กโˆ’๐พ๐‘ฅโˆ’ ๐‘ƒ๐‘ฆ),โˆ’2 cos(๐œ”๐‘ก+ ๐‘˜๐‘ฅโˆ’ ๐‘๐‘ฆ) sin(ฮฉ๐‘ก+๐พ๐‘ฅโˆ’ ๐‘ƒ๐‘ฆ)

โŽคโŽฅโŽฅโŽฆ . (6.2)

One then computes

๐‘‘4 = [๐‘“๐ด(1)]2+ [๐‘“๐ด(6)]

2= 4 cos2(๐œ”๐‘ก+ ๐‘˜๐‘ฅ+ ๐‘๐‘ฆ) (6.3)

๐‘‘5 = ๐‘“๐ด๐‘“๐ด๐‘ =[8(1 + cos 2๐œ”๐‘ก cos 2๐‘˜๐‘ฅ cos 2๐‘๐‘ฆ), 0, 0, 0]+๐œ– [8 sin 2๐œ”๐‘ก sin 2๐พ๐‘ฅ cos 2๐‘๐‘ฆ, 0, 0, 0]

. (6.4)

The phase and group velocities are obtained as follows. Write

ฮฆ1 = ฮฉ๐‘ก+๐พ๐‘ฅ+ ๐‘ƒ๐‘ฆ,ฮฆ2 = ๐œ”๐‘ก+ ๐‘˜๐‘ฅ+ ๐‘๐‘ฆ; (6.5)

one has

ฮฆ1 = arctan๐‘“๐ด(6)

๐‘“๐ด(1)(6.6)

ฮฆ2 =1

2arccos

(๐‘‘4

2โˆ’ 1

). (6.7)

Hence the phase and group velocities are

๐‘ฃ๐œ‘๐‘ฅ =

โˆ‚ฮฆ1โˆ‚๐‘กโˆ‚ฮฆ1โˆ‚๐‘ฅ

, ๐‘ฃ๐œ‘๐‘ฆ =

โˆ‚ฮฆ1โˆ‚๐‘กโˆ‚ฮฆ1โˆ‚๐‘ฆ

(6.8)

๐‘ฃ๐‘”๐‘ฅ =

โˆ‚ฮฆ2โˆ‚๐‘กโˆ‚ฮฆ2โˆ‚๐‘ฅ

, ๐‘ฃ๐‘”๐‘ฆ =

โˆ‚ฮฆ2โˆ‚๐‘กโˆ‚ฮฆ2โˆ‚๐‘ฆ

. (6.9)

Finally, one might notice that the scalar part of ๐‘‘5 contains only the modulationof the signal.

6.2. Analytic Video Signal 2D + ๐’• Implementation

The implementation considers the scalar function

๐‘“(๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3) = cos๐‘ฅ1 cos๐‘ฅ2 cos๐‘ฅ3 (6.10)

Page 235: Quaternion and Clifford Fourier Transforms and Wavelets

10. Analytic Video (2D + ๐‘ก) Signals 213

(๐‘ฅ1 being the time and ๐‘ฅ2, ๐‘ฅ3 respectively ๐‘ฅ, ๐‘ฆ) where (๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3) vary between[0, 2๐œ‹]. The explicit form of the analytic video signal is

๐ด =

โŽกโŽขโŽขโŽฃ(

cos๐‘ฅ1 cos๐‘ฅ2 cos๐‘ฅ3,โˆ’ cos๐‘ฅ1 sin๐‘ฅ2 sin๐‘ฅ3,sin๐‘ฅ1 cos๐‘ฅ2 sin๐‘ฅ3,โˆ’ sin๐‘ฅ1 sin๐‘ฅ2 cos๐‘ฅ3

)+๐œ–

(sin๐‘ฅ1 sin๐‘ฅ2 sin๐‘ฅ3, sin๐‘ฅ1 cos๐‘ฅ2 cos๐‘ฅ3,cos๐‘ฅ1 sin๐‘ฅ2 cos๐‘ฅ3, cos๐‘ฅ1 cos๐‘ฅ2 sin๐‘ฅ3

)โŽคโŽฅโŽฅโŽฆ (6.11)

with ๐ด๐ด๐‘ = 1, hence ๐œ† = 1. The eight components of ๐ด are represented at thetime ๐‘ฅ1 = 2๐œ‹

8 s in Figure 5

๐ด = (๐‘Ž, ๐‘, ๐‘, ๐‘‘) + ๐œ– (๐‘’, ๐‘“, ๐‘”, โ„Ž) . (6.12)

The eight components in polar form (๐›ผ, ๐œƒ1, ๐œƒ2, ๐œƒ3, ๐›ฝ, ๐œ‘1, ๐œ‘2, ๐œ‘3) are represented inFigure 6.

7. Conclusion

This chapter has presented a concrete algebraic framework, i.e., Cliffordโ€™s biquater-nions for the expression of Cliffordโ€“Fourier transforms and 2D+ ๐‘ก analytic signals.Then, we have shown how to put the analytic signal into a polar form constitutedby a scalar, a pseudoscalar and six phases. Finally, using discrete fast Fouriertransforms we have implemented numerically the Clifford biquaternion Fouriertransform, the analytic Fourier transform and the analytic signal both in standardand polar form. Our next objective will be to extract physical information fromthe phases in medical images.

Appendix A. Examples of (2D + ๐’•) Cliffordโ€“Fourier Transforms

A.1. Example 1

Signal

๐‘“(๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3) = cos 2๐œ‹๐‘“1๐‘ฅ1 cos 2๐œ‹๐‘“2๐‘ฅ2 cos 2๐œ‹๐‘“3๐‘ฅ3.

Cliffordโ€“Fourier transform

๐น (๐‘ข1, ๐‘ข2, ๐‘ข3) =1

8[๐›ฟ (๐‘“1 โˆ’ ๐‘ข1) + ๐›ฟ (๐‘“1 + ๐‘ข1)] [๐›ฟ (๐‘“2 โˆ’ ๐‘ข2) + ๐›ฟ (๐‘“2 + ๐‘ข2)]

ร— [๐›ฟ (๐‘“3 โˆ’ ๐‘ข3) + ๐›ฟ (๐‘“3 + ๐‘ข3)] .

Analytic Cliffordโ€“Fourier transform

๐น๐ด(๐‘ข1, ๐‘ข2, ๐‘ข3) = ๐›ฟ (๐‘“1 โˆ’ ๐‘ข1) ๐›ฟ (๐‘“2 โˆ’ ๐‘ข2) ๐›ฟ (๐‘“3 โˆ’ ๐‘ข3) .

Analytic signal

๐‘“๐ด(๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3) = ๐‘’๐œ–๐‘˜2๐œ‹๐‘“3๐‘ฅ3๐‘’๐œ–๐‘—2๐œ‹๐‘“2๐‘ฅ2๐‘’๐œ–๐‘–2๐œ‹๐‘“1๐‘ฅ1 .

Page 236: Quaternion and Clifford Fourier Transforms and Wavelets

214 P.R. Girard et al.

[pixels]

[pix

els]

10 20 30 40 50 60

10

20

30

40

50

60

0.6

0.4

0.2

0

0.2

0.4

0.6

[pixels]

[pix

els]

10 20 30 40 50 60

10

20

30

40

50

60

0.6

0.4

0.2

0

0.2

0.4

0.6

[pixels]

[pix

els]

10 20 30 40 50 60

10

20

30

40

50

60

0.6

0.4

0.2

0

0.2

0.4

0.6

[pixels]

[pix

els]

10 20 30 40 50 60

10

20

30

40

50

60

0.6

0.4

0.2

0

0.2

0.4

0.6

[pixels]

[pix

els]

10 20 30 40 50 60

10

20

30

40

50

60

0.6

0.4

0.2

0

0.2

0.4

0.6

[pixels]

[pix

els]

10 20 30 40 50 60

10

20

30

40

50

60

0.6

0.4

0.2

0

0.2

0.4

0.6

[pixels]

[pix

els]

10 20 30 40 50 60

10

20

30

40

50

60

0.6

0.4

0.2

0

0.2

0.4

0.6

[pixels]

[pix

els]

10 20 30 40 50 60

10

20

30

40

50

60

0.6

0.4

0.2

0

0.2

0.4

0.6

Figure 5. The eight components of the analytic video signal ๐ด =(๐‘Ž, ๐‘, ๐‘, ๐‘‘) + ๐œ–(๐‘’, ๐‘“, ๐‘”, โ„Ž) at the time ๐‘ฅ1 = 2๐œ‹

8 s.

Page 237: Quaternion and Clifford Fourier Transforms and Wavelets

10. Analytic Video (2D + ๐‘ก) Signals 215

[pixels]

[pix

els]

10 20 30 40 50 60

10

20

30

40

50

60

1

1

1

1

1

[pixels]

[pix

els]

[Rad

ians

]

10 20 30 40 50 60

10

20

30

40

50

60

1.5

1

0.5

0

0.5

1

1.5

[pixels]

[pix

els]

[Radians]

10 20 30 40 50 60

10

20

30

40

50

60

1

0.5

0

0.5

1

1.5

[pixels]

[pix

els]

[Radians]

10 20 30 40 50 60

10

20

30

40

50

60

3

2

1

0

1

2

3

[pixels]

[pix

els]

10 20 30 40 50 60

10

20

30

40

50

60

1

0.5

0

0.5

1

[pixels]

[pix

els]

[Radians]

10 20 30 40 50 60

10

20

30

40

50

60

0.7

0.75

0.8

0.85

[pixels]

[pix

els]

[Radians]

10 20 30 40 50 60

10

20

30

40

50

60

0.05

0

0.05

[pixels]

[pix

els]

[Radians]

10 20 30 40 50 60

10

20

30

40

50

60

0.05

0

0.05

Figure 6. Polar form of the analytic video signal at the time ๐‘ฅ1 = 2๐œ‹8

s, (๐‘Ž) is the scalar, (๐‘, ๐‘, ๐‘‘) are the three phases (๐œƒ1, ๐œƒ2, ๐œƒ3); (e) is thepseudo-scalar and (๐‘“, ๐‘”, โ„Ž) are the three phases (๐œ‘1, ๐œ‘2, ๐œ‘3).

Page 238: Quaternion and Clifford Fourier Transforms and Wavelets

216 P.R. Girard et al.

A.2. Example 2

Signal

๐‘“(๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3) = cos (2๐œ‹๐‘“1๐‘ฅ1 + 2๐œ‹๐‘“2๐‘ฅ2 + 2๐œ‹๐‘“3๐‘ฅ3) = ๐‘“1 + ๐‘“2 + ๐‘“3 + ๐‘“4

with

๐‘“1 = cos 2๐œ‹๐‘“1๐‘ฅ1 cos 2๐œ‹๐‘“2๐œ‹๐‘ฅ2 cos 2๐œ‹๐‘“3๐‘ฅ3

๐‘“2 = โˆ’ sin 2๐œ‹๐‘“1๐‘ฅ1 sin 2๐œ‹๐‘“2๐œ‹๐‘ฅ2 cos 2๐œ‹๐‘“3๐‘ฅ3

๐‘“3 = โˆ’ sin 2๐œ‹๐‘“1๐‘ฅ1 cos 2๐œ‹๐‘“2๐œ‹๐‘ฅ2 sin 2๐œ‹๐‘“3๐‘ฅ3

๐‘“4 = โˆ’ cos 2๐œ‹๐‘“1๐‘ฅ1 sin 2๐œ‹๐‘“2๐œ‹๐‘ฅ2 sin 2๐œ‹๐‘“3๐‘ฅ3.

Cliffordโ€“Fourier transform

๐น (๐‘ข1, ๐‘ข2, ๐‘ข3) = ๐น1 + ๐น2 + ๐น3 + ๐น4, ๐น๐‘– = ๐ถ๐น๐‘‡ (๐‘“๐‘–)

where

๐น1 =1

8[๐›ฟ (๐‘“1 โˆ’ ๐‘ข1) + ๐›ฟ (๐‘“1 + ๐‘ข1)] [๐›ฟ (๐‘“2 โˆ’ ๐‘ข2) + ๐›ฟ (๐‘“2 + ๐‘ข2)]

ร— [๐›ฟ (๐‘“3 โˆ’ ๐‘ข3) + ๐›ฟ (๐‘“3 + ๐‘ข3)]

and

๐น2 =โˆ’18

[โˆ’๐œ–๐‘–๐›ฟ (๐‘“1 โˆ’ ๐‘ข1) + ๐œ–๐‘–๐›ฟ (๐‘“1 + ๐‘ข1)] [โˆ’๐œ–๐‘—๐›ฟ (๐‘“2 โˆ’ ๐‘ข2) + ๐œ–๐‘—๐›ฟ (๐‘“2 + ๐‘ข2)]

ร— [โˆ’๐›ฟ (๐‘“3 โˆ’ ๐‘ข3) + ๐›ฟ (๐‘“3 + ๐‘ข3)]

=โˆ’๐‘˜

8[โˆ’๐›ฟ (๐‘“1 โˆ’ ๐‘ข1) + ๐›ฟ (๐‘“1 + ๐‘ข1)] [โˆ’๐›ฟ (๐‘“2 โˆ’ ๐‘ข2) + ๐›ฟ (๐‘“2 + ๐‘ข2)]

ร— [โˆ’๐›ฟ (๐‘“3 โˆ’ ๐‘ข3) + ๐›ฟ (๐‘“3 + ๐‘ข3)]

and

๐น3 =โˆ’18

[โˆ’๐œ–๐‘–๐›ฟ (๐‘“1 โˆ’ ๐‘ข1) + ๐œ–๐‘–๐›ฟ (๐‘“1 + ๐‘ข1)] [๐›ฟ (๐‘“2 โˆ’ ๐‘ข2) + ๐›ฟ (๐‘“2 + ๐‘ข2)]

ร— [โˆ’๐œ–๐‘˜๐›ฟ (๐‘“3 โˆ’ ๐‘ข3) + ๐œ–๐‘˜๐›ฟ (๐‘“3 + ๐‘ข3)]

=๐‘—

8[โˆ’๐›ฟ (๐‘“1 โˆ’ ๐‘ข1) + ๐›ฟ (๐‘“1 + ๐‘ข1)] [๐›ฟ (๐‘“2 โˆ’ ๐‘ข2) + ๐›ฟ (๐‘“2 + ๐‘ข2)]

ร— [โˆ’๐›ฟ (๐‘“3 โˆ’ ๐‘ข3) + ๐›ฟ (๐‘“3 + ๐‘ข3)]

and

๐น4 =โˆ’18

[๐›ฟ (๐‘“1 โˆ’ ๐‘ข1) + ๐›ฟ (๐‘“1 + ๐‘ข1)] [โˆ’๐œ–๐‘—๐›ฟ (๐‘“2 โˆ’ ๐‘ข2) + ๐œ–๐‘—๐›ฟ (๐‘“2 + ๐‘ข2)]

ร— [โˆ’๐œ–๐‘˜๐›ฟ (๐‘“3 โˆ’ ๐‘ข3) + ๐œ–๐‘˜๐›ฟ (๐‘“3 + ๐‘ข3)]

=โˆ’๐‘–

8[๐›ฟ (๐‘“1 โˆ’ ๐‘ข1) + ๐›ฟ (๐‘“1 + ๐‘ข1)] [โˆ’๐›ฟ (๐‘“2 โˆ’ ๐‘ข2) + ๐›ฟ (๐‘“2 + ๐‘ข2)]

ร— [โˆ’๐›ฟ (๐‘“3 โˆ’ ๐‘ข3) + ๐›ฟ (๐‘“3 + ๐‘ข3)] .

Page 239: Quaternion and Clifford Fourier Transforms and Wavelets

10. Analytic Video (2D + ๐‘ก) Signals 217

Analytic Cliffordโ€“Fourier transform

๐น๐ด(๐‘ข1, ๐‘ข2, ๐‘ข3) = (1โˆ’ ๐‘–+ ๐‘— โˆ’ ๐‘˜) ๐›ฟ (๐‘“1 โˆ’ ๐‘ข1) ๐›ฟ (๐‘“2 โˆ’ ๐‘ข2) ๐›ฟ (๐‘“3 โˆ’ ๐‘ข3)

Analytic signal

๐‘“๐ด(๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3) = (1โˆ’ ๐‘–+ ๐‘— โˆ’ ๐‘˜)๐‘’๐œ–๐‘˜2๐œ‹๐‘“3๐‘ฅ3๐‘’๐œ–๐‘—2๐œ‹๐‘“2๐‘ฅ2๐‘’๐œ–๐‘–2๐œ‹๐‘“1๐‘ฅ1 = ๐‘+ ๐œ–๐‘ž

where

๐‘ =

[cos (2๐œ‹๐‘“1๐‘ฅ1 + 2๐œ‹๐‘“2๐‘ฅ2 + 2๐œ‹๐‘“3๐‘ฅ3) ,โˆ’ cos (2๐œ‹๐‘“1๐‘ฅ1 โˆ’ 2๐œ‹๐‘“2๐‘ฅ2 + 2๐œ‹๐‘“3๐‘ฅ3) ,cos (2๐œ‹๐‘“1๐‘ฅ1 + 2๐œ‹๐‘“2๐‘ฅ2 โˆ’ 2๐œ‹๐‘“3๐‘ฅ3) ,โˆ’ cos (2๐œ‹๐‘“1๐‘ฅ1 โˆ’ 2๐œ‹๐‘“2๐‘ฅ2 โˆ’ 2๐œ‹๐‘“3๐‘ฅ3)

]๐‘ž =

[sin (2๐œ‹๐‘“1๐‘ฅ1 โˆ’ 2๐œ‹๐‘“2๐‘ฅ2 + 2๐œ‹๐‘“3๐‘ฅ3) , sin (2๐œ‹๐‘“1๐‘ฅ1 + 2๐œ‹๐‘“2๐‘ฅ2 + 2๐œ‹๐‘“3๐‘ฅ3) ,

โˆ’ sin (2๐œ‹๐‘“1๐‘ฅ1 โˆ’ 2๐œ‹๐‘“2๐‘ฅ2 โˆ’ 2๐œ‹๐‘“3๐‘ฅ3) ,โˆ’ sin (2๐œ‹๐‘“1๐‘ฅ1 + 2๐œ‹๐‘“2๐‘ฅ2 โˆ’ 2๐œ‹๐‘“3๐‘ฅ3)

]

References

[1] F. Brackx, N. De Schepper, and F. Sommen. The two-dimensional Cliffordโ€“Fouriertransform. Journal of Mathematical Imaging and Vision, 26(1):5โ€“18, 2006.

[2] T. Bulow. Hypercomplex Spectral Signal Representations for the Processing and Anal-ysis of Images. PhD thesis, University of Kiel, Germany, Institut fur Informatik undPraktische Mathematik, Aug. 1999.

[3] T. Bulow and G. Sommer. A novel approach to the 2D analytic signal. In F. Solinaand A. Leonardis, editors, Computer Analysis of Images and Patterns, volume 1689of Lecture Notes in Computer Science, pages 25โ€“32. Springer, Berlin/Heidelberg,1999.

[4] W.K. Clifford. Applications of Grassmannโ€™s extensive algebra. American Journal ofMathematics, 1(4):350โ€“358, 1878.

[5] W.K. Clifford. Mathematical Papers. Chelsea Publishing Company, New York, 1968.First published 1882, edited by R. Tucker.

[6] M.J. Crowe. A History of Vector analysis: The Evolution of the Idea of a VectorialSystem. University of Notre Dame, Notre Dame, London, 1967.

[7] P. Delachartre, P. Clarysse, R. Goutte, and P.R. Girard. Mise en oeuvre du signalanalytique dans les algebres de Clifford. In GRETSI, page 4, Bordeaux, France, 2011.

[8] T.A. Ell. Hypercomplex Spectral Transformations. PhD thesis, University of Min-nesota, June 1992.

[9] D. Gabor. Theory of communication. Journal of the Institution of Electrical Engi-neers, 93(26):429โ€“457, 1946. Part III.

[10] P.R. Girard. Quaternions, Algebre de Clifford et Physique Relativiste. PPUR, Lau-sanne, 2004.

[11] P.R. Girard. Quaternions, Clifford Algebras and Relativistic Physics. Birkhauser,Basel, 2007. Translation of [10].

[12] P.R. Girard. Quaternion Grassmann-Hamilton-Clifford-algebras: new mathematicaltools for classical and relativistic modeling. In O. Dossel and W.C. Schlegel, editors,World Congress on Medical Physics and Biomedical Engineering, September 7โ€“12,2009, volume 25/IV of IFMBE Proceedings, pages 65โ€“68. Springer, 2010.

Page 240: Quaternion and Clifford Fourier Transforms and Wavelets

218 P.R. Girard et al.

[13] P.R. Girard. Multiquaternion Grassmann-Hamilton-Clifford algebras in physics andengineering: a short historical perspective. In K. Gurlebeck, editor, 9th InternationalConference on Clifford Algebras and their Applications, page 9. Weimar, Germany,15โ€“20 July 2011.

[14] H. Grassmann. Die lineale Ausdehungslehre: ein neuer Zweig der Mathematik,dargestellt und durch Anwendungen auf die ubrigen Zweige der Mathematik, wie auchdie Statik, Mechanik, die Lehre von Magnetismus und der Krystallonomie erlautert.Wigand, Leipzig, second, 1878 edition, 1844.

[15] H. Grassmann. Der Ort der Hamiltonโ€™schen Quaternionen in der Ausdehnungslehre.Mathematische Annalen, 12:375โ€“386, 1877.

[16] H. Grassmann. Gesammelte mathematische und physikalische Werke. B.G. Teubner,Leipzig, 1894โ€“1911. 3 volumes in 6 parts.

[17] A. Gsponer and J.P. Hurni. Quaternions in mathematical physics (1): Alphabeti-cal bibliography. Preprint, available at: http://www.arxiv.org/abs/arXiv:mathph/0510059, 2008. 1430 references.

[18] A. Gsponer and J.P. Hurni. Quaternions in mathematical physics (2): Analyticalbibliography. Preprint, available at: http://www.arxiv.org/abs/arXiv:mathphy/

0511092, 2008. 1100 references.

[19] K. Gurlebeck and W. SproรŸig. Quaternionic and Clifford Calculus for Physicists andEngineers. Wiley, Aug. 1997.

[20] S.L. Hahn. Multidimensional complex signals with single-orthant spectra. Proceed-ings of the IEEE, 80(8):1287โ€“1300, Aug. 1992.

[21] S.L. Hahn and K.M. Snopek. The unified theory of ๐‘›-dimensional complex andhypercomplex analytic signals. Bulletin of the Polish Academy of Sciences TechnicalSciences, 59(2):167โ€“181, 2011.

[22] H. Halberstam and R.E. Ingram, editors. The Mathematical Papers of Sir WilliamRowan Hamilton, volume III Algebra. Cambridge University Press, Cambridge, 1967.

[23] W.R. Hamilton. Elements of Quaternions. Chelsea Publishing Company, New York,reprinted 1969 edition, 1969. 2 volumes (1899โ€“1901).

[24] T.L. Hankins. Sir William Rowan Hamilton. Johns Hopkins University Press, Bal-timore, London, 1980.

[25] J.P. Havlicek, J.W. Havlicek, and A.C. Bovik. The analytic image. In Proceedings1997 International Conference on Image Processing (ICIP โ€ฒ97), volume 2, pages446โ€“449, Washington, DC, USA, October 26โ€“29 1997.

[26] E. Hitzer. Quaternion Fourier transform on quaternion fields and generalizations.Advances in Applied Clifford Algebras, 17(3):497โ€“517, May 2007.

[27] H.-J. Petsche. Grassmann. Birkhauser, Basel, 2006.

[28] S.J. Sangwine and T.A. Ell. The discrete Fourier transform of a colour image. In J.M.Blackledge and M.J. Turner, editors, Image Processing II Mathematical Methods, Al-gorithms and Applications, pages 430โ€“441, Chichester, 2000. Horwood Publishing forInstitute of Mathematics and its Applications. Proceedings Second IMA Conferenceon Image Processing, De Montfort University, Leicester, UK, September 1998.

[29] G. Sommer, editor. Geometric computing with Clifford Algebras: Theoretical Foun-dations and Applications in Computer Vision and Robotics. Springer, Berlin, 2001.

Page 241: Quaternion and Clifford Fourier Transforms and Wavelets

10. Analytic Video (2D + ๐‘ก) Signals 219

[30] J. Ville. Theorie et applications de la notion de signal analytique. Cables et Trans-mission, 2A:61โ€“74, 1948.

[31] J. Vince. Geometric Algebra for Computer Graphics. Springer, London, 2008.

P.R. Girard, P. Clarysse, A. Marion, R. Goutte and P. DelachartreUniversite de Lyon, CREATIS; CNRS UMR 5220Inserm U1044; INSA-Lyon;Universite Lyon 1, FranceBat. Blaise Pascal7 avenue Jean CapelleF-69621 Villeurbanne, France

e-mail: [email protected]@creatis.insa-lyon.fr

[email protected]

[email protected]

[email protected]

R. PujolUniversite de LyonPole de Mathematiques, INSA-LyonBat. Leonard de Vinci21 avenue Jean CapelleF-69621 Villeurbanne, France

e-mail: [email protected]

Page 242: Quaternion and Clifford Fourier Transforms and Wavelets

Quaternion and Cliffordโ€“Fourier Transforms and Wavelets

Trends in Mathematics, 221โ€“246cโƒ 2013 Springer Basel

11 Generalized Analytic Signalsin Image Processing: Comparison,Theory and Applications

Swanhild Bernstein, Jean-Luc Bouchot, Martin Reinhardtand Bettina Heise

Abstract. This article is intended as a mathematical overview of the general-izations of analytic signals to higher-dimensional problems, as well as of theirapplications to and of their comparison on artificial and real-world imagesamples.

We first start by reviewing the basic concepts behind analytic signaltheory and derive its mathematical background based on boundary valueproblems of one-dimensional analytic functions. Following that, two gener-alizations are motivated by means of higher-dimensional complex analysis orClifford analysis. Both approaches are proven to be valid generalizations ofthe known analytic signal concept.

In the last part we experimentally motivate the choice of such higher-dimensional analytic or monogenic signal representations in the context ofimage analysis. We see how one can take advantage of one or the other rep-resentation depending on the application.

Mathematics Subject Classification (2010). Primary 94A12; secondary 44A12,30G35.

Keywords. Monogenic signal, monogenic functional theory, image processing,texture, Riesz transform.

1. Introduction

In the past years and since the pioneer work of Gabor [11], the analytic signalhas attracted much interest in signal processing and information theory. Due toan orthogonal decomposition of oscillating signals into envelope and instantaneousphase or respectively into energetic and structural components, this concept hasbecome very suitable for analyzing signals. In this context such a property is calleda split of identity and allows to separate the different characteristics of a signalinto useful components.

Page 243: Quaternion and Clifford Fourier Transforms and Wavelets

222 S. Bernstein, J.-L. Bouchot, M. Reinhardt and B. Heise

While this approach has given rise to many one-dimensional signal process-ing methods, other developments have been directed towards higher-dimensionalgeneralizations. Of particular interest is the two-dimensional case, i.e., how to dealwith images in an analytic way. As it will be demonstrated in our chapter, twomain directions have been taken, one based on multidimensional complex analysisand another one based on Clifford analysis.

This article is intended as an overview of the mathematical concepts behindanalytic signals based on the Hilbert transform (Section 2). Then, the mathemat-ical generalizations are detailed in Section 3. The end of that section is dedicatedto illustrative examples of the detailed differences between the two generaliza-tions. Section 4 describes the use of spinors for image analysis tasks. The lastsection of this article (Section 5) illustrates their applications like demodulationof two-dimensional AM-FM signals as provided, e.g., in interferometry and someapplications to the processing of natural images.

2. Analytic Signal Theory and Signal Decomposition

Analytic signals were introduced for signal processing in the context of communi-cation theory in the late 40๐‘  [11]. Since then, there has been a growing interestin the analytic signal as a useful tool for representing real-valued signals [25]. Westart here by first reviewing the basics of analytic signal theory and the Hilberttransform and see why the so-called split of identity is an interesting property. Inthe last part we review the mathematical basics and see how we can derive theanalytic signal from a boundary value problem in complex analysis.

2.1. Basic Analytic Signal Theory and the Hilbert Transform

Definition 2.1 (One-dimensional Fourier Transform). In the following, we use asFourier transform โ„ฑ :

โ„ฑ(๐‘“)(๐‘ข) = ๐‘“(๐‘ข) =1โˆš2๐œ‹

โˆซโ„

๐‘“(๐‘ก)๐‘’โˆ’๐‘–๐‘ก๐‘ขd๐‘ก (2.1)

for ๐‘ก โˆˆ โ„, ๐‘ข โˆˆ โ„ and ๐‘“ โˆˆ ๐ฟ2(โ„)

Definition 2.2 (Hilbert Transform). The Hilbert transform of a signal ๐‘“ โˆˆ ๐ฟ2(โ„)(or more generally ๐‘“ โˆˆ ๐ฟ๐‘(โ„), 1 < ๐‘ <โˆž) is defined, either in the spatial domainas a convolution with the Hilbert kernel (2.2), or as a Fourier multiplier (2.3):

โ„‹๐‘“ = โ„Ž โˆ— ๐‘“ (2.2)

โ„ฑ(โ„‹๐‘“)(๐‘ข) = โˆ’๐‘– sign(๐‘ข)โ„ฑ(๐‘“)(๐‘ข) (2.3)

where we have made use of two functions:

โˆ™ The Hilbert kernel โ„Ž(๐‘ก) = 1๐œ‹๐‘ก .

โˆ™ The operator sign(๐‘ข) =

โŽงโŽจโŽฉ1 ๐‘ข > 0

0 ๐‘ข = 0

โˆ’1 ๐‘ข < 0.

Page 244: Quaternion and Clifford Fourier Transforms and Wavelets

11. Generalized Analytic Signals in Image Processing 223

Following its definition, we notice that the Hilbert transform acts as an asym-metric phase shift: if we write ยฑ๐‘– = ๐‘’ยฑ๐‘–๐œ‹/2, the phase of the Fourier spectrum ofthe Hilbert transform is obtained by a rotation of ยฑ90โˆ˜.Proposition 2.3 (Properties of the Hilbert Transform). Given a signal ๐‘“ the fol-lowing hold true:

โˆ™ โˆ€๐‘ข โˆ•= 0, โˆฃโ„‹๐‘“(๐‘ข)โˆฃ = โˆฃโ„ฑ(๐‘“)(๐‘ข)โˆฃ,โˆ™ โ„‹โ„‹๐‘“ = โˆ’๐‘“ โ‡’ โ„‹โˆ’1 = โˆ’โ„‹.

Note that a constant function being not in ๐ฟ2 can not be reconstructed in this way.

The analytic signal is computed as a complex combination of both the originalsignal and its Hilbert transform:

Definition 2.4 (Analytic Signal).

๐‘“๐ด = ๐‘“ + ๐‘–โ„‹๐‘“. (2.4)

Due to its definition, an analytic signal has a one-sided Fourier spectrum.Moreover, its values are doubled on the positive side. We also remark that it ispossible to recover the original signal from its analytic description by taking thereal part.

The following proposition holds:

Proposition 2.5.

โŸจ๐‘“,โ„‹๐‘“โŸฉ๐ฟ2= 0 Orthogonality, (2.5)

โˆฅ๐‘“โˆฅ22 = โˆฅโ„‹๐‘“โˆฅ22 Energy conservation. (2.6)

The energy equality is valid only if the DC, or zero-frequency component ofthe signal is neglected [10].

Note that it is possible to write the complex analytic signal in polar coor-dinates. In this case we have: โˆ€๐‘ก โˆˆ โ„, ๐‘“๐ด(๐‘ก) = ๐ด(๐‘ก)๐‘’๐‘–๐œ™(๐‘ก). ๐ด is called the localamplitude and ๐œ™ is called the local phase. These local features are defined asfollows [11]:

Definition 2.6 (Local features).

๐ด(๐‘ก) =โˆš

๐‘“(๐‘ก)2 +โ„‹๐‘“(๐‘ก)2 (2.7)

๐œ™(๐‘ก) = arctan

(โ„‹๐‘“(๐‘ก)

๐‘“(๐‘ก)

)= arctan

(โ„‘ (๐‘“๐ด(๐‘ก))

โ„œ (๐‘“๐ด(๐‘ก))

). (2.8)

Proposition 2.7 (Invarianceโ€“Equivariance, Split of identity [10]). The local phase,together with the local amplitude, fulfil the properties of invariance and equivari-ance:

โˆ™ The local phase depends only on the local structure.โˆ™ The local amplitude depends only on the local energy.

If moreover these features constitute a complete description of the signal, they aresaid to perform a split of identity.

Page 245: Quaternion and Clifford Fourier Transforms and Wavelets

224 S. Bernstein, J.-L. Bouchot, M. Reinhardt and B. Heise

However as stated in [10], a split of identity is strictly valid only for band-limited signals with a local zero mean property.

If these conditions are fulfilled the analytic signal representation relies on anorthogonal decomposition of the structural information (the local phase), and theenergetic information (the local amplitude).

This split of identity is illustrated in Figure 1. The first plot represents threesignals. They are sine waves generated from a mother sine wave (the red one). Theblue curve corresponds to a modification in terms of amplitude of the red one,while the green curve has half the frequency of the red one. Figures 1(b) and 1(c)are respectively the local amplitudes and phases of these three signals. Note thata small phase shift has been added to the blue curve for better readability. We canclearly see that due to the split of identity, modifying one local characteristic ofthe signal does not affect the other one and vice versa.

Figure 1. Illustration of the split of identity. (Explanation in the text.)

2.2. From Analytic Function to Analytic Signal

While the analytic signal is a very common concept in the field of signal theory, itsbasic mathematics can be derived from the theory of analytic functions. The closeconnection can be understood when considering the following Riemannโ€“Hilbert

Page 246: Quaternion and Clifford Fourier Transforms and Wavelets

11. Generalized Analytic Signals in Image Processing 225

problem with respect to the complex parameter ๐‘ง = ๐‘ฅ+ ๐‘–๐‘ฆ:

โˆ‚๐น

โˆ‚๐‘ง= 0, ๐‘ง โˆˆ โ„‚, ๐‘ฆ โ‰ฅ 0, (2.9)

โ„œ (๐น (๐‘ฅ)) = ๐‘“(๐‘ฅ), ๐‘ฅ โˆˆ โ„. (2.10)

One solution of this problem is given by the Cauchy integral

๐น (๐‘ง) = ๐นฮ“๐‘“(๐‘ง) :=1

2๐œ‹๐‘–

โˆซโ„

1

๐œ โˆ’ ๐‘ง๐‘“(๐œ)d๐œ. (2.11)

Of course this solution is unique only up to a constant. Normally, this constantwill be fixed by the condition โ„‘ (๐น (๐‘ง0)) = ๐‘, i.e., the imaginary part of ๐น given atan interior point.

When we now consider the trace of ๐นฮ“, i.e., the boundary value, we arriveat the so-called Plemeljโ€“Sokhotzki formula:

tr๐นฮ“๐‘“ =1

2(๐ผ + ๐‘–โ„‹)๐‘“ =

1

2๐‘“ +

1

2๐‘–โ„‹๐‘“ =: ๐‘ƒฮ“๐‘“. (2.12)

Up to the factor 1/2 this corresponds to our above definition of an analytic signal.

In this way an analytic signal represents the boundary values of an ana-lytic function in the upper half-plane (or for periodic functions in the unit disc).Starting from this concept we are now going to take a look at higher-dimensionalgeneralizations.

3. Higher-dimensional Generalizations

Different approaches have been studied in past years to extend the definition of ananalytic signal to higher-dimensional spaces. Two of them have gained the great-est interest based respectively on multidimensional complex analysis and Cliffordanalysis.

3.1. Using Multiple Complex Variables

3.1.1. Mathematics. In 1998 Bulow proposed a definition of a hypercomplex signalbased on the so-called partial and total Hilbert transform [6]. To adapt this to ourpoint of view, that analytic signals are functions in a Hardy space, we consider thefollowing Riemannโ€“Hilbert problem in โ„‚2:

โˆ‚๐น

โˆ‚ ๐‘ง1= 0, (๐‘ง1, ๐‘ง2) โˆˆ โ„‚2, ๐‘ฆ1, ๐‘ฆ2 โ‰ฅ 0, (3.1)

โˆ‚๐น

โˆ‚ ๐‘ง2= 0, (๐‘ง1, ๐‘ง2) โˆˆ โ„‚2, ๐‘ฆ1, ๐‘ฆ2 โ‰ฅ 0, (3.2)

โ„œ (๐น (๐‘ฅ1, ๐‘ฅ2)) = ๐‘“(๐‘ฅ1, ๐‘ฅ2), ๐‘ฅ1, ๐‘ฅ2 โˆˆ โ„2. (3.3)

For the solution, (see, e.g., [8] or [21]), we need to point out that the domain isa poly-domain in the sense of โ„‚๐‘›, so that we can give it in the form of a Cauchy

Page 247: Quaternion and Clifford Fourier Transforms and Wavelets

226 S. Bernstein, J.-L. Bouchot, M. Reinhardt and B. Heise

integral:

๐น (๐‘ง1, ๐‘ง2) =1

4๐œ‹2

โˆซโ„2

1

(๐ƒ1 โˆ’ ๐‘ง1)(๐ƒ2 โˆ’ ๐‘ง2)๐‘“(๐ƒ1, ๐ƒ2)d๐ƒ1d๐ƒ2. (3.4)

Now again looking at the corresponding Plemeljโ€“Sokhotzki formula we get

tr๐น (๐‘ฅ1, ๐‘ฅ2) =1

4๐‘“(๐‘ฅ1, ๐‘ฅ2)โˆ’ 1

4

โˆซโ„2

1

(๐ƒ1 โˆ’ ๐‘ฅ1)(๐ƒ2 โˆ’ ๐‘ฅ2)๐‘“(๐ƒ1, ๐ƒ2)d๐ƒ1d๐ƒ2

+ ๐‘–1

4

(โˆซโ„

1

๐ƒ1 โˆ’ ๐‘ฅ1๐‘“(๐ƒ1, ๐‘ฅ2)d๐ƒ1 +

โˆซโ„

1

๐ƒ2 โˆ’ ๐‘ฅ2๐‘“(๐‘ฅ1, ๐ƒ2)d๐ƒ2

), (3.5)

which up to the factor 1/4 corresponds to the definition of an analytic signal givenby Hahn [13]. Here

โ„‹1๐‘“(๐‘ฅ1, ๐‘ฅ2) =

โˆซโ„

1

๐ƒ1 โˆ’ ๐‘ฅ1๐‘“(๐ƒ1, ๐‘ฅ2)d๐ƒ1 (3.6)

โ„‹2๐‘“(๐‘ฅ1, ๐‘ฅ2) =

โˆซโ„

1

๐ƒ2 โˆ’ ๐‘ฅ2๐‘“(๐‘ฅ1, ๐ƒ2)d๐ƒ2 (3.7)

is called a partial Hilbert transform, and

โ„‹๐‘‡ ๐‘“ =1

4

โˆซโ„2

1

(๐ƒ1 โˆ’ ๐‘ฅ1)(๐ƒ2 โˆ’ ๐‘ฅ2)๐‘“(๐ƒ1, ๐ƒ2)d๐ƒ1d๐ƒ2 (3.8)

a total Hilbert transform. On the level of Fourier symbols we get

โ„ฑ(tr๐น )(๐‘ข1, ๐‘ข2) = (1 + sign๐‘ข1)(1 + sign๐‘ข2)โ„ฑ๐‘“(๐‘ข1, ๐‘ข2). (3.9)

Let us now take a look at the definition of Bulow. To this end we consider๐น to be a function of two variables ๐‘ง1 and ๐”ท2 with two different imaginary units๐’Š and ๐’‹ (with ๐’Š2 = ๐’‹2 = โˆ’1), i.e., ๐‘ง1 = ๐‘ฅ1 + ๐’Š๐‘ฆ1 and ๐”ท2 = ๐‘ฅ2 + ๐’‹๐‘ฆ2. We remarkthat both imaginary units can be understood as elements of the quaternionic basiswith multiplication rules ๐’Š๐’‹ = โˆ’๐’‹๐’Š = ๐’Œ. In this way the above Riemannโ€“Hilbertproblem can be rewritten as

โˆ‚

โˆ‚๐‘ง1๐น = 0, (๐‘ง1, ๐”ท2) โˆˆ โ„‚2, ๐‘ฆ1, ๐‘ฆ2 โ‰ฅ 0, (3.10)

๐นโˆ‚

โˆ‚๐”ท2= 0, (๐‘ง1, ๐”ท2) โˆˆ โ„‚2, ๐‘ฆ1, ๐‘ฆ2 โ‰ฅ 0, (3.11)

โ„œ (๐น (๐‘ฅ1, ๐‘ฅ2)) = ๐‘“(๐‘ฅ1, ๐‘ฅ2), ๐‘ฅ1, ๐‘ฅ2 โˆˆ โ„2, (3.12)

where the second equation should be understood as โˆ‚ ๐”ท2 being applied from theright due to the non-commutativity of the complex units ๐’Š and ๐’‹.

The solution is given by

๐น (๐‘ง1, ๐”ท2) =1

4๐œ‹2

โˆซโ„2

1

(๐ƒ1 โˆ’ ๐‘ง1)(๐ƒ2 โˆ’ ๐”ท2)๐‘“(๐ƒ1, ๐ƒ2)d๐ƒ1d๐ƒ2, (3.13)

Page 248: Quaternion and Clifford Fourier Transforms and Wavelets

11. Generalized Analytic Signals in Image Processing 227

so that we get from the Plemeljโ€“Sokhotzki formulae

tr๐น (๐‘ฅ1, ๐‘ฅ2) =1

4(๐ผ + ๐’Š๐ป1)(๐ผ + ๐’‹๐ป2)๐‘“(๐‘ฅ1, ๐‘ฅ2) (3.14)

=1

4(๐‘“ + ๐’Šโ„‹1๐‘“ + ๐’‹โ„‹2๐‘“ + ๐’Œโ„‹๐‘‡ ๐‘“)(๐‘ฅ1, ๐‘ฅ2). (3.15)

While (3.15) is a quaternionic-valued function, it still corresponds to a boundaryvalue of a function holomorphic in two variables. For the representation in theFourier domain one has to keep in mind that one has to apply one Fourier transformwith respect to the complex plane in ๐’Š, and one Fourier transform with respect tothe complex plane generated by ๐’‹. Taking into account that ๐’Š๐’‹ = โˆ’๐’‹๐’Š one arrivesat the so-called quaternionic Fourier transform [16, 6]:

๐’ฌโ„ฑ๐‘“ =

โˆซโ„2

๐‘’๐’Š๐‘ฅ1๐ƒ1๐‘“(๐‘ฅ1, ๐‘ฅ2)๐‘’๐’‹๐‘ฅ2๐ƒ2d๐‘ฅ1d๐‘ฅ2, (3.16)

and the following representation in Fourier symbols

๐’ฌโ„ฑ(tr๐น )(๐‘ข1, ๐‘ข2) = (1 + sign๐‘ข1)(1 + sign๐‘ข2)๐’ฌโ„ฑ๐‘“(๐‘ข1, ๐‘ข2). (3.17)

3.1.2. Image Analysis. In image analysis problems, we can introduce the followingfeatures according to [13]

Amplitude. The local amplitude of a multidimensional analytic signal is definedin a similar way as in the one-dimensional case:

๐ด๐ด(๐‘ฅ, ๐‘ฆ) =โˆšโˆฃ๐‘“(๐‘ฅ, ๐‘ฆ)โˆฃ2 + โˆฃโ„‹1๐‘“(๐‘ฅ, ๐‘ฆ)โˆฃ2 + โˆฃโ„‹2๐‘“(๐‘ฅ, ๐‘ฆ)โˆฃ2 + โˆฃโ„‹๐‘‡ ๐‘“(๐‘ฅ, ๐‘ฆ)โˆฃ2 (3.18)

This is also called energetic information.

Phase. The phase is a feature describing how much a vector or quaternion numberdiverge from the real axis. It is defined in a manner similar to the classical complexplane.

๐œ™๐ด = arctan

(โˆšโ„‹1๐‘“2 +โ„‹2๐‘“2 +โ„‹๐‘‡ ๐‘“2

๐‘“

). (3.19)

This angle ๐œ™๐ด is what is called phase or structural information.

Orientation. Because we are currently considering 2D signals (that is, images), wecan also describe orientation information, as the principal direction carrying thephase information. The imaginary plane, spanned by {๐’Š, ๐’‹}, is two dimensionaland therefore we can also define an angle ๐œƒ๐ด in this plane:

๐œƒ๐ด = arctan

(โ„‹2๐‘“

โ„‹1๐‘“

). (3.20)

This new angle is called the orientation of the signal or geometric information.

Page 249: Quaternion and Clifford Fourier Transforms and Wavelets

228 S. Bernstein, J.-L. Bouchot, M. Reinhardt and B. Heise

3.2. Using Clifford Analysis

Another approach to higher dimensions is Clifford analysis.

3.2.1. Mathematics. Here we use Clifford algebra ๐ถโ„“0,๐‘› [4]. This is the free algebraconstructed over โ„๐‘› generated modulo the relation

๐‘ฅ2 = โˆ’โˆฃ๐‘ฅโˆฃ2๐’†0, ๐‘ฅ โˆˆ โ„๐‘› (3.21)

where ๐’†0 is the identity of ๐ถโ„“0,๐‘›.For the algebra ๐ถโ„“0,๐‘› we have the anti-commutation relationship

๐’†๐‘–๐’†๐‘— + ๐’†๐‘—๐’†๐‘– = โˆ’2๐›ฟ๐‘–๐‘—๐’†0, (3.22)

where ๐›ฟ๐‘–๐‘— is the Kronecker symbol. Each element ๐‘ฅ of โ„๐‘› may be represented by

๐‘ฅ =

๐‘›โˆ‘๐‘–=1

๐‘ฅ๐‘–๐’†๐‘–. (3.23)

A first-order differential operator which factorizes the Laplacian is given bythe Dirac operator

๐ท๐‘“(๐‘ฅ) =๐‘›โˆ‘

๐‘—=1

โˆ‚๐‘“

โˆ‚๐‘ฅ๐‘—. (3.24)

The Riemannโ€“Hilbert problem for the Dirac operator in โ„3 can be stated inthe form

๐ท๐น (๐‘ฅ) = 0, ๐‘ฅ โˆˆ โ„3, ๐‘ฅ3 > 0, (3.25)

โ„œ (๐น (๐‘ฅ1, ๐‘ฅ2)) = ๐‘“(๐‘ฅ1, ๐‘ฅ2), ๐‘ฅ1, ๐‘ฅ2 โˆˆ โ„2. (3.26)

To solve this problem we follow the same idea as above.

๐นฮ“๐‘“ =

โˆซโ„2

๐‘ฅโˆ’ ๐‘ฆ

โˆฃ๐‘ฅโˆ’ ๐‘ฆโˆฃ2 ๐’†3๐‘“(๐‘ฅ1, ๐‘ฅ2)d๐‘ฅ1d๐‘ฅ2 (3.27)

tr๐นฮ“๐‘“ =1

2(๐ผ + ๐‘†ฮ“)๐‘“

=1

2๐‘“(๐‘ฆ1, ๐‘ฆ2) +

1

2

โˆซโ„2

๐’†1(๐‘ฅ1 โˆ’ ๐‘ฆ1) + ๐’†2(๐‘ฅ2 โˆ’ ๐‘ฆ2)

โˆฃ๐‘ฅโˆ’ ๐‘ฆโˆฃ2 ๐’†3๐‘“(๐‘ฅ1, ๐‘ฅ2)d๐‘ฅ1d๐‘ฅ2. (3.28)

Because quaternions โ„ are isomorphic to the even subalgebra ๐ถโ„“+0,3, i.e., allelements of the form

๐‘0 + ๐‘1๐’†1๐’†2 + ๐‘2๐’†1๐’†3 + ๐‘3๐’†2๐’†3, ๐‘0, ๐‘1, ๐‘2, ๐‘3 โˆˆ โ„ (3.29)

we can set ๐’Š = ๐’†1๐’†2 and ๐’‹ = ๐’†2๐’†3 so that

tr๐นฮ“๐‘“ =1

2(๐ผ + ๐‘†ฮ“)๐‘“ (3.30)

=1

2๐‘“(๐‘ฆ1, ๐‘ฆ2) +

1

2

โˆซโ„2

๐’Š(๐‘ฅ1 โˆ’ ๐‘ฆ1) + ๐’‹(๐‘ฅ2 โˆ’ ๐‘ฆ2)

โˆฃ๐‘ฅโˆ’ ๐‘ฆโˆฃ2 ๐‘“(๐‘ฅ1, ๐‘ฅ2)d๐‘ฅ1d๐‘ฅ2. (3.31)

Up to the factor 1/2 this is the monogenic signal ๐‘“๐‘€ = ๐‘“ + ๐’Šโ„›1๐‘“ + ๐’‹โ„›2๐‘“ :=๐‘“+(๐’Š, ๐’‹)โ„›๐‘“ of Sommer and Felsberg [10]. Here โ„›1, โ„›2 and โ„› denote respectively

Page 250: Quaternion and Clifford Fourier Transforms and Wavelets

11. Generalized Analytic Signals in Image Processing 229

the first and second component of the Riesz transform, and the Riesz transformitself [23]. Defined as Fourier multipliers, it holds:

โ„›๐‘“(๐‘ข1, ๐‘ข2) =๐‘–(๐‘ข1, ๐‘ข2)

โˆฅ(๐‘ข1, ๐‘ข2)โˆฅ2 ๐‘“(๐‘ข1, ๐‘ข2), (3.32)

โ„›1๐‘“(๐‘ข1, ๐‘ข2) =๐‘–๐‘ข1

โˆฅ(๐‘ข1, ๐‘ข2)โˆฅ2 ๐‘“(๐‘ข1, ๐‘ข2), (3.33)

โ„›2๐‘“(๐‘ข1, ๐‘ข2) =๐‘–๐‘ข2

โˆฅ(๐‘ข1, ๐‘ข2)โˆฅ2 ๐‘“(๐‘ข1, ๐‘ข2), (3.34)

where โˆฅ(๐‘ข1, ๐‘ข2)โˆฅ2 =โˆš

๐‘ข21 + ๐‘ข2

2. An equivalent definition in the spatial domaincan be obtained by convolution with the two-dimensional Riesz kernel, i.e., for๐‘š = 1, 2

โ„›๐‘–๐‘“ = ๐‘๐‘ฅ๐‘–โˆฅ๐‘ฅโˆฅ32

โˆ— ๐‘“, (3.35)

with ๐‘ being a constant.

3.2.2. Image Analysis. Following [10], three features can be computed, and willalso be denoted as energetic, structural and geometrical information, as alreadyintroduced for the multidimensional analytic signal.

Amplitude. The local amplitude of a monogenic signal is defined in a similarmanner as for the analytic signal:

๐ด๐‘€ (๐‘ฅ, ๐‘ฆ) =โˆšโˆฃ๐‘“(๐‘ฅ, ๐‘ฆ)โˆฃ2 + โˆฃโ„›๐‘“(๐‘ฅ, ๐‘ฆ)โˆฃ2 =

โˆš๐‘“๐‘€ (๐‘ฅ, ๐‘ฆ)๐‘“๐‘€ (๐‘ฅ, ๐‘ฆ), (3.36)

where the overbar denotes the conjugation of a quaternion.

Phase.

๐œ™๐‘€ (๐‘ฅ, ๐‘ฆ) = arctanโˆฃโ„›๐‘“(๐‘ฅ, ๐‘ฆ)โˆฃ๐‘“(๐‘ฅ, ๐‘ฆ)

, (3.37)

and we also have that ๐œ™๐‘€ denotes the angle between ๐ด(๐‘ฅ, ๐‘ฆ) and ๐‘“๐‘€ (in the planespanned by the two complex vectors). This yields values ๐œ™๐‘€ โˆˆ [โˆ’๐œ‹/2;๐œ‹/2].

An alternative but equivalent definition is using the arccosine:

๐œ™๐‘€ = arccos๐‘“

โˆฃ๐‘“๐‘€ โˆฃ . (3.38)

In (3.38), we have ๐œ™๐‘€ โˆˆ [0;๐œ‹].

Orientation. Once again, we can derive an orientation ๐œƒ๐‘€ โˆˆ [โˆ’๐œ‹, ๐œ‹] based on themonogenic signal which represents the direction of the phase information.

๐œƒ๐‘€ = arctanโ„›2๐‘“

โ„›1๐‘“. (3.39)

We note that this definition actually only provides an orientation modulo๐œ‹. To determine the orientation respectively the direction modulo 2๐œ‹, a furtherorientation unwrapping step or sign estimation is needed [18, 5].

Page 251: Quaternion and Clifford Fourier Transforms and Wavelets

230 S. Bernstein, J.-L. Bouchot, M. Reinhardt and B. Heise

Representation. In the rest of this chapter the different features of images arerepresented by using different colourmaps: a grey colour map is used for the am-plitude representation, which is normalized between [0, 1], a jet colormap for thephase (running between blue and red and mapping the interval [0, ๐œ‹)) [24], and aHSV colormap for the orientation (running between red, blue and red in a peri-odic way and mapping the interval [โˆ’๐œ‹/2, ๐œ‹/2)), as depicted in Figure 2 (left, resp.from top to bottom) [24]. As a last representation, we use a colormap accordingto the Middlebury representation [1] where the colour encodes the orientation andthe intensity is computed according to the phase (or structure) information. Thisrepresentation can be seen on the right-hand side of Figure 2.

Figure 2. Scales used for the different colour coding. (See explanationin text.)

3.3. Illustrations

We want here to illustrate the differences between the generalizations proposed.We will visually assess the characteristics of both approaches first applied to aSiemens star1 then to a checkerboard image. Both examples are interesting fortheir regularity (point symmetry for the star and many horizontal and verticalline symmetries for the checkerboard).

An example of such star is depicted in Figure 3(a). The two other imagesin the first row of Figure 3 illustrate the two components of the Riesz transform.As we can see, and we will come back to this property later, the partial Riesztransforms show in some directions behaviour similar to steered derivatives. The

1The Siemens star is a test image used to characterize the resolution of different optical and

graphical devices such as printers or computer projectors. The image is interesting as it showsmuch regularity, as well as many intrinsic one-dimensional and two-dimensional parts.

Page 252: Quaternion and Clifford Fourier Transforms and Wavelets

11. Generalized Analytic Signals in Image Processing 231

Figure 3. The Siemens star together with the different Riesz andHilbert transforms presented in this section. (Additional explanationin the text.)

first component tends to emphasize horizontal edges while the second one tendsto respond more to vertical ones.

The second row shows the results of applying the different Hilbert transformsto the Siemens star. The two first images represent the results of the two partialHilbert transforms and the last one depicts the result of the total Hilbert transform.We can notice the high anisotropy of these transforms at, for instance, the strongvertical respectively horizontal delineation through the centres of the images. Wecan also notice the patchy response of the total Hilbert transform.

As the Riesz kernel in polar coordinate [๐‘Ÿ, ๐›ผ] of the spatial domain reads

๐‘…(๐‘Ÿ, ๐›ผ) โˆผ 1

๐‘Ÿ2๐‘’๐‘–๐›ผ, (3.40)

it exhibits an isotropic behavior with respect to its magnitude. In comparison,the partial and the total Hilbert transforms both induce a strict relationship tothe orthogonal coordinate system, and therefore also the two-dimensional analyticsignal inherits this characteristic.

Next we consider local features computed according to the formulas intro-duced above. The results are depicted in Figure 4. The first row corresponds to

Page 253: Quaternion and Clifford Fourier Transforms and Wavelets

232 S. Bernstein, J.-L. Bouchot, M. Reinhardt and B. Heise

Figure 4. Local features computed with the monogenic signal repre-sentation (first row), and the multidimensional analytic signal (secondrow). The images are depicted in a pseudo-colour representation withamplitude: grey, phase: jet, orientation: HSV-Middlebury.

monogenic features, while the second one corresponds to analytic features. Thephase is displayed in a jet colormap, the orientation in a hue-saturation-valueHSV colormap. The last column shows the orientations with intensities weightedproportionally to the cosine of the phase. It is shown according to the Middleburyrepresentation2: strength (cosine of the phase) is encoded as an intensity value ofthe colour and the colour itself corresponds to the orientation. The main differ-ences between these two sets of features lie in the shape and in the boundaries.While monogenic features yield rather smooth boundaries, the analytic represen-tation creates abrupt changes due to its anisotropy. We remark that the phasegives reasonable insights into the structure in the images.

In comparison to the Siemens star, the checkerboard example (see Figure 5(a))shows many orthogonal features. In this case, we see that the partial Hilberttransforms give some good insights into the closeness of an edge and preservethe checkerboard structure (Figure 5(d) and 5(e)), while the Riesz transform gives

2The Middlebury benchmark for optical flow is a web resource for comparing results on optical

flow computations. The colour error representation is well suited for encoding our orientation.More information can be found in [1].

Page 254: Quaternion and Clifford Fourier Transforms and Wavelets

11. Generalized Analytic Signals in Image Processing 233

Figure 5. The checkerboard together with the different Riesz andHilbert transforms presented in this section.

more local responses. The total Hilbert transform acts as an accurate corner de-tector, as can be seen from its response in Figure 5(f).

When discussing the analytic and monogenic features (Figure 6) we remarkthat this effect is preserved. The Riesz transform, being well localized at the edges,does not yield many differences inside any of the squares and seems to jumpfrom one extreme to another across the edges. See in particular Figure 6(b) foran illustrative example of the phase. On the other hand, the Hilbert transformcontains more neighbourhood information and yields a smoother transition in thephase from one square to the next. These features have to be considered carefullybased on the application problem one wishes to solve.

4. The Geometric Approach

For a better understanding of signals a geometric interpretation can help. The fol-lowing considerations about complex numbers, quaternions, rotations, the unitarygroup, special unitary and special orthogonal groups, as well as the spin group, arewell known and can be found in numerous papers. We would like to suggest thebook by Lounesto [19], which provides a comprehensive knowledge of these topics.

Page 255: Quaternion and Clifford Fourier Transforms and Wavelets

234 S. Bernstein, J.-L. Bouchot, M. Reinhardt and B. Heise

Figure 6. Local features computed with the monogenic signal repre-sentation (first row), and the multidimensional analytic signal (secondrow). The images are depicted in a pseudo-colour representation withamplitude: grey, phase: jet, orientation: HSV-Middlebury.

The analytic signal ๐‘“๐ด(๐‘ก) = ๐ด(๐‘ก)๐‘’๐‘–๐œ™(๐‘ก) consists of boundary values of an analyticfunction, but the analytic signal can also be seen as a complex-valued function,where ๐‘’๐‘–๐œ™(๐‘ก) = cos๐œ™(๐‘ก) + ๐‘– sin๐œ™(๐‘ก) has unit modulus and hence can be identifiedwith the unit circle ๐‘†1. But there is even more. The set of unit complex numbers isa group with the complex multiplication as group operation, which is the unitarygroup ๐‘ˆ(1) = {๐‘ง โˆˆ โ„‚ : ๐‘ง๐‘ง = 1}. On the other hand a unit complex number canalso be seen as a rotation in โ„2 if we identify the unit complex number with thematrix

๐‘…๐œ™ =

(cos๐œ™ โˆ’ sin๐œ™sin๐œ™ cos๐œ™

)โˆˆ ๐‘†๐‘‚(2), (4.1)

i.e., the group of all counter-clockwise rotations in โ„2. Now all this can also bedescribed inside Clifford algebras. Let us consider the Clifford algebra ๐ถโ„“0,2 withgenerators ๐‘’1, ๐‘’2. The complex numbers can be identified with all elements ๐‘ฅ +๐‘ฆ๐‘’12, ๐‘ฅ, ๐‘ฆ โˆˆ โ„, i.e., the even subalgebra ๐ถโ„“+0,2 of the Clifford algebra ๐ถโ„“0,2. The

rotation (4.1) can also be described by a Clifford multiplication. To see that, weidentify (๐‘ฅ, ๐‘ฆ) โˆˆ โ„2 with ๐‘ฅ๐‘’1 + ๐‘ฆ๐‘’2 โˆˆ ๐ถโ„“0,2, and set

๐‘…๐œ™(๐‘ฅ, ๐‘ฆ)๐‘‡ = (cos ๐œ™

2 + ๐‘’12 sin๐œ™2 )โˆ’1(๐‘ฅ๐‘’1 + ๐‘ฆ๐‘’2)(cos

๐œ™2 + ๐‘’12 sin

๐œ™2 ), (4.2)

Page 256: Quaternion and Clifford Fourier Transforms and Wavelets

11. Generalized Analytic Signals in Image Processing 235

where cos ๐œ™2 + ๐‘’12 sin

๐œ™2 โˆˆ Spin(2) = {๐‘  โˆˆ ๐ถโ„“+0,2 : ๐‘ ๐‘  = 1}, the spin group of even

products of Clifford vectors. It is easily seen that ๐‘  and โˆ’๐‘  in Spin(2) represent thesame rotation, which means that Spin(2) is a two-fold cover of ๐‘†๐‘‚(2). The basis forall these interpretations is the description of complex numbers in a trigonometricway, which is possible by using a logarithm function, which is well known forcomplex numbers. All of that can be generalized into higher dimensions and hasbeen used for monogenic signals. We will start with quaternions because they arethe even subalgebra of the Clifford algebra ๐ถโ„“0,3.

4.1. Quaternions and Rotations

A quaternion ๐‘ž โˆˆ โ„ can be written as

๐‘ž = ๐‘ž0 + ๐‘ž = S(๐‘ž) +V(๐‘ž) = โˆฃ๐‘žโˆฃ ๐‘ž

โˆฃ๐‘žโˆฃ , (4.3)

where โˆฃ๐‘žโˆฃ is the absolute value or norm of ๐‘ž in โ„4 and๐‘žโˆฃ๐‘žโˆฃ โˆˆ โ„1 is a unit quaternion.

Because of โˆฃโˆฃ ๐‘žโˆฃ๐‘žโˆฃโˆฃโˆฃ2 =

3โˆ‘๐‘–=0

๐‘ž2๐‘–

โˆฃ๐‘žโˆฃ2 = 1, (4.4)

the set of unit quaternions โ„1 can be identified with ๐‘†3, the three-dimensionalsphere in โ„4.

On the other hand the Clifford algebra ๐ถโ„“0,3 is generated by the elements๐’†1, ๐’†2 and ๐’†3 with ๐’†2

1 = ๐’†22 = ๐’†2

3 = โˆ’1 and ๐’†๐‘–๐’†๐‘—+๐’†๐‘—๐’†๐‘– = โˆ’2๐›ฟ๐‘–,๐‘—. Its even subalgebra

๐ถโ„“+0,3, as defined in (3.29), can be identified with quaternions by ๐’†1๐’†2 โˆผ ๐’Š, ๐’†1๐’†3 โˆผ ๐’‹and ๐’†2๐’†3 โˆผ ๐’Œ.

Furthermore,

Spin(3) = {๐‘ข โˆˆ ๐ถโ„“+0,3 : ๐‘ข๏ฟฝ๏ฟฝ = 1} = โ„1. (4.5)

That means a unit quaternion can be considered as a spinor. Because Spin(3)is a double cover of the group ๐‘†๐‘‚(3), rotations can be described by unit quater-nions. The monogenic signal is interpreted as a spinor in [26] and lately in [2].

4.2. Quaternions in Trigonometric Form

In this section we represent the monogenic signal in a similar manner to the ana-lytic signal. The analytic signal is a holomorphic and analytic function and there-fore connected to complex numbers. Complex numbers can be written in algebraicor trigonometric form as:

๐‘ง = ๐‘ฅ+ ๐‘–๐‘ฆ = ๐‘Ÿ๐‘’๐‘–๐œ™.

The analytic signal is given by

๐ด(๐‘ก)๐‘’๐‘–๐œ™(๐‘ก),

with amplitude ๐ด(๐‘ก) and (local) phase ๐œ™(๐‘ก). We want to obtain a similar represen-tation of the monogenic signal using quaternions. A simple computation leads to

๐‘ž = โˆฃ๐‘žโˆฃ(

๐‘ž0โˆฃ๐‘žโˆฃ +

๐‘ž

โˆฃ๐‘žโˆฃโˆฃ๐‘žโˆฃโˆฃ๐‘žโˆฃ)

= โˆฃ๐‘žโˆฃ (cos๐œ™+ ๐‘ข sin๐œ™),

Page 257: Quaternion and Clifford Fourier Transforms and Wavelets

236 S. Bernstein, J.-L. Bouchot, M. Reinhardt and B. Heise

where ๐œ™ = arccos๐‘ž0โˆฃ๐‘žโˆฃ and ๐‘ข =

๐‘ž

โˆฃ๐‘žโˆฃ โˆˆ ๐‘†2. (Alternatively, the argument ๐œ™ can be

defined by the arctan.)We have to mention that this representation is different from all previous ones,specifically the vector ๐‘ข is a unit vector in โ„3 and not a unit quaternion.We can represent the quaternion ๐‘ž by its amplitude โˆฃ๐‘žโˆฃ, the phase ๐œ™ and theorientation ๐‘ข. Moreover,

๐‘ž = โˆฃ๐‘žโˆฃ ๐‘’๐‘ข๐œ™,where ๐‘’ is the usual exponential function.

With the aid of an appropriate logarithm we can compute ๐‘ข๐œ™ from๐‘žโˆฃ๐‘žโˆฃ = ๐‘’๐‘ข๐œ™.

Next, we want to explain the orientation ๐‘ข. We have already obtained that

๐‘ž = โˆฃ๐‘žโˆฃ (cos๐œ™+ ๐‘ข sin๐œ™),

where ๐‘ข =๐‘ž

โˆฃ๐‘žโˆฃ โˆˆ ๐‘†2 and ๐‘ข2 = โˆ’1, i.e., ๐‘ข behaves like a complex unit. But because

of ๐‘ข โˆˆ ๐‘†2 we can express ๐‘ข in spherical coordinates. We have

๐‘ข =๐‘ž1๐’Š+ ๐‘ž2๐’‹ + ๐‘ž3๐’Œ

โˆฃ๐‘ž1๐’Š+ ๐‘ž2๐’‹ + ๐‘ž3๐’Œโˆฃ = ๐’Š

(๐‘ž1โˆฃ๐‘žโˆฃ +

(๐‘ž2(โˆ’๐’Š๐’‹) + ๐‘ž3๐’‹)

โˆฃ๐‘žโˆฃ), (4.6)

and if we set cos ๐œƒ =๐‘ž1โˆฃ๐‘žโˆฃ we get

๐‘ข = ๐’Š(cos ๐œƒ + ๐‘ข sin ๐œƒ), ๐‘ข =๐‘ž

โˆฃ๐‘žโˆฃ and ๐‘ž = ๐’‹๐‘ž3 โˆ’ ๐’Š๐’‹๐‘ž2. (4.7)

Because of

๐‘ž = ๐’‹๐‘ž3 โˆ’ ๐’Š๐’‹๐‘ž2 = ๐’‹(๐‘ž3 + ๐’Š๐‘ž2) (4.8)

and with cos ๐œ =๐‘ž3โˆฃ๐‘žโˆฃ we get that

๐‘ข = ๐’‹(cos ๐œ + ๐’Š sin ๐œ). (4.9)

Finally, we put everything together we obtain

๐‘ž = ๐‘ž0 + ๐‘ž1๐’Š+ ๐‘ž2๐’‹ + ๐‘ž3๐’Œ (4.10)

= โˆฃ๐‘žโˆฃ (cos๐œ™+ ๐‘ข sin๐œ™) = โˆฃ๐‘žโˆฃ (cos๐œ™+ ๐’Š(cos ๐œƒ + ๐‘ข sin ๐œƒ

)sin๐œ™

)(4.11)

= โˆฃ๐‘žโˆฃ (cos๐œ™+ ๐’Š (cos ๐œƒ + ๐’‹ (cos ๐œ + ๐’Š sin ๐œ) sin ๐œƒ) sin๐œ™) (4.12)

= โˆฃ๐‘žโˆฃ (cos๐œ™+ ๐’Š sin๐œ™ cos ๐œƒ + ๐’‹ sin๐œ™ sin ๐œƒ sin ๐œ + ๐’Œ sin๐œ™ sin ๐œƒ cos ๐œ) , (4.13)

where ๐œ™, ๐œƒ โˆˆ [0, ๐œ‹] and ๐œ โˆˆ [0, 2๐œ‹]. In case of a reduced quaternion, i.e., ๐‘ž3 = 0, asimilar computation leads to

๐‘ž = ๐‘ž0 + ๐‘ž1๐’Š+ ๐‘ž2๐’‹ (4.14)

= โˆฃ๐‘žโˆฃ (cos๐œ™+ ๐‘ข sin๐œ™) = โˆฃ๐‘žโˆฃ (cos๐œ™+ ๐’Š (cos ๐œƒ โˆ’ ๐’Œ sin ๐œƒ) sin๐œ™) (4.15)

= โˆฃ๐‘žโˆฃ (cos๐œ™+ ๐’Š sin๐œ™ cos ๐œƒ + ๐’‹ sin๐œ™ sin ๐œƒ) , (4.16)

where ๐œ™ โˆˆ [0, ๐œ‹] and ๐œƒ โˆˆ [0, 2๐œ‹].

Page 258: Quaternion and Clifford Fourier Transforms and Wavelets

11. Generalized Analytic Signals in Image Processing 237

It is easily seen that ๐œƒ can be computed by

tan ๐œƒ =๐‘ž2๐‘ž1

โ‡โ‡’ ๐œƒ = arctan๐‘ž2๐‘ž1

.

If we compare that with the monogenic signal

๐‘“๐‘€ (๐‘ฅ, ๐‘ฆ) = ๐‘“(๐‘ฅ, ๐‘ฆ) + ๐’Š(โ„›1๐‘“)(๐‘ฅ, ๐‘ฆ) + ๐’‹(โ„›2๐‘“)(๐‘ฅ, ๐‘ฆ)

we see that (compare with (3.39))

๐œƒ = arctan(โ„›2๐‘“)(๐‘ฅ, ๐‘ฆ)

(โ„›1๐‘“)(๐‘ฅ, ๐‘ฆ)= ๐œƒ๐‘€ (๐‘ฅ, ๐‘ฆ). (4.17)

Therefore the vector ๐‘ข = ๐’Š cos ๐œƒ+ ๐’‹ sin ๐œƒ can also be considered as the orientation.

4.3. Exponential Function and Logarithm for Quaternionic Arguments

The exponential function for quaternions and para-vectors in a Clifford algebra isdefined in [12] and many other papers.

Definition 4.1. For ๐‘ž โˆˆ โ„ the exponential function is defined as

๐‘’๐‘ž :=

โˆžโˆ‘๐‘˜=0

๐‘ž๐‘˜

๐‘˜!. (4.18)

Lemma 4.2. With ๐‘ข =๐‘ž

โˆฃ๐‘žโˆฃ the exponential function can be written as

๐‘’๐‘ž = ๐‘’๐‘ž0 (cos โˆฃ๐‘žโˆฃ+ ๐‘ข sin โˆฃ๐‘žโˆฃ) = ๐‘’๐‘ž0๐‘’๐‘ขโˆฃ๐‘žโˆฃ. (4.19)

Remark 4.3. The formula

๐‘’๐‘ขโˆฃ๐‘žโˆฃ = cos โˆฃ๐‘žโˆฃ+ ๐‘ข sin โˆฃ๐‘žโˆฃ (4.20)

can be considered as a generalized Euler formula.

It is always a challenge to define a logarithm. We will use the followingdefinition.

Definition 4.4. Let ๐‘ข =๐‘ž

โˆฃ๐‘žโˆฃ . Then the logarithm is defined as

ln ๐‘ž :=

{ln โˆฃ๐‘žโˆฃ+ ๐‘ข arccos

๐‘ž0โˆฃ๐‘žโˆฃ , โˆฃ๐‘žโˆฃ โˆ•= 0, or โˆฃ๐‘žโˆฃ = 0 and ๐‘ž0 > 0,

undefined, โˆฃ๐‘žโˆฃ = 0 and ๐‘ž0 โ‰ค 0.(4.21)

Remark 4.5. A logarithm cannot be uniquely defined for โˆ’1 because

๐‘’๐‘ข๐œ‹ = cos๐œ‹ + ๐‘ข sin๐œ‹ = โˆ’1, (4.22)

for all ๐‘ข โˆˆ ๐‘†2.

Remark 4.6. More precisely, we can define the ๐‘˜th branch, ๐‘˜ โˆˆ โ„ค, of the logarithmbecause cos ๐‘ก is a 2๐œ‹ periodic function.

Page 259: Quaternion and Clifford Fourier Transforms and Wavelets

238 S. Bernstein, J.-L. Bouchot, M. Reinhardt and B. Heise

Theorem 4.7 (Exponential and logarithm function).

1. For โˆฃ๐‘žโˆฃ โˆ•= 0 or โˆฃ๐‘žโˆฃ = 0 and ๐‘ž0 > 0,

๐‘’ln ๐‘ž = ๐‘ž. (4.23)

2. For โˆฃ๐‘žโˆฃ โˆ•= ๐‘˜๐œ‹, ๐‘˜ โˆˆ โ„คโˆ–{0} the following holds true

ln ๐‘’๐‘ž = ๐‘ž. (4.24)

Lemma 4.8. For ๐‘ž โˆˆ โ„1 and ๐‘ž โˆ•= โˆ’1 both relations are true:

๐‘’ln ๐‘ž = ln ๐‘’๐‘ž = ๐‘ž. (4.25)

5. Applications to Image Analysis

5.1. Motivations

In several imaging applications only intensity-based images (encoded mostly ingray-scale representation) are provided. Apart from monochromatic camera im-ages, we can cite, e.g., computerized tomography images which encodes local ab-sorption inside a body, or optical coherence tomography images which representsthe back-scattering at an interface. These kinds of images directly describe naturalscenes or physical quantities. In other types of images information is encoded in-directly, e.g., in varying amplitude or frequency of fringe patterns. They are calledamplitude modulated (AM) or frequency modulated (FM) signals. Textures canbe interpreted as a trade-off between both ideas: they depict natural scenes andcan be described as generalized AM-FM signals.

To enrich the information content of a pure intensity image (i.e., imagesencoded with a single value at each pixel), we test the concept of analytic signalsin image processing.

5.2. Application to AM-FM Image Demodulation

Here we study the applicability of the monogenic signal representation to AM-FM signal demodulation, as needed for instance in interferometric imaging [18].A certain given two-dimensional signal (= an image, Figure 7(a)) exhibits bothamplitude modulations (Figure 7(b)) and frequency modulations (Figure 7(c)).The aim is to separate each component of the signal by means of monogenic signalanalysis.

The three features described in the previous section are computed and theirresults are depicted as local orientation in Figure 7(d), local amplitude in Fig-ure 7(e) and local phase in Figure 7(f).

It appears that for such AM-FM signals, the orientation is able to describethe direction of the phase modulation, while the local amplitude gives a goodapproximation of the amplitude modulation (corresponding to the energy of thetwo-dimensional signal) and the phase encodes information about the frequencymodulation (understood as the structural information).

Page 260: Quaternion and Clifford Fourier Transforms and Wavelets

11. Generalized Analytic Signals in Image Processing 239

Figure 7. Example of a two-dimensional AM-FM signal. The first rowshows the input ground truth image together with its amplitude and fre-quency modulations. The second row depicts the recovered orientation,amplitude and phases. The images are displayed using the conventionaljet colormap.

The next example, in Figure 8(a), shows a fringe pattern as an example of areal-world interferometric AM-FM image. The following images show the mono-genic analysis of this image. The local amplitude is depicted beneath the fringepattern (Figure 8(d)). This image gives us a coarse idea of how much structure is tobe found within a given neighbourhood. The second column illustrates the phasecalculation either on the whole image (Figure 8(b)) or only where the local ampli-tude is above a given threshold (Figure 8(e)). The two images in the last columnrepresent the monogenic orientation encoded in HSV without or with the previousmask. As we would expect, illumination changes are appearing in the amplitude,while local structures are contained in both phase and orientation features.

5.3. Application to Texture Analysis

A task of particular interest in artificial vision, is the characterization or descrip-tion of textures. The problem here is to find interesting features to describe agiven texture the best we can in order to classify it for instance [14]. The use of

Page 261: Quaternion and Clifford Fourier Transforms and Wavelets

240 S. Bernstein, J.-L. Bouchot, M. Reinhardt and B. Heise

Figure 8. Example of a fringe pattern and its monogenic decomposi-tion. Phase (second column) is encoded as a jet colormap and orientationas HSV. The two last images show phase and orientation masked witha binary filter set to one when the local amplitude gets over a certainthreshold.

steerable filters could both optimize feature computations and affect the classifi-cation. In other words, if we can compute good descriptive features, we can bettercharacterize a texture.

Considering textures from a more general viewpoint as approximate AM-FM signals, we examine here the use of monogenic representation for the localcharacterization of a textured object as depicted in Figure 9(a).

When looking at the local monogenic signal description (amplitude in Fig-ure 9(b), phase in Figure 9(c) and orientation in Figure 9(d)), we indeed see theserepetitive features along the textured object. Moreover, these estimated valuesseem to be robust against small imperfections in the periodicity.

5.4. Applications to Natural Image Scenes

In this part of our chapter, we want to highlight the interest of the monogenicsignal for natural images. Such images have completely different characteristicsfrom those introduced above. For instance, natural images are often embeddedin a fully cluttered background, encoded with several colour channels, and have

Page 262: Quaternion and Clifford Fourier Transforms and Wavelets

11. Generalized Analytic Signals in Image Processing 241

Figure 9. Example of a textured image superposed with a reliabil-ity mask together with its monogenic analysis. Regions with too littleamplitude are masked out as unreliable.

information at many different scales, etc. In practical applications one needs toapply band-pass filters before analyzing such images [10]. Note that this workconsiders only grey-scale images, but there is literature dealing with multichannelimages [3].

In the following we will describe two tasks useful for image processing. Thefirst part deals with edge detection. We will see how the Riesz transform can beused as an edge detector in images. Then we will see how the orientation estimationis useful, for instance, in computer vision tasks, and how monogenic signal analysiscan help with this, as has already been done for structure interpretation [22, 15].

5.4.1. Edge Detection. The Riesz transform acts as an edge detector for severalreasons. This becomes clear when one has a closer look at its definition as a Fouriermultiplier. Indeed, let us recall the ๐‘—๐‘กโ„Ž Riesz multiplier (๐‘— = 1, 2, see (3.32)):

โ„›๐‘—๐‘“ = ๐‘–๐‘ข๐‘—โˆฃ๐‘ขโˆฃ๐‘“, (5.1)

and we have

โ„›๐‘—๐‘“ = ๐‘–1

โˆฃ๐‘ขโˆฃ โˆ‚๐‘—๐‘“, (5.2)

so that the Riesz transform acts as a normalized derivative operator.Another (eventually better) way to see this derivative effect is to consider the

Fourier multipliers in polar coordinates [17], as given in (3.40). Figure 10 illustratesthis behavior. The first column shows examples of natural grey-level images. Thesecond and third columns show the first and second Riesz components respectively.It appears that they act as edge detectors steered in the ๐‘ฅ and ๐‘ฆ directions. If wecompare the two Riesz components, we can see the response to different kinds ofedges.

5.4.2. Orientation Estimation of Edges. An important task in image processingand higher level computer vision is to estimate the orientation of edges. As thisis often the first step towards feature description and image interpretation (we

Page 263: Quaternion and Clifford Fourier Transforms and Wavelets

242 S. Bernstein, J.-L. Bouchot, M. Reinhardt and B. Heise

Figure 10. First and second components of the Riesz transform onsome natural images. Notice for instance the table leg appearing inFigure 10(f) but not in Figure 10(e), showing the directions of the com-ponents.

refer the reader to [7, 20] for some non-exhaustive surveys), one wants to have anorientation estimator which is as reliable as possible.

As stated in earlier sections, an orientation can be computed from an analyticor a monogenic signal analysis. For simplicity, let us consider the case of images,where the input function is defined on a set ๐ท โŠ‚ โ„2. Using polar coordinates inthe Fourier domain (๐œŒ, ๐›ฝ), it holds that

โ„›๐‘“ = ๐‘–(cos๐›ฝ, sin๐›ฝ)๐‘‡ ๐‘“, (5.3)

but on the other hand, we also have

โˆ‡๐‘“ = ๐‘–๐œŒ(cos๐›ฝ, sin๐›ฝ)๐‘‡ ๐‘“, (5.4)

so that both the gradient and the Riesz operator have similar effects on the anglesin the Fourier domain.

It has been shown in [9] that using monogenic orientation estimation in-creases the robustness compared to the traditional Sobel operator. Moreover in

Page 264: Quaternion and Clifford Fourier Transforms and Wavelets

11. Generalized Analytic Signals in Image Processing 243

Figure 11. Local features computed by means of monogenic signal analysis.

their work Felsberg and Sommer introduced an improved version based on localneighbourhood considerations and by using the phase as a confidence value.

Figure 11 illustrates the monogenic analysis of our two test images. The firstcolumn represents the local amplitude of the image whereas the second columnshows the local monogenic phases. The last two columns illustrate the computationof the monogenic orientation. The colours are encoded on a linear periodic basisaccording to the Middlebury colour coding. The last column shows exactly thesame orientation but with the phase in the important role of intensity information.The basic idea is to keep relevant orientation only where the structural information(i.e., the phase) is high.

Note that we do not discuss here the local-zero mean property in naturalimage scenes. So, for example, background and illumination effects may influencethe procedure and will be discussed elsewhere.

6. Conclusion

In this chapter the specificity and analysis of two generalizations of the analyticsignal to higher dimensions have been detailed mathematically, based respectivelyon multiple complex analysis and Clifford analysis. It is shown that they are bothvalid extensions of the one-dimensional concept of the analytic signal. The maindifference between the two approaches is with regard to rotation invariance due

Page 265: Quaternion and Clifford Fourier Transforms and Wavelets

244 S. Bernstein, J.-L. Bouchot, M. Reinhardt and B. Heise

to the point symmetric definition of the sign function in the case of the mono-genic approach compared to the single orthant definition of the multidimensionalanalytic signal.

In a second part we have illustrated the analytic or monogenic analysis of im-ages on both artificial samples and real-world examples in terms of fringe analysisand texture analysis. In the context of AM-FM signal demodulation the monogenicsignal analysis yields a robust decomposition into energectic, structural and geo-metric information. Finally some ideas for the use of generalized analytic signalsin higher-level image processing and computer vision tasks were given showing thehigh potential for further research.

Acknowledgment

We thank the ERASMUS program, and gratefully acknowledge financial supportfrom the Federal Ministry of Economy, Family and Youth, and from the NationalFoundation for Research, Technology and Development. This work was furthersupported in part by the Austrian Science Fund under grant number P21496 N23.

References

[1] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. Black, and R. Szeliski. A database andevaluation methodology for optical flow. International Journal of Computer Vision,92:1โ€“31, 2011. See also website: http://vision.middlebury.edu/flow/.

[2] T. Batard and M. Berthier. The spinor representation of images. In K. Gurlebeck,editor, 9th International Conference on Clifford Algebras and their Applications,Weimar, Germany, 15โ€“20 July 2011.

[3] T. Batard, M. Berthier, and C. Saint-Jean. Clifford Fourier transform for color im-age processing. In E.J. Bayro-Corrochano and G. Scheuermann, editors, GeometricAlgebra Computing in Engineering and Computer Science, pages 135โ€“162. Springer,London, 2010.

[4] F. Brackx, R. Delanghe, and F. Sommen. Clifford Analysis, volume 76. Pitman,Boston, 1982.

[5] T. Bulow, D. Pallek, and G. Sommer. Riesz transform for the isotropic estimation ofthe local phase of Moire interferograms. In G. Sommer, N. Kruger, and C. Perwass,editors, DAGM-Symposium, Informatik Aktuell, pages 333โ€“340. Springer, 2000.

[6] T. Bulow and G. Sommer. Hypercomplex signals โ€“ a novel extension of the ana-lytic signal to the multidimensional case. IEEE Transactions on Signal Processing,49(11):2844โ€“2852, Nov. 2001.

[7] V. Chandrasekhar, D.M. Chen, A. Lin, G. Takacs, S.S. Tsai, N.M. Cheung,Y. Reznik, R. Grzeszczuk, and B. Girod. Comparison of local feature descriptorsfor mobile visual search. In Image Processing (ICIP), 2010 17th IEEE InternationalConference on, pages 3885โ€“3888. IEEE, 2010.

[8] A. Dzhuraev. On Riemannโ€“Hilbert boundary problem in several complex variables.Complex Variables and Elliptic Equations, 29(4):287โ€“303, 1996.

Page 266: Quaternion and Clifford Fourier Transforms and Wavelets

11. Generalized Analytic Signals in Image Processing 245

[9] M. Felsberg and G. Sommer. A new extension of linear signal processing for estimat-ing local properties and detecting features. Proceedings of the DAGM 2000, pages195โ€“202, 2000.

[10] M. Felsberg and G. Sommer. The monogenic signal. IEEE Transactions on SignalProcessing, 49(12):3136โ€“3144, Dec. 2001.

[11] D. Gabor. Theory of communication. Journal of the Institution of Electrical Engi-neers, 93(26):429โ€“457, 1946. Part III.

[12] K. Gurlebeck, K. Habetha, and W. Sprossig. Holomorphic Functions in the Planeand ๐‘›-dimensional Space. Birkhauser, 2008.

[13] S.L. Hahn. Multidimensional complex signals with single-orthant spectra. Proceed-ings of the IEEE, 80(8):1287โ€“1300, Aug. 1992.

[14] R.M. Haralick, K. Shanmugam, and I.H. Dinstein. Textural features for image classi-fication. IEEE Transactions on Systems, Man and Cybernetics, 3(6):610โ€“621, 1973.

[15] B. Heise, S.E. Schausberger, C. Maurer, M. Ritsch-Marte, S. Bernet, and D. Stifter.Enhancing of structures in coherence probe microscopy imaging. In Proceedings ofSPIE, pages 83350Gโ€“83350Gโ€“7, 2012.

[16] E. Hitzer. Quaternion Fourier transform on quaternion fields and generalizations.Advances in Applied Clifford Algebras, 17(3):497โ€“517, May 2007.

[17] U. Kothe and M. Felsberg. Riesz-transforms versus derivatives: On the relationshipbetween the boundary tensor and the energy tensor. Scale Space and PDE Methodsin Computer Vision, pages 179โ€“191, 2005.

[18] K.G. Larkin, D.J. Bone, and M.A. Oldfield. Natural demodulation of two-dimension-al fringe patterns. I. general background of the spiral phase quadrature transform.Journal of the Optical Society of America A, 18(8):1862โ€“1870, 2001.

[19] P. Lounesto. Clifford Algebras and Spinors, volume 286 of London MathematicalSociety Lecture Notes. Cambridge University Press, 1997.

[20] K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. IEEETransactions on Pattern Analysis and Machine Intelligence, 27(10):1615โ€“1630, 2005.

[21] W. Rudin. Function Theory in the Unit Ball of โ„‚๐‘›. Springer, 1980.

[22] V. Schlager, S. Schausberger, D. Stifter, and B. Heise. Coherence probe microscopyimaging and analysis for fiber-reinforced polymers. Image Analysis, pages 424โ€“434,2011.

[23] E.M. Stein. Singular Integrals and Differentiability Properties of Functions, vol-ume 30 of Princeton Mathematical Series. Princeton University Press, 1970.

[24] The Mathworks, Inc. MATLAB Rโƒ R2012b documentation: colormap. Software doc-umentation available at: http://www.mathworks.de/help/matlab/ref/colormap.

html, 1994โ€“2012.

[25] J. Ville. Theorie et applications de la notion de signal analytique. Cables et Trans-mission, 2A:61โ€“74, 1948.

[26] D. Zang and G. Sommer. Signal modeling for two-dimensional image structures.Journal of Visual Communication and Image Representation, 18(1):81โ€“99, 2007.

Page 267: Quaternion and Clifford Fourier Transforms and Wavelets

246 S. Bernstein, J.-L. Bouchot, M. Reinhardt and B. Heise

Swanhild Bernstein and Martin ReinhardtTechnische Universitat Bergakademie FreibergFakultat fur Mathematik und InformatikInstitut fur Angewandte AnalysisD-09596 Freiberg, Germany

e-mail: [email protected]@googlemail.com

Jean-Luc BouchotJohannes Kepler UniversityDepartment of Knowledge-Based Mathematical Systems, FLLLAltenbergerstr., 69A-4040 Linz, Austria

e-mail: [email protected]

Bettina HeiseJohannes Kepler UniversityDepartment of Knowledge-Based Mathematical Systems, FLLL

and

Christian Doppler Laboratory MS-MACHCenter for Surface- and Nanoanalytics, ZONAAltenbergerstr., 69A-4040 Linz, Austria

e-mail: [email protected]

Page 268: Quaternion and Clifford Fourier Transforms and Wavelets

Quaternion and Cliffordโ€“Fourier Transforms and Wavelets

Trends in Mathematics, 247โ€“268cโƒ 2013 Springer Basel

12 Colour Extension of MonogenicWavelets with Geometric Algebra:Application to Color Image Denoising

Raphael Soulard and Philippe Carre

Abstract. We define a colour monogenic wavelet transform. This is basedon recent greyscale monogenic wavelet transforms and an extension to coloursignals aimed at defining non-marginal tools. Wavelet based colour image pro-cessing schemes have mostly been made by separately using a greyscale toolon every colour channel. This may have some unexpected effects on coloursbecause those marginal schemes are not necessarily justified. Here we proposea definition that considers a colour (vector) image right at the beginning ofthe mathematical definition so that we can expect to create an actual colourwavelet transform โ€“ which has not been done so far to our knowledge. Thisprovides a promising multiresolution colour geometric analysis of images. Weshow an application of this transform through the definition of a full denoisingscheme based on statistical modelling of coefficients.

Mathematics Subject Classification (2010). Primary 68U10; secondary 15A66,42C40.

Keywords. Colour wavelets, analytic, monogenic, wavelet transforms, imageanalysis, denoising.

1. Introduction

Wavelets have been widely used for handling images for more than 20 years. Itseems that the human visual system sees images through different channels relatedto particular frequency bands and directions; and wavelets provide such decom-positions. Since 2001, the analytic signal and its 2D generalizations have broughta great improvement to wavelets [1, 8, 9] by a natural embedding of an AM/FManalysis in the subband coding framework. This yields an efficient representation of

This work is part of the French ANR project VERSO-CAIMAN.

Page 269: Quaternion and Clifford Fourier Transforms and Wavelets

248 R. Soulard and P. Carre

geometric structures in greyscale images thanks to a local phase carrying geomet-ric information complementary to an amplitude envelope having good invarianceproperties. So it codes the signal in a more coherent way than standard wavelets.The last and seemingly most appropriate proposition [9] of analytic wavelets forimage analysis is based on the monogenic signal [5] defined with geometric algebra.

In parallel a colour monogenic signal was proposed [3] as a mathematicalextension of the monogenic signal; paving the way to non-marginal colour toolsespecially by using geometric algebra and above all by considering a colour signalright at the foundation of the mathematical construction.

We define here a colour monogenic wavelet transform that extends the mono-genic wavelets of [9] to colour. These analytic wavelets are defined for colour 2Dsignals (images) and avoid the classical pitfall of marginal processing (greyscaletools used separately on colour channels) by relying on a sound mathematicaldefinition. We can therefore expect to handle coherent information of multireso-lution colour geometric structure, which would ease wavelet based colour imageprocessing. To our knowledge colour wavelets have not been proposed so far.

We first give a technical study of analytic signals and wavelets with the intentto popularize them since they rely on non-trivial concepts of geometric algebra,complex and harmonic analysis, as well as non-separable wavelet frames. Thenwe describe our colour monogenic wavelet transform, and finally an application tocolour denoising will be presented.

Notation:2D vector coordinates: ๐’™=(๐‘ฅ, ๐‘ฆ) , ๐Ž=(๐œ”1, ๐œ”2) โˆˆ โ„2; ๐’Œ โˆˆ โ„ค2

Euclidean norm: โˆฅ๐’™โˆฅ =โˆš๐‘ฅ2 + ๐‘ฆ2

Complex imaginary number: ๐’‹ โˆˆ โ„‚

Argument of a complex number: argConvolution symbol: โˆ—Fourier transform: โ„ฑ

2. Analytic Signal and 2D Generalization

2.1. Analytic Signal (1D)

An analytic signal ๐‘ ๐ด is a multi-component signal associated to a real signal ๐‘  tobe analyzed. The definition is well known in the 1D case where ๐‘ ๐ด(๐‘ก) = ๐‘ (๐‘ก)+๐’‹ (โ„Žโˆ—๐‘ )(๐‘ก) is the complex signal made of ๐‘  and its Hilbert transform (with โ„Ž(๐‘ก) = 1/๐œ‹๐‘ก).

The polar form of the 1D analytic signal provides an AM/FM representationof ๐‘  with โˆฃ๐‘ ๐ดโˆฃ being the amplitude envelope and ๐œ‘ = arg (๐‘ ๐ด) the instantaneousphase. This classical tool can be found in many signal processing books and is forexample used in communications.

Interestingly, we can also interpret the phase in terms of the signal shape,i.e., there is a direct link between the angle ๐œ‘ and the local structure of ๐‘ . Sucha link between a 2D phase and the local geometric structures of an image isvery attractive in image processing. That is why there were several attempts to

Page 270: Quaternion and Clifford Fourier Transforms and Wavelets

12. Colour Monogenic Wavelets 249

generalize it to 2D signals; and among them the monogenic signal introduced byFelsberg [5] seems the most advanced since it is rotation invariant.

2.2. Monogenic Signal (2D)

Without going beyond the strictly necessary details, we review here the key pointsof the fundamental construction of the monogenic signal, which will be necessaryto understand the colour extension.

The definition of the 1D case given above can be interpreted in terms ofsignal processing: the Hilbert transform makes a โ€˜pure ๐œ‹

2 -phase-shiftโ€™. But such aphase-shift is not straightforward to define in 2D (similar to many other 1D signaltools) so let us look at the equivalent complex analysis definition of the 1D analyticsignal. It says that ๐‘ ๐ด is the holomorphic extension of ๐‘  restricted to the real line.But complex algebra is limited regarding generalizations to higher dimensions. Tobypass this limitation we can see a holomorphic function as a 2D harmonic fieldthat is an equivalent harmonic analysis concept involving the 2D Laplace equationฮ”๐‘“=0. It then can be generalized within the framework of 3D harmonic fields by

using the 3D Laplace operator ฮ”3=(

๐›ฟ2

๐›ฟ๐‘ฅ2 + ๐›ฟ2

๐›ฟ๐‘ฆ2 + ๐›ฟ2

๐›ฟ๐‘ง2

). The whole generalization

relies on this natural choice and the remaining points are analogous to the 1Dcase (see [5] for more details). Note that in Felsbergโ€™s thesis [5] this construction isexpressed in terms of geometric algebra but here we have avoided this for the sakeof simplicity. Finally the 2D monogenic signal ๐‘ ๐ด associated to ๐‘  is the 3-vector-valued signal:

๐‘ ๐ด(๐’™) =

โŽกโŽขโŽขโŽขโŽขโŽฃ๐‘ (๐’™)

๐‘ ๐‘Ÿ1(๐’™) =๐‘ฅ

2๐œ‹ โˆฅ๐’™โˆฅ3 โˆ— ๐‘ (๐’™)

๐‘ ๐‘Ÿ2(๐’™) =๐‘ฆ

2๐œ‹ โˆฅ๐’™โˆฅ3 โˆ— ๐‘ (๐’™)

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ . (2.1)

Where ๐‘ ๐‘Ÿ1 and ๐‘ ๐‘Ÿ2 are analogous to the imaginary part of the complex 1D ana-lytic signal. Interestingly, this construction reveals the two components of a Riesztransform:

โ„›{๐‘ } = (๐‘ ๐‘Ÿ1(๐’™), ๐‘ ๐‘Ÿ2(๐’™)) =

(๐‘ฅ

2๐œ‹ โˆฅ๐’™โˆฅ3 โˆ— ๐‘ (๐’™),๐‘ฆ

2๐œ‹ โˆฅ๐’™โˆฅ3 โˆ— ๐‘ (๐’™))

, (2.2)

in the same way that the 1D case exhibits a Hilbert transform. Note that we getback to a signal processing interpretation since the Riesz transform can also beviewed as a pure 2D phase-shift. In the end, by focusing on the complex analysisdefinition of the analytic signal we end up with a convincing generalization of theHilbert transform.

Now recall that the motivation to build 2D analytic signals arises from thestrong link existing between the phase and the geometric structure. To define the2D phase related to the Riesz transform the actual monogenic signal must beexpressed in spherical coordinates, which yields the following amplitude envelope

Page 271: Quaternion and Clifford Fourier Transforms and Wavelets

250 R. Soulard and P. Carre

๐‘  ๐ด ๐œ‘ ๐œƒ(๐œ‹)

โˆ’1 0 1 0 max 0 ๐œ‹ โˆ’๐œ‹2 0 ๐œ‹

2

Figure 1. Felsbergโ€™s monogenic signal associated to a narrow-bandsignal ๐‘ . The orientation ๐œƒ is shown modulo ๐œ‹ for visual convenience.Phase values of small coefficients have no meaning so they are replacedby black pixels.

and 2-angle phase:

Amplitude: ๐ด =โˆš

๐‘ 2 + ๐‘ 2๐‘Ÿ1 + ๐‘ 2๐‘Ÿ2 , ๐‘  = ๐ด cos๐œ‘ ,Orientation: ๐œƒ = arg (๐‘ ๐‘Ÿ1 + ๐’‹๐‘ ๐‘Ÿ2) , ๐‘ ๐‘Ÿ1 = ๐ด sin๐œ‘ cos ๐œƒ ,1D Phase: ๐œ‘ = arccos (๐‘ /๐ด) , ๐‘ ๐‘Ÿ2 = ๐ด sin๐œ‘ sin ๐œƒ .

(2.3)

A monogenic signal analysis is illustrated in Figure 1.

2.3. Physical Interpretation

Felsberg shows a direct link between the angles ๐œƒ and ๐œ‘ and the geometric localstructure of ๐‘ . The signal is thus expressed as an โ€˜๐ด-strongโ€™ (๐ด = amplitude) 1Dstructure with orientation ๐œƒ. ๐œ‘ is analogous to the 1D local phase and indicateswhether the structure is a line or an edge. A direct drawback is that intrinsically2D structures are not handled. Yet this tool has found many applications in im-age analysis, from contour detection to motion estimation (see [9] and referencestherein p. 1).

From a signal processing viewpoint the AM/FM representation provided byan analytic signal is well suited for narrowband signals. That is why it seems natu-ral to embed it within a wavelet transform that performs subband decomposition.We now present the monogenic wavelet analysis proposed by Unser in [9].

3. Monogenic Wavelets

So far there is one proposition of computable monogenic wavelets in the literature[9]. It provides 3D vector-valued monogenic subbands consisting of a rotation-covariant magnitude and a new 2D phase. This representation โ€“ specially definedfor 2D signals โ€“ is a great theoretical improvement over complex and quaternionwavelets [8, 1], similar to the way that the monogenic signal itself is an improve-ment over its complex and quaternion counterparts.

Page 272: Quaternion and Clifford Fourier Transforms and Wavelets

12. Colour Monogenic Wavelets 251

The proposition of [9] consists of one real-valued โ€˜primaryโ€™ wavelet transformin parallel with an associated complex-valued wavelet transform. Both transformsare linked to each other by a Riesz transform so they carry out a monogenic mul-tiresolution analysis. We end up with three vector coefficients forming subbandsthat are monogenic.

3.1. Primary Transform

The primary transform is real-valued and relies on a dyadic pyramid decompo-sition tied to a wavelet frame. Only one 2D wavelet is needed and the dyadicdownsampling is done only on the low frequency branch; leading to a redundancyof 4 : 3. The scaling function ๐œ‘๐›พ and the mother wavelet ๐œ“ are defined in theFourier domain as

๐œ‘๐›พโ„ฑโ†โ†’(4(sin2 1

2๐œ”1 + sin2 12๐œ”2

)โˆ’ 83 sin

2 12๐œ”1 sin

2 12๐œ”2

) ๐›พ2

โˆฅ๐Žโˆฅ๐›พ , (3.1)

๐œ“(๐’™) = (โˆ’ฮ”)๐›พ2 ๐œ‘2๐›พ(2๐’™) . (3.2)

Note that ๐œ‘๐›พ is a cardinal polyharmonic spline of order ๐›พ and spans the space ofthose splines with its integer shifts. It also generates โ€“ as a scaling function โ€“ avalid multiresolution analysis.

This particular construction is made by an extension of a wavelet basis (non-redundant) related to a critically-sampled filterbank. This extension to a waveletframe (redundant) adds some degrees of freedom used by the authors to tune theinvolved functions. In addition a specific subband regression algorithm is used onthe synthesis side. The construction is fully described in [10].

3.2. The Monogenic Transform

The second โ€˜Riesz partโ€™ transform is a complex-valued extension of the primaryone. We define the associated complex-valued wavelet by including the Riesz com-ponents

๐œ“โ€ฒ = โˆ’(

๐‘ฅ

2๐œ‹ โˆฅ๐’™โˆฅ3 โˆ— ๐œ“(๐’™))

+ ๐’‹

(๐‘ฆ

2๐œ‹ โˆฅ๐’™โˆฅ3 โˆ— ๐œ“(๐’™))

. (3.3)

It can be shown that this generates a valid wavelet basis and that it can be extendedto the pyramid described above. The joint consideration of both transforms leadsto monogenic subbands from which the amplitude and the phase can be extractedwith an overall redundancy of 4 : 1. The monogenic wavelet transform by Unseret al. is illustrated in Figure 2.

So far no applications of the monogenic wavelets have been proposed. In [9]a demonstration of AM/FM analysis is done with fine orientation estimation andgives very good results in terms of coherency and accuracy. Accordingly this toolmay be used for analysis tasks rather than for processing.

Motivated by the powerful analysis provided by the monogenic wavelet trans-form we propose now to extend it to colour images.

Page 273: Quaternion and Clifford Fourier Transforms and Wavelets

252 R. Soulard and P. Carre

๐‘  ๐ด ๐œ‘ ๐œƒ(๐œ‹)

0 1 0 max 0 ๐œ‹ โˆ’๐œ‹2 0 ๐œ‹

2

Figure 2. Unserโ€™s MWT of the image โ€˜faceโ€™. Same graphic chart asFigure 1. We used ๐›พ = 3 and the scales are ๐‘– โˆˆ {โˆ’1,โˆ’2,โˆ’3}.

4. Colour Monogenic Wavelets

We define here our proposition that combines a fundamental generalization ofthe monogenic signal for colour signals with the monogenic wavelets describedabove. The challenge is to avoid the classical marginal definition that would applya greyscale monogenic transform to each of the three colour channels of a colourimage. We believe that the monogenic signal has a favorable theoretical frameworkfor a colour extension and this is why we propose to start from this particularwavelet transform rather than from a more classical one.

The colour generalization of the monogenic signal can be expressed withinthe geometric algebra framework. This algebra is very general and embeds thecomplex numbers and quaternions as subalgebras. Its elements are โ€˜multivectorsโ€™,naturally linked with various geometric entities. The use of this fundamental toolis gaining popularity in the literature because it allows rewriting sophisticatedconcepts with simpler algebraic expressions and so paves the way to innovativeideas and generalizations in many fields.

For simplicityโ€™s sake and since we would not have enough space to present thefundamentals of geometric algebra, we express the construction here in classicalterms, as we did above in Section 2.2. We may sometimes point out some necessaryspecific mechanisms but we refer the reader to [3, 5] for further details.

4.1. The Colour Monogenic Signal

Starting from Felsbergโ€™s approach that is originally expressed in the geometricalgebra of โ„3; the extension proposed in [3] is written in the geometric algebra ofโ„5 for 3-vector-valued 2D signals of the form (๐‘ ๐‘…, ๐‘ ๐บ, ๐‘ ๐ต). By simply increasingthe dimensions we can embed each colour channel along a different axis and the

Page 274: Quaternion and Clifford Fourier Transforms and Wavelets

12. Colour Monogenic Wavelets 253

original equation from Felsberg involving a 3D Laplace operator can be generalizedin 5D with

ฮ”5 =

(๐›ฟ2

๐›ฟ๐‘ฅ21

+๐›ฟ2

๐›ฟ๐‘ฅ22

+๐›ฟ2

๐›ฟ๐‘ฅ23

+๐›ฟ2

๐›ฟ๐‘ฅ24

+๐›ฟ2

๐›ฟ๐‘ฅ25

).

Then the system can be simplified by splitting it into three systems each witha 3D Laplace equation, reduced to be able to apply Felsbergโ€™s condition to eachcolour channel. At this stage the importance of geometric algebra appears since analgebraic simplification between vectors leads to a 5-vector colour monogenic signalthat is non-marginal. Instead of naively applying the Riesz transform to each colourchannel, this fundamental generalization leads to the following colour monogenicsignal: ๐‘ ๐ด=(๐‘ ๐‘…, ๐‘ ๐บ, ๐‘ ๐ต, ๐‘ ๐‘Ÿ1, ๐‘ ๐‘Ÿ2) where ๐‘ ๐‘Ÿ1 and ๐‘ ๐‘Ÿ2 are the Riesz transform appliedto ๐‘ ๐‘…+๐‘ ๐บ+๐‘ ๐ต.

Now that the colour extension of Felsbergโ€™s monogenic signal has been de-fined, let us construct the colour extension of the monogenic wavelets.

4.2. The Colour Monogenic Wavelet Transform

We can now define a wavelet transform whose subbands are colour monogenicsignals. The goal is to obtain vector coefficients of the form

(๐‘๐‘…, ๐‘๐บ, ๐‘๐ต, ๐‘๐‘Ÿ1, ๐‘๐‘Ÿ2) (4.1)

such that

๐‘๐‘Ÿ1 =๐‘ฅ

2๐œ‹ โˆฅ๐’™โˆฅ3 โˆ— (๐‘๐‘… + ๐‘๐บ + ๐‘๐ต),

๐‘๐‘Ÿ2 =๐‘ฆ

2๐œ‹ โˆฅ๐’™โˆฅ3 โˆ— (๐‘๐‘… + ๐‘๐บ + ๐‘๐ต).

It turns out that we can very simply use the transforms presented above by ap-plying the primary one on each colour channel and the Riesz part on the sum ofthe three. The five related colour wavelets illustrated in Figure 3 and forming onecolour monogenic wavelet ๐œ“๐ด are:

๐œ“๐‘… =

โŽ›โŽ๐œ“00

โŽžโŽ  , ๐œ“๐บ =

โŽ›โŽ0๐œ“0

โŽžโŽ  , ๐œ“๐ต =

โŽ›โŽ00๐œ“

โŽžโŽ  (4.2)

๐œ“๐‘Ÿ1 =

โŽ›โŽœโŽ๐‘ฅ

2๐œ‹โˆฅ๐’™โˆฅ3 โˆ— ๐œ“๐‘ฅ

2๐œ‹โˆฅ๐’™โˆฅ3 โˆ— ๐œ“๐‘ฅ

2๐œ‹โˆฅ๐’™โˆฅ3 โˆ— ๐œ“

โŽžโŽŸโŽ  ๐œ“๐‘Ÿ2 =

โŽ›โŽœโŽ๐‘ฆ

2๐œ‹โˆฅ๐’™โˆฅ3 โˆ— ๐œ“๐‘ฆ

2๐œ‹โˆฅ๐’™โˆฅ3 โˆ— ๐œ“๐‘ฆ

2๐œ‹โˆฅ๐’™โˆฅ3 โˆ— ๐œ“

โŽžโŽŸโŽ  (4.3)

๐œ“๐ด =(๐œ“๐‘…, ๐œ“๐บ, ๐œ“๐ต, ๐œ“๐‘Ÿ1, ๐œ“๐‘Ÿ2

)(4.4)

We then get five vector coefficients verifying our conditions, and forming a colourmonogenic wavelet transform. The associated decomposition is described by thediagram of Figure 4. This provides a multiresolution colour monogenic analysismade of a 5-vector-valued pyramid transform. The five decompositions of two im-ages are shown in Figure 5 from left to right. Each one consists of four juxtaposed

Page 275: Quaternion and Clifford Fourier Transforms and Wavelets

254 R. Soulard and P. Carre

๐œ“๐‘… ๐œ“๐บ ๐œ“๐ต ๐œ“๐‘Ÿ1 ๐œ“๐‘Ÿ2

Figure 3. Space representation of the 5 colour wavelets.

Figure 4. Colour MWT scheme. Each colour channel is analyzed withthe primary wavelet transform symbolized by a ๐œ“ block and the sumโ€˜๐‘… + ๐บ + ๐ตโ€™ is analyzed with the โ€˜Riesz partโ€™ wavelet transform (๐œ“๐‘Ÿ1

and ๐œ“๐‘Ÿ2 blocks).

image-like subbands resulting from a 3-level decomposition. We fixed ๐›พ = 3, be-cause it gave good experimental results.

4.3. Interpretation

Let us look at the first three greymaps. These are the three primary transforms๐‘๐‘…, ๐‘๐บ and ๐‘๐ต where white (respectively black) pixels are high positive (respec-tively negative) values. Note that our transform is non-separable and so providesat each scale only one subband related to all orientations. We are not subjectto the arbitrarily separated horizontal, vertical and diagonal analyses usual withwavelets. This advantage is even greater in colour. Whereas marginal separabletransforms show three arbitrary orientations within each colour channel โ€“ which isnot easily interpretable โ€“ the colour monogenic wavelet transform provides a morecompact energy representation of the colour image content regardless of the localorientation. The colour information is well separated through ๐‘๐‘…, ๐‘๐บ and ๐‘๐ต: see,e.g., that the blue contours of the first image are present only in ๐‘๐ต , and in each ofthe three decompositions it is clear that every orientation is equally represented allalong the round contours. This is different from separable transforms that preferparticular directions. The multiresolution framework causes the horizontal blue

Page 276: Quaternion and Clifford Fourier Transforms and Wavelets

12. Colour Monogenic Wavelets 255

Images ๐‘๐‘… ๐‘๐บ ๐‘๐ต Riesz part

Figure 5. Colour MWT of images. The two components of the Rieszpart are displayed in the same figure part with the magnitude of ๐‘๐‘Ÿ1+๐’‹๐‘๐‘Ÿ2encoded in the intensity, and its argument (local orientation) encodedin the hue.

low-frequency structure of the second image to be coded mainly in the third scaleof ๐‘๐ต.

But the directional analysis is not lost thanks to the Riesz part that completesthis representation. Now look at the โ€˜2-in-1โ€™ last decomposition forming the Riesz

part. It is displayed in one colour map where the geometric energyโˆš

๐‘2๐‘Ÿ1 + ๐‘2๐‘Ÿ2 isencoded into the intensity (with respect to the well-known HSV colour space) andthe orientation arg(๐‘๐‘Ÿ1 + ๐’‹๐‘๐‘Ÿ2)(๐œ‹) is encoded in the hue (e.g., red is for {0, ๐œ‹} andcyan is for ยฑ๐œ‹

2 ). This way of displaying the Riesz part reveals well the providedgeometric analysis of the image.

The Riesz part gives a precise analysis that is local both in space and scale.If there is a local colour geometric structure in the image at a certain scale theRiesz part exhibits a high intensity in the corresponding position and subband.This is completed with an orientation analysis (hue) of the underlying structure.For instance a horizontal (respectively vertical) structure in the image will becoded by an intense cyan (respectively red) point in the corresponding subband.The orientation analysis is strikingly coherent and accurate. See, for example, thatcolour structures with constant orientation (second image) exhibit a constant huein the Riesz part over the whole structure.

Page 277: Quaternion and Clifford Fourier Transforms and Wavelets

256 R. Soulard and P. Carre

Note that low intensity corresponds to โ€˜no structureโ€™, i.e., where the imagehas no geometric information. It is sensible not to display the orientation (lowintensity makes the hue invisible) for these coefficients since the values have nomeaning in these cases.

In short, the colour and geometric information of the image are well separatedfrom each other, and the orientation analysis is very accurate. In addition theinvariance properties of the primary and Riesz wavelet transforms are kept in thecolour extension for a slight overall redundancy of 20 : 9 โ‰ˆ 2.2. This transform isnon-marginal because the RGB components are considered as well as the intensity(๐‘…+๐บ+๐ต) โ€“ which involves two different colour spaces.

4.4. Reconstruction Issue

Image processing tasks such as denoising need the synthesis part of filterbanks. Inthe case of redundant representations, there are often several ways to perfectly re-construct the transformed image. However, when wavelet coefficients are processed,the reconstruction method affects the way in which the wavelet domain processingwill modify the image. In other words, we have to combine the redundant data sothat the retrieved graphical elements are consistent with the modifications thathave been done to the wavelet coefficients.

This issue occurs in the scalar case, since the pyramids we use have a redun-dancy of 4 : 3. The associated reconstruction algorithm has been well defined bythe authors in [10] and consists of using the spatial redundancy of each subbandat the synthesis stage, by using the so-called subband regression algorithm.

In our case, we have to face another kind of redundancy, which stems fromthe monogenic model. Apart from the wavelet decomposition, the monogenic rep-resentation (as well as the analytic representation) is already basically redundantsince additional signals are processed (the Riesz part). In our case, the followingdistinct reconstructions are possible:

โˆ™ We can reconstruct the whole colour image (๐‘…,๐บ,๐ต) solely from the primarypart (๐‘๐‘…, ๐‘๐บ, ๐‘๐ต).

โˆ™ The Riesz part ๐‘๐‘Ÿ1 + ๐’‹๐‘๐‘Ÿ2 can be used to reconstruct ๐‘…+๐บ+๐ตโ€“ which is only a partial reconstruction.

โˆ™ One can also combine both reconstructions with a specific application drivenmethod.

In every case, the reconstruction is perfect. What is unknown is the meaning ofwavelet domain processing with respect to the chosen reconstruction method.

Let us now study the new colour wavelet transform from an experimentalpoint of view.

Page 278: Quaternion and Clifford Fourier Transforms and Wavelets

12. Colour Monogenic Wavelets 257

5. Wavelet Coefficients Study for Denoising

We propose in this section a data restoration algorithm based on the colour mono-genic wavelet transform defined above. Classical denoising methods consist in per-forming non-linear processing in the wavelet domain by thresholding the coef-ficients. However in our case, information carried by the wavelet coefficients isricher than in the usual orthogonal case. The colour monogenic wavelet decompo-sition is not orthogonal, so we have to further study modelling of this new kind ofcoefficient.

In addition, we saw that the colour monogenic decomposition is composed oftwo kinds of data, i.e.:

โˆ™ The โ€˜primary partโ€™: A set of coefficients associated to colorimetric informa-tion, forming three pyramids linked to the colour channels.

โˆ™ The โ€˜Riesz partโ€™: A geometric measure composed of a norm and an angle ateach point, processed by the Riesz transform and giving some informationabout shape and structure.

In order to carry out an image restoration algorithm, a coefficient selection processhas to be defined.

We first experimentally characterize noise-related coefficients in the differentsubbands in order to identify their distribution and correlation. Then both thecolorimetric information and the geometric information are merged into a singlethresholding to perform a colour monogenic wavelet based denoising.

5.1. Modeling of Noise-related Coefficients

Classical wavelet based denoising techniques rely on the assumption that the distri-bution of noise-related wavelet coefficients can be modelled efficiently by a centredGaussian law. This usually implies a constant threshold over the whole transform(see [4]). Here we have a non-orthogonal transform so we need to observe the be-haviour of the noise term of a noisy image through the colour monogenic waveletanalysis. Despite the singularity of our transform, we retain the classical Gaussianmodel, a method which will be experimentally validated.

5.1.1. Primary Coefficients. As shown in Figure 6 we observe that the decompo-sition of the centred Gaussian noise with variance ๐œŽ2 = 1 remains centered andGaussian even after the decomposition, but with different variances.

Experimental values for the standard deviations are given in Table 1. Thecontinuous theoretical distributions have been plotted above the histograms (leftside of Figure 6) so as to confirm the Gaussian model:

๐‘“ =1

๐œŽ๐‘ โˆš2๐œ‹

exp

(โˆ’๐‘ฅ2

2๐œŽ2๐‘ 

)(5.1)

where ๐œŽ๐‘  is the estimated variance of the coefficients. The decomposition is per-formed through a set of band-pass filters, with very limited correlation between thebasis functions, which implies that we retain Gaussian signals with some degreeof independence.

Page 279: Quaternion and Clifford Fourier Transforms and Wavelets

258 R. Soulard and P. Carre

0.00.10.20.30.4

-5 -4 -3 -2 -1 0 1 2 3 4 5

0.0000.1170.2330.350

-5 -4 -3 -2 -1 0 1 2 3 4 5 0.0000.2330.4670.700

-5 -4 -3 -2 -1 0 1 2 3 4 5

0.00.10.20.3

-5 -4 -3 -2 -1 0 1 2 3 4 5 0.00.20.40.6

-5 -4 -3 -2 -1 0 1 2 3 4 5

0.0000.1170.2330.350

-5 -4 -3 -2 -1 0 1 2 3 4 5 0.00.20.40.6

-5 -4 -3 -2 -1 0 1 2 3 4 5

0.0000.1170.2330.350

-5 -4 -3 -2 -1 0 1 2 3 4 5 0.00.20.40.6

-5 -4 -3 -2 -1 0 1 2 3 4 5

Original noise

Primary part 1st scale

Primary part 2nd scale

Primary part 3rd scale

Primary part 4th scale

Riesz part modulus 1st scale

Riesz part modulus 2nd scale

Riesz part modulus 3rd scale

Riesz part modulus 4th scale)

Figure 6. Histograms (bars) of primary subbands and modulus ofRiesz subbands, and Probability Density Function models (line).

Table 1. Standard deviations ๐œŽ๐‘  of subbands after decomposition ofGaussian noise with variance 1 (with ๐›พ = 3).

Scale ๐‘  1(High freq.) 2 3 4Standard deviation ๐œŽ๐‘  1.339 1.502 1.512 1.560

The values of ๐œŽ๐‘  can also be derived analytically from the definitions of thefilters. Recall that linear filtering of a stationary random signal ๐‘ฅ by a filter ๐ปwith output ๐‘ฆ can be studied with power spectral densities ฮจ๐‘ฅ = โˆฃโ„ฑ [๐‘ฅ]โˆฃ2 (PSD)

and autocorrelations ๐‘…๐‘ฅ(๐œ) = โ„ฑโˆ’1ฮจ๐‘ฅ. In particular we have ฮจ๐‘ฆ = ฮจ๐‘ฅ โˆฃ๐ปโˆฃ2. Theoutput variance ๐œŽ2

๐‘ฆ is equal to ๐‘…๐‘ฆ(0) which reduces to

๐œŽ2๐‘ฆ =

๐œŽ2๐‘ฅ

4๐œ‹2

(2๐œ‹,2๐œ‹)โˆซโˆซ(0,0)

โˆฃ๐ป(๐Ž)โˆฃ2 ๐‘‘๐Ž.

For example, the first scale output of our filterbank is directly linked to thefirst stage high-pass filter:

๐œŽ21 =

๐œŽ2

4๐œ‹2

(2๐œ‹,2๐œ‹)โˆซโˆซ(0,0)

โˆฃโˆฃโˆฃโˆฃโˆฃ(4(sin2 1

2๐œ”1 + sin2 12๐œ”2)โˆ’ 8

3 sin2 1

2๐œ”1 sin2 1

2๐œ”2

)๐›พ2 โˆฅ๐Žโˆฅ๐›พ

โˆฃโˆฃโˆฃโˆฃโˆฃ2

๐‘‘๐Ž (5.2)

The remaining coefficients are tied to equivalent filters of each filterbank output.To have more realistic data, we introduce the image peppers altered by

additive Gaussian white noise (SNR = 83dB) in Figure 7.

Page 280: Quaternion and Clifford Fourier Transforms and Wavelets

12. Colour Monogenic Wavelets 259

Figure 7. Image peppers altered by additive whiteGaussian noise.

We illustrate in Figure 8 a histogram of ๐‘๐‘… (primary part, red channel) on thefirst scale. As in classical denoising, we assume that the first scale mainly containsnoise related to coefficients since natural images should not have substantial highfrequency content. Again, this histogram visually suggests that the Gaussian modelis justified.

To finally confirm the Gaussian model, we computed a Kolmogorov-Smirnovtest comparing experimental coefficients with a true Gaussian distribution. Thetest was positive for the image peppers with a ๐‘ -value of 0.9. Let us now studythe modelling of the Riesz part coefficients.

5.1.2. Riesz Part Coefficients. Recall that structure information is both carriedby an angle and a modulus. Handling and thresholding of circular data such as anangle is a difficult issue. In this exploratory work, and as a natural first step, we willconcentrate on the modulus. Moreover, the modulus is tied to certain amplitudeinformation related to geometrical structures, and for which thresholding will berelevant. Thresholding an angle is less intuitive.

The Riesz part coefficients can also be viewed as outputs of filtering pro-cesses, so we again propose to make a Gaussian assumption for their distribution.Real and imaginary parts of subbands follow centered Gaussian distributions withvariance ๐œŽ2

๐‘  .

Studying the modulus requires us to find the distribution law of the random

variable ๐‘ = (๐‘‹2 + ๐‘Œ 2)12 where (๐‘‹,๐‘Œ ) are two independent Gaussian random

variables with zero-mean and standard variation ๐œŽ๐‘ . In this case, it is well known

Page 281: Quaternion and Clifford Fourier Transforms and Wavelets

260 R. Soulard and P. Carre

Figure 8. Distribution of first scale coefficients of red primary decom-position ๐‘๐‘….

that ๐‘ follows a Rayleigh distribution

๐‘“๐‘(๐‘š) =๐‘š

๐œŽ2๐‘ 

exp(โˆ’๐‘š2/2๐œŽ2

๐‘ 

)1๐‘š>0

with 1๐‘š>0 being the Heaviside step. The moments of ๐‘ are then ๐ธ(๐‘) = ๐œŽ๐‘ โˆš

๐œ‹/2and ๐‘‰ (๐‘) = ๐œŽ2

๐‘  (2โˆ’๐œ‹/2). The sequence of operations in the experiment of Figure 6were:

โˆ™ Generate a test colour image made of Gaussian noise only,โˆ™ analyze it through the colour monogenic wavelet transform,โˆ™ process histograms of the modulus of the primary subbands and the Rieszsubbands,

โˆ™ compute standard deviations of the primary subbands to get experimentalvalues for ๐œŽ๐‘ ,

โˆ™ compute theoretical distributions ๐‘“ and ๐‘“๐‘ with the measured ๐œŽ๐‘ ,โˆ™ plot histograms and theoretical curves in the same diagram for each scale.

We can see that the modeled Riesz-part curves โ€“ on the right side of Figure 6 โ€“correspond well to the measured histograms. Histograms of higher scales are lessregular because of the small number of coefficients in those subbands.

Note that the Rayleigh distribution would theoretically be fully justified ifstatistical independence were guaranteed between ๐‘‹ and ๐‘Œ . In our case, the goal

Page 282: Quaternion and Clifford Fourier Transforms and Wavelets

12. Colour Monogenic Wavelets 261

Figure 9. Experimental distribution of the Riesz-part modulus on thefirst scale.

of the modelling is simply to define a threshold so that we can keep the Rayleighmodel for the modulus of the Riesz part.

In the case of the noisy natural image peppers introduced above, we observethe first scale histogram of the Riesz part modulus in Figure 9. According to thehypothesis that the first scale contains mainly noise, the related histogram is stillRayleigh-shaped.

To further illustrate this choice, Figure 10 shows the Riesz part modulushistograms for several scales of the decomposed noisy image peppers. We cansee that the dispersion increases when useful information becomes โ€“ with scaleโ€“ more important than noise-related coefficients. Therefore, it is a good idea toestimate the threshold on the first scale, which will discard all noise coefficientswhile preserving structural information within other scales.

Finally, a Gaussian model according to the primary subbands and a Rayleighmodel for the modulus of Riesz subbands will be chosen. We can now apply auto-matic thresholding to perform colour denoising.

5.2. Thresholding

We propose to first focus on thresholding the primary part โ€“ which is the mostintuitive. Thresholding will be done in the following way:

โˆ™ Estimation of noise level from the first scale (by assumption it is the solescale containing only noise).

Page 283: Quaternion and Clifford Fourier Transforms and Wavelets

262 R. Soulard and P. Carre

Figure 10. Experimental distribution of the Riesz-part modulus on thefirst three scales.

โˆ™ Soft thresholding of the different scales with the threshold equal to threetimes the estimated noise level.

Using the first scale to estimate the threshold is classical (see [7]). By assumingthat the first scale contains mainly noise, one can use the experimental median ofthe coefficients to estimate the standard deviation of the Gaussian noise distribu-tion well. So we have the estimate ๏ฟฝ๏ฟฝ = median(โˆฃ๐‘Š1โˆฃ)/0.6745 with ๐‘Š1 being thecoefficients of the first scale.

Recall that the soft thresholding is defined as follows:

thresholding(๐‘ง, ๐‘”) = sign(๐‘ง)โŒŠ โˆฃ๐‘งโˆฃ โˆ’ ๐‘”

โŒ‹+, (5.3)

where ๐‘ง is the coefficient, ๐‘” the threshold and โŒŠ.โŒ‹+ is max(., 0).

As already discussed in Section 4.4, about the synthesis part of the colourmonogenic filterbank, there are several ways to reconstruct the denoised image.Within our work we must ensure that the Riesz part controls the denoising process.Otherwise, this would be equivalent to marginal wavelet denoising without anyuse of the monogenic analysis. That means, it would consider the colorimetricinformation (primary part) without taking into account the geometric information(Riesz part). But how to combine both the primary and the Riesz decomposition ina unified reconstruction is an open issue. In this work we propose to use the Rieszpart jointly with the primary part in the thresholding process rather than in thefilterbank synthesis. So the filterbank synthesis will be done for the thresholdedprimary part only. Finally, the denoising scheme actually fully uses the colourmonogenic analysis.

Page 284: Quaternion and Clifford Fourier Transforms and Wavelets

12. Colour Monogenic Wavelets 263

Thresholding from the modulus of the Riesz coefficients is not straightforwardbecause of the Rayleigh distribution for which classical schemes do not hold. Asimilar issue is dealt with in [6] with the modulus of Gabor wavelets, where settingthe following threshold is suggested:

๐ธ(๐‘) + ๐‘˜ โˆ—โˆš

๐‘‰ (๐‘), (5.4)

where ๐ธ(๐‘) and ๐‘‰ (๐‘) are the moments of the Rayleigh distribution already givenabove, and estimated from the modulus of the first scale Riesz part. We proposeto use ๐‘˜ = 3 which gave satisfactory experimental results. In the context of thehistograms plotted in Figure 10, this corresponds to a threshold of 193. We cansee that it actually discards most of the noise from the first scale, while preservinghigher coefficients on the following scales.

The combination of both thresholding processes is done through a simple log-ical AND operator, i.e., at a given position, we keep the primary coefficient only ifboth the primary part and the Riesz part lie above their respective thresholds. Thisstep may be easily improved through a wider study about how to combine colori-metric information with geometric information for this kind of colour monogenicanalysis.

5.3. Experimental Results

We finally show different results of colour image restoration in Figures 11, 12,13 and 14. Note that our test images are strongly altered so as to easily revealthe particularities of different denoising methods. With less substantial levels ofnoise, the visual comparison is too difficult. We compare our approach to the twoclassical techniques that have become the reference in wavelet based denoising [2]:

โˆ™ Soft thresholding of the decimated orthogonal wavelet transform(filter Daubechies 4),

โˆ™ Hard thresholding of the undecimated wavelet transform (Daubechies 4).

Thresholds are established by the estimation of the noise variance as describedabove, whereas the low frequency subband is not modified.

We can see that the colour monogenic wavelet transform performance is in-termediate between those of decimated wavelets and of undecimated wavelets. Thelatter has a large redundancy (๐ฟ scales on an image of ๐‘ pixels will give (3๐ฟ+1)๐‘coefficients) while preserving orthogonality properties between interlaced decom-positions, which makes it one of the most efficient denoising tools at the moment.On the other hand, decimated wavelets are known to produce unwanted oscilla-tions โ€“ the so-called pseudo-Gibbs phenomenon โ€“ as the price to pay for their veryfast implementation.

We observe that the colour monogenic approach allows us to preserve themain colour information of a colour image with limited redundancy. However,these experimental results hint that this is not fully satisfactory, since unwantedoscillation artifacts appear due to the thresholding process. Contrary to classicalwavelets, the artifacts are smoother and more rounded, which may be thought of

Page 285: Quaternion and Clifford Fourier Transforms and Wavelets

264 R. Soulard and P. Carre

Figure 11. Restoration of image house. Upper row: Noisy image anddecimated wavelet based denoising. Lower row: Undecimated waveletbased denoising and proposed approach.

as visually less annoying. The โ€˜artifact shapeโ€™ is due to the reconstruction func-tions, which is independent of the monogenic analysis. All the information is wellselected and preserved. First we can see that image discontinuities are retainedwell. Textures are substantially smoothed โ€“ see, e.g., the mandrill image shownin Figure 14 โ€“ which is usual whatever the denoising method. Note that no falsecolour is introduced, contrary to the decimated wavelet method. See for examplethe parrot image shown in Figure 13, where the decimated wavelet method in-troduces many coloured artifacts: green artifacts around the black area of the redparrotโ€™s beak, yellow artifacts on the right of the beak, green artifacts on the largeyellow area on the right side of the parrot.

Given the results, it is clear that one of the possible future directions ofthis work is about the numerical scheme used to perform the monogenic wavelet

Page 286: Quaternion and Clifford Fourier Transforms and Wavelets

12. Colour Monogenic Wavelets 265

Figure 12. Restoration of image peppers. Upper row: Noisy image anddecimated wavelet based denoising. Lower row: Undecimated waveletbased denoising and proposed approach.

analysis, since the current version is very sensitive to coefficient modification. Theshape of the basis functions would be explored as well.

We think that the main way to improve this work is to focus on the physicalinterpretation when designing the key monogenic colour concept. According to us,this transform suffers from a lack of unity around its different components, as wellas a poor link between them and the visual features. Although the generalizationis not strictly marginal, it has a marginal style since it reduces to apply the Riesztransform to the intensity of the image. We are currently working on a new def-inition of colour monogenic wavelets, where the physical interpretation is takenmore into account, and the local geometry is studied more deeply from a vectordifferential geometry viewpoint.

Page 287: Quaternion and Clifford Fourier Transforms and Wavelets

266 R. Soulard and P. Carre

Figure 13. Restoration of image parrot. Upper row: Noisy image anddecimated wavelet based denoising. Lower row: Undecimated waveletbased denoising and proposed approach.

6. Conclusion

We have defined a colour extension of the recent monogenic wavelet transformproposed in [9]. This extension is non-marginal since we have taken care to con-sider a vector signal at the very beginning of the fundamental construction and itleads to a definition fundamentally different from the marginal approach. The useof non-separable wavelets together with the monogenic framework permits a goodorientation analysis, well separated from the colour information. This colour trans-form can be a great colour image analysis tool thanks to its good separation ofinformation into various data. A statistical modelling of the coefficients for thresh-olding as well as a full denoising scheme is given and compared to state-of-the artwavelet based denoising methods.

Page 288: Quaternion and Clifford Fourier Transforms and Wavelets

12. Colour Monogenic Wavelets 267

Figure 14. Restoration of image mandrill. Upper row: Noisy im-age and decimated wavelet based denoising. Lower row: Undecimatedwavelet based denoising and proposed approach.

Although it is not marginal the colour generalization has a marginal style,since it reduces to applying the Riesz transform to the intensity of the image. Sothe geometric analysis is done without considering the colour information and itwould be much more attractive to have a complete representation of the colourmonogenic signal in terms of magnitude and phase(s) with both colour and geo-metric interpretation. The numerical scheme used is fragile with respect to thevisual impact of modifying wavelet coefficients. Our future work includes a newdefinition of monogenic filterbanks by focusing on reconstruction.

Page 289: Quaternion and Clifford Fourier Transforms and Wavelets

268 R. Soulard and P. Carre

References

[1] W.L. Chan, H.H. Choi, and R.G. Baraniuk. Coherent multiscale image process-ing using dual-tree quaternion wavelets. IEEE Transactions on Image Processing,17(7):1069โ€“1082, July 2008.

[2] I. Daubechies. Ten Lectures on Wavelets. Society for Industrial and Applied Math-ematics, 1992.

[3] G. Demarcq, L. Mascarilla, and P. Courtellemont. The color monogenic signal: Anew framework for color image processing. application to color optical flow. In 16thIEEE International Conference on Image Processing (ICIP), pages 481โ€“484, 2009.

[4] D.L. Donoho. De-noising by soft-thresholding. IEEE Transactions on InformationTheory, 41(3):613โ€“627, 1995.

[5] M. Felsberg. Low-Level Image Processing with the Structure Multivector. PhD thesis,Christian-Albrechts-Universitat, Institut fur Informatik und Praktische Mathematik,Kiel, 2002.

[6] P. Kovesi. Image features from phase congruency. VIDERE: Journal of ComputerVision Research, 1(3):2โ€“26, 1999.

[7] S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, third edition, 2008.First edition published 1998.

[8] I.W. Selesnick, R.G. Baraniuk, and N.G. Kingsbury. The dual-tree complex wavelettransform. IEEE Signal Processing Magazine, 22(6):123โ€“151, Nov. 2005.

[9] M. Unser, D. Sage, and D. Van De Ville. Multiresolution monogenic signal analysisusing the Riesz-Laplace wavelet transform. IEEE Transactions on Image Processing,18(11):2402โ€“2418, Nov. 2009.

[10] M. Unser and D. Van De Ville. The pairing of a wavelet basis with a mildly re-dundant analysis via subband regression. IEEE Transactions on Image Processing,17(11):2040โ€“2052, Nov. 2008.

Raphael Soulard and Philippe CarreXlim-SIC laboratoryUniversity of Poitiers, Francee-mail: [email protected]

[email protected]

Page 290: Quaternion and Clifford Fourier Transforms and Wavelets

Quaternion and Cliffordโ€“Fourier Transforms and Wavelets

Trends in Mathematics, 269โ€“284cโƒ 2013 Springer Basel

13 Seeing the Invisible andMaxwellโ€™s Equations

Swanhild Bernstein

Abstract. In this chapter we study inverse scattering for Dirac operators withscalar, vector and quaternionic potentials. For that we consider factorizationsof the Helmholtz equation and related fundamental solutions; the standardGreenโ€™s function and Faddeevโ€™s Green function. This chapter is motivated byoptical coherence tomography.

Mathematics Subject Classification (2010). Primary 30G35; secondary 45B05.

Keywords. Optical coherence tomography, Dirac operator, inverse scattering,Faddeevโ€™s Green function.

1. Preliminaries

Let โ„ be the algebra of real quaternions and ๐”น the complex quaternions or bi-quaternions. The vectors ๐’†1, ๐’†2, ๐’†3 are the generating vectors with

๐’†๐‘—๐’†๐‘˜ + ๐’†๐‘˜๐’†๐‘— = โˆ’2๐›ฟ๐‘—๐‘˜and ๐’†0 the unit element. An arbitrary element ๐‘Ž โˆˆ โ„ is given by

๐‘Ž =3โˆ‘

๐‘—=0

๐‘Ž๐‘—๐’†๐‘— , ๐‘Ž๐‘— โˆˆ โ„

and an arbitrary element ๐‘ โˆˆ ๐”น by

๐‘ =3โˆ‘

๐‘—=0

๐‘๐‘—๐’†๐‘— , ๐‘๐‘— โˆˆ โ„‚.

We denote by S(๐‘ž) the scalar part ๐‘ž0, by V(๐‘ž) = q =โˆ‘3

๐‘—=1 ๐‘ž๐‘—๐’†๐‘— the vector partand define the conjugated quaternion by

๐‘ž = S(๐‘ž)โˆ’V(๐‘ž)

Page 291: Quaternion and Clifford Fourier Transforms and Wavelets

270 S. Bernstein

for a quaternion ๐‘ž โˆˆ โ„ or a biquaternion ๐‘ž โˆˆ ๐”น. The algebra of quaternions is freeof zero divisors, i.e., if ๐‘Ž1๐‘Ž2 = 0 for ๐‘Ž1, ๐‘Ž2 โˆˆ โ„ then ๐‘Ž1 = 0 or ๐‘Ž2 = 0. This is nottrue for biquaternions, for example

(1 + ๐‘–๐’†3)(1โˆ’ ๐‘–๐’†3) = 1โˆ’ ๐‘–2๐’†23 = 1โˆ’ 1 = 0 and

(๐’†1 + ๐‘–๐’†3)(๐’†1 + ๐‘–๐’†3) = ๐’†21 + ๐‘–(๐’†1๐’†3 + ๐’†3๐’†1) + ๐‘–2๐’†2

3 = โˆ’1 + 1 = 0.

A zero divisor ๐‘Ž โˆˆ ๐”น is an element ๐‘Ž โˆ•= 0 such that there exists a ๐‘ โˆˆ ๐”น with ๐‘ โˆ•= 0and ๐‘Ž๐‘ = 0.

Let ๐บ โˆˆ โ„3 be a domain and ๐บ๐‘ = {๐‘ฅ โˆˆ โ„3 : ๐‘ฅ โˆ•โˆˆ ๐บ} = โ„3โˆ–๐บ. A(bi)quaternion-valued function ๐‘ข belongs to ๐ถ(๐บ), ๐ฟ๐‘(๐บ), ๐ป1(๐บ) etc. when eachreal respectively complex-valued component ๐‘ข๐‘— belongs to that function space. For๐‘  โˆˆ โ„, ๐ฟ2,๐‘  denotes the set of (scalar-valued) functions ๐‘ข such that

โˆฅ๐‘ขโˆฅ๐‘  =โˆฅโˆฅโˆฅ(1 + โˆฃ๐‘ฅโˆฃ2)๐‘ /2๐‘ขโˆฅโˆฅโˆฅ

๐ฟ2(โ„3)<โˆž.

By ๐ป๐›ผ, ๐›ผ โ‰ฅ 0, we denote the Sobolev space of (scalar-valued) functions ๐‘ข suchthat

โˆฅ๐‘ขโˆฅ๐ป๐›ผ =โˆฅโˆฅโˆฅ(1 + โˆฃ๐œ‰โˆฃ๐›ผ/2)๏ฟฝ๏ฟฝโˆฅโˆฅโˆฅ

๐ฟ2(โ„3)<โˆž,

and the weighted Sobolev spaces ๐ป๐›ผ,๐‘ , ๐‘  โˆˆ โ„โˆฅโˆฅโˆฅ(1 + โˆฃ๐‘ฅโˆฃ๐‘ /2 ๐‘ข)โˆฅโˆฅโˆฅ๐ป๐›ผ

<โˆž.

Furthermore, we identify a vector k โˆˆ โ„‚3 with the bi-quaternion

๐‘˜1๐’†1 + ๐‘˜2๐’†2 + ๐‘˜3๐’†3.

We will denote the vector and the element in ๐”น or โ„ with k. By โ‹… we denote theinner product in โ„3

k โ‹… k =

3โˆ‘๐‘—=1

๐‘˜2๐‘— ,

whereas

kk = k2 = โˆ’3โˆ‘

๐‘—=1

๐‘˜2๐‘—

is the product of the quaternion k with itself. By ๐ท we denote the Dirac operator

๐ท =

3โˆ‘๐‘—=1

๐’†๐‘—โˆ‚

โˆ‚๐‘ฅ๐‘—=

3โˆ‘๐‘—=1

๐’†๐‘—โˆ‚๐‘— .

In particular, we have for a vector field u = (๐‘ข1, ๐‘ข2, ๐‘ข3) โˆผ ๐‘ข1๐’†1 + ๐‘ข2๐’†2 + ๐‘ข3๐’†3:

๐ทu =

(โˆ’ divucurlu

),

Page 292: Quaternion and Clifford Fourier Transforms and Wavelets

13. Seeing the Invisible 271

where

divu = โˆ‡ โ‹… u =

3โˆ‘๐‘—=1

โˆ‚๐‘—๐‘ข๐‘— and curlu = โˆ‡ร— u =

โŽ›โŽ โˆ‚2๐‘ข3 โˆ’ โˆ‚3๐‘ข2

โˆ‚3๐‘ข1 โˆ’ โˆ‚1๐‘ข3

โˆ‚1๐‘ข2 โˆ’ โˆ‚2๐‘ข1

โŽžโŽ  .

Because the multiplication in the algebra of quaternions is not commutative weintroduce two different multiplication operators with vectors k โˆˆ โ„ or k โˆˆ ๐”น:

k๐‘€๐‘ž = k ๐‘ž but ๐‘€k๐‘ž = ๐‘ž k, ๐‘ž โˆˆ ๐”น.

2. Motivation

2.1. Optical Coherence Tomography

This chapter is motivated by optical coherence tomography (OCT). Methods intomography usually use diffraction of beams to reconstruct an image. OCT isdifferent because it uses the interference of light waves. Therefore the mathematicalmodel is given by scattering of waves, see for example [7] and [8].

In this section we present the mathematical treatment of single OCT fol-lowing [7]. Unscattered photons like x-rays and ๐›พ-rays have been used to obtaintomographic ray projections for a long time. The mathematical problem of recon-structing a function from its straight ray projections has already been presentedby Radon in 1917 [31]. Its solution, the Fourier slice theorem, shows that someof the three-dimensional Fourier data of the object can be obtained from two-dimensional Fourier transforms of its projections.Optical tomography techniques, in particular, OCT, deviate in several respectsfrom the better known coherence tomography (CT) concept.

โˆ™ Diffraction optical tomography (DOT) uses highly diffracted and scatteredradiation, straight ray propagation can only be assumed for a fraction of thephotons.

โˆ™ OCT images are synthesized from a series of adjacent interferometric depth-scans performed by a straight propagating low-coherence probing beam. Thisleads to an advantageous decoupling of transversal resolution from depthresolution.

โˆ™ OCT uses backscattering, i.e., light propagates twice through the same ob-ject.

Let us consider a weakly inhomogeneous sample illuminated by the Rayleigh lengtharound the beam waist where we can assume plane-wave illumination with incidentwaves:

๐‘‰ (๐‘–)(r, k, ๐‘ก) = ๐ด(๐‘–)๐’†๐‘–k(๐‘–)โ‹…rโˆ’๐‘–๐œ”๐‘ก,

k(๐‘–) is the wave vector of the illumination wave, โˆฃk(๐‘–)โˆฃ = ๐‘˜ = 2๐œ‹/๐œ† the wavenumber. Using the outgoing free-space Greenโ€™s function

๐น๐‘˜(r, rโ€ฒ) =

๐’†๐‘–๐‘˜(rโˆ’rโ€ฒ)

4๐œ‹ โˆฃrโˆ’ rโ€ฒโˆฃ

Page 293: Quaternion and Clifford Fourier Transforms and Wavelets

272 S. Bernstein

of the Helmholtz operator, the first-order Born approximation yields the scatteredwave as an approximate solution of the Helmholtz equation

๐‘‰๐‘ (r,k(๐‘ ), ๐‘ก) = ๐‘‰ (๐‘–)(r,k(๐‘–), ๐‘ก) +

โˆซ๐‘‰ (โ€ฒ)

๐‘‰ (๐‘–)(r,k(๐‘–), ๐‘ก) โ‹… ๐น๐‘ (rโ€ฒ, ๐‘˜) โ‹… ๐น๐‘˜(r, r

โ€ฒ) ๐‘‘rโ€ฒ.

k(๐‘ ) is the wave vector of the scattered wave, โˆฃk(๐‘ )โˆฃ = ๐‘˜. This integral is extendedover wavelets originating from the illuminated sample volume ๐‘‰ (r(โ€ฒ)). The relativeamplitudes of these wavelets are determined by the scattering potential of thesample

๐น๐‘ (r, ๐‘˜) = ๐‘˜2[๐‘š2(r, ๐‘˜)โˆ’ 1],

where ๐‘š is the complex refractive index distribution of the sample structure:

๐‘š(r) = ๐‘›(r)[1 + ๐‘–๐œ…(r)],

with ๐‘›(r) being the phase refractive index, and ๐œ…(r) the attenuation index. In OCT,backscattered light originating from the coherently illuminated sample volume isdetected at a distance ๐‘‘ much larger than the linear dimensions of that volume.Therefore

๐‘‰๐‘ (r,k, ๐‘ก) =๐ด(๐‘–)

4๐œ‹ ๐‘‘๐‘’๐‘–k

(๐‘ )โ‹…rโˆ’๐‘–๐œ”๐‘กโˆซ๐‘‰ (โ€ฒ)

๐น๐‘ (rโ€ฒ)๐‘’โˆ’kโ‹…rโ€ฒ ๐‘‘rโ€ฒ = ๐ด๐‘ (r,k

(๐‘ ), ๐‘ก)๐‘’๐‘–k(๐‘ )โ‹…rโˆ’๐‘–๐œ”๐‘ก,

where the amplitude ๐ด(๐‘–) of the illuminating wave has been assumed constantwithin the coherent probe volume.

3. Helmholtz Equation and Maxwellโ€™s Equation

The propagation of waves can be described by Maxwellโ€™s equations which consti-tute a first-order differential system. That system can be reduced to second-orderdifferential equations. Due to their importance, Maxwellโ€™s equations under dif-ferent boundary conditions, radiation conditions and other properties are widelystudied.

In this chapter we want to discuss the scattering problem for Maxwellโ€™s equa-tions in terms of the Dirac operator. The description of Maxwellโ€™s equations withthe Dirac operator and Clifford algebras as well as quaternions has been studiedin several papers ([12, 16, 15, 23, 3, 11, 10, 27]). Usually, time harmonic equationsin homogeneous media were investigated. Inhomogeneous media and in particularchiral media are considered in [15] and [19].

The Helmholtz equation and its application in acoustics and electromagneticshave been widely investigated (see for example [30, 32, 25]). Also some kind ofDirac equation and scattering has been considered [13].

We will study some scattering problems in connection with the Dirac-typeoperator ๐ท +๐‘€ ๐‘–k, where k is a vector, described with the aid of quaternions.

This problem is also motivated by so-called Lax pairs and the Abiowitz, Kaup,Newell and Segur (AKNS) method (see [1]). In very simple terms this methodmeans that a nonlinear partial differential equation can be written as a pair of

Page 294: Quaternion and Clifford Fourier Transforms and Wavelets

13. Seeing the Invisible 273

linear equations where one operator describes the spectral problem and the otheroperator is the operator governing the associated time evolution. Most knownmethods use the complex โˆ‚-operator and can be reduced to a scalar or matrixRiemannโ€“Hilbert problem [9]. But it can also be done with a Dirac operator. Thefactorization of the Helmholtz equation is also an important tool, because we haveto consider the operator ๐ท +๐‘€ ๐‘–k and the scattering data.

4. Maxwellโ€™s Equations

The well-known Maxwellโ€™s equations are usually used to describe electromagneticphenomena. In optics the interaction of light with a medium is characterized bythese equations. Maxwellโ€™s equations in optics can be found in [28]. Under theassumption of an isotropic material that obeys Ohmโ€™s law for electric conductionand can act in a para- or diamagnetic manner, Maxwellโ€™s equationsare as follows:

curlE = โˆ’โˆ‚B

โˆ‚๐‘ก, divD = ๐œŒ,

curlH = ๐œŽE+ ๐œ€โˆ‚E

โˆ‚๐‘ก, divB = 0,

where E is the electric field, H the magnetic field, D the electric induction, B themagnetic induction, ๐œŒ the charge density not due to polarization of the medium, ยตthe permeability, ๐œŽ describes the electric conductivity and ๐œ€ the permittivity of themedium. The permittivity, permeability and electric conductivity are parametersthat are related to material properties of the medium and do not change withtime. In optics ยต โ‰ˆ 1 can be used. If we consider a perfectly transparent insulatorthen its electric conductivity and its external charge density can be taken to bezero.

Maxwellโ€™s equations are considered together with so-called constitutive rela-tions, which describe the relation between induction vectors and field vectors:

D = ๐œ€E and B = ยตH.

Interference occurs when radiation follows more than one path from its source tothe point of detection. The simplest example of interference is that between planewaves. We restrict our consideration to plane waves, which means that we canconsider time-harmonic Maxwellโ€™s equations, i.e.,

E(๐‘ฅ, ๐‘ก) = Re (E(๐‘ฅ)๐‘’โˆ’๐‘–๐œ”๐‘ก), H(๐‘ฅ, ๐‘ก) = Re (H(๐‘ฅ)๐‘’โˆ’๐‘–๐œ”๐‘ก).

If we take everything into account we obtain the system

curlE = ๐‘–๐œ”ยตH, div(๐œ€E) = 0

curlH = โˆ’๐‘–๐œ”๐œ€E, div(ยตH) = 0.

Page 295: Quaternion and Clifford Fourier Transforms and Wavelets

274 S. Bernstein

5. Maxwellโ€™s Equations Written as Dirac Equations

5.1. Quaternionic Formulation

Let ๐œ€0 be the free space permittivity and ยต0 be the free space permeability, then1โˆšยต0๐œ€0

= ๐‘, the speed of light, and ๐‘˜ = ๐œ”โˆšยต๐œ€ is the wave number. We further

introduce the complex refractive index ๐‘ by

๐‘2 = ยต๐‘Ÿ๐œ€๐‘Ÿ =

(ยต

ยต0

)(๐œ€

๐œ€0

),

where ยต๐‘Ÿ and ๐œ€๐‘Ÿ are called relative permittivity and permeability.

๐‘ = ๐‘›+ ๐‘–๐œ…,

where the real part ๐‘› is the conventional refractive index, whereas ๐œ… is called theextinction coefficient, which describes the attenuation of the electric field in themedium. Maxwellโ€™s equations, medium properties in optics, and their mathemat-ical description are studied in [28].

Remark 5.1. Force-free magnetic fields are an important special solution of non-linear equations of magnetohydrodynamics. They are characterized by

divB = 0 and curlB+ ๐›ผ(๐‘ฅ)B = 0,

where ๐›ผ(๐‘ฅ) is a scalar-valued function. This system is equivalent to

๐ท๐›ผ๐ต = 0. (5.1)

This relation between force-free fields and (5.1) can be found in [17].

Remark 5.2. In case of static electric and magnetic fields in an inhomogeneousmedium we obtain the decoupled system

๐ท๐œ€E = โˆ’ ๐œŒโˆš๐œ€, ๐ทยตH =

โˆšยตj.

A very elegant quaternionic reformulation of the Maxwellโ€™s equations (see[14]) in inhomogeneous media can now be obtained by the substitution

โ„ฐ :=โˆš๐œ€E and โ„‹ :=

โˆšยตH,

which leads to the system {๐ท๐œ€๐œ€๐œ€โ„ฐ = โˆ’๐‘–๐‘˜โ„‹โˆ’ ๐œŒโˆš

๐œ€ ,

๐ท๐œ‡โ„‹ = ๐‘–๐‘˜โ„ฐ +โˆšยต๐‘—,

where ๐œ€๐œ€๐œ€ =grad

โˆš๐œ€โˆš

๐œ€ (๐œ‡ =grad

โˆšยตโˆš

ยต) and ๐ท๐œ€ = ๐ท + ๐œ€ (๐ทยต = ๐ท + ยต). This system

can also be written using matrices:(๐ท๐œ€๐œ€๐œ€ โˆ’๐‘–๐‘˜๐‘–๐‘˜ ๐ท๐œ‡

)( โ„ฐโ„‹)

=

[(๐ท โˆ’๐‘–๐‘˜๐‘–๐‘˜ ๐ท

)+

(๐œ€๐œ€๐œ€ 00 ๐œ‡

)]( โ„ฐโ„‹)

=

(โˆ’ ๐œŒโˆš

๐œ€โˆšยตj

).

Page 296: Quaternion and Clifford Fourier Transforms and Wavelets

13. Seeing the Invisible 275

6. Factorization of the Wave Equation

Using vector and scalar potentials, Maxwellโ€™s equations can be rewritten as second-order differential equations, that, in turn can be factorized with the help of Diracoperators:

1

๐‘2โˆ‚2

โˆ‚๐‘ก2โˆ’ฮ” =

(1

๐‘

โˆ‚

โˆ‚๐‘ก+ ๐‘–๐ท

)(1

๐‘

โˆ‚

โˆ‚๐‘ก+ ๐‘–๐ท

),

where ๐‘– โˆˆ โ„‚ is the complex unit. If we just take the time-harmonic case, i.e., thetime dependence is given by the expontial ๐‘’๐‘–๐œ”๐‘ก, differentiation by ๐‘ก is simply givenby multiplication with ๐‘–๐œ” and we can consider the operator

โˆ’๐œ”2

๐‘2โˆ’ฮ” =

(๐ท +

๐œ”

๐‘

)(๐ท โˆ’ ๐œ”

๐‘

).

These factorizations show the deep connection between the Helmholtz equationand Maxwellโ€™s equations. But there is yet another factorization. Let k be a vector,then

(๐ท +๐‘€k)(๐ท โˆ’๐‘€k) = (๐ท โˆ’๐‘€k)(๐ท +๐‘€k) = โˆ’ฮ”โˆ’ k2 = โˆ’ฮ”+ โˆฃkโˆฃ2 ,and a factorization of the Helmholtz equation arises from

(๐ท +๐‘€ ๐‘–k)(๐ท โˆ’๐‘€ ๐‘–k) = โˆ’ฮ”โˆ’ ๐‘–2k2 = โˆ’ฮ”โˆ’ โˆฃkโˆฃ2 .

7. Scattering

We will need some properties of the fundamental solution of the Helmholtz equa-tion.

Proposition 7.1 ([5]). Let

๐น๐‘˜(๐‘ฅโˆ’ ๐‘ฆ) := โˆ’ ๐‘’๐‘–๐‘˜โˆฃ๐‘ฅโˆ’ ๐‘ฆโˆฃ

4๐œ‹ โˆฃ๐‘ฅโˆ’ ๐‘ฆโˆฃ , ๐‘ฅ, ๐‘ฆ โˆˆ โ„3, ๐‘ฅ โˆ•= ๐‘ฆ.

๐น๐‘˜(โ‹…, ๐‘ฆ) solves the Helmholtz equation ฮ”๐‘ข + ๐‘˜2๐‘ข = 0 in โ„3โˆ–{๐‘ฆ}, and ๐‘ฆ โˆˆ ๐บ forevery bounded subset ๐บ โŠ‚ โ„3.

๐น๐‘˜(๐‘ฅ โˆ’ ๐‘ฆ) = โˆ’ ๐‘’๐‘–๐‘˜โˆฃ๐‘ฅโˆฃ

4๐œ‹ โˆฃ๐‘ฅโˆฃ๐‘’โˆ’๐‘–๐‘˜๏ฟฝ๏ฟฝโ‹…๐‘ฆ +O(โˆฃ๐‘ฅโˆฃโˆ’2),

๐ท๐‘ฅ๐น๐‘˜(๐‘ฅ โˆ’ ๐‘ฆ) = (๐ท๐‘ฅ๐น๐‘˜(๐‘ฅ))๐‘’โˆ’๐‘–๐‘˜๏ฟฝ๏ฟฝโ‹…๐‘ฆ +O(โˆฃ๐‘ฅโˆฃโˆ’2),

uniform in ๏ฟฝ๏ฟฝ = ๐‘ฅโˆฃ๐‘ฅโˆฃ โˆˆ ๐‘†2 and ๐‘ฆ โˆˆ ๐บ for every bounded subset ๐บ โŠ‚ โ„3.

Let ๐‘˜ = const and โ„‘ (๐‘˜) โ‰ฅ 0. Then application of โˆ’๐ทโˆ’๐‘˜ to the fundamentalsolution of the Helmholtz operator gives

โˆ’๐ทโˆ’๐‘˜๐น๐‘˜(๐‘ฅ) = ๐ถ๐‘˜(๐‘ฅ) =

(๐‘˜ +

๐‘ฅ

โˆฃ๐‘ฅโˆฃ2 โˆ’ ๐‘–๐‘˜๐‘ฅ

โˆฃ๐‘ฅโˆฃ

)๐‘’๐‘–๐‘˜โˆฃ๐‘ฅโˆฃ

4๐œ‹.

This fundamental solution was obtained in [20].

Page 297: Quaternion and Clifford Fourier Transforms and Wavelets

276 S. Bernstein

Proposition 7.2 ([4]). Let ๐บ be a bounded Lipschitz domain with boundary โˆ‚๐บ andoutward pointing unit normal n. Let u โˆˆ ๐ป1(๐บ). If u โˆˆ ker๐ท๐‘˜(๐บ), โ„‘ (๐‘˜) โ‰ฅ 0, then

u(๐‘ฅ) = ๐’ž๐‘˜[u](๐‘ฅ) = โˆ’โˆซโˆ‚๐บ

๐ถ๐‘˜(๐‘ฅ โˆ’ ๐‘ฆ)n(๐‘ฆ)u(๐‘ฆ)๐‘‘๐‘ฆ.

If u โˆˆ ker๐ทk = ker(๐ท +๐‘€k), then

u(๐‘ฅ) = ๐’žk[u](๐‘ฅ) = โˆ’โˆซโˆ‚๐บ

(โˆ’๐ท๐‘ฅ๐น๐‘˜)(๐‘ฅโˆ’ ๐‘ฆ)n(๐‘ฆ)u(๐‘ฆ) + n(๐‘ฆ)u(๐‘ฆ)๐น๐‘˜(๐‘ฅโˆ’ ๐‘ฆ)k ๐‘‘๐‘ฆ,

= โˆ’โˆซโˆ‚๐บ

(๐‘ฅโˆ’ ๐‘ฆ

โˆฃ๐‘ฅโˆ’ ๐‘ฆโˆฃ2 โˆ’ ๐‘–๐‘˜(๐‘ฅโˆ’ ๐‘ฆ)

โˆฃ๐‘ฅโˆ’ ๐‘ฆโˆฃ

)๐‘’๐‘–๐‘˜โˆฃ๐‘ฅโˆ’ ๐‘ฆโˆฃ

4๐œ‹ โˆฃ๐‘ฅโˆ’ ๐‘ฆโˆฃn(๐‘ฆ)u(๐‘ฆ)

โˆ’ ๐‘’๐‘–๐‘˜โˆฃ๐‘ฅโˆ’ ๐‘ฆโˆฃ

4๐œ‹ โˆฃ๐‘ฅโˆ’ ๐‘ฆโˆฃn(๐‘ฆ)u(๐‘ฆ)k ๐‘‘๐‘ฆ,

where ๐‘˜ =โˆšk2 โˆˆ โ„‚ is chosen such that โ„‘ (๐‘˜) โ‰ฅ 0.

Proposition 7.3 (Radiation condition [18]). Let ๐‘“ โˆˆ ๐ป1loc(๐บ

๐‘), ๐‘“ โˆˆ ker๐ท๐‘˜(๐บ๐‘) and

๐‘“ satisfy the radiation condition(๐‘˜ โˆ’ ๐‘ฅ

โˆฃ๐‘ฅโˆฃ2 + ๐‘–๐‘˜๐‘ฅ

โˆฃ๐‘ฅโˆฃ

)๐‘“(๐‘ฅ) = o(โˆฃ๐‘ฅโˆฃโˆ’1) as โˆฃ๐‘ฅโˆฃ โ†’ โˆž,

then

๐‘“(๐‘ฅ) = โˆ’๐’ž๐‘˜[๐‘“ ](๐‘ฅ) โˆ€๐‘ฅ โˆˆ ๐บ๐‘.

If ๐‘“ satisfies the radiation condition

๐‘˜๐‘“(๐‘ฅ) +๐‘–๐‘ฅ

โˆฃ๐‘ฅโˆฃ๐‘“(๐‘ฅ)k = o(โˆฃ๐‘ฅโˆฃโˆ’1) as โˆฃ๐‘ฅโˆฃ โ†’ โˆž,

where ๐‘˜ =โˆšk2 and โ„‘ (๐‘˜) โ‰ฅ 0, then

๐‘“(๐‘ฅ) = โˆ’๐’žk[๐‘“ ](๐‘ฅ), for all ๐‘ฅ โˆˆ ๐บ๐‘.

If k is a zero divisor we suppose additionally ๐‘“(๐‘ฅ) = o(โˆฃ๐‘ฅโˆฃโˆ’1).

Remark 7.4. It looks as if the condition for a scalar ๐‘˜ can be written without theterm ๐‘ฅ/ โˆฃ๐‘ฅโˆฃ2 which apparently gives a faster decay. But this is not true because(1 + ๐‘–๐‘ฅ/ โˆฃ๐‘ฅโˆฃ) is a zero divisor. See also [18].

Remark 7.5. This proposition is true for a quaternion-valued function, but wewill restrict ourselves to vector fields u, i.e., quaternion-valued functions with zeroscalar part.

8. The Scattering Problem

In this section we want to consider the scattering problem for the operator๐ท+๐‘€k.The case ๐ท + ๐‘˜ can be treated similarly.

Page 298: Quaternion and Clifford Fourier Transforms and Wavelets

13. Seeing the Invisible 277

Statement of the problem: Let m(๐‘ฅ) be a quaternion-valued potential with com-pact support = ๐บ. Let k be a vector which will be identified with ๐‘˜1๐‘’1 + ๐‘˜2๐‘’2 +

๐‘˜3๐‘’3 โˆˆ โ„ and ๐‘˜ =โˆšk2 with โ„‘ (๐‘˜) โ‰ฅ 0.

Further, let u๐‘–(๐‘ฅ) be a solution of

๐ทu๐‘–(๐‘ฅ) + u๐‘–(๐‘ฅ)k = 0 in โ„3. (8.1)

The scattering problem then consists in determining a scattering solution u๐‘ (๐‘ฅ)such that

๐ทu+ uk = um(๐‘ฅ)k in โ„3, (8.2)

u = u๐‘– + u๐‘ , (8.3)

and u๐‘  fullfils the radiation condition

๐‘˜u๐‘ (๐‘ฅ) +๐‘–๐‘ฅ

โˆฃ๐‘ฅโˆฃu๐‘ (๐‘ฅ)k = o(โˆฃ๐‘ฅโˆฃโˆ’1

), as โˆฃ๐‘ฅโˆฃ โ†’ โˆž. (8.4)

If k is a zero divisor we additionally assume u๐‘ (๐‘ฅ) = o(1).

Remark 8.1. The unknown vector field m with compact support could also bequaternion-valued, i.e., it could have a non-zero scalar part. We writem to indicatethat we consider a scalar- or vector- or quaternion-valued function and not only ascalar-valued function.

Theorem 8.2. If u is a solution of the scattering problem (8.1)โ€“(8.4) then u โˆฃ๐บsolves the Lippmannโ€“Schwinger integral equation

u(๐‘ฅ)=u๐‘–(๐‘ฅ)โˆ’โˆซ๐บ

(โˆ’๐ท๐‘ฅ๐น๐‘˜(๐‘ฅโˆ’ ๐‘ฆ)u(๐‘ฆ))m(๐‘ฆ)k+u(๐‘ฆ)m(๐‘ฆ)k๐น๐‘˜(๐‘ฅโˆ’ ๐‘ฆ)k ๐‘‘๐‘ฆ. (8.5)

Conversely, if u is a solution of the Lippmannโ€“Schwinger equation then u is asolution of the scattering problem.

Proof. Let u be a solution of the scattering problem and v the integral on theright-hand side of (8.5). Because

๐ทv โˆ’ vk = um(๐‘ฅ)k = ๐ทu+ u(๐‘ฅ)k,

w = uโˆ’ v satisfies๐ทw +wk = 0 in โ„3.

Furthermore,

w(๐‘ฅ) = (u๐‘–(๐‘ฅ)โˆ’ u(๐‘ฅ))

โˆ’โˆซ๐บ

(โˆ’๐ท๐‘ฅ๐น๐‘˜(๐‘ฅโˆ’ ๐‘ฆ))u(๐‘ฆ)m(๐‘ฆ)k+ u(๐‘ฆ)m(๐‘ฆ)k๐น๐‘˜(๐‘ฅโˆ’ ๐‘ฆ)k ๐‘‘๐‘ฆ,

๐‘ฅ โˆˆ โ„3, and it satisfies the radiation condition which will be seen as follows:u๐‘–(๐‘ฅ) โˆ’ u(๐‘ฅ) = u๐‘ (๐‘ฅ), which satisfies the radiation condition by assumption. Letus now consider the integral. First we look at the kernels

๐น๐‘˜(๐‘ฅโˆ’ ๐‘ฆ) = ๐น๐‘˜(๐‘ฅ)๐‘’โˆ’๐‘–๐‘˜๏ฟฝ๏ฟฝโ‹…๐‘ฆ +O(โˆฃ๐‘ฅโˆฃโˆ’2) and

(๐ท๐‘ฅ๐น๐‘˜)(๐‘ฅ โˆ’ ๐‘ฆ) = (๐ท๐‘ฅ๐น๐‘˜)(๐‘ฅ)๐‘’โˆ’๐‘–๐‘˜๏ฟฝ๏ฟฝโ‹…๐‘ฆ +O(โˆฃ๐‘ฅโˆฃโˆ’2

).

Page 299: Quaternion and Clifford Fourier Transforms and Wavelets

278 S. Bernstein

We conclude that

(โˆ’๐ท๐‘ฅ๐น๐‘˜(๐‘ฅโˆ’ ๐‘ฆ)u(๐‘ฆ))m(๐‘ฆ)k+ u(๐‘ฆ)m(๐‘ฆ)k๐น๐‘˜(๐‘ฅโˆ’ ๐‘ฆ)k

=((โˆ’๐ท๐‘ฅ๐น๐‘˜(๐‘ฅ)u(๐‘ฆ))m(๐‘ฆ)k + ๐‘˜2u(๐‘ฆ)m(๐‘ฆ)๐น๐‘˜(๐‘ฅโˆ’ ๐‘ฆ)

)๐‘’โˆ’๐‘–๐‘˜๏ฟฝ๏ฟฝโ‹…๐‘ฆ +O(โˆฃ๐‘ฅโˆฃโˆ’2

).

Therefore it is enough to consider

(โˆ’๐ท๐‘ฅ๐น๐‘˜(๐‘ฅ)u(๐‘ฆ))m(๐‘ฆ)k + ๐‘˜2u(๐‘ฆ)m(๐‘ฆ)๐น๐‘˜(๐‘ฅโˆ’ ๐‘ฆ).

We obtain

๐‘˜((โˆ’๐ท๐‘ฅ๐น๐‘˜(๐‘ฅ)u(๐‘ฆ))m(๐‘ฆ)k + ๐‘˜2u(๐‘ฆ)m(๐‘ฆ)๐น๐‘˜(๐‘ฅโˆ’ ๐‘ฆ)

)+

๐‘–๐‘ฅ

โˆฃ๐‘ฅโˆฃ((โˆ’๐ท๐‘ฅ๐น๐‘˜(๐‘ฅ)u(๐‘ฆ))m(๐‘ฆ)k + ๐‘˜2u(๐‘ฆ)m(๐‘ฆ)๐น๐‘˜(๐‘ฅโˆ’ ๐‘ฆ)

)k

+ ๐‘˜((โˆ’๐ท๐‘ฅ๐น๐‘˜(๐‘ฅ)u(๐‘ฆ))m(๐‘ฆ)k + ๐‘˜2u(๐‘ฆ)m(๐‘ฆ)๐น๐‘˜(๐‘ฅโˆ’ ๐‘ฆ)

)+

๐‘–๐‘ฅ

โˆฃ๐‘ฅโˆฃ((โˆ’๐ท๐‘ฅ๐น๐‘˜(๐‘ฅ)u(๐‘ฆ))m(๐‘ฆ)k2 +

๐‘–๐‘ฅ

โˆฃ๐‘ฅโˆฃ๐‘˜2u(๐‘ฆ)m(๐‘ฆ)๐น๐‘˜(๐‘ฅโˆ’ ๐‘ฆ)k

)=

(๐‘˜(โˆ’๐ท๐‘ฅ๐น๐‘˜)(๐‘ฅ) +

๐‘–๐‘˜2๐‘ฅ

โˆฃ๐‘ฅโˆฃ ๐น๐‘˜(๐‘ฅ)

)u(๐‘ฆ)m(๐‘ฆ)k

+ ๐‘˜2

(๐‘–๐‘ฅ

โˆฃ๐‘ฅโˆฃ (โˆ’๐ท๐‘ฅ๐น๐‘˜)(๐‘ฅ) + ๐‘˜๐น๐‘˜(๐‘ฅ)

)u(๐‘ฆ)m(๐‘ฆ)

= โˆ’(

๐‘˜๐‘ฅ

โˆฃ๐‘ฅโˆฃ3 โˆ’ ๐‘–๐‘˜2 ๐‘ฅ

โˆฃ๐‘ฅโˆฃ2 + ๐‘–๐‘˜2 ๐‘ฅ

โˆฃ๐‘ฅโˆฃ2)

๐‘’๐‘–๐‘˜โˆฃ๐‘ฅโˆฃ

4๐œ‹u(๐‘ฆ)m(๐‘ฆ)k

โˆ’ ๐‘˜2

(๐‘–๐‘ฅ2

โˆฃ๐‘ฅโˆฃ4 + ๐‘˜๐‘ฅ2

โˆฃ๐‘ฅโˆฃ3 + ๐‘˜1

โˆฃ๐‘ฅโˆฃ

)๐‘’๐‘–๐‘˜โˆฃ๐‘ฅโˆฃ

4๐œ‹u(๐‘ฆ)m(๐‘ฆ)

= โˆ’๐‘˜๐‘ฅ๐‘’๐‘–๐‘˜โˆฃ๐‘ฅโˆฃ

4๐œ‹ โˆฃ๐‘ฅโˆฃ3 u(๐‘ฆ)m(๐‘ฆ)kโˆ’ ๐‘˜2 ๐‘–๐‘ฅ2๐‘’๐‘–๐‘˜โˆฃ๐‘ฅโˆฃ

4๐œ‹ โˆฃ๐‘ฅโˆฃ4 u(๐‘ฆ)m(๐‘ฆ)

= O(โˆฃ๐‘ฅโˆฃโˆ’2). โ–ก

Remark 8.3. We can replace the region of integration by any domain ๐บ such thatthe support of m is contained in ๐บ

Using the unique continuation principle (8.5) we will prove that the homo-geneous equation has only the trivial solution and by the Fredholm theory theexistence of a solution for functions in ๐ถ(๐บ) or ๐ฟ๐‘(๐บ), 1 < ๐‘ < โˆž. Then thesolution of the Lippmannโ€“Schwinger equation can be computed and we obtain thesolution u from

u(๐‘ฅ) = u๐‘–(๐‘ฅ) โˆ’โˆซ๐บ

(โˆ’๐ท๐‘ฅ๐น๐‘˜(๐‘ฅ โˆ’ ๐‘ฆ))u(๐‘ฆ)m(๐‘ฆ)k+ u(๐‘ฆ)m(๐‘ฆ)k๐น๐‘˜(๐‘ฅโˆ’ ๐‘ฆ)k ๐‘‘๐‘ฆ.

Lemma 8.4. We have

โˆฃ๐น๐‘˜(๐‘ฅโˆ’ ๐‘ฆ)โˆฃ โ‰ค ๐‘

โˆฃ๐‘ฅโˆ’ ๐‘ฆโˆฃ and โˆฃ๐ท๐น๐‘˜(๐‘ฅโˆ’ ๐‘ฆ)โˆฃ โ‰ค ๐‘1

โˆฃ๐‘ฅโˆ’ ๐‘ฆโˆฃ2 +๐‘2

โˆฃ๐‘ฅโˆ’ ๐‘ฆโˆฃ .

Page 300: Quaternion and Clifford Fourier Transforms and Wavelets

13. Seeing the Invisible 279

Because the kernels of the Lippmannโ€“Schwinger equation are weakly singular,the integral operators are compact as mappings in spaces of continuous functionsas well as ๐ฟ๐‘, 1 < ๐‘ <โˆž, but only for bounded domains.

To get information about the solution of the Lippmannโ€“Schwinger equationwe would like to apply the Fredholm theory for compact operators. So far we knowthat the integral operator is a compact operator. Now we need to prove that thehomogeneous equation has only the trivial solution. For that we need the uniquecontinuation principle. The proof of this principle goes back to [24]. For a proofwe refer to [5, Lemma 8.5], which also uses ideas from [29] and [21].

Lemma 8.5 (Unique continuation principle, [5]). Let ๐บ be a domain in โ„3 and let๐‘ข1, . . . , ๐‘ข๐‘ โˆˆ ๐ถ2(๐บ), be real-valued functions satisfying

โˆฃฮ”๐‘ข๐‘โˆฃ โ‰ค ๐‘

๐‘ƒโˆ‘๐‘ž=1

{โˆฃ๐‘ข๐‘žโˆฃ+ โˆฃgrad๐‘ข๐‘žโˆฃ} in ๐บ,

for ๐‘ = 1, . . . , ๐‘ƒ and some constant ๐‘. Assume that ๐‘ข๐‘ vanishes in a neighborhoodof some ๐‘ฅ0 โˆˆ ๐บ for ๐‘ = 1, . . . , ๐‘ƒ. Then ๐‘ข๐‘ is identically zero in ๐บ for ๐‘ = 1, . . . , ๐‘ƒ.

To be able to apply the unique continuation principle to

(๐ท +๐‘€k)uโˆ’m(๐‘ฅ)uk = 0

we apply the operator ๐ท again to obtain

๐ท((๐ท +๐‘€k)uโˆ’m(๐‘ฅ)uk) = โˆ’ฮ”u+ (๐ทu)kโˆ’๐ท(m(๐‘ฅ)uk).

and we can use the equation

ฮ”u = (๐ทu)kโˆ’๐ท(m(๐‘ฅ)uk).

The last equation equation can be rewritten as the following system

ฮ”u = โˆ’(divu)k+ (curlu)ร— k+ (divm)(uร— k)

โˆ’(curlm)(u โ‹… k)โˆ’ 2

(3โˆ‘

๐‘—=1

๐‘š๐‘—โˆ‚๐‘—u

)k.

If there are constants ๐ถ1, ๐ถ2 > 0 such that

max๐‘ฅโˆˆ๐บ

โˆฃ๐‘š๐‘—(๐‘ฅ)โˆฃ โ‰ค ๐ถ1 and max๐‘ฅโˆˆ๐บ

โˆฃgrad๐‘š๐‘—(๐‘ฅ)โˆฃ โ‰ค ๐ถ2,

then we can apply the unique continuation principle to conclude that the homoge-neous Lippmannโ€“Schwinger equation over a bounded domain has only the trivialsolution.

Theorem 8.6. Let k โˆˆ โ„‚3โˆ–{0}. There exists a unique solution to the inverse scat-tering problem (8.1)โ€“(8.4) and the solution u depends continuously, with respectto the maximum norm, on the incident field u๐‘–.

Proof. Due to the Fredholm theory it is enough to prove that the homogeneousequation has only the trivial solution. If that is proven, the integral equationis a bounded invertible operator in ๐ถ(๏ฟฝ๏ฟฝ๐‘…). From this it follows that u dependscontinuously on the incident field u๐‘– with respect to the maximum norm. Let ๐ต๐‘… :=

Page 301: Quaternion and Clifford Fourier Transforms and Wavelets

280 S. Bernstein

{๐‘ฅ โˆˆ โ„3 : โˆฃ๐‘ฅโˆฃ โ‰ค ๐‘…}. Due to Proposition 7.2 the function u can be represented asan integral over โˆ‚๐ต๐‘…, and due to the properties of ๐น๐‘˜(๐‘ฅโˆ’ ๐‘ฆ) we have u(๐‘ฅ) = o(1)as โˆฃ๐‘ฅโˆฃ โ†’ โˆž. Now,

u(๐‘ฅ) = ๐’žk[๐‘“ ](๐‘ฅ) =โˆซโˆ‚๐ต๐‘…

(โˆ’๐ท๐‘ฅ๐น๐‘˜)(๐‘ฅโˆ’ ๐‘ฆ)n(๐‘ฆ)u(๐‘ฆ) + n(๐‘ฆ)u(๐‘ฆ)๐น๐‘˜(๐‘ฅโˆ’ ๐‘ฆ)k ๐‘‘๐‘ฆ

โˆผโˆซโˆ‚๐ต๐‘…

(๐ท๐‘ฆ๐น๐‘˜)(๐‘ฅโˆ’ ๐‘ฆ)๐‘ฆ

โˆฃ๐‘ฆโˆฃu(๐‘ฆ) +๐‘ฆ

โˆฃ๐‘ฆโˆฃu(๐‘ฆ)๐น๐‘˜(๐‘ฅโˆ’ ๐‘ฆ)k ๐‘‘๐‘ฆ

โˆผโˆซโˆ‚๐ต๐‘…

๐น๐‘˜(๐‘ฆ)

{(1

โˆฃ๐‘ฆโˆฃ โˆ’ ๐‘–๐‘˜

)u(๐‘ฆ) +

๐‘ฆ

โˆฃ๐‘ฆโˆฃu(๐‘ฆ)k}

๐‘‘๐‘ฆ

โˆผโˆซโˆ‚๐ต๐‘…

๐น๐‘˜(๐‘ฆ)

{1

โˆฃ๐‘ฆโˆฃu(๐‘ฆ)โˆ’ ๐‘–

(๐‘˜๐‘“(๐‘ฆ) + ๐‘–

๐‘ฆ

โˆฃ๐‘ฆโˆฃu(๐‘ฆ)k)}

๐‘‘๐‘ฆ

โˆผโˆซโˆ‚๐ต๐‘…

๐น๐‘˜(๐‘ฆ)

{1

โˆฃ๐‘ฆโˆฃu(๐‘ฆ) + o(โˆฃ๐‘ฆโˆฃโˆ’1)

}๐‘‘๐‘ฆ โ†’ 0 as ๐‘ฆ โ†’โˆž,

because u fulfils the radiation condition and u(๐‘ฆ) = o(1). We have proven thatu = 0 for โˆฃ๐‘ฅโˆฃ โ‰ฅ ๐‘…. The unique continuation principle (Lemma 8.5) implies thatu = 0 in โ„3. โ–ก

Up to now we have used the usual Greenโ€™s function for the Helmholtz equation๐น๐‘˜(๐‘ฅ) and the Greenโ€™s functions ๐ถ๐‘˜(๐‘ฅ) and ๐ถk(๐‘ฅ) for the Dirac operators ๐ท + ๐‘˜and ๐ท + ๐‘€k. Another type of Greenโ€™s functions are the exponentially growingGreenโ€™s functions. These Greenโ€™s functions were introduced by Faddeev [6] andlater on used by Nachman and Ablowitz [25], Beals and Coifman [2], Sylvesterand Uhlmann [32], Paivarinta [30] and Isozaki [13] in inverse scattering. Someinverse scattering problems for the Dirac operator are also discussed in [26] and[22].

The main idea is to consider plane waves

๐‘’๐‘–kโ‹…๐‘ฅ, k โˆˆ โ„‚3, ๐‘ฅ โˆˆ โ„3, k โ‹… k = ๐‘˜2.

Therefore we analyze how the operators change when u is replaced by ๐‘’๐‘–kโ‹…๐‘ฅv. Weobtain

(ฮ” + ๐‘˜2)u = (ฮ” + ๐‘˜2)(๐‘’๐‘–kโ‹…๐‘ฅv) = ๐‘’๐‘–kโ‹…๐‘ฅ(ฮ” + 2๐‘–k โ‹… โˆ‡)v,

(๐ท โˆ’ ๐‘–k)u = (๐ท โˆ’ ๐‘–k)(๐‘’๐‘–kโ‹…๐‘ฅv) = ๐‘’๐‘–kโ‹…๐‘ฅ (๐‘–kv +๐ทv โˆ’ ๐‘–kv) = ๐‘’๐‘–kโ‹…๐‘ฅ๐ทv

(๐ท +๐‘€ ๐‘–k)u = (๐ท +๐‘€ ๐‘–k)(๐‘’๐‘–kโ‹…๐‘ฅv) = ๐‘’๐‘–kโ‹…๐‘ฅ (๐‘–kv +๐ทv + v(๐‘–k)) .

In the last equation it does matter whether v is truly quaternion-valued or just avector. In the latter case we see that kv+vk = โˆ’kโ‹…v+kร—vโˆ’vโ‹…k+vร—k = โˆ’2kโ‹…v.Hence

(๐ท +๐‘€ ๐‘–k)u = (๐ท +๐‘€ ๐‘–k)(๐‘’๐‘–kโ‹…๐‘ฅv) = ๐‘’๐‘–kโ‹…๐‘ฅ(๐ทv โˆ’ 2๐‘–k โ‹… v).We will relate these new operators to the operator

โˆ’ฮ”โˆ’ 2๐‘–๐›พ๐›พ๐›พ โ‹… โˆ‡ โˆ’ ๐œ†2,

and Faddeevโ€™s Green function.

Page 302: Quaternion and Clifford Fourier Transforms and Wavelets

13. Seeing the Invisible 281

8.1. Faddeevโ€™s Green Function

The idea of Faddeev to obtain a nice Green function starts with decomposing thevector k = ๐œ‚๐œ‚๐œ‚+ ๐‘ก๐›พ๐›พ๐›พ, where ๐›พ๐›พ๐›พ โˆˆ ๐‘†2 is an arbitrary direction and ๐œ‚๐œ‚๐œ‚ โ‹…๐›พ๐›พ๐›พ = 0. If we applyฮ” + ๐‘˜2 to ๐‘’๐‘–๐‘ก๐›พ๐›พ๐›พโ‹…๐‘ฅw(๐‘ฅ) we obtain

(ฮ” + ๐‘˜2)(๐‘’๐‘–๐‘ก๐›พ๐›พ๐›พโ‹…๐‘ฅw(๐‘ฅ)) = ๐‘’๐‘–๐‘ก๐›พ๐›พ๐›พโ‹…๐‘ฅ(โˆ’๐‘ก2 + ๐‘˜2 + 2๐‘–๐‘ก๐›พ๐›พ๐›พ โ‹… โˆ‡+ฮ”)w(๐‘ฅ).

Let ๐œ†2 = ๐‘˜2 โˆ’ ๐‘ก2, take the Fourier transform of the differential operator โˆ’ฮ” โˆ’2๐‘–๐‘ก๐›พ๐›พ๐›พ โ‹… โˆ‡ โˆ’ ๐œ†2. We then get Faddeevโ€™s Green operator defined as

(๐‘”๐›พ๐›พ๐›พ(๐œ†, ๐‘ง)๐‘“)(๐‘ฅ) =1

(2๐œ‹)3

โˆซ๐‘’๐‘–๐‘ฅโ‹…๐œ‰

๐œ‰2 + 2๐‘ง๐›พ๐›พ๐›พ โ‹… ๐œ‰ โˆ’ ๐œ†2๐‘“(๐œ‰) ๐‘‘๐œ‰,

where ๐›พ๐›พ๐›พ โˆˆ ๐‘†2, ๐œ† โ‰ฅ 0, and ๐‘ง โˆˆ โ„‚+ = {๐‘ง โˆˆ โ„‚ : โ„‘ (๐‘ง) > 0}. If โ„‘ (๐‘ง) โˆ•= 0, (๐œ‰2 + 2๐‘ง๐›พ๐›พ๐›พ โ‹…๐œ‰ โˆ’ ๐œ†2)โˆ’1 โˆˆ ๐ฟ1

loc(โ„3). Therefore the integral is absolutely convergent for ๐‘“ โˆˆ ๐’ฎ.

For ๐‘ก โˆˆ โ„, ๐‘”๐›พ๐›พ๐›พ(๐œ†, ๐‘ก) is defined as the boundary value ๐‘”๐›พ๐›พ๐›พ(๐œ†, ๐‘ก+ ๐‘–0).

Proposition 8.7 ([13]). Let ๐‘  > 12 . Then

1. ๐‘”๐›พ๐›พ๐›พ(๐œ†, ๐‘ง) is continuous with respect to ๐œ† โ‰ฅ 0, ๐›พ๐›พ๐›พ โˆˆ ๐‘†2, ๐‘ง โˆˆ โ„‚+ except for (๐œ†, ๐‘ง) =(0, 0).

2. ๐‘”๐›พ๐›พ๐›พ(๐œ†, ๐‘ง) is analytic in ๐‘ง โˆˆ โ„‚+.3. For any ๐›ฟ0 > 0, there exists a constant ๐ถ > 0 such that

โˆฅ๐‘”๐›พ๐›พ๐›พ(๐œ†, ๐‘ง)โˆฅ(๐ฟ2,๐‘ ,๐ป๐›ผ,๐‘ ) โ‰ค๐ถ

(๐œ† + โˆฃ๐‘งโˆฃ)1โˆ’๐›ผ ,

with ๐œ†+ โˆฃ๐‘งโˆฃ โ‰ฅ ๐›ฟ0, and 0 โ‰ค ๐›ผ โ‰ค 2.

We would like to have a similar Faddeevโ€™s Green function for the operators๐ท+ ๐‘–k = ๐ท+ ๐‘–k๐‘€ and ๐ท+๐‘€ ๐‘–k. There are differences between both cases due tothe fact that

(๐ท + ๐‘–k)(๐ท + ๐‘–k)u = โˆ’ฮ”u+ ๐‘–k๐ทu+ ๐‘–๐ท(ku)โˆ’ k2u

= โˆ’ฮ”u+ ๐‘–k๐ทuโˆ’ ๐‘–k๐ทuโˆ’ 2๐‘–3โˆ‘

๐‘—=1

๐‘˜๐‘—โˆ‚๐‘—u+ k โ‹… ku

= (โˆ’ฮ”โˆ’ 2๐‘–k โ‹… โˆ‡+ ๐‘˜2)u.

With ๐‘–k = ๐‘–๐‘ง๐›พ๐›พ๐›พ we have

(๐ท + ๐‘–๐‘ง๐›พ๐›พ๐›พ)(๐ท + ๐‘–๐‘ง๐›พ๐›พ๐›พ)u = (โˆ’ฮ”โˆ’ 2๐‘–๐‘ง๐›พ๐›พ๐›พ โ‹… โˆ‡+ ๐‘ง2)u,

and hence

(๐ท + ๐‘–๐‘ง๐›พ๐›พ๐›พ โˆ’ ๐‘˜)(๐ท + ๐‘–๐‘ง๐›พ๐›พ๐›พ + ๐‘˜)u

= (๐ท + ๐‘–๐‘ง๐›พ๐›พ๐›พ)(๐ท + ๐‘–๐‘ง๐›พ๐›พ๐›พ)u+ (๐ท + ๐‘–๐‘ง๐›พ๐›พ๐›พ)(๐‘˜u) + ๐‘˜(๐ท + ๐‘–๐‘ง๐›พ๐›พ๐›พ)uโˆ’ ๐‘˜2u

= (โˆ’ฮ”โˆ’ 2๐‘–๐‘ง๐›พ๐›พ๐›พ โ‹… โˆ‡ โˆ’ ๐‘˜2 + ๐‘ง2)u

= (โˆ’ฮ”โˆ’ 2๐‘–๐‘ง๐›พ๐›พ๐›พ โ‹… โˆ‡ โˆ’ ๐œ†2)u.

Page 303: Quaternion and Clifford Fourier Transforms and Wavelets

282 S. Bernstein

This is the way that Isozaki got a Faddeevโ€™s Green function. We obtain

๐บ๐›พ๐›พ๐›พ(๐œ†, ๐‘ง) = (๐ท + ๐‘–๐‘ง๐›พ๐›พ๐›พ โˆ’ ๐‘˜)๐‘”(๐œ†, ๐‘ง).

The multiplication from the other side leads to a different Faddeevโ€™s Greenfunction. In this case we have

(๐ท +๐‘–๐‘ง๐›พ๐›พ๐›พ ๐‘€ +๐‘€ ๐‘–(๐‘ง๐›พ๐›พ๐›พ+๐œ‚๐œ‚๐œ‚))(๐ท +๐‘–๐‘ง๐›พ๐›พ๐›พ ๐‘€ โˆ’๐‘€ ๐‘–(๐‘ง๐›พ๐›พ๐›พ+๐œ‚๐œ‚๐œ‚))u = (โˆ’ฮ”โˆ’ 2๐‘–๐‘ง๐›พ๐›พ๐›พ โ‹… โˆ‡ โˆ’ ๐œ†2)u,

and thus with ๐‘–k = ๐‘–๐‘ง๐›พ๐›พ๐›พ + ๐‘–๐œ‚๐œ‚๐œ‚ we obtain

๐บ๐›พ๐›พ๐›พ(๐œ†, ๐‘ง) = (๐ท +๐‘–๐‘ง๐›พ๐›พ๐›พ ๐‘€ โˆ’๐‘€ ๐‘–k)๐‘”(๐œ†, ๐‘ง).

This easily shows that for both operators ๐บ๐›พ๐›พ๐›พ(๐œ†, ๐‘ง) the following is true.

Theorem 8.8. Let ๐‘  > 12 . Then

1. ๐‘”๐›พ๐›พ๐›พ(๐œ†, ๐‘ง) is continuous with respect to ๐œ† โ‰ฅ 0, ๐›พ๐›พ๐›พ โˆˆ ๐‘†2, ๐‘ง โˆˆ โ„‚+ except for (๐œ†, ๐‘ง) =(0, 0).

2. ๐‘”๐›พ๐›พ๐›พ(๐œ†, ๐‘ง) is analytic in ๐‘ง โˆˆ โ„‚+.3. For any ๐›ฟ0 > 0, and 0 โ‰ค ๐›ผ โ‰ค 1, there exists a constant ๐ถ > 0 such that

โˆฅ๐‘”๐›พ๐›พ๐›พ(๐œ†, ๐‘ง)โˆฅ(๐ฟ2,๐‘ ,๐ป๐›ผ,๐‘ ) โ‰ค ๐ถ(๐œ† + โˆฃ๐‘งโˆฃ)๐›ผ,with ๐œ†+ โˆฃ๐‘งโˆฃ โ‰ฅ ๐›ฟ0.

We conclude that we can also use Faddeevโ€™s Green function to solve theinverse scattering problem and we can assume the solution u to have the structureu = ๐‘’๐‘–kโ‹…๐‘ฅv, which is the appropriate setting for optical coherence tomography.

Acknowledgment

I would like to thank Dr. B. Heise and the Christian Doppler Laboratory for Micro-scopic and Spectroscopic Material Characterization, Johannes Kepler UniversityLinz, Austria, for making me realize the importance of Maxwellโ€™s equations andinverse scattering for OCT and for the opportunity to learn the physics behindthe mathematical formulae.

References

[1] M.J. Ablowitz and A.P. Clarkson. Solitons, Nonlinear Evolution Equations and In-verse Scattering, volume 149 of London Mathematical Society Lecture Note Series.Cambridge University Press, 1991.

[2] R. Beals and R.R. Coifman. Multidimensional inverse scattering and nonlinear par-tial differential equations. In F. Treves, editor, Pseudodifferential Operators and Ap-plications, volume 43 of Proceedings of Symposia in Pure Mathematics, pages 45โ€“70.American Mathematical Society, 1984.

[3] S. Bernstein. Factorization of the Schrodinger operator. In W. SproรŸig, editor, Pro-ceedings of the Symposium Analytical and Numerical Methods in Quaternionic andClifford analysis, pages 1โ€“6, 1996.

[4] S. Bernstein. Lippmannโ€“Schwingerโ€™s integral equation for quaternionic Dirac oper-ators. unpublished, available at http://euklid.bauing.uni-weimar.de/ikm2003/

papers/46/M_46.pdf, 2003.

Page 304: Quaternion and Clifford Fourier Transforms and Wavelets

13. Seeing the Invisible 283

[5] D. Colton and R. Kress. Inverse Acoustic and Electromagnetic Scattering Theory,volume 93 of Applied Mathematical Sciences. Springer-Verlag, Berlin, Heidelberg,New York, 1992.

[6] L.D. Faddeev. Increasing solutions of the Schrodinger equation. Doklady AkademiiNauk SSSR, 165:514โ€“517, 1965.

[7] A.F. Fercher. Optical coherence tomography. Journal of Biomedical Optics, 1(2):153โ€“173, 1996.

[8] A.F. Fercher, W. Drexler, C.K. Hitzenberger, and T. Lasser. Optical coherence to-mography โ€“ principles and applications. Reports on Progress in Physics, 66:239โ€“303,2003.

[9] A.S. Fokas. A unified transform method for solving linear and certain nonlinearPDEs. Proceedings of the Royal Society A, Mathematical, Physical & EngineeringSciences, 453:1411โ€“1443, 1997.

[10] K. Gurlebeck and W. SproรŸig. Quaternionic and Clifford Calculus for Physicists andEngineers. Wiley, Aug. 1997.

[11] K. Gurlebeck. Hypercomplex factorization of the Helmholtz equation. Zeitschrift furAnalysis und ihre Anwendungen, 5(2):125โ€“131, 1986.

[12] K. Imaeda. A new formulation of classical electrodynamics. Nuovo Cimento,32(1):138โ€“162, 1976.

[13] H. Isozaki. Inverse scattering theory for Dirac operators. Annales de lโ€˜I.H.P., sectionA, 66(2):237โ€“270, 1997.

[14] V.V. Kravchenko. On a new approach for solving Dirac equations with some poten-tials and Maxwellโ€™s system in inhomogeneous media. In Operator theory: Advancesand Applications, volume 121 of Operator Theory: Advances and Applications, pages278โ€“306. Birkhauser Verlag, 2001.

[15] V.V. Kravchenko. Quaternionic Reformulation of Maxwellโ€™s Equations for Inhomo-geneous Media and New Solutions. Zeitschrift fur Analysis und ihre Anwendungen,21(1):21โ€“26, 2002.

[16] V.V. Kravchenko. Applied Quaternionic Analysis, volume 28 of Research and Expo-sition in Mathematics. Heldermann Verlag, 2003.

[17] V.V. Kravchenko. On force-free magnetic fields: Quaternionic approach. Mathemat-ical Methods in the Applied Sciences, 28:379โ€“386, 2005.

[18] V.V. Kravchenko and R.P. Castillo. An analogue of the Sommerfeld radiation condi-tion for the Dirac operator. Mathematical Methods in the Applied Sciences, 25:1383โ€“1394, 2002.

[19] V.V. Kravchenko and M.P. Ramirez. New exact solutions of the massive Dirac equa-tion with electric or scalar potential. Mathematical Methods in the Applied Sciences,23:769โ€“776, 2000.

[20] V.V. Kravchenko and M.V. Shapiro. On a generalized system of Cauchy-Riemannequations with a quaternionic parameter. Russian Academy of Sciences, Doklady.,47:315โ€“319, 1993.

[21] R. Leis. Initial Boundary Value Problems in Mathematical Physics. John Wiley, NewYork, 1986.

Page 305: Quaternion and Clifford Fourier Transforms and Wavelets

284 S. Bernstein

[22] X. Li. On the inverse problem for the Dirac operator. Inverse Problems, 23:919โ€“932,2007.

[23] A. McIntosh and M. Mitrea. Clifford algebras and Maxwellโ€™s equations in Lipschitzdomains. Mathematical Methods in the Applied Sciences, 22(18):1599โ€“1999, 1999.

[24] C. Muller. On the behavior of solutions of the differential equation ๐›ฟ๐‘ข = ๐‘“(๐‘ฅ, ๐‘ข)in a neighborhood of a point. Communications on Pure and Applied Mathematics,7:505โ€“515, 1954.

[25] A.I. Nachman and M.J. Ablowitz. A multidimensional inverse scattering method.Studies in Applied Mathematics, 71:243โ€“250, 1984.

[26] G. Nakamura and T. Tsuchida. Uniqueness for an inverse boundary value problem forDirac operators. Communications in Partial Differential Equations, 25:7-8:557โ€“577,2000.

[27] E.I. Obolashvili. Partial Differential Equations in Clifford Analysis, volume 96 ofPitman Monographs and Surveys in Pure and Applied Mathematics. Harlow: AddisonWesley Longman Ltd., 1998.

[28] K.-E. Peiponen, E.M. Vartiainen, and T. Asakura. Dispersion, Complex Analysis andOptical Spectroscopy. Springer Tracts in Modern Physics. Springer Verlag, Berlin,Heidelberg, 1999.

[29] M.H. Protter. Unique continuation principle for elliptic equations. Transactions ofthe American Mathematical Society, 95:81โ€“90, 1960.

[30] L. Paivarinta. Analytic methods for inverse scattering theory. In Y.K.K. Binghamand E. Somersalo, editors, New Analytic and Geometric Methods in Inverse Prob-lems, pages 165โ€“185. Springer, Berlin, Heidelberg, New York, 2003.

[31] J. Radon. Uber die Bestimmung von Funktionen durch ihre Integralwerte langsgewisser Mannigfaltigkeiten. Berichte uber die Verhandlungen der SachsischenAkademie der Wissenschaften (Reports on the proceedings of the Saxony Academyof Science), 69:262โ€“277, 1917.

[32] J. Sylvester and G. Uhlmann. A global uniqueness theorem for an inverse boundaryvalue problem. Annals of Mathematics, 125(1):153โ€“169, Jan. 1987.

Swanhild BernsteinTU Bergakademie FreibergInstitute of Applied AnalysisPruferstr. 9D-09596 Freiberg, Germanye-mail: [email protected]

Page 306: Quaternion and Clifford Fourier Transforms and Wavelets

Quaternion and Cliffordโ€“Fourier Transforms and Wavelets

Trends in Mathematics, 285โ€“298cโƒ 2013 Springer Basel

14A Generalized Windowed Fourier Trans-form in Real Clifford Algebra ๐‘ชโ„“0,๐’

Mawardi Bahri

Abstract. The Cliffordโ€“Fourier transform in ๐ถโ„“0,๐‘› (CFT) can be regarded as ageneralization of the two-dimensional quaternionic Fourier transform (QFT),which was first introduced from the mathematical aspect by Brackx. In thischapter, we propose the Clifford windowed Fourier transform using the kernelof the CFT. Some important properties of the transform are investigated.

Mathematics Subject Classification (2010). Primary 15A66; secondary 42B10.

Keywords. Multivector-valued function, Clifford algebra, Cliffordโ€“Fouriertransform.

1. Introduction

Recently researchers have paid much attention to the generalization of the classi-cal windowed Fourier transform (WFT) using the quaternion algebra and Cliffordalgebra. The first attempt to extend the WFT to the quaternion algebra was byBulow and Sommer [6, 7]. They introduced a special case of the quaternionicwindowed Fourier transform (QWFT) known as quaternionic Gabor filters. Theyapplied these filters to obtain a local two-dimensional quaternionic phase. Theirgeneralization was obtained using the inverse (two-sided) quaternion Fourier ker-nel. A further extension of the quaternionic Gabor filter to quaternionic Gaborwavelets was introduced by Bayro-Corrochano [3] and Xi et al.. [20]. Hahn [12]constructed a Fourier-Wigner distribution of 2D quaternionic signals, which is infact closely related to the QWFT.

The WFT has been also studied in the quaternion algebra framework. Thegeneralization uses the kernel of the (right-sided) quaternion Fourier transform[18, 13] which was introduced in [2] and the kernel of the (two-sided) quaternionFourier transform recently proposed by Fu et al. in [9]. In [15], we applied the ๐ถโ„“๐‘›,0Clifford windowed Fourier transform to linear time-varying systems. In this chap-ter, we continue the generalization of the quaternionic windowed Fourier transform

This work was partially supported by Bantuan Seminar Luar Negeri oleh DP2M DIKTI 2011,Indonesia.

Page 307: Quaternion and Clifford Fourier Transforms and Wavelets

286 M. Bahri

to the real Clifford algebra ๐ถโ„“0,๐‘› called the ๐ถโ„“0,๐‘› Clifford windowed Fourier trans-form (CWFT) which differs appreciably1 from the ๐ถโ„“๐‘›,0 Clifford windowed Fouriertransform (see [17, 16]).

This chapter is organized as follows. A brief review of real Clifford algebrais given in ยง 2. ยง 3 introduces the Cliffordโ€“Fourier transform in ๐ถโ„“0,๐‘› (CFT) andderives its important properties. ยง 4 discusses the basic ideas for constructing theClifford windowed Fourier transform in ๐ถโ„“0,๐‘› (CWFT) using the kernel of theCliffordโ€“Fourier transform in ๐ถโ„“0,๐‘›. We show that some properties of the two-dimensional quaternionic windowed Fourier transform (see [2]) are not valid in theCWFT such as the shift property and the Heisenberg uncertainty principle.

2. Preliminaries

We will be working with real Clifford algebras. Let {๐’†1, ๐’†2, ๐’†3, . . . , ๐’†๐‘›} be an or-thonormal vector basis of the real ๐‘›-dimensional Euclidean vector space โ„๐‘›. Thereal Clifford algebra over โ„๐‘› denoted by ๐ถโ„“0,๐‘› then has the graded 2๐‘›-dimensionalbasis

{1, ๐’†1, ๐’†2, . . . , ๐’†๐‘›, ๐’†12, ๐’†31, ๐’†23, . . . , ๐‘–๐‘› = ๐’†1๐’†2 โ‹… โ‹… โ‹… ๐’†๐‘›}. (2.1)

Obviously, for ๐‘› = 2 (mod 4) the pseudoscalar ๐‘–๐‘› = ๐’†1๐’†2 โ‹… โ‹… โ‹… ๐’†๐‘› anti-commuteswith each basis of the Clifford algebra while ๐‘–2๐‘› = โˆ’1. The associative geometricmultiplication of the basis vectors is governed by the rules:

๐’†๐‘˜ ๐’†๐‘™ = โˆ’๐’†๐‘™ ๐’†๐‘˜ for ๐‘˜ โˆ•= ๐‘™, 1 โ‰ค ๐‘˜, ๐‘™ โ‰ค ๐‘›,

๐’†2๐‘˜ = 1 for 1 โ‰ค ๐‘˜ โ‰ค ๐‘›. (2.2)

An element of a Clifford algebra is called a multivector and has the following form

๐‘“ =โˆ‘๐ด

๐’†๐ด๐‘“๐ด, (2.3)

where ๐‘“๐ด โˆˆ โ„, ๐’†๐ด = ๐’†๐›ผ1๐›ผ2โ‹…โ‹…โ‹…๐›ผ๐‘˜= ๐’†๐›ผ1๐’†๐›ผ2 โ‹… โ‹… โ‹…๐’†๐›ผ๐‘˜

, and 1 โ‰ค ๐›ผ1 โ‰ค ๐›ผ2 โ‰ค โ‹… โ‹… โ‹… โ‰ค ๐›ผ๐‘˜ โ‰ค ๐‘›with ๐›ผ๐‘— โˆˆ {1, 2, . . . ๐‘›}. For convenience, we introduce โŸจ๐‘“โŸฉ๐‘˜ =

โˆ‘โˆฃ๐ดโˆฃ=๐‘˜ ๐‘“๐ด๐’†๐ด to

denote the ๐‘˜-vector part of ๐‘“ (๐‘˜ = 0, 1, 2, . . . , ๐‘›), then

๐‘“ =

๐‘˜=๐‘›โˆ‘๐‘˜=0

โŸจ๐‘“โŸฉ๐‘˜ = โŸจ๐‘“โŸฉ+ โŸจ๐‘“โŸฉ1 + โŸจ๐‘“โŸฉ2 + โ‹… โ‹… โ‹…+ โŸจ๐‘“โŸฉ๐‘›, (2.4)

where โŸจ. . .โŸฉ0 = โŸจ. . .โŸฉ.The Clifford conjugate ๐‘“ of a multivector ๐‘“ is defined as the anti-auto-

morphism for which

๐‘“ =โˆ‘

๐ด๐’†๐ด๐‘“๐ด, ๐’†๐ด = (โˆ’1)๐‘˜(๐‘˜+1)/2, ๐’†๐‘˜ = โˆ’๐’†๐‘˜, ๐‘˜ = 1, 2, 3, . . . , ๐‘›. (2.5)

1The CWFT presented here is constructed using the kernel of the ๐ถโ„“0,๐‘› Cliffordโ€“Fourier trans-form whose properties are quite different from the kernel of the ๐ถโ„“๐‘›,0 Cliffordโ€“Fourier transform

(see [1, 14]).

Page 308: Quaternion and Clifford Fourier Transforms and Wavelets

14. Clifford Windowed Fourier Transform 287

and hence

๐‘“๐‘” = ๐‘”๐‘“ for arbitrary ๐‘“, ๐‘” โˆˆ ๐ถโ„“0,๐‘›. (2.6)

The scalar product of multivectors ๐‘“ and ๐‘” and its associated norm is definedby, respectively,

โŸจ๐‘“ ๐‘”โŸฉ = ๐‘“ โˆ— ๐‘” =โˆ‘

๐ด๐‘“๐ด๐‘”๐ต, and โˆฃ๐‘“ โˆฃ2 =

โˆ‘๐ด๐‘“2๐ด. (2.7)

The product of two Clifford multivectors ๐’™ =โˆ‘๐‘›

๐‘–=1 ๐‘ฅ๐‘–๐’†๐‘– and ๐’š =โˆ‘๐‘›

๐‘—=1 ๐‘ฆ๐‘—๐’†๐‘— splitsinto a scalar part and a 2-vector or so-called bivector part

๐’™๐’š = ๐’™ โ‹… ๐’š + ๐’™ โˆง ๐’š (2.8)

where

๐’™ โ‹… ๐’š =

๐‘›โˆ‘๐‘–=1

๐‘ฅ๐‘–๐‘ฆ๐‘–, and ๐’™ โˆง ๐’š =

๐‘›โˆ‘๐‘–=1

๐‘›โˆ‘๐‘—=๐‘–+1

๐’†๐‘–๐’†๐‘—(๐‘ฅ๐‘–๐‘ฆ๐‘— โˆ’ ๐‘ฅ๐‘—๐‘ฆ๐‘–). (2.9)

In the following we give the definition of a ๐ถโ„“0,๐‘›-valued function.

Definition 2.1. Let ฮฉ โŠ‚ โ„๐‘› be an open connected set. Functions ๐‘“ defined in ฮฉwith values in ๐ถโ„“0,๐‘› can be expressed as:

๐‘“ : ฮฉ โˆ’โ†’ ๐ถโ„“0,๐‘›.

They are of the form:

๐‘“(๐’™) =โˆ‘

๐ด๐’†๐ด๐‘“๐ด(๐’™), (2.10)

where ๐‘“๐ด are real-valued functions in ฮฉ.

More specifically, we let ๐ฟ๐‘(ฮฉ;๐ถโ„“0,๐‘›), 1 โ‰ค ๐‘ < โˆž and ๐ฟโˆž(ฮฉ;๐ถโ„“0,๐‘›) denotethe usual Lebesgue space of integrable or essentially bound ๐ถโ„“0,๐‘›-valued functionon ฮฉ. Notice that ๐ฟ๐‘(ฮฉ;๐ถโ„“0,๐‘›) is a ๐ถโ„“0,๐‘›-bimodule. Moreover, it can be provedto be a Banach module. The norms on the space are denoted โˆฅโ‹…โˆฅ๐ฟ๐‘(โ„๐‘›;๐ถโ„“0,๐‘›) and

โˆฅโ‹…โˆฅ๐ฟโˆž๐‘(โ„๐‘›;๐ถโ„“0,๐‘›), respectively. The set of ๐ถ๐‘˜-functions in ฮฉ with values in ๐ถโ„“0,๐‘› is

denoted by

๐ถ๐‘˜(ฮฉ;๐ถโ„“0,๐‘›) = {๐‘“ โˆฃ๐‘“ : ฮฉ โˆ’โ†’ ๐ถโ„“0,๐‘›, ๐‘“(๐’™) =โˆ‘๐ด

๐’†๐ด๐‘“๐ด(๐’™)} (2.11)

Notice that if ๐‘“๐ด โˆˆ ๐ถ๐‘˜(ฮฉ) then we say ๐‘“ โˆˆ ๐ถ๐‘˜(ฮฉ;๐ถโ„“0,๐‘›).Let us consider ๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›) as a left module. For two multivector functions

๐‘“, ๐‘” โˆˆ ๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›), an inner product is defined by

(๐‘“, ๐‘”)๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›) =

โˆซโ„๐‘›

๐‘“(๐’™)๐‘”(๐’™) ๐‘‘๐‘›๐’™ =โˆ‘

๐ด,๐ต๐’†๐ด๐’†๐ต

โˆซโ„๐‘›

๐‘“๐ด(๐’™)๐‘”๐ต(๐’™) ๐‘‘๐‘›๐’™ (2.12)

In particular, if ๐‘“ = ๐‘”, then the scalar part of the above inner product gives the๐ฟ2-norm

โˆฅ๐‘“โˆฅ2๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›) =

โˆซโ„๐‘›

โˆ‘๐ด๐‘“2๐ด(๐’™) ๐‘‘

๐‘›๐’™ (2.13)

Page 309: Quaternion and Clifford Fourier Transforms and Wavelets

288 M. Bahri

3. Cliffordโ€“Fourier Transform (CFT)

In the following, we introduce the Cliffordโ€“Fourier transform (CFT) (see [8, 5, 19]).We can regard the CFT as an alternative representation of the classical tensorialFourier transform, i.e., we apply a one-dimensional Fourier transform ๐‘› times(each time with a different imaginary unit).

3.1. Definition of CFT

Definition 3.1. The CFT of a multivector function ๐‘“ โˆˆ ๐ฟ1(โ„๐‘›;๐ถโ„“0,๐‘›) is the func-tion โ„ฑ{๐‘“}: โ„๐‘› โ†’ ๐ถโ„“0,๐‘› given by

โ„ฑ{๐‘“}(๐Ž) =โˆซโ„๐‘›

๐‘“(๐’™)

๐‘›โˆ๐‘˜=1

๐‘’โˆ’๐’†๐‘˜๐œ”๐‘˜๐‘ฅ๐‘˜๐‘‘๐‘›๐’™, (3.1)

with ๐Ž,๐’™ โˆˆ โ„๐‘›.

Note that

๐‘‘๐‘›๐’™ =๐‘‘๐’™1 โˆง ๐‘‘๐’™2 โˆง โ‹… โ‹… โ‹… โˆง ๐‘‘๐’™๐‘›

๐‘–๐‘›(3.2)

and is scalar valued (๐‘‘๐’™๐‘˜ = ๐‘‘๐‘ฅ๐‘˜๐’†๐‘˜, ๐‘˜ = 1, 2, 3, . . . , ๐‘›, no summation). Notice alsothat the Cliffordโ€“Fourier kernel

โˆ๐‘›๐‘˜=1 ๐‘’

โˆ’๐’†๐‘˜๐œ”๐‘˜๐‘ฅ๐‘˜ in general does not commute withelements of ๐ถโ„“0,๐‘›. Furthermore, the product has to be performed in a fixed order.

The existence of the inverse CFT is given by the following theorem. For moredetail and for proofs see [5, 7].

Theorem 3.2. Suppose that ๐‘“ โˆˆ ๐ฟ1(โ„๐‘›;๐ถโ„“0,๐‘›) and โ„ฑ{๐‘“} โˆˆ ๐ฟ1(โ„๐‘›;๐ถโ„“0,๐‘›). Thenthe CFT is invertible and its inverse is calculated by

๐‘“(๐’™) =1

(2๐œ‹)๐‘›

โˆซโ„๐‘›

โ„ฑ{๐‘“}(๐Ž)๐‘›โˆ’1โˆ๐‘˜=0

๐‘’๐’†๐‘›โˆ’๐‘˜๐œ”๐‘›โˆ’๐‘˜๐‘ฅ๐‘›โˆ’๐‘˜ ๐‘‘๐‘›๐Ž. (3.3)

The CFT is a generalization of the quaternionic Fourier transform (QFT),so most of the properties of the QFT such as the shift property, convolution, andPlancherelโ€™s theorem, have their corresponding CFT generalizations. Observe thatthis Fourier transform can be extended to the whole of ๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›) in the usualway by considering it in the weak or distributional sense.

The following subsection investigates some important properties of the CFT,which will be necessary to establish the Clifford windowed Fourier transform in๐ถโ„“0,๐‘› (CWFT).

3.2. Main Properties of CFT

We first establish a scalar Plancherel theorem. It states that for every ๐‘“ โˆˆ๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›)

โˆฅ๐‘“โˆฅ2๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›) =1

(2๐œ‹)๐‘›โˆฅโ„ฑ{๐‘“}โˆฅ2๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›) . (3.4)

This shows that the total signal energy computed in the spatial domain is equal tothe total signal energy computed in the Clifford domain. The Plancherel theorem

Page 310: Quaternion and Clifford Fourier Transforms and Wavelets

14. Clifford Windowed Fourier Transform 289

allows the energy of a Clifford-valued signal to be considered in either the spatialdomain or the Clifford domain and the change of domains for convenience ofcomputation.

Let us now formulate the Cliffordโ€“Parseval theorem, which is needed to provethe orthogonality relation of the CWFT.

Theorem 3.3 (CFT Parseval). The inner product (2.12) of two Clifford functions๐‘“, ๐‘” โˆˆ ๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›) and their CFTs are related by

(๐‘“, ๐‘”)๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›) =1

(2๐œ‹)๐‘›(โ„ฑ{๐‘“},โ„ฑ{๐‘”})๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›). (3.5)

Proof. We have

(๐‘“, ๐‘”)๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›)

=

โˆซโ„๐‘›

๐‘“(๐’™)๐‘”(๐’™) ๐‘‘๐‘›๐’™

(3.3)=

1

(2๐œ‹)๐‘›

โˆซโ„๐‘›

[โˆซโ„๐‘›

โ„ฑ{๐‘“}(๐Ž)๐‘›โˆ’1โˆ๐‘˜=0

๐‘’๐’†๐‘›โˆ’๐‘˜๐œ”๐‘›โˆ’๐‘˜๐‘ฅ๐‘›โˆ’๐‘˜ ๐‘‘๐‘›๐Ž

]๐‘”(๐’™)๐‘‘๐‘›๐’™

(2.6)=

1

(2๐œ‹)๐‘›

โˆซโ„๐‘›

โ„ฑ{๐‘“}(๐Ž)[โˆซ

โ„๐‘›

๐‘”(๐’™)

๐‘›โˆ๐‘˜=1

๐‘’โˆ’๐’†๐‘˜๐œ”๐‘˜๐‘ฅ๐‘˜ ๐‘‘๐‘›๐’™

]๐‘‘๐‘›๐Ž

=1

(2๐œ‹)๐‘›

โˆซโ„๐‘›

โ„ฑ{๐‘“}(๐Ž)โ„ฑ{๐‘”}(๐Ž) ๐‘‘๐‘›๐Ž

=1

(2๐œ‹)๐‘›(โ„ฑ{๐‘“},โ„ฑ{๐‘”})๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›).

This proves the theorem. โ–ก

Notice that equation (3.5) is multivector valued. In particular, with ๐‘“ = ๐‘”,we get the multivector version of the Plancherel theorem, i.e.,

(๐‘“, ๐‘“)๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›) =1

(2๐œ‹)๐‘›(โ„ฑ{๐‘“},โ„ฑ{๐‘“})๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›). (3.6)

Due to the non-commutativity of the Clifford exponential product factors we havea left linearity property for general linear combinations with Clifford constantsand a scaling property.

Theorem 3.4 (Left linearity property). The CFT of two functions in the Cliffordmodule ๐‘“, ๐‘” โˆˆ ๐ฟ1(โ„๐‘›;๐ถโ„“0,๐‘›) is a left linear operator 2, i.e.,

โ„ฑ{๐›ผ๐‘“ + ๐›ฝ๐‘”}(๐Ž) = ๐›ผโ„ฑ{๐‘“}(๐Ž) + ๐›ฝโ„ฑ{๐‘”}(๐Ž), (3.7)

where ๐›ผ and ๐›ฝ โˆˆ ๐ถโ„“0,๐‘› are Clifford constants.

2The CFT is also right linear for real constants ๐œ‡, ๐œ† โˆˆ โ„.

Page 311: Quaternion and Clifford Fourier Transforms and Wavelets

290 M. Bahri

Theorem 3.5 (Scaling property). Suppose ๐‘“ โˆˆ ๐ฟ1(โ„๐‘›;๐ถโ„“0,๐‘›). Let ๐‘Ž be a positivereal constant. Then the CFT of the function ๐‘“๐‘Ž(๐’™) = ๐‘“(๐‘Ž๐’™) is

โ„ฑ{๐‘“๐‘Ž}(๐Ž) = 1

๐‘Ž๐‘›โ„ฑ{๐‘“}

(๐Ž๐‘Ž

). (3.8)

Remark 3.6. The usual form of the shift and modulation properties of the complexFT does not hold for the CFT because of the non-commutativity of the Cliffordโ€“Fourier kernel

๐‘›โˆ๐‘˜=1

๐‘’๐’†๐‘˜๐œ”๐‘˜๐‘ฅ๐‘˜

๐‘›โˆ’1โˆ๐‘˜โˆ’0

๐‘’๐’†๐‘›โˆ’๐‘˜๐œ”๐‘›โˆ’๐‘˜๐‘ฅ๐‘›โˆ’๐‘˜ โˆ•=๐‘›โˆ’1โˆ๐‘˜=0

๐‘’๐’†๐‘›โˆ’๐‘˜๐œ”๐‘›โˆ’๐‘˜๐‘ฅ๐‘›โˆ’๐‘˜

๐‘›โˆ๐‘˜=1

๐‘’๐’†๐‘˜๐œ”๐‘˜๐‘ฅ๐‘˜ . (3.9)

The following properties are extensions of the QFT, which are very usefulin solving partial differential equations in Clifford algebra. First, let us give anexplicit proof of the derivative properties stated in Table 1.

Table 1. Properties of the CFT of Clifford functions๐‘“, ๐‘” โˆˆ ๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›).The constants are ๐›ผ, ๐›ฝ โˆˆ ๐ถโ„“0,๐‘›, ๐‘Ž โˆˆ โ„ โˆ– {0}, and ๐‘› โˆˆ โ„•.

Property Clifford Function Cliffordโ€“Fourier Transform

Left linearity ๐›ผ๐‘“(๐’™)+๐›ฝ๐‘”(๐’™) ๐›ผโ„ฑ{๐‘“}(๐Ž)+ ๐›ฝโ„ฑ{๐‘”} (๐Ž)

Scaling ๐‘“(๐‘Ž๐’™) 1

๐‘Ž๐‘›โ„ฑ{๐‘“}(๐Ž๐‘Ž )

Partial derivative โˆ‚๐‘›

โˆ‚๐‘ฅ๐‘›1๐‘“(๐’™) ๐’†โˆ’๐‘›1 ๐œ”๐‘›

1โ„ฑ{๐‘“}(๐Ž)โˆ‚๐‘›

โˆ‚๐‘ฅ๐‘›1๐‘“(๐’™) (๐’†1๐œ”1)

๐‘›โ„ฑ{๐‘“}(๐Ž),๐‘“ = ๐‘“0 + ๐’†1๐‘“1 + ๐‘–๐‘›๐‘“123โ‹…โ‹…โ‹…๐‘›if ๐‘› = 3 (mod 4)

โˆ‚๐‘š๐‘“โˆ‚๐‘ฅ๐‘š

๐‘Ÿ(๐œ”๐‘Ÿ๐’†๐‘Ÿ)

๐‘šโ„ฑ{๐‘“}(๐Ž),๐‘Ÿ = 2, . . . , ๐‘›โˆ’ 1,๐‘š = 2๐‘ , ๐‘  โˆˆ โ„•

โˆ‚๐‘š๐‘“โˆ‚๐‘ฅ๐‘š

๐‘›โ„ฑ{๐‘“}(๐Ž)(๐’†๐‘›๐œ”๐‘›)

๐‘š

Power ๐‘“(๐’™)(๐‘ฅ1๐’†1)๐‘š (โˆ’1)๐‘š โˆ‚๐‘š

โˆ‚๐œ”๐‘š1โ„ฑ{๐‘“}(๐Ž)

๐‘“(๐’™)(๐‘ฅ๐‘Ÿ๐’†๐‘Ÿ)๐‘š โˆ‚๐‘š

โˆ‚๐œ”๐‘š๐‘Ÿโ„ฑ{๐‘“}(๐Ž),

๐‘Ÿ = 2, . . . , ๐‘›โˆ’ 1,๐‘š = 2๐‘ , ๐‘  โˆˆ โ„•

๐‘“(๐’™)๐‘ฅ๐‘š๐‘›โˆ‚๐‘š

โˆ‚๐œ”๐‘š๐‘›โ„ฑ{๐‘“}(๐Ž)๐’†๐‘š๐‘›

Plancherel (๐‘“, ๐‘”)๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›) =1

(2๐œ‹)๐‘› (โ„ฑ{๐‘“},โ„ฑ{๐‘“})๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›)

Scalar Parseval 1(2๐œ‹)๐‘› โˆฅ๐‘“โˆฅ2๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›) =

1(2๐œ‹)๐‘› โˆฅโ„ฑ{๐‘“}โˆฅ2๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›)

Page 312: Quaternion and Clifford Fourier Transforms and Wavelets

14. Clifford Windowed Fourier Transform 291

Theorem 3.7. Suppose ๐‘“ โˆˆ ๐ฟ1(โ„๐‘›;๐ถโ„“0,๐‘›). Then the CFT of the ๐‘›th partial deriv-ative of ๐‘ฅ1๐‘“ โˆˆ ๐ฟ1(โ„๐‘›;๐ถโ„“0,๐‘›) with respect to the variable ๐‘ฅ1 is given by

โ„ฑ{โˆ‚๐‘›๐‘“

โˆ‚๐‘ฅ๐‘›1๐’†โˆ’๐‘›1

}(๐Ž) = ๐œ”๐‘›

1โ„ฑ{๐‘“}(๐Ž), โˆ€๐‘› โˆˆ โ„• (3.10)

and if ๐‘ฅ๐‘Ÿ๐‘“ โˆˆ ๐ฟ1(โ„๐‘›;๐ถโ„“0,๐‘›), then for ๐‘Ÿ = 2, 3, . . . ,โ„•โˆ’ 1 we have

โ„ฑ{โˆ‚๐‘š๐‘“

โˆ‚๐‘ฅ๐‘š๐‘Ÿ

}(๐Ž) =

โˆซโ„๐‘›

๐‘“(๐’™) ๐‘’โˆ’๐’†1๐œ”1๐‘ฅ1๐‘’โˆ’๐’†2๐œ”2๐‘ฅ2 โ‹… โ‹… โ‹… (๐œ”๐‘Ÿ ๐’†๐‘Ÿ)๐‘š

ร—๐‘›โˆ

๐‘˜=๐‘Ÿ

๐‘’โˆ’๐’†๐‘˜๐œ”๐‘˜๐‘ฅ๐‘˜ ๐‘‘๐‘›๐’™, ๐‘š = 2๐‘ + 1, ๐‘  โˆˆ โ„•, (3.11)

and

โ„ฑ{โˆ‚๐‘š๐‘“

โˆ‚๐‘ฅ๐‘š๐‘Ÿ

}(๐Ž) = (๐œ”๐‘Ÿ๐’†๐‘Ÿ)

๐‘šโ„ฑ{๐‘“}(๐Ž), ๐‘š = 2๐‘ , ๐‘  โˆˆ โ„•. (3.12)

Proof. We only prove (3.10) of Theorem 3.7, the others being similar. In this proof,we first prove the theorem for ๐‘› = 1. Applying integration by parts and using thefact that ๐‘“ tends to zero for ๐‘ฅ1 โ†’โˆž we immediately obtain

โ„ฑ{

โˆ‚

โˆ‚๐‘ฅ1๐‘“ ๐’†โˆ’1

1

}(๐Ž)

=

โˆซโ„๐‘›

(โˆ‚

โˆ‚๐‘ฅ1๐‘“(๐’™) ๐’†โˆ’1

1

) ๐‘›โˆ๐‘˜=1

๐‘’โˆ’๐’†๐‘˜๐œ”๐‘˜๐‘ฅ๐‘˜ ๐‘‘๐‘›๐’™

=

โˆซโ„๐‘›โˆ’1

[โˆซโ„

(โˆ‚

โˆ‚๐‘ฅ1๐‘“(๐’™) ๐’†โˆ’1

1

)๐‘’โˆ’๐’†1๐œ”1๐‘ฅ1 ๐‘‘๐‘ฅ1

] ๐‘›โˆ๐‘˜=2

๐‘’โˆ’๐’†๐‘˜๐œ”๐‘˜๐‘ฅ๐‘˜ ๐‘‘๐‘›โˆ’1๐’™

=

โˆซโ„๐‘›โˆ’1

[๐‘“(๐’™) ๐’†โˆ’1

1 ๐‘’โˆ’๐’†1๐œ”1๐‘ฅ1 โˆฃ๐‘ฅ1=โˆž๐‘ฅ1=โˆ’โˆž

โˆ’โˆซโ„

๐‘“(๐’™) ๐’†โˆ’11

โˆ‚

โˆ‚๐‘ฅ1๐‘’โˆ’๐’†1๐œ”1๐‘ฅ1๐‘‘๐‘ฅ1

] ๐‘›โˆ๐‘˜=2

๐‘’โˆ’๐’†๐‘˜๐œ”๐‘˜๐‘ฅ๐‘˜ ๐‘‘๐‘›โˆ’1๐’™

=

โˆซโ„๐‘›

๐‘“(๐’™)๐œ”1

๐‘›โˆ๐‘˜=1

๐‘’โˆ’๐’†๐‘˜๐œ”๐‘˜๐‘ฅ๐‘˜ ๐‘‘๐‘›๐’™

= ๐œ”1โ„ฑ{๐‘“}(๐Ž). (3.13)

In a similar way we get

โ„ฑ{

โˆ‚

โˆ‚๐‘ฅ1๐‘“

}(๐Ž) = ๐œ”1โ„ฑ{๐‘“๐’†1}(๐Ž). (3.14)

Page 313: Quaternion and Clifford Fourier Transforms and Wavelets

292 M. Bahri

For ๐‘› = 2 we obtain

โ„ฑ{

โˆ‚2

โˆ‚๐‘ฅ21

๐‘“ ๐’†โˆ’21

}(๐Ž)

=

โˆซโ„๐‘›

(โˆ‚

โˆ‚๐‘ฅ1(

โˆ‚

โˆ‚๐‘ฅ1๐‘“(๐’™)) ๐’†โˆ’2

1

) ๐‘›โˆ๐‘˜=1

๐‘’โˆ’๐’†๐‘˜๐œ”๐‘˜๐‘ฅ๐‘˜ ๐‘‘๐‘›๐’™

=

โˆซโ„๐‘›โˆ’1

[โˆซโ„

(โˆ‚

โˆ‚๐‘ฅ1(

โˆ‚

โˆ‚๐‘ฅ1๐‘“(๐’™)) ๐’†โˆ’2

1

)๐‘’โˆ’๐’†1๐œ”1๐‘ฅ1 ๐‘‘๐‘ฅ1

] ๐‘›โˆ๐‘˜=2

๐‘’โˆ’๐’†๐‘˜๐œ”๐‘˜๐‘ฅ๐‘˜ ๐‘‘๐‘›โˆ’1๐’™

=

โˆซโ„๐‘›โˆ’1

[(

โˆ‚

โˆ‚๐‘ฅ1๐‘“(๐’™)) ๐’†โˆ’2

1 ๐‘’โˆ’๐’†1๐œ”1๐‘ฅ1 โˆฃ๐‘ฅ1=โˆž๐‘ฅ1=โˆ’โˆž

โˆ’๐œ”1

โˆซโ„

โˆ‚

โˆ‚๐‘ฅ1๐‘“(๐’™) ๐’†โˆ’1

1 ๐‘’โˆ’๐’†1๐œ”1๐‘ฅ1๐‘‘๐‘ฅ1

] ๐‘›โˆ๐‘˜=2

๐‘’โˆ’๐’†๐‘˜๐œ”๐‘˜๐‘ฅ๐‘˜ ๐‘‘๐‘›โˆ’1๐’™

= ๐œ”21

โˆซโ„๐‘›

๐‘“(๐’™)๐‘›โˆ

๐‘˜=1

๐‘’โˆ’๐’†๐‘˜๐œ”๐‘˜๐‘ฅ๐‘˜ ๐‘‘๐‘›๐’™

= ๐œ”21โ„ฑ{๐‘“}(๐Ž). (3.15)

By repeating this process ๐‘›โˆ’2 additional times we finish the proof of Theorem 3.7.โ–ก

Remark 3.8. Observe that when we assume that ๐‘“ = ๐‘“0 + ๐’†1๐‘“1 + ๐‘–๐‘›๐‘“123โ‹…โ‹…โ‹…๐‘›, ๐‘› = 3(mod 4), then equation (3.14) takes the form

โ„ฑ{โˆ‚๐‘›๐‘“

โˆ‚๐‘ฅ๐‘›1

}(๐Ž) = (๐’†1๐œ”1)

๐‘›โ„ฑ{๐‘“}(๐Ž), ๐‘› โˆˆ โ„•. (3.16)

Theorem 3.9. Let ๐‘ฅ๐‘›๐‘“ โˆˆ ๐ฟ1(โ„๐‘›;๐ถโ„“0,๐‘›). Then the CFT of the ๐‘šth partial derivativeof a Clifford-valued function ๐‘“ โˆˆ ๐ฟ1(โ„๐‘›;๐ถโ„“0,๐‘›) with respect to the variable ๐‘ฅ๐‘› isgiven by

โ„ฑ{โˆ‚๐‘š๐‘“

โˆ‚๐‘ฅ๐‘š๐‘›

}(๐Ž) = โ„ฑ{๐‘“}(๐Ž)(๐’†๐‘›๐œ”๐‘›)

๐‘š, ๐‘š โˆˆ โ„•. (3.17)

Proof. For ๐‘š = 1 direct calculation gives

โˆ‚๐‘“(๐’™)

โˆ‚๐‘ฅ๐‘›=

โˆ‚

โˆ‚๐‘ฅ๐‘›

1

(2๐œ‹)๐‘›

โˆซโ„๐‘›

โ„ฑ{๐‘“}(๐Ž)๐‘›โˆ’1โˆ๐‘˜=0

๐‘’๐’†๐‘›โˆ’๐‘˜๐œ”๐‘›โˆ’๐‘˜๐‘ฅ๐‘›โˆ’๐‘˜ ๐‘‘๐‘›๐Ž

=1

(2๐œ‹)๐‘›

โˆซโ„๐‘›

โ„ฑ{๐‘“}(๐Ž)(

โˆ‚

โˆ‚๐‘ฅ๐‘›๐‘’๐’†๐‘›๐œ”๐‘›๐‘ฅ๐‘›

) ๐‘›โˆ’1โˆ๐‘˜=1

๐‘’๐’†๐‘›โˆ’๐‘˜๐œ”๐‘›โˆ’๐‘˜๐‘ฅ๐‘›โˆ’๐‘˜ ๐‘‘๐‘›๐Ž

=1

(2๐œ‹)๐‘›

โˆซโ„๐‘›

[โ„ฑ{๐‘“}(๐Ž) ๐’†๐‘›๐œ”๐‘›]๐‘›โˆ’1โˆ๐‘˜=0

๐‘’๐’†๐‘›โˆ’๐‘˜๐œ”๐‘›โˆ’๐‘˜๐‘ฅ๐‘›โˆ’๐‘˜ ๐‘‘๐‘›๐Ž

= โ„ฑโˆ’1 [โ„ฑ{๐‘“}(๐Ž) ๐’†๐‘›๐œ”๐‘›] . (3.18)

Page 314: Quaternion and Clifford Fourier Transforms and Wavelets

14. Clifford Windowed Fourier Transform 293

We therefore get

โ„ฑ{

โˆ‚๐‘“

โˆ‚๐‘ฅ๐‘›

}(๐Ž) = โ„ฑ{๐‘“}(๐Ž)๐’†๐‘›๐œ”๐‘›. (3.19)

By successive differentiation with respect to the variable ๐‘ฅ๐‘› and by induction weeasily obtain

โ„ฑ{โˆ‚๐‘š๐‘“

โˆ‚๐‘ฅ๐‘š๐‘›

}(๐Ž) = โ„ฑ{๐‘“}(๐Ž)(๐’†๐‘›๐œ”๐‘›)

๐‘š, โˆ€๐‘š โˆˆ โ„•. (3.20)

This ends the proof of (3.17). โ–ก

Next we derive the power properties of the CFT stated in Table 1.

Theorem 3.10. If we assume that ๐‘ฅ1๐‘“ โˆˆ ๐ฟ1(โ„๐‘›;๐ถโ„“0,๐‘›). Then the CFT of the ๐‘›thpartial derivative of ๐‘“ โˆˆ ๐ฟ1(โ„๐‘›;๐ถโ„“0,๐‘›) with respect to the variable ๐‘ฅ1 is given by

โ„ฑ{๐‘“(๐’™)(๐‘ฅ1๐’†1)๐‘›}(๐Ž) = (โˆ’1)๐‘› โˆ‚๐‘›

โˆ‚๐œ”๐‘›1

โ„ฑ{๐‘“}(๐Ž), โˆ€๐‘› โˆˆ โ„•. (3.21)

If ๐‘ฅ๐‘š๐‘Ÿ ๐‘“ โˆˆ ๐ฟ1(โ„๐‘›;๐ถโ„“0,๐‘›), then for ๐‘Ÿ = 2, 3, . . . , ๐‘›โˆ’ 1 we have

โˆ‚๐‘š

โˆ‚๐œ”๐‘š๐‘Ÿ

โ„ฑ{๐‘“}(๐Ž) =โˆซโ„๐‘›

๐‘“(๐’™) ๐‘’โˆ’๐’†1๐œ”1๐‘ฅ1๐‘’โˆ’๐’†2๐œ”2๐‘ฅ2 โ‹… โ‹… โ‹… (โˆ’๐’†๐‘Ÿ๐‘ฅ๐‘Ÿ)๐‘š

ร—๐‘›โˆ

๐‘˜=๐‘Ÿ

๐‘’โˆ’๐’†๐‘˜๐œ”๐‘˜๐‘ฅ๐‘˜ ๐‘‘๐‘›๐’™,๐‘š = 2๐‘ + 1, ๐‘  โˆˆ โ„•, (3.22)

and for ๐‘š = 2๐‘ , ๐‘  โˆˆ โ„•

โ„ฑ{(๐’†๐‘Ÿ๐‘ฅ๐‘Ÿ)๐‘š๐‘“}(๐Ž) = โˆ‚๐‘š

โˆ‚๐œ”๐‘š๐‘Ÿ

โ„ฑ{๐‘“}(๐Ž). (3.23)

If ๐‘ฅ๐‘›๐‘“ โˆˆ ๐ฟ1(โ„๐‘›;๐ถโ„“0,๐‘›), then

โ„ฑ{๐‘ฅ๐‘š๐‘› ๐‘“}(๐Ž) = โˆ‚๐‘š

โˆ‚๐œ”๐‘š๐‘›

โ„ฑ{๐‘“}(๐Ž) ๐’†๐‘š๐‘› , ๐‘š = 1, 2, 3, . . . , ๐‘›. (3.24)

Proof. We only prove (3.21) of Theorem 3.10. It is not difficult to check that

๐‘“(๐’™)(๐‘ฅ1๐’†1)๐‘›

๐‘›โˆ๐‘˜=1

๐‘’โˆ’๐’†๐‘˜๐œ”๐‘˜๐‘ฅ๐‘˜ = (โˆ’1)๐‘› โˆ‚๐‘›

โˆ‚๐œ”๐‘›1

๐‘“(๐’™)๐‘›โˆ

๐‘˜=1

๐‘’โˆ’๐’†๐‘˜๐œ”๐‘˜๐‘ฅ๐‘˜ . (3.25)

We immediately obtainโˆซโ„๐‘›

๐‘“(๐’™)(๐‘ฅ1๐’†1)๐‘›

๐‘›โˆ๐‘˜=1

๐‘’โˆ’๐’†๐‘˜๐œ”๐‘˜๐‘ฅ๐‘˜ ๐‘‘๐‘›๐’™ = (โˆ’1)๐‘› โˆ‚๐‘›

โˆ‚๐œ”๐‘›1

โˆซโ„๐‘›

๐‘“(๐’™)

๐‘›โˆ๐‘˜=1

๐‘’โˆ’๐’†๐‘˜๐œ”๐‘˜๐‘ฅ๐‘˜ ๐‘‘๐‘›๐’™,

(3.26)which gives the desired result. โ–ก

Page 315: Quaternion and Clifford Fourier Transforms and Wavelets

294 M. Bahri

4. Clifford Windowed Fourier Transform (CWFT)

In this section, we introduce the Clifford windowed Fourier transform as a gener-alization of the two-dimensional quaternionic Fourier transform to higher dimen-sions. For this let us define the Cliffordโ€“Gabor filter, which is a special case of theClifford atom operator [9].

4.1. Two-dimensional Cliffordโ€“Gabor Filters

The two-dimensional Cliffordโ€“Gabor filter3 is the extension of the complex Gaborfilter to the two-dimensional Clifford algebra. It takes the form

๐บ๐‘(๐’™, ๐œŽ1, ๐œŽ2) = ๐‘’๐’†2๐‘ข0๐‘ฅ1๐‘’๐’†1๐‘ฃ0๐‘ฅ2๐‘”(๐’™,๐ˆ)

= ๐‘’๐’†2๐‘ข0๐‘ฅ1๐‘’๐’†1๐‘ฃ0๐‘ฅ2๐‘’โˆ’[(๐‘ฅ1/๐œŽ1)2+(๐‘ฅ2/๐œŽ2)

2]/2. (4.1)

Equation (4.1) is often called thequaternionic Gabor filter. Bulow and Sommer[6, 7] have applied it to get the local quaternionic phase of a two-dimensional realsignal. From this, we get the following facts:

โˆ™ It is generated using the kernel of the ๐ถ๐‘™(0, 2) CFT.โˆ™ If the Gaussian function ๐‘”(๐’™,๐ˆ) is replaced by the Clifford window function

๐œ™(๐’™โˆ’ ๐’ƒ), then it becomes the Clifford atom operator, i.e.,

๐œ™๐Ž,๐’ƒ(๐’™) = ๐‘’๐’†2๐‘ฃ0๐‘ฅ2๐‘’๐’†1๐‘ข0๐‘ฅ1๐œ™(๐’™โˆ’ ๐’ƒ), ๐’™, ๐’ƒ โˆˆ โ„2. (4.2)

โˆ™ Since the modulation property does not hold for the CFT, (4.2) can not beexpressed in terms of the CFT.

4.2. Definition of CWFT

Definition 4.1. The CWFT of a multivector function ๐‘“ โˆˆ ๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›) withrespect to the non-zero Clifford window function ๐œ™ โˆˆ ๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›) such that

โˆฃ๐’™โˆฃ1/2 ๐œ™(๐’™) โˆˆ ๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›) is given by

๐บ๐œ™๐‘“(๐Ž, ๐’ƒ) = (๐‘“, ๐œ™๐Ž,๐’ƒ)๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›)

=

โˆซโ„๐‘›

๐‘“(๐’™)๐œ™๐Ž,๐’ƒ(๐’™) ๐‘‘๐‘›๐’™

=

โˆซโ„๐‘›

๐‘“(๐’™) ๐œ™(๐’™โˆ’ ๐’ƒ)

๐‘›โˆ๐‘˜=1

๐‘’โˆ’๐’†๐‘˜๐œ”๐‘˜๐‘ฅ๐‘˜ ๐‘‘๐‘›๐’™. (4.3)

We then call

๐œ™๐Ž,๐’ƒ(๐’™) =

๐‘›โˆ’1โˆ๐‘˜=0

๐‘’๐’†๐‘›โˆ’๐‘˜๐œ”๐‘›โˆ’๐‘˜๐‘ฅ๐‘›โˆ’๐‘˜๐œ™(๐’™โˆ’ ๐’ƒ), (4.4)

the atom operator as the kernel of the CWFT in (4.3). Notice that for ๐‘› = 2 theCWFT above is identical to the two-dimensional quaternionic windowed Fourier

3Here we start with the Cliffordโ€“Gabor filter to obtain the Clifford atom operator, which isneeded to construct the Clifford windowed Fourier transform.

Page 316: Quaternion and Clifford Fourier Transforms and Wavelets

14. Clifford Windowed Fourier Transform 295

transform (see [2]) and for ๐‘› = 1 is the classical windowed Fourier transform (see[10, 11]).

Example. Consider the Clifford Gaussian window ๐œ™ โˆˆ ๐ฟ2(โ„2;๐ถโ„“0,2) given by:

๐œ™(๐’™) = (2 + ๐’†1 + ๐’†2 โˆ’ ๐’†12)๐‘’โˆ’(๐‘ฅ2

1+๐‘ฅ22). (4.5)

Thus we obtain the Clifford window daughter functions (4.4) of the form

๐œ™๐Ž,๐’ƒ(๐’™) = {๐‘’๐’†2๐œ”2๐‘ฅ2๐‘’๐’†1๐œ”1๐‘ฅ1(2 + ๐’†1 + ๐’†2 โˆ’ ๐’†12)} ๐‘’โˆ’((๐‘ฅ1โˆ’๐‘1)2+(๐‘ฅ2โˆ’๐‘2)2)

= {(2๐‘’๐’†2๐œ”2๐‘ฅ2๐‘’๐’†1๐œ”1๐‘ฅ1 + ๐’†1๐‘’โˆ’๐’†2๐œ”2๐‘ฅ2๐‘’๐’†1๐œ”1๐‘ฅ1 + ๐’†2๐‘’

๐’†2๐œ”2๐‘ฅ2๐‘’โˆ’๐’†1๐œ”1๐‘ฅ1

โˆ’ ๐’†12๐‘’โˆ’๐’†2๐œ”2๐‘ฅ2๐‘’โˆ’๐’†1๐œ”1๐‘ฅ1)}๐‘’โˆ’((๐‘ฅ1โˆ’๐‘1)2+(๐‘ฅ2โˆ’๐‘2)2). (4.6)

We first notice that, for fixed ๐’ƒ,

๐บ๐œ™๐‘“(๐Ž, ๐’ƒ) = โ„ฑ{๐‘“ ๐œ™(โ‹… โˆ’ ๐’ƒ)}(๐Ž) = โ„ฑ{๐‘“ ๐‘‡๐’ƒ๐œ™}(๐Ž), (4.7)

where ๐‘‡๐’ƒ is the translation operator defined by ๐‘‡๐’ƒ๐‘“ = ๐‘“(๐’™โˆ’๐’ƒ). It thus means thatthe CWFT can be regarded as the CFT of the product of a multivector-valuedfunction ๐‘“ and a shifted and Clifford reversion of the Clifford atom operator (4.4).

4.3. Properties of the CWFT

The following proposition describes the elementary properties of the CWFT. Itsproof can be easily obtained.

Proposition 4.2. Let ๐œ™ โˆˆ ๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›) be a Clifford window function.

Left linearity:

[๐บ๐œ™(๐œ†๐‘“ + ๐œ‡๐‘”)](๐Ž, ๐’ƒ) = ๐œ†๐บ๐œ™๐‘“(๐Ž, ๐’ƒ) + ๐œ‡๐บ๐œ™๐‘”(๐Ž, ๐’ƒ), (4.8)

for arbitrary Clifford constants ๐œ†, ๐œ‡ โˆˆ ๐ถโ„“0,๐‘›.

Parity:๐บ๐‘ƒ๐œ™(๐‘ƒ๐‘“)(๐Ž, ๐’ƒ) = ๐บ๐œ™๐‘“(๐Ž,โˆ’๐’ƒ), (4.9)

where ๐‘ƒ is the parity operator defined by ๐‘ƒ๐‘“(๐‘ฅ) = ๐‘“(โˆ’๐‘ฅ).

Theorem 4.3 (Orthogonality relation). Let ๐œ™, ๐œ“ be Clifford window functions and๐‘“, ๐‘” โˆˆ ๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›) be arbitrary. Then we haveโˆซ

โ„๐‘›

โˆซโ„๐‘›

๐บ๐œ™๐‘“(๐Ž, ๐’ƒ)๐บ๐œ“๐‘”(๐Ž, ๐’ƒ) ๐‘‘๐‘›๐Ž ๐‘‘๐‘›๐’ƒ

= (2๐œ‹)๐‘›(๐‘“(๐œ™, ๐œ“)๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›), ๐‘”)๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›). (4.10)

Proof. Applying (4.7) we haveโˆซโ„๐‘›

๐บ๐œ™๐‘“(๐Ž, ๐’ƒ)๐บ๐œ“๐‘”(๐Ž, ๐’ƒ) ๐‘‘๐‘›๐Ž =

โˆซโ„๐‘›

โ„ฑ{๐‘“๐‘‡๐’ƒ๐œ™}โ„ฑ{๐‘”๐‘‡๐’ƒ๐œ“} ๐‘‘๐‘›๐Ž

=(โ„ฑ{๐‘“๐‘‡๐’ƒ๐œ™},โ„ฑ{๐‘”๐‘‡๐’ƒ๐œ“}

)๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›)

. (4.11)

We assume that Clifford windows ๐œ™, ๐‘” โˆˆ ๐ฟ1(โ„๐‘›;๐ถโ„“0,๐‘›)โˆฉ

๐ฟโˆž(โ„๐‘›;๐ถโ„“0,๐‘›) so that

๐‘“๐‘‡๐’ƒ๐œ™, ๐‘”๐‘‡๐’ƒ๐œ“ โˆˆ ๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›). We know [6, 13] that Parsevalโ€™s theorem is valid for

Page 317: Quaternion and Clifford Fourier Transforms and Wavelets

296 M. Bahri

the CFT. So, applying it to the right-hand side of (4.11) we easily get (compareto Grochenig [10])โˆซ

โ„๐‘›

๐บ๐œ™๐‘“(๐Ž, ๐’ƒ)๐บ๐œ“๐‘”(๐Ž, ๐’ƒ) ๐‘‘๐‘›๐Ž = (โ„ฑ{๐‘“๐‘‡๐’ƒ๐œ™},โ„ฑ{๐‘”๐‘‡๐’ƒ๐œ“})๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›)

= (2๐œ‹)๐‘›(๐‘“๐‘‡๐’ƒ๐œ™, ๐‘”๐‘‡๐’ƒ๐œ“

)๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›)

= (2๐œ‹)๐‘›โˆซโ„๐‘›

๐‘“(๐’™)๐œ™(๐’™ โˆ’ ๐’ƒ)๐œ“(๐’™โˆ’ ๐’ƒ)๐‘”(๐’™) ๐‘‘๐‘›๐’™. (4.12)

Observe that ๐‘“๐œ™ and ๐œ“๐‘” are in ๐ฟ1(โ„๐‘›;๐ถโ„“0,๐‘›). Then integrating (4.12) with respectto ๐‘‘๐‘›๐’ƒ we immediately getโˆซ

โ„๐‘›

โˆซโ„๐‘›

๐บ๐œ™๐‘“(๐Ž, ๐’ƒ)๐บ๐œ“๐‘”(๐Ž, ๐’ƒ) ๐‘‘๐‘›๐Ž ๐‘‘๐‘›๐’ƒ

= (2๐œ‹)๐‘›โˆซโ„๐‘›

โˆซโ„๐‘›

๐‘“(๐’™)๐œ™(๐’™โˆ’ ๐’ƒ)๐œ“(๐’™โˆ’ ๐’ƒ)๐‘”(๐’™) ๐‘‘๐‘›๐’™ ๐‘‘๐‘›๐’ƒ

= (2๐œ‹)๐‘›โˆซโ„๐‘›

โˆซโ„๐‘›

๐‘“(๐’™)๐œ™(๐’™โˆ’ ๐’ƒ)๐œ“(๐’™โˆ’ ๐’ƒ) ๐‘‘๐‘›๐’ƒ ๐‘”(๐’™) ๐‘‘๐‘›๐’™

= (2๐œ‹)๐‘›โˆซโ„๐‘›

๐‘“(๐’™)

โˆซโ„๐‘›

๐œ™(๐’™โˆ’ ๐’ƒ)๐œ“(๐’™โˆ’ ๐’ƒ) ๐‘‘๐‘›๐’ƒ ๐‘”(๐’™) ๐‘‘๐‘›๐’™, (4.13)

where from the second to the third line of (4.13) we applied Fubiniโ€™s theorem tointerchange the order of integration. Using a standard density argument we cannow extend the result to the ๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›)-case. This proves the theorem. โ–ก

From the above theorem, we obtain the following consequences.

(i) If ๐œ™ = ๐œ“ and ๐ถ๐œ™ = (๐œ™, ๐œ™)๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›) is a multivector constant, thenโˆซโ„๐‘›

โˆซโ„๐‘›

๐บ๐œ™๐‘“(๐Ž, ๐’ƒ)๐บ๐œ™๐‘”(๐Ž, ๐’ƒ) ๐‘‘๐‘›๐’ƒ ๐‘‘๐‘›๐Ž = (2๐œ‹)๐‘›โŸจ๐ถ๐œ™โŸฉ(๐‘“, ๐‘”)๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›)

+ (2๐œ‹)๐‘›(๐‘“โŸจ๐ถ๐œ™โŸฉ1, ๐‘”)๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›) + โ‹… โ‹… โ‹…+ (2๐œ‹)๐‘›(๐‘“โŸจ๐ถ๐œ™โŸฉ๐‘›, ๐‘”)๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›). (4.14)

(ii) If ๐‘“ = ๐‘” is a paravector, then (4.14) reduces toโˆซโ„๐‘›

โˆซโ„๐‘›

๐บ๐œ™๐‘“(๐Ž, ๐’ƒ)๐บ๐œ™๐‘“(๐Ž, ๐’ƒ) ๐‘‘๐‘›๐’ƒ ๐‘‘๐‘›๐Ž = (2๐œ‹)๐‘›โŸจ๐ถ๐œ™โŸฉ โˆฅ๐‘“โˆฅ2๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›)

+ (2๐œ‹)๐‘›(๐‘“โŸจ๐ถ๐œ™โŸฉ1, ๐‘“)๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›) + โ‹… โ‹… โ‹…+ (2๐œ‹)๐‘›(๐‘“โŸจ๐ถ๐œ™โŸฉ๐‘›, ๐‘“)๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›). (4.15)

Theorem 4.4 (Reconstruction formula). Let ๐œ™, ๐œ“ โˆˆ ๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›) be two Clifford

window functions with (๐œ™, ๐œ“)๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›) โˆ•= 0. Then every ๐‘›-D Clifford signal ๐‘“ โˆˆ๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›) can be fully reconstructed by

๐‘“(๐’™) =1

(2๐œ‹)๐‘›

โˆซโ„๐‘›

โˆซโ„๐‘›

๐บ๐œ™๐‘“(๐Ž, ๐’ƒ)๐œ“๐Ž,๐’ƒ(๐’™) (๐œ™, ๐œ“)โˆ’1๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›

)๐‘‘๐‘›๐’ƒ ๐‘‘๐‘›๐Ž. (4.16)

Page 318: Quaternion and Clifford Fourier Transforms and Wavelets

14. Clifford Windowed Fourier Transform 297

Proof. By direct calculation, we obtain for every ๐‘” โˆˆ ๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›)โˆซโ„๐‘›

โˆซโ„๐‘›

๐บ๐œ™๐‘“(๐Ž, ๐’ƒ)๐บ๐œ“๐‘”(๐Ž, ๐’ƒ) ๐‘‘๐‘›๐Ž ๐‘‘๐‘›๐’ƒ

=

โˆซโ„๐‘›

โˆซโ„๐‘›

โˆซโ„๐‘›

๐บ๐œ™๐‘“(๐Ž, ๐’ƒ)๐œ“๐Ž,๐’ƒ(๐’™)๐‘”(๐’™) ๐‘‘๐‘›๐Ž ๐‘‘๐‘›๐’ƒ ๐‘‘๐‘›๐’™

=

(โˆซโ„๐‘›

โˆซโ„๐‘›

๐บ๐œ™๐‘“(๐Ž, ๐’ƒ)๐œ“๐Ž,๐’ƒ ๐‘‘๐‘›๐Ž ๐‘‘๐‘›๐’ƒ, ๐‘”

)๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›)

. (4.17)

Applying equation (4.10) of Theorem 4.3 to the left-hand side of (4.17) gives forevery ๐‘” โˆˆ ๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›)

(2๐œ‹)๐‘›(๐‘“(๐œ™, ๐œ“)๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›), ๐‘”)๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›)

=

(โˆซโ„๐‘›

โˆซโ„๐‘›

๐บ๐œ™๐‘“(๐Ž, ๐’ƒ)๐œ“๐Ž,๐’ƒ ๐‘‘๐‘›๐Ž ๐‘‘๐‘›๐’ƒ, ๐‘”

)๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›)

. (4.18)

Because the inner product identity (4.18) holds for every ๐‘” โˆˆ ๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›) weconclude that

(2๐œ‹)๐‘›๐‘“(๐œ™, ๐œ“)๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›) =

โˆซโ„๐‘›

โˆซโ„๐‘›

๐บ๐œ™๐‘“(๐Ž, ๐’ƒ)๐œ“๐Ž,๐’ƒ ๐‘‘๐‘›๐Ž ๐‘‘๐‘›๐’ƒ. (4.19)

If it is assumed that the inner product (๐œ™, ๐œ“)๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›) is invertible. Then multi-

plying both sides of (4.19) from the right side by (๐œ™, ๐œ“)โˆ’1๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›) we immediately

obtain

(2๐œ‹)๐‘›๐‘“ =

โˆซโ„๐‘›

โˆซโ„๐‘›

๐บ๐œ™๐‘“(๐Ž, ๐’ƒ)๐œ“๐Ž,๐’ƒ (๐œ™, ๐œ“)โˆ’1๐ฟ2(โ„๐‘›;๐ถโ„“0,๐‘›) ๐‘‘

๐‘›๐Ž ๐‘‘๐‘›๐’ƒ, (4.20)

which was to be proved. โ–ก

Acknowledgment

The author would like to thank the reviewer whose deep and extensive commentsgreatly contributed to improve this chapter. He thanks Ass. Prof. Eckhard Hitzerfor his helpful guidance. He also wants to thank ICCA9 organizer Professor KlausGurlebeck.

References

[1] M. Bahri. Generalized Fourier transform in real clifford algebra ๐‘๐‘™(0, ๐‘›). Far EastJournal of Mathematical Sciences, 48(1):11โ€“24, Jan. 2011.

[2] M. Bahri, E. Hitzer, R. Ashino, and R. Vaillancourt. Windowed Fourier transformof two-dimensional quaternionic signals. Applied Mathematics and Computation,216(8):2366โ€“2379, June 2010.

[3] E. Bayro-Corrochano. The theory and use of the quaternion wavelet transform. Jour-nal of Mathematical Imaging and Vision, 24(1):19โ€“36, 2006.

[4] E. Bayro-Corrochano and G. Scheuermann, editors. Applied Geometric Algebras inComputer Science and Engineering. Springer, London, 2010.

Page 319: Quaternion and Clifford Fourier Transforms and Wavelets

298 M. Bahri

[5] F. Brackx, R. Delanghe, and F. Sommen. Clifford Analysis, volume 76. Pitman,Boston, 1982.

[6] T. Bulow. Hypercomplex Spectral Signal Representations for the Processing and Anal-ysis of Images. PhD thesis, University of Kiel, Germany, Institut fur Informatik undPraktische Mathematik, Aug. 1999.

[7] T. Bulow, M. Felsberg, and G. Sommer. Non-commutative hypercomplex Fouriertransforms of multidimensional signals. In G. Sommer, editor, Geometric computingwith Clifford Algebras: Theoretical Foundations and Applications in Computer Visionand Robotics, pages 187โ€“207, Berlin, 2001. Springer.

[8] T. Bulow and G. Sommer. Hypercomplex signals โ€“ a novel extension of the ana-lytic signal to the multidimensional case. IEEE Transactions on Signal Processing,49(11):2844โ€“2852, Nov. 2001.

[9] Y. Fu, U. Kahler, and P. Cerejeiras. The Balianโ€“Low theorem for the windowedquaternionic Fourier transform. Advances in Applied Clifford Algebras, page 16, 2012.published online 3 February 2012.

[10] K. Grochenig. Foundations of Time-Frequency Analysis. Applied and Numerical Har-monic Analysis. Birkhauser, Boston, 2001.

[11] K. Grochenig and G. Zimmermann. Hardyโ€™s theorem and the short-time Fouriertransform of Schwartz functions. Journal of the London Mathematical Society, 2:205โ€“214, 2001.

[12] S.L. Hahn. Wigner distributions and ambiguity functions of 2-D quaternionic andmonogenic signals. IEEE Transactions on Signal Processing, 53:3111โ€“3128, 2005.

[13] E. Hitzer. Quaternion Fourier transform on quaternion fields and generalizations.Advances in Applied Clifford Algebras, 17(3):497โ€“517, May 2007.

[14] E.M.S. Hitzer and B. Mawardi. Clifford Fourier transform on multivector fields anduncertainty principles for dimensions ๐‘› = 2(mod 4) and ๐‘› = 3(mod 4). Advances inApplied Clifford Algebras, 18(3-4):715โ€“736, 2008.

[15] B. Mawardi. Clifford windowed Fourier transform applied to linear time-varyingsystems. Applied Mathematical Sciences, 6:2857โ€“2864, 2012.

[16] B. Mawardi, S. Adji, and J. Zhao. Real Clifford windowed Fourier transform. ActaMathematica Sinica, 27:505โ€“518, 2011.

[17] B. Mawardi, E. Hitzer, and S. Adji. Two-dimensional Clifford windowed Fouriertransform. In Bayro-Corrochano and Scheuermann [4], pages 93โ€“106.

[18] B. Mawardi, E. Hitzer, A. Hayashi, and R. Ashino. An uncertainty principlefor quaternion Fourier transform. Computers and Mathematics with Applications,56(9):2411โ€“2417, 2008.

[19] F. Sommen. A product and an exponential function in hypercomplex function theory.Applicable Analysis, 12:13โ€“26, 1981.

[20] Y. Xi, X. Yang, L. Song, L. Traversoni, and W. Lu. QWT: Retrospective and newapplication. In Bayro-Corrochano and Scheuermann [4], pages 249โ€“273.

Mawardi BahriDepartment of MathematicsUniversitas HasanuddinTamalanrea Makassar 90245, Indonesiae-mail: [email protected]

Page 320: Quaternion and Clifford Fourier Transforms and Wavelets

Quaternion and Cliffordโ€“Fourier Transforms and Wavelets

Trends in Mathematics, 299โ€“319cโƒ 2013 Springer Basel

15 The Balianโ€“Low Theorem for theWindowed Cliffordโ€“Fourier Transform

Yingxiong Fu, Uwe Kahler and Paula Cerejeiras

Abstract. In this chapter, we provide the definition of the Cliffordโ€“Zak trans-form associated with the discrete version of the kernel of a windowed Cliffordโ€“Fourier transform. We proceed with deriving several important properties ofsuch a transform. Finally, we establish the Balianโ€“Low theorem for a Cliffordframe under certain natural assumptions on the window function.

Mathematics Subject Classification (2010). 15A66; 30G35.

Keywords. Cliffordโ€“Zak transform, Clifford frame, Balianโ€“Low theorem, Clif-fordโ€“Fourier transform, windowed Cliffordโ€“Fourier transform.

1. Introduction

The last decade has seen a growing interest in generalizations of the Fourier trans-form, motivated by applications to higher-dimensional signal processing. Firststeps in that direction where already made in Brackx et al. [10], where a Fouriertransform for multivector-valued distributions in ๐ถโ„“0,๐‘› with compact support waspresented. Also worth mention is the alternative definition of the Fourier trans-form of Sommen [27], based on a generalization of the exponential function toโ„๐‘›ร—โ„๐‘›+1. A quaternionic Fourier transform was given in Bulow et al. [12] in thecontext of quaternionic-valued two-dimensional signals (the so-called hypercom-plex signals). Shortly after, motivated by spectral analysis of colour images Sang-wine et al. proposed in [26] a quaternionic Fourier transform in which the imaginaryunit ๐‘– was replaced by a unit quaternion. Almost in parallel, Felsberg defined in[17] his Cliffordโ€“Fourier transform (CFT) for the low-dimensional Clifford alge-bras ๐ถโ„“2,0 and ๐ถโ„“3,0, using the pseudoscalar ๐‘–๐‘› as imaginary unit. Following thisapproach, several authors have extended this transform to a three-dimensional set-ting and successfully detected vector-valued patterns in the frequency domain (cf.[15, 16, 24]). However, a major problem did remain: as the classical Fourier trans-form, the Cliffordโ€“Fourier transform is ineffective for representing and computing

Page 321: Quaternion and Clifford Fourier Transforms and Wavelets

300 Y. Fu, U. Kahler and P. Cerejeiras

local information of signals. In fact, the harmonic analysis version of Heisenbergโ€™suncertainty principle states that it is impossible to localize simultaneously a func-tion and its Fourier transform.

One way to overcome this difficulty is by means of Cliffordโ€“Gabor filters.They were initially proposed in [11], and later on also in [8], which extended theapplications of the complex Gabor filters. In general, they correspond to modula-tions of Gaussians. A good account on this subject can be found in [9].

A more general approach to this problem is by means of the windowed Fouriertransform (WFT), also called continuous Gabor transform or short-time Fouriertransform. Given ๐‘“ โˆˆ ๐ฟ2(โ„) and a fixed non-zero window function ๐‘” โˆˆ ๐ฟ2(โ„), onedefines the WFT ๐‘‰๐‘”{๐‘“} โˆˆ ๐ฟ2(โ„2) as

๐‘‰๐‘”{๐‘“}(๐‘ก, ๐œ”) =โˆซโ„

๐‘“(๐‘ฅ)๐‘”(๐‘ฅโˆ’ ๐‘ก)๐‘’โˆ’2๐œ‹๐‘–๐‘ฅ๐œ”๐‘‘๐‘ฅ. (1.1)

Mawardi et al. extended the theory of WFT to the Clifford case [1โ€“4, 23]. In [3]the definition of a windowed Cliffordโ€“Fourier transform (WCFT) was establishedand several important properties were obtained such as shift, modulation, recon-struction formulae, etc. Furthermore, a Heisenberg type uncertainty principle forthe WCFT was derived.

Practical applications require a discrete version of this continuous transform.One can establish a discrete form of the WFT ๐‘‰๐‘” linked to a given countable setฮ› โŠ‚ โ„2 = โ„ ร— โ„ as the transformation that assigns to every function ๐‘“ โˆˆ ๐ฟ2(โ„)the number sequence

๐‘“ ๏ฟฝโ†’ { โŸจ๐‘“, ๐‘”๐‘š,๐‘›โŸฉ : (๐‘š,๐‘›) โˆˆ ฮ›}, (1.2)

where โŸจโ‹…, โ‹…โŸฉ denotes the ordinary inner product in ๐ฟ2(โ„) and the functions ๐‘”๐‘š,๐‘›

are shifts and modulations of the window ๐‘” given by

๐‘”๐‘š,๐‘›(๐‘ฅ) = ๐‘’2๐œ‹๐‘–๐‘š๐‘ฅ๐‘”(๐‘ฅโˆ’ ๐‘›) (1.3)

for all (๐‘š,๐‘›) โˆˆ ฮ› โŠ‚ โ„2. Such a collection {๐‘”๐‘š,๐‘› : (๐‘š,๐‘›) โˆˆ ฮ›} is called Gaborsystem, or Weyl-Heisenberg system, generated by ๐‘” and ฮ›. To recover the originalfunction ๐‘“ from the number sequence {โŸจ๐‘“, ๐‘”๐‘š,๐‘›โŸฉ : (๐‘š,๐‘›) โˆˆ ฮ›} it is necessary thatthe system forms an orthonormal basis or at least a frame.

Gabor systems are related to the classical uncertainty principle by the Balianโ€“Low theorem (a stronger version of the said principle), as it expresses the fact thattime-frequency concentration and non-redundancy are incompatible properties ofa Gabor system if such a system is a frame for ๐ฟ2(โ„) [7,13,14,18,21]. Specifically,if the window ๐‘” is such that the Gabor system {๐‘”๐‘š,๐‘› : ๐‘š,๐‘› โˆˆ โ„ค} constitutes anexact frame for ๐ฟ2(โ„), i.e., if there exist constants 0 < ๐ต โ‰ค ๐ถ <โˆž such that

๐ตโˆฅ๐‘“โˆฅ2 โ‰คโˆ‘

๐‘š,๐‘›โˆˆโ„คโˆฃโŸจ๐‘“, ๐‘”๐‘š,๐‘›โŸฉโˆฃ2 โ‰ค ๐ถ โˆฅ๐‘“โˆฅ2 , โˆ€๐‘“ โˆˆ ๐ฟ2(โ„), (1.4)

Page 322: Quaternion and Clifford Fourier Transforms and Wavelets

15. The Balianโ€“Low Theorem for the WCFT 301

and the system ceases to be a frame when any of its elements is removed then, itholds (โˆซ +โˆž

โˆ’โˆž๐‘ก2โˆฃ๐‘”(๐‘ก)โˆฃ2๐‘‘๐‘ก

)(โˆซ +โˆž

โˆ’โˆž๐œ‰2โˆฃ๐‘”(๐œ‰)2๐‘‘๐œ‰

)=โˆž. (1.5)

In other words, the window function ๐‘” maximizes the uncertainty principle insome sense. This result has been extended to higher dimensions and to a moregeneral set of time-frequency shifts in the standard coordinate system [6, 19]. Itwas also proved to be valid in a multi-window setting [25, 28] and in the case ofsuperframes [5].

Regarding the important question of discretizing the WCFT it is naturalto ask if the Balianโ€“Low theorem holds for Gabor systems generated by certainClifford-valued window functions ๐‘” and countable sets ฮ› โŠ‚ โ„2๐‘›. Our goal in thischapter is to obtain it for Gabor systems which form a Clifford frame arising fromthe discrete version of the kernel of the WCFT. To this end it is necessary tointroduce a Cliffordโ€“Zak transform and study some of its properties.

This chapter is organized as follows: Section 2 is devoted to the review ofthe necessary results on Clifford algebra and the definitions of both the CFT andthe WCFT. In Section 3 we provide the definition of a Clifford frame associatedwith the discrete version of the kernel of the WCFT, establish the definition of aCliffordโ€“Zak transform and derive some properties of it, which will play a key rolein the proof of the Balianโ€“Low theorem. In Section 4 we demonstrate the Balianโ€“Low theorem for Gabor systems which form a Clifford frame. Some conclusionsare drawn in Section 5.

2. Preliminaries

Let ๐ถโ„“๐‘›,0 be the 2๐‘›-dimensional universal real Clifford algebra over โ„๐‘› constructed

from the basis {๐’†1, ๐’†2, . . . , ๐’†๐‘›} under the usual relations

๐’†๐‘˜๐’†๐‘™ + ๐’†๐‘™๐’†๐‘˜ = 2๐›ฟ๐‘˜๐‘™, 1 โ‰ค ๐‘˜, ๐‘™ โ‰ค ๐‘›, (2.1)

where ๐›ฟ๐‘˜๐‘™ is the Kronecker delta function. An element ๐‘“ โˆˆ ๐ถโ„“๐‘›,0 can be representedas ๐‘“ =

โˆ‘๐ด ๐‘“๐ด๐‘’๐ด, ๐‘“๐ด โˆˆ โ„, where ๐’†๐ด = ๐’†๐‘—1๐‘—2โ‹…โ‹…โ‹…๐‘—๐‘˜ = ๐’†๐‘—1๐’†๐‘—2 โ‹… โ‹… โ‹…๐’†๐‘—๐‘˜ , ๐ด = {๐‘—1, ๐‘—2, . . . ๐‘—๐‘˜}

with 1 โ‰ค ๐‘—1 โ‰ค ๐‘—2 โ‰ค โ‹… โ‹… โ‹… โ‰ค ๐‘—๐‘˜ โ‰ค ๐‘›, and ๐’†0 = ๐’†โˆ… = 1 is the identity element of๐ถโ„“๐‘›,0. The elements of the algebra ๐ถโ„“๐‘›,0 for which โˆฃ๐ดโˆฃ = ๐‘˜ are called k-vectors.We denote the space of all k-vectors by

๐ถโ„“๐‘˜๐‘›,0 := spanโ„{๐’†๐ด : โˆฃ๐ดโˆฃ = ๐‘˜}. (2.2)

It is clear that the spaces โ„ and โ„๐‘› can be identified with ๐ถโ„“0๐‘›,0 and ๐ถโ„“1๐‘›,0, re-spectively.

Of interest for this work is the (unit oriented) pseudoscalar element ๐‘–๐‘› =๐’†1๐’†2 โ‹… โ‹… โ‹… ๐’†๐‘›. Observe that ๐‘–2๐‘› = โˆ’1 for ๐‘› = 2, 3(mod 4). For the sake of simplicity,if not otherwise stated, ๐‘› is always assumed to be ๐‘› = 2, 3(mod 4) for the remainingof this chapter.

Page 323: Quaternion and Clifford Fourier Transforms and Wavelets

302 Y. Fu, U. Kahler and P. Cerejeiras

We define the anti-automorphism reversionหœ : ๐ถโ„“๐‘›,0 โ†’ ๐ถโ„“๐‘›,0 by its action

on the basis elements ๐‘’๐ด = (โˆ’1) ๐‘˜(๐‘˜โˆ’1)2 ๐‘’๐ด, for โˆฃ๐ดโˆฃ = ๐‘˜, and its reversion property

๐‘“๐‘” = ๐‘”๐‘“ for every ๐‘“, ๐‘” โˆˆ ๐ถโ„“๐‘›,0. In particular, we remark that ๐‘–๐‘› = โˆ’๐‘–๐‘›.In what follows, we will require two types of scalar products. First, we in-

troduce the (real-valued) scalar product of ๐‘“, ๐‘” โˆˆ ๐ถโ„“๐‘›,0 as the scalar part of theirgeometric product

๐‘“ โ‹… ๐‘” := [๐‘“ ๐‘” ]0 =โˆ‘๐ด

๐‘“๐ด๐‘”๐ด. (2.3)

As usual, when we set ๐‘“ = ๐‘” we obtain the square of the modulus (or magnitude)of the multivector ๐‘“ โˆˆ ๐ถโ„“๐‘›,0,

โˆฃ๐‘“ โˆฃ2 =[๐‘“๐‘“]0=โˆ‘๐ด

๐‘“2๐ด. (2.4)

Also, an additional useful property of the scalar part [ ]0 is the cyclic sym-metric product

[๐‘๐‘ž๐‘Ÿ]0 = [๐‘ž๐‘Ÿ๐‘]0, โˆ€๐‘, ๐‘ž, ๐‘Ÿ โˆˆ ๐ถโ„“๐‘›,0. (2.5)

Second, we require an inner product in the function space under considera-tion. We denote by ๐ฟ๐‘(โ„๐‘›;๐ถโ„“๐‘›,0) the left module of all Clifford-valued functions๐‘“ : โ„๐‘› โ†’ ๐ถโ„“๐‘›,0 with finite norm

โˆฅ๐‘“โˆฅ๐‘ =

{ (โˆซโ„๐‘› โˆฃ๐‘“(x)โˆฃ๐‘๐‘‘๐‘›x

) 1๐‘ , 1 โ‰ค ๐‘ <โˆž

ess supxโˆˆโ„๐‘› โˆฃ๐‘“(x)โˆฃ, ๐‘ =โˆž , (2.6)

where ๐‘‘๐‘›x = ๐‘‘๐‘ฅ1๐‘‘๐‘ฅ2 โ‹… โ‹… โ‹… ๐‘‘๐‘ฅ๐‘› represents the usual Lebesgue measure in โ„๐‘›. In theparticular case of ๐‘ = 2, we shall denote this norm by โˆฅ๐‘“โˆฅ.

Given two functions ๐‘“, ๐‘” โˆˆ ๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0), we define a Clifford-valued bilinearform

๐‘“, ๐‘” โ†’ (๐‘“, ๐‘”) :=

โˆซโ„๐‘›

๐‘“(x)๐‘”(x)๐‘‘๐‘›x, (2.7)

from which we construct the scalar inner product

โŸจ๐‘“, ๐‘”โŸฉ : = [(๐‘“, ๐‘”)]0 =

โˆซโ„๐‘›

[๐‘“(x)๐‘”(x)

]0๐‘‘๐‘›x. (2.8)

We remark that (2.8) satisfies the (Clifford) Cauchyโ€“Schwarz inequality

โˆฃโŸจ๐‘“, ๐‘”โŸฉโˆฃ โ‰ค โˆฅ๐‘“โˆฅ โˆฅ๐‘”โˆฅ , โˆ€๐‘“, ๐‘” โˆˆ ๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0). (2.9)

In the following, we recall the CFT, originally introduced by M. Felsberg(see [17]).

Definition 2.1. Let ๐‘“ โˆˆ ๐ฟ1(โ„๐‘›;๐ถโ„“๐‘›,0). The CFT of ๐‘“ at the point ๐œ” โˆˆ โ„๐‘› is definedas the ๐ถโ„“๐‘›,0-valued (Lebesgue) integral

โ„ฑ{๐‘“}(๐œ”) =โˆซโ„๐‘›

๐‘“(x)๐‘’โˆ’2๐œ‹๐‘–๐‘›๐œ”โ‹…x๐‘‘๐‘›x. (2.10)

The function ๐œ” โ†’ โ„ฑ{๐‘“}(๐œ”) s called the CFT of ๐‘“.

Page 324: Quaternion and Clifford Fourier Transforms and Wavelets

15. The Balianโ€“Low Theorem for the WCFT 303

Lemma 2.2 (Parsevalโ€™s equality for CFT). If ๐‘“ โˆˆ ๐ฟ1(โ„๐‘›;๐ถโ„“๐‘›,0) โˆฉ ๐ฟ2 (โ„๐‘›;๐ถโ„“๐‘›,0),then

โˆฅ๐‘“โˆฅ = โˆฅโ„ฑ{๐‘“}โˆฅ. (2.11)

Lemma 2.2 asserts that the CFT is a bounded linear operator on ๐ฟ1(โ„๐‘›;๐ถโ„“๐‘›,0) โˆฉ ๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0). Hence, standard density arguments allow us to extendthe CFT in an unique way to the whole of ๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0). In what follows wealways consider the properties of the CFT as an operator from ๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0) into๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0).

Definition 2.3. Let ๐‘” โˆˆ ๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0) be a non-zero window function such that

โˆฃxโˆฃ1/2๐‘”(x) is in ๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0). Then, the WCFT of ๐‘“ โˆˆ ๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0) with respectto ๐‘” is defined by

๐‘„๐‘”๐‘“(๐œ”,b) : =

โˆซโ„๐‘›

๐‘“(x) หœ๐‘”(xโˆ’ b)๐‘’โˆ’2๐œ‹๐‘–๐‘›๐œ”โ‹…x๐‘‘๐‘›x

= (๐‘“, ๐‘”๐œ”,b), (2.12)

where ๐‘”๐œ”,b(x) := ๐‘’2๐œ‹๐‘–๐‘›๐œ”โ‹…x๐‘”(xโˆ’ b) denotes the kernel of the WCFT.

3. Clifford Frame and Cliffordโ€“Zak Transform

The Balianโ€“Low theorem is regarded as a strong version of the uncertainty princi-ple for the Gabor system associated with the discrete version of the kernel of theclassical WFT. To establish the Balianโ€“Low theorem for a Gabor system in theClifford algebra module ๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0) we consider the following discrete versionof the kernel of the WCFT

๐‘”m,n(x) := ๐‘’2๐œ‹๐‘–๐‘›mโ‹…x๐‘”(xโˆ’ n), x โˆˆ โ„๐‘›, m,n โˆˆ โ„ค๐‘›. (3.1)

A frame for a vector space equipped with an inner product allows each el-ement in the space to be written as a linear combination of the elements in theframe. In general frame elements are neither orthogonal to each other nor linearlyindependent. We now introduce the definition and properties of a Clifford framein ๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0) as follows.

Definition 3.1. {๐‘”m,n : m,n โˆˆ โ„ค๐‘›} is a Clifford frame for ๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0) if thereexist real constants 0 < ๐ต โ‰ค ๐ถ <โˆž such that

๐ต โˆฅ๐‘“โˆฅ2๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0)โ‰ค

โˆ‘m,nโˆˆโ„ค๐‘›

โˆฃโŸจ๐‘“, ๐‘”m,nโŸฉโˆฃ2 โ‰ค ๐ถ โˆฅ๐‘“โˆฅ2๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0),

โˆ€๐‘“ โˆˆ ๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0), (3.2)

where ๐‘”m,n is defined by (3.1) and the scalar inner product โŸจโ‹…, โ‹…โŸฉ is defined by (2.8).

Any two constants ๐ต,๐ถ satisfying condition (3.1) are called frame bounds.If ๐ต = ๐ถ, then {๐‘”m,n : m,n โˆˆ โ„ค๐‘›} is called a tight frame.

To understand frames and reconstruction methods better, we study someimportant associated operators.

Page 325: Quaternion and Clifford Fourier Transforms and Wavelets

304 Y. Fu, U. Kahler and P. Cerejeiras

Definition 3.2. For any subset {๐‘”m,n : m,n โˆˆ โ„ค๐‘›} โŠ† ๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0), the coefficientoperator ๐น is defined by

๐น๐‘“ = {โŸจ๐‘“, ๐‘”m,nโŸฉ : m,n โˆˆ โ„ค๐‘›}. (3.3)

The reconstruction operator ๐‘… for a sequence ๐‘ = (๐‘m,n)m,nโˆˆโ„ค๐‘› is given by

๐‘…๐‘ =โˆ‘

m,nโˆˆโ„ค๐‘›

๐‘m,n๐‘”m,n โˆˆ ๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0). (3.4)

Finally, the frame operator ๐‘† in ๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0) is defined by

๐‘†๐‘“ =โˆ‘

m,nโˆˆโ„ค๐‘›

โŸจ๐‘“, ๐‘”m,nโŸฉ ๐‘”m,n. (3.5)

Based on the classic frame theory [18], under the assumption that {๐‘”m,n :m,n โˆˆ โ„ค๐‘›} is a frame defined by (3.1) for ๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0), we know that the frameoperator ๐‘† maps ๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0) to ๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0) and it is a self-adjoint, positiveand invertible operator satisfying

๐ต๐ผ โ‰ค ๐‘† โ‰ค ๐ถ๐ผ, ๐ถโˆ’1๐ผ โ‰ค ๐‘†โˆ’1 โ‰ค ๐ตโˆ’1๐ผ (3.6)

with ๐ผ being the identity operator. Moreover, observe that

โŸจ๐‘†๐‘“, ๐‘“โŸฉ =โˆ‘

m,nโˆˆโ„ค๐‘›

โˆฃโŸจ๐‘“, ๐‘”m,nโŸฉโˆฃ2 (3.7)

and โˆ‘m,nโˆˆโ„ค๐‘›

โˆฃโˆฃโŸจ๐‘“, ๐‘†โˆ’1๐‘”m,n

โŸฉโˆฃโˆฃ2 =โˆ‘

m,nโˆˆโ„ค๐‘›

โˆฃโˆฃโŸจ๐‘†โˆ’1๐‘“, ๐‘”m,n

โŸฉโˆฃโˆฃ2=โŸจ๐‘†(๐‘†โˆ’1๐‘“), ๐‘†โˆ’1๐‘“

โŸฉ=โŸจ๐‘†โˆ’1๐‘“, ๐‘“

โŸฉ. (3.8)

Therefore, we have

๐ถโˆ’1 โˆฅ๐‘“โˆฅ2 โ‰ค โŸจ๐‘†โˆ’1๐‘“, ๐‘“โŸฉ=

โˆ‘m,nโˆˆโ„ค๐‘›

โˆฃโˆฃโŸจ๐‘“, ๐‘†โˆ’1๐‘”m,n

โŸฉโˆฃโˆฃ2 โ‰ค ๐ตโˆ’1 โˆฅ๐‘“โˆฅ2 . (3.9)

Thus the collection {๐‘†โˆ’1๐‘”m,n : m,n โˆˆ โ„ค๐‘›} is a so-called dual frame with framebounds ๐ถโˆ’1 and ๐ตโˆ’1. Using the factorizations ๐ผ = ๐‘†โˆ’1๐‘† = ๐‘†๐‘†โˆ’1, we obtain theseries expansions

๐‘“ = ๐‘†(๐‘†โˆ’1๐‘“) =โˆ‘

m,nโˆˆโ„ค๐‘›

โŸจ๐‘†โˆ’1๐‘“, ๐‘”m,n

โŸฉ๐‘”m,n

=โˆ‘

m,nโˆˆโ„ค๐‘›

โŸจ๐‘“, ๐‘†โˆ’1๐‘”m,n

โŸฉ๐‘”m,n (3.10)

and

๐‘“ = ๐‘†โˆ’1๐‘†๐‘“ =โˆ‘

m,nโˆˆโ„ค๐‘›

โŸจ๐‘“, ๐‘”m,nโŸฉ ๐‘†โˆ’1๐‘”m,n. (3.11)

Page 326: Quaternion and Clifford Fourier Transforms and Wavelets

15. The Balianโ€“Low Theorem for the WCFT 305

Furthermore, it is well known that the classic Zak transform is a very usefultool to analyze Gabor systems

{๐‘’2๐œ‹๐‘–๐‘š๐‘ก๐‘”(๐‘กโˆ’ ๐‘›) : ๐‘š,๐‘› โˆˆ โ„ค

}in ๐ฟ2(โ„). The classic

Zak transform, ๐‘ : ๐ฟ2(โ„)โ†’ ๐ฟ2([0, 1)2), is defined by

๐‘“ = ๐‘“(๐‘ฅ), ๐‘ฅ โˆˆ โ„ ๏ฟฝโ†’ ๐‘๐‘“ = ๐‘๐‘“(๐‘ก, ๐œ”)

=โˆ‘๐‘˜โˆˆโ„ค

๐‘’2๐œ‹๐‘– ๐‘˜๐œ”๐‘“(๐‘กโˆ’ ๐‘˜), (๐‘ก, ๐œ”) โˆˆ โ„2. (3.12)

Moreover, the Zak transform is a unitary transformation from ๐ฟ2(โ„) to ๐ฟ2([0, 1)2).Interest in this transform has been revived in recent years due to its relationshipto different types of coherent states, one of which is the affine coherent state,commonly known as wavelet [14, 20].

To analyse Cliffordโ€“Gabor systems {๐‘’2๐œ‹๐‘–๐‘›mโ‹…x๐‘”(x โˆ’ n) : m,n โˆˆ โ„ค๐‘›} in๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0), we need to establish a definition of the Cliffordโ€“Zak transform andto show some of its properties.

First, we define the Cliffordโ€“Zak transform pointwisely. The Cliffordโ€“Zaktransform of a Clifford-valued function ๐‘“ โˆˆ ๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0), with t ๏ฟฝโ†’ ๐‘“(t), at thepoint (x, ๐œ”) โˆˆ โ„๐‘› ร— โ„๐‘›, is given as

๐‘๐‘๐‘“(x, ๐œ”) :=โˆ‘kโˆˆโ„ค๐‘›

๐‘’2๐œ‹๐‘–๐‘›kโ‹…๐œ”๐‘“(xโˆ’ k). (3.13)

As in the one-dimensional case, periodicity properties allow us to consider asmaller domain for the variables (x, ๐œ”) in this transform. In fact, the Cliffordโ€“Zaktransform ๐‘๐‘ satisfies the following relations

๐‘๐‘๐‘“(x, ๐œ” + n) = ๐‘๐‘๐‘“(x, ๐œ”), n โˆˆ โ„ค๐‘›, (3.14)

๐‘๐‘๐‘“(x+ n, ๐œ”) = ๐‘’2๐œ‹๐‘–๐‘›nโ‹…๐œ”๐‘๐‘๐‘“(x, ๐œ”), n โˆˆ โ„ค๐‘›. (3.15)

Thus, ๐‘๐‘๐‘“ is uniquely determined by its values on [0, 1)๐‘› ร— [0, 1)๐‘› := ๐‘„2๐‘› โŠ‚โ„๐‘›ร—โ„๐‘›. Henceforward, we consider ๐‘๐‘๐‘“ as a function on ๐‘„2๐‘›, where its extensionto โ„๐‘› ร— โ„๐‘› is trivially obtained by the quasiperiodic properties (3.14) and (3.15)of the transform.

Finally, we prove that the series defining ๐‘๐‘๐‘“ converges in ๐ฟ2(๐‘„2๐‘›;๐ถโ„“๐‘›,0).This will be achieved by showing that ๐‘๐‘ is a unitary map from ๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0)onto ๐ฟ2(๐‘„2๐‘›;๐ถโ„“๐‘›,0).

Theorem 3.3. The Cliffordโ€“Zak transform ๐‘๐‘ is a unitary map of ๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0)onto ๐ฟ2(๐‘„2๐‘›;๐ถโ„“๐‘›,0).

Proof. Let ๐‘“, ๐‘” โˆˆ ๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0). In order to show that ๐‘๐‘๐‘“ is a unitary mappingwe consider the auxiliary functions in ๐ฟ2(๐‘„2๐‘›;๐ถโ„“๐‘›,0)

(x, ๐œ”) ๏ฟฝโ†’ ๐นk(x, ๐œ”) := ๐‘’2๐œ‹๐‘–๐‘›kโ‹…๐œ”๐‘“(xโˆ’ k), (3.16)

and

(x, ๐œ”) ๏ฟฝโ†’ ๐บk(x, ๐œ”) := ๐‘’2๐œ‹๐‘–๐‘›kโ‹…๐œ”๐‘”(xโˆ’ k), (3.17)

Page 327: Quaternion and Clifford Fourier Transforms and Wavelets

306 Y. Fu, U. Kahler and P. Cerejeiras

each obtained from the original ๐‘“, ๐‘” โˆˆ ๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0) by a specific modulation, anda translation, dependent on the parameter k โˆˆ โ„ค๐‘›. Note that we have

๐‘๐‘๐‘“(x, ๐œ”) =โˆ‘kโˆˆโ„ค๐‘›

๐นk(x, ๐œ”)

๐‘๐‘๐‘”(x, ๐œ”) =โˆ‘kโˆˆโ„ค๐‘›

๐บk(x, ๐œ”),(3.18)

for all (x, ๐œ”) โˆˆ [0, 1)๐‘› ร— [0, 1)๐‘›. It is easy to see that ๐นk, ๐บk โˆˆ ๐ฟ2(๐‘„2๐‘›;๐ถโ„“๐‘›,0), forall k โˆˆ โ„ค๐‘›.

We have

โŸจ๐นk, ๐บmโŸฉ๐ฟ2(๐‘„2๐‘›;๐ถโ„“๐‘›,0)

=

[โˆซ๐‘„2๐‘›

๐‘’2๐œ‹๐‘–๐‘›kโ‹…๐œ”๐‘“(xโˆ’ k) หœ๐‘”(xโˆ’m)๐‘’โˆ’2๐œ‹๐‘–๐‘›mโ‹…๐œ”๐‘‘๐‘›x๐‘‘๐‘›๐œ”]0

=

[โˆซ[0,1)๐‘›ร—[0,1)๐‘›

๐‘“(xโˆ’ k) หœ๐‘”(xโˆ’m)๐‘’โˆ’2๐œ‹๐‘–๐‘›(mโˆ’k)โ‹…๐œ”๐‘‘๐‘›x๐‘‘๐‘›๐œ”

]0

=

[(โˆซ[0,1)๐‘›

๐‘“(xโˆ’ k) หœ๐‘”(xโˆ’m)๐‘‘๐‘›x

)(โˆซ[0,1)๐‘›

๐‘’โˆ’2๐œ‹๐‘–๐‘›(mโˆ’k)โ‹…๐œ”๐‘‘๐‘›๐œ”

)]0

, (3.19)

due to the cyclic property (2.5) and the relation ๐‘–๐‘› = โˆ’๐‘–๐‘›. Hence

โŸจ๐นk, ๐บmโŸฉ๐ฟ2(๐‘„2๐‘›;๐ถโ„“๐‘›,0)=

{โŸจ๐‘“(โ‹… โˆ’ k), ๐‘”(โ‹… โˆ’ k)โŸฉ๐ฟ2([0,1)๐‘›;๐ถโ„“๐‘›,0)

, m = k

0 , m โˆ•= k.(3.20)

Hence,

โŸจ๐‘๐‘๐‘“, ๐‘๐‘๐‘”โŸฉ๐ฟ2(๐‘„2๐‘›;๐ถโ„“๐‘›,0)=

โˆ‘k,mโˆˆโ„ค๐‘›

โŸจ๐นk, ๐บmโŸฉ๐ฟ2(๐‘„2๐‘›;๐ถโ„“๐‘›,0)

=โˆ‘kโˆˆโ„ค๐‘›

โŸจ๐นk, ๐บkโŸฉ๐ฟ2(๐‘„2๐‘›;๐ถโ„“๐‘›,0)

=โˆ‘kโˆˆโ„ค๐‘›

โŸจ๐‘“(โ‹… โˆ’ k), ๐‘”(โ‹… โˆ’ k)โŸฉ๐ฟ2([0,1)๐‘›;๐ถโ„“๐‘›,0)

=โˆ‘kโˆˆโ„ค๐‘›

[โˆซ[0,1)๐‘›

๐‘“(xโˆ’ k) หœ๐‘”(x โˆ’ k)๐‘‘๐‘›x

]0

=

โˆซโ„๐‘›

๐‘“(y)๐‘”(y)๐‘‘๐‘›y = โŸจ๐‘“, ๐‘”โŸฉ๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0), (3.21)

therefore, completing the proof of the unitary property of the Cliffordโ€“Zak trans-form. โ–ก

Consequently, based on the above theorem, we get the following corollary.

Page 328: Quaternion and Clifford Fourier Transforms and Wavelets

15. The Balianโ€“Low Theorem for the WCFT 307

Corollary 3.4. In particular, it holds

โˆฅ๐‘๐‘๐‘“โˆฅ2๐ฟ2(๐‘„2๐‘›;๐ถโ„“๐‘›,0)= โˆฅ๐‘“โˆฅ2๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0)

, (3.22)

where โˆฅ๐‘๐‘๐‘“โˆฅ2๐ฟ2(๐‘„2๐‘›;๐ถโ„“๐‘›,0)=โˆซ๐‘„2๐‘› โˆฃ๐‘๐‘๐‘“(x, ๐œ”)โˆฃ2 ๐‘‘๐‘›x๐‘‘๐‘›๐œ”.

The unitary nature of the Cliffordโ€“Zak transform allows us to translate con-ditions on Clifford frames for ๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0) into those for ๐ฟ2(๐‘„2๐‘›;๐ถโ„“๐‘›,0), wherethings are frequently easier to deal with.

Let us now define the space ๐’ต as the set of all ๐น : โ„๐‘› โ†’ ๐ถโ„“๐‘›,0 such that

๐น (x+ n, ๐œ”) = ๐‘’2๐œ‹๐‘–๐‘›nโ‹…๐œ”๐น (x, ๐œ”),

๐น (x, ๐œ” + n) = ๐น (x, ๐œ”),

โˆฅ๐นโˆฅ2๐ฟ2(๐‘„2๐‘›;๐ถโ„“๐‘›,0)=

โˆซ๐‘„2๐‘›

โˆฃ๐น (x, ๐œ”)โˆฃ2 ๐‘‘๐‘›x๐‘‘๐‘›๐œ” <โˆž. (3.23)

In consequence, as ๐’ต is a subset of ๐ฟ2(๐‘„2๐‘›;๐ถโ„“๐‘›,0) the Cliffordโ€“Zak transform ๐‘๐‘

is a unitary mapping between ๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0) and ๐’ต.The following theorem provides some inversion formulas.

Theorem 3.5. If ๐‘“ โˆˆ ๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0) โˆฉ ๐ฟ1(โ„๐‘›;๐ถโ„“๐‘›,0), then the following relations,

๐‘“(x) =

โˆซ[0,1)๐‘›

๐‘๐‘๐‘“(x, ๐œ”)๐‘‘๐‘›๐œ”, x โˆˆ โ„๐‘›, (3.24)

and

โ„ฑ{๐‘“ }(โˆ’๐œ”) =

โˆซ[0,1)๐‘›

หœ๐‘๐‘๐‘“(x, ๐œ”)๐‘’2๐œ‹๐‘–๐‘›๐œ”โ‹…x๐‘‘๐‘›x, ๐œ” โˆˆ โ„๐‘›, (3.25)

hold true, where โ„ฑ denotes the CFT operator given by (2.10).

Before proceeding with the proof, we remark that the Zak transform can beextended in both arguments to the whole of โ„๐‘› by relations (3.14) and (3.15). In

consequence, the above identities state that both the signal ๐‘“, and the CFT โ„ฑ{๐‘“ },can be reconstructed on the whole of โ„๐‘› via the Cliffordโ€“Zak transform. Standarddensity arguments allow us to extend this result in an unique way to the whole of๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0).

Proof. By definition, there exist unique y โˆˆ [0, 1)๐‘› and n โˆˆ โ„ค๐‘› such that x = y+n,andโˆซ

[0,1)๐‘›๐‘๐‘๐‘“(x, ๐œ”)๐‘‘

๐‘›๐œ” =

โˆซ[0,1)๐‘›

๐‘๐‘๐‘“(y + n, ๐œ”)๐‘‘๐‘›๐œ”

=

โˆซ[0,1)๐‘›

๐‘’2๐œ‹๐‘–๐‘›nโ‹…๐œ”๐‘๐‘๐‘“(y, ๐œ”)๐‘‘๐‘›๐œ”

=

โˆซ[0,1)๐‘›

โˆ‘kโˆˆโ„ค๐‘›

๐‘’2๐œ‹๐‘–๐‘›(k+n)โ‹…๐œ”๐‘“(y โˆ’ k)๐‘‘๐‘›๐œ”

Page 329: Quaternion and Clifford Fourier Transforms and Wavelets

308 Y. Fu, U. Kahler and P. Cerejeiras

=

โˆซ[0,1)๐‘›

โˆ‘mโˆˆโ„ค๐‘›

๐‘’2๐œ‹๐‘–๐‘›mโ‹…๐œ”๐‘“(y + nโˆ’m)๐‘‘๐‘›๐œ”

=

โˆซ[0,1)๐‘›

โˆ‘mโˆˆโ„ค๐‘›

๐‘’2๐œ‹๐‘–๐‘›mโ‹…๐œ”๐‘“(xโˆ’m)๐‘‘๐‘›๐œ”

=

โˆซ[0,1)๐‘›

๐‘“(x)๐‘‘๐‘›๐œ” +

โˆซ[0,1)๐‘›

โˆ‘mโˆ•=0

๐‘’2๐œ‹๐‘–๐‘›mโ‹…๐œ”๐‘“(xโˆ’m)๐‘‘๐‘›๐œ”

= ๐‘“(x) +

โˆซ[0,1)๐‘›

โˆ‘mโˆ•=0

๐‘’2๐œ‹๐‘–๐‘›mโ‹…๐œ”๐‘“(xโˆ’m)๐‘‘๐‘›๐œ”. (3.26)

To calculate the remaining integral, we use Fubiniโ€™s Theorem to validate the in-terchange between integration and summation so thatโˆซ

[0,1)๐‘›

โˆ‘mโˆ•=0

๐‘’2๐œ‹๐‘–๐‘›mโ‹…๐œ”๐‘“(xโˆ’m)๐‘‘๐‘›๐œ”

=โˆ‘mโˆ•=0

(โˆซ[0,1)๐‘›

๐‘’2๐œ‹๐‘–๐‘›mโ‹…๐œ”๐‘‘๐‘›๐œ”

)๐‘“(xโˆ’m) = 0. (3.27)

This completes the proof of the first identity. For the second, a direct calculationleads toโˆซ

[0,1)๐‘›

หœ๐‘๐‘๐‘“(x, ๐œ”)๐‘’2๐œ‹๐‘–๐‘›๐œ”โ‹…x๐‘‘๐‘›x =

โˆซ[0,1)๐‘›

โˆ‘kโˆˆโ„ค๐‘›

หœ๐‘“(xโˆ’ k)๐‘’โˆ’2๐œ‹๐‘–๐‘›kโ‹…๐œ”๐‘’2๐œ‹๐‘–๐‘›๐œ”โ‹…x๐‘‘๐‘›x

=โˆ‘kโˆˆโ„ค๐‘›

โˆซ[0,1)๐‘›

หœ๐‘“(xโˆ’ k)๐‘’2๐œ‹๐‘–๐‘›(xโˆ’k)โ‹…๐œ”๐‘‘๐‘›x (3.28)

=

โˆซโ„๐‘›

๐‘“(y)๐‘’2๐œ‹๐‘–๐‘›yโ‹…๐œ”๐‘‘๐‘›y = โ„ฑ{๐‘“}(โˆ’๐œ”). โ–ก

In particular, we obtain the following reconstruction formula: for any ๐น โˆˆ ๐’ต,we have (

๐‘โˆ’1๐‘ ๐น

)(x) =

โˆซ[0,1)๐‘›

๐น (x, ๐œ”)๐‘‘๐‘›๐œ”, x โˆˆ โ„๐‘›. (3.29)

Lemma 3.6. If ๐‘”m,n is defined by (3.1), then

๐‘๐‘๐‘”m,n(x, ๐œ”) = ๐‘’โˆ’2๐œ‹๐‘–๐‘›nโ‹…๐œ”๐‘’2๐œ‹๐‘–๐‘›mโ‹…x๐‘๐‘๐‘”(x, ๐œ”), (x, ๐œ”) โˆˆ ๐‘„2๐‘›. (3.30)

Proof. From the definitions of the Cliffordโ€“Zak transform and of ๐‘”m,n we obtain

๐‘๐‘๐‘”m,n(x, ๐œ”) =โˆ‘kโˆˆโ„ค๐‘›

๐‘’2๐œ‹๐‘–๐‘›kโ‹…๐œ”๐‘’2๐œ‹๐‘–๐‘›mโ‹…(xโˆ’k)๐‘”(xโˆ’ kโˆ’ n)

=โˆ‘kโˆˆโ„ค๐‘›

๐‘’2๐œ‹๐‘–๐‘›kโ‹…๐œ”๐‘’2๐œ‹๐‘–๐‘›mโ‹…x๐‘”(xโˆ’ kโˆ’ n)

= ๐‘’2๐œ‹๐‘–๐‘›mโ‹…xโˆ‘kโˆˆโ„ค๐‘›

๐‘’2๐œ‹๐‘–๐‘›kโ‹…๐œ”๐‘”(xโˆ’ kโˆ’ n)

Page 330: Quaternion and Clifford Fourier Transforms and Wavelets

15. The Balianโ€“Low Theorem for the WCFT 309

= ๐‘’2๐œ‹๐‘–๐‘›mโ‹…xโˆ‘kโˆˆโ„ค๐‘›

๐‘’2๐œ‹๐‘–๐‘›(kโˆ’n)โ‹…๐œ”๐‘”(xโˆ’ k)

= ๐‘’โˆ’2๐œ‹๐‘–๐‘›nโ‹…๐œ”๐‘’2๐œ‹๐‘–๐‘›mโ‹…xโˆ‘kโˆˆโ„ค๐‘›

๐‘’2๐œ‹๐‘–๐‘›kโ‹…๐œ”๐‘”(xโˆ’ k) (3.31)

= ๐‘’โˆ’2๐œ‹๐‘–๐‘›nโ‹…๐œ”๐‘’2๐œ‹๐‘–๐‘›mโ‹…x๐‘๐‘๐‘”(x, ๐œ”). โ–ก

Theorem 3.7. If ๐‘“, ๐‘” โˆˆ ๐ฟ2(โ„๐‘›;โ„ โŠ• ๐‘–๐‘›โ„) and ๐‘”m,n is defined as in (3.1) then wehave โˆ‘

m,nโˆˆโ„ค๐‘›

โˆฃโˆฃโŸจ๐‘“, ๐‘”m,nโŸฉ๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0)

โˆฃโˆฃ2 =โˆฅโˆฅโˆฅ๐‘๐‘๐‘“๐‘๐‘๐‘”

โˆฅโˆฅโˆฅ2๐ฟ2(๐‘„2๐‘›;๐ถโ„“๐‘›,0)

. (3.32)

Proof. We remark that ๐‘“ โˆˆ ๐ฟ2(โ„๐‘›;โ„ โŠ• ๐‘–๐‘›โ„) โŠ‚ ๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0) so that we haveโˆฅ๐‘“โˆฅ๐ฟ2(โ„๐‘›;โ„โŠ•๐‘–๐‘›โ„) = โˆฅ๐‘“โˆฅ๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0)

. Then, based on Theorem 3.3 and Lemma 3.6,

we obtain thatโˆ‘m,nโˆˆโ„ค๐‘›

โˆฃโˆฃโŸจ๐‘“, ๐‘”m,nโŸฉ๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0)

โˆฃโˆฃ2=

โˆ‘m,nโˆˆโ„ค๐‘›

โˆฃโˆฃโŸจ๐‘๐‘๐‘“, ๐‘๐‘๐‘”m,nโŸฉ๐ฟ2(๐‘„2๐‘›;๐ถโ„“๐‘›,0)

โˆฃโˆฃ2=

โˆ‘m,nโˆˆโ„ค๐‘›

โˆฃโˆฃโˆฃ[โˆซ๐‘„2๐‘› ๐‘๐‘๐‘“๐‘๐‘๐‘”m,n๐‘‘๐‘›x๐‘‘๐‘›๐œ”

]0

โˆฃโˆฃโˆฃ2=

โˆ‘m,nโˆˆโ„ค๐‘›

โˆฃโˆฃโˆฃ[โˆซ๐‘„2๐‘› ๐‘๐‘๐‘“๐‘๐‘๐‘”๐‘’2๐œ‹๐‘–๐‘›nโ‹…๐œ”๐‘’โˆ’2๐œ‹๐‘–๐‘›mโ‹…x๐‘‘๐‘›x๐‘‘๐‘›๐œ”

]0

โˆฃโˆฃโˆฃ2 (3.33)

=โˆ‘

m,nโˆˆโ„ค๐‘›

โˆฃโˆฃโˆฃโˆฃโŸจ๐‘๐‘๐‘“๐‘๐‘๐‘”, ๐ธm,n

โŸฉ๐ฟ2(๐‘„2๐‘›;๐ถโ„“๐‘›,0)

โˆฃโˆฃโˆฃโˆฃ2=โˆฅโˆฅโˆฅ๐‘๐‘๐‘“๐‘๐‘๐‘”

โˆฅโˆฅโˆฅ2๐ฟ2(๐‘„2๐‘›;๐ถโ„“๐‘›,0)

,

where the set of all ๐ธm,n := ๐‘’โˆ’2๐œ‹๐‘–๐‘›nโ‹…๐œ”๐‘’2๐œ‹๐‘–๐‘›mโ‹…x constitutes an orthonormal basisfor ๐ฟ2(๐‘„2๐‘›;โ„โŠ• ๐‘–๐‘›โ„). โ–ก

4. Balianโ€“Low Theorem for WCFT

Before proceeding with the Balianโ€“Low theorem for a Cliffordโ€“Gabor frame, letus recall some basic facts on the modulus of a Clifford number. In general, themodulus of arbitrary Clifford numbers is not multiplicative. In fact, for any twoelements ๐‘Ž, ๐‘ โˆˆ ๐ถโ„“๐‘›,0 we have โˆฃ๐‘Ž๐‘โˆฃ โ‰ค 2

๐‘›2 โˆฃ๐‘Žโˆฃ โˆฃ๐‘โˆฃ. However, in some special cases, the

multiplicative property does hold. An easy calculation leading to such a case isdescribed in the following lemma.

Lemma 4.1. Let ๐‘ โˆˆ ๐ถโ„“๐‘›,0 be such that ๐‘๏ฟฝ๏ฟฝ = โˆฃ๐‘โˆฃ2. Thenโˆฃ๐‘Ž๐‘โˆฃ = โˆฃ๐‘Žโˆฃ โˆฃ๐‘โˆฃ , โˆ€๐‘Ž โˆˆ ๐ถโ„“๐‘›,0. (4.1)

Page 331: Quaternion and Clifford Fourier Transforms and Wavelets

310 Y. Fu, U. Kahler and P. Cerejeiras

In this section, and since we need the Cliffordโ€“Zak transform ๐‘๐‘ of the windowfunction ๐‘” to satisfy โˆฃ๐‘“๐‘๐‘๐‘”โˆฃ = โˆฃ๐‘“ โˆฃ โˆฃ๐‘๐‘๐‘”โˆฃ for any multivector ๐‘“ โˆˆ ๐ถโ„“๐‘›,0, it is necessaryto impose some restrictions on the non-zero window function ๐‘”. In what followswe will require

๐‘” โˆˆ ๐ฟ2(โ„๐‘›;โ„โŠ• ๐‘–๐‘›โ„). (4.2)

Some simple examples of possible real-valued window functions are the two-dimen-sional Gaussian function and the two-dimensional first-order B-spline [23], whichcan be generalized to ๐‘› dimensions and to cases of linear combinations of real-valued window functions and pseudoscalars.

Lemma 4.2. Suppose that the non-zero window function ๐‘” satisfies (4.2). Then wehave

๐‘๐‘๐‘”๐‘๐‘๐‘” = โˆฃ๐‘๐‘๐‘”โˆฃ2 , (4.3)

and for any multivector ๐‘Ž โˆˆ ๐ถโ„“๐‘›,0

โˆฃ๐‘Ž๐‘๐‘๐‘”โˆฃ = โˆฃ๐‘Žโˆฃ โˆฃ๐‘๐‘๐‘”โˆฃ . (4.4)

Proof. Since ๐‘” โˆˆ ๐ฟ2(โ„๐‘›;โ„ โŠ• ๐‘–๐‘›โ„), an easy computation shows that there exist๐บ,๐ป โˆˆ ๐ฟ2(๐‘„2๐‘›;โ„) such that

๐‘๐‘๐‘” = ๐บ+ ๐‘–๐‘›๐ป. (4.5)

Thus, based on the fact that ๐‘–๐‘› = โˆ’๐‘–๐‘› and ๏ฟฝ๏ฟฝ = ๐บ, ๏ฟฝ๏ฟฝ = ๐ป for ๐บ,๐ป โˆˆ ๐ฟ2(๐‘„2๐‘›;โ„),it follows that

๐‘๐‘๐‘”๐‘๐‘๐‘” = (๐บ+ ๐‘–๐‘›๐ป)(๏ฟฝ๏ฟฝ+ ๏ฟฝ๏ฟฝ๐‘–๐‘›) = (๐บ+ ๐‘–๐‘›๐ป)(๐บโˆ’๐ป๐‘–๐‘›)

= ๐บ๐บโˆ’๐บ๐ป๐‘–๐‘› + ๐‘–๐‘›๐ป๐บโˆ’ ๐‘–๐‘›๐ป๐ป๐‘–๐‘›

= ๐บ2 โˆ’๐ป๐บ๐‘–๐‘› + ๐‘–๐‘›๐ป๐บโˆ’ ๐‘–๐‘›๐ป2๐‘–๐‘›. (4.6)

Note that the pseudoscalar ๐‘–๐‘› commutes with the scalar elements of the algebra.Thus,

๐ป๐บ๐‘–๐‘› = ๐‘–๐‘›๐ป๐บ, ๐บ2 = โˆฃ๐บโˆฃ2 , ๐ป2 = โˆฃ๐ป โˆฃ2 . (4.7)

Substituting (4.7) into (4.6) leads to

๐‘๐‘๐‘” ๐‘๐‘๐‘” = โˆฃ๐บโˆฃ2 + โˆฃ๐ป โˆฃ2 = โˆฃ๐‘๐‘๐‘”โˆฃ2 . (4.8)

Moreover, by Lemma 4.1 we see that for any ๐‘Ž โˆˆ ๐ถโ„“๐‘›,0

โˆฃ๐‘Ž๐‘๐‘๐‘”โˆฃ = โˆฃ๐‘Žโˆฃ โˆฃ๐‘๐‘๐‘”โˆฃ , (4.9)

which completes the proof. โ–ก

Based on the properties of the Cliffordโ€“Zak transform discussed in the pre-vious section, we are going to study the time-frequency localization property ofa Cliffordโ€“Gabor system {๐‘”m,n : m,n โˆˆ โ„ค๐‘›} for ๐ฟ2(โ„๐‘›;โ„ โŠ• ๐‘–๐‘›โ„), which is thecontent of the following theorem. This theorem will enable us later on to derivethe Clifford version of the Balianโ€“Low theorem.

Page 332: Quaternion and Clifford Fourier Transforms and Wavelets

15. The Balianโ€“Low Theorem for the WCFT 311

Theorem 4.3. Suppose that {๐‘”m,n(x) : m,n โˆˆ โ„ค๐‘›} constitutes a frame for๐ฟ2(โ„๐‘›;โ„ โŠ• ๐‘–๐‘›โ„) with a non-zero window function ๐‘” satisfying (4.2). Then wehave

โ–ณ๐‘ฅ๐‘˜โ–ณ๐œ”๐‘˜ =โˆž, ๐‘˜ = 1, 2, . . . , ๐‘›, (4.10)

where

โ–ณ๐‘ฅ๐‘˜ =

โˆซโ„๐‘›

๐‘ฅ2๐‘˜ โˆฃ๐‘”(x)โˆฃ2 ๐‘‘๐‘›x, โ–ณ๐œ”๐‘˜ =

โˆซโ„๐‘›

๐œ”2๐‘˜ โˆฃโ„ฑ๐‘”(๐œ”)โˆฃ2 ๐‘‘๐‘›๐œ” (4.11)

and the CFT of ๐‘”, โ„ฑ๐‘”(๐œ”), is defined by (2.10).

We will divide the proof by demonstrating a sequence of lemmas. Denote by๐ท๐‘˜ and ๐‘€๐‘˜ the following partial derivative and multiplication operators

๐ท๐‘˜๐‘“(x) := โˆ‚๐‘ฅ๐‘˜๐‘“(x)

1

2๐œ‹๐‘–๐‘›, ๐‘€๐‘˜๐‘“(x) := ๐‘ฅ๐‘˜๐‘“(x), ๐‘˜ = 1, 2, . . . , ๐‘›, (4.12)

where โˆ‚๐‘ฅ๐‘˜:= โˆ‚

โˆ‚๐‘ฅ๐‘˜. One can easily see that the product of these operators depends

on their order. In fact, they satisfy the commutation relation

[๐‘€๐‘˜, ๐ท๐‘˜]๐‘“(x) := (๐‘€๐‘˜๐ท๐‘˜ โˆ’๐ท๐‘˜๐‘€๐‘˜) ๐‘“(x) = โˆ’๐‘“(x)1

2๐œ‹๐‘–๐‘›. (4.13)

This is traditionally expressed by saying that the time and frequency variables arecanonically conjugate. In the first place, we review the following lemma which wasshown in [22, 24].

Lemma 4.4 (CFT partial derivative). The CFT of โˆ‚๐‘ฅ๐‘˜๐‘“(x) โˆˆ ๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0) is

given by

โ„ฑ{โˆ‚๐‘ฅ๐‘˜๐‘“(x)}(๐œ”) = 2๐œ‹๐œ”๐‘˜โ„ฑ{๐‘“}(๐œ”)๐‘–๐‘›, (4.14)

that is,

โ„ฑ{๐ท๐‘˜๐‘“(x)}(๐œ”) = ๐‘€๐‘˜โ„ฑ{๐‘“}(๐œ”), ๐‘˜ = 1, 2, . . . , ๐‘›. (4.15)

Lemma 4.5. Let ๐‘”, ๐œ‡ โˆˆ ๐ฟ2(โ„๐‘›;โ„โŠ• ๐‘–๐‘›โ„). If we have

๐ท๐‘˜๐‘”,๐ท๐‘˜๐œ‡,๐‘€๐‘˜๐‘”,๐‘€๐‘˜๐œ‡ โˆˆ ๐ฟ2(โ„๐‘›;โ„โŠ• ๐‘–๐‘›โ„), ๐‘˜ = 1, 2, . . . , ๐‘›, (4.16)

then the following relation holds

โŸจ๐‘€๐‘˜๐‘”,๐ท๐‘˜๐œ‡โŸฉ โˆ’ โŸจ๐ท๐‘˜๐‘”,๐‘€๐‘˜๐œ‡โŸฉ = ยฑ 1

2๐œ‹๐‘–๐‘›โŸจ๐‘”, ๐œ‡โŸฉ , (4.17)

where the scalar inner product โŸจโ‹…, โ‹…โŸฉ is given by (2.8).

Proof. Let us choose ๐œ‘๐‘— , ๐œ“๐‘— โˆˆ ๐’ฎ(โ„๐‘›;โ„โŠ• ๐‘–๐‘›โ„), where ๐’ฎ(โ„๐‘›;โ„โŠ• ๐‘–๐‘›โ„) denotes theSchwartz class. We recall that ๐’ฎ(โ„๐‘›;โ„โŠ•๐‘–๐‘›โ„) is a dense subspace in ๐ฟ2(โ„๐‘›;โ„โŠ•๐‘–๐‘›โ„)and it is defined as the set of all smooth functions from โ„๐‘› to โ„โŠ• ๐‘–๐‘›โ„ such thatall of its partial derivatives are rapidly decreasing. Therefore, we have that if๐œ‘๐‘— โ†’ ๐‘”, ๐œ“๐‘— โ†’ ๐œ‡, then ๐ท๐‘˜๐œ‘๐‘— โ†’ ๐ท๐‘˜๐‘”,๐‘€๐‘˜๐œ‘๐‘— โ†’ ๐‘€๐‘˜๐‘” and ๐ท๐‘˜๐œ“๐‘— โ†’ ๐ท๐‘˜๐œ‡,๐‘€๐‘˜๐œ“๐‘— โ†’๐‘€๐‘˜๐œ‡, ๐‘˜ = 1, 2, . . . , ๐‘›. Moreover, the convergence is in the ๐ฟ2-sense. Since it is easyto check that for fixed ๐‘˜ the operators ๐ท๐‘˜ and ๐‘€๐‘˜ are self-adjoint, we obtain

โŸจ๐‘€๐‘˜๐œ‘๐‘— , ๐ท๐‘˜๐œ“๐‘—โŸฉ โˆ’ โŸจ๐ท๐‘˜๐œ‘๐‘— ,๐‘€๐‘˜๐œ“๐‘—โŸฉ = โŸจ๐ท๐‘˜๐‘€๐‘˜๐œ‘๐‘— , ๐œ“๐‘—โŸฉ โˆ’ โŸจ๐‘€๐‘˜๐ท๐‘˜๐œ‘๐‘— , ๐œ“๐‘—โŸฉ

Page 333: Quaternion and Clifford Fourier Transforms and Wavelets

312 Y. Fu, U. Kahler and P. Cerejeiras

= โˆ’โŸจ[๐‘€๐‘˜, ๐ท๐‘˜]๐œ‘๐‘— , ๐œ“๐‘—โŸฉ =โŸจ๐œ‘๐‘—

1

2๐œ‹๐‘–๐‘›, ๐œ“๐‘—

โŸฉ= ยฑ 1

2๐œ‹๐‘–๐‘›โŸจ๐œ‘๐‘— , ๐œ“๐‘—โŸฉ , (4.18)

where we use the fact that the pseudoscalar ๐‘–๐‘› commutes with the scalar elementsof the algebra. Moreover, since the scalar inner product is continuous, the desiredresult holds in the limit. โ–ก

The utility of the Cliffordโ€“Zak transform ๐‘๐‘ for constructing Gabor basesstems from the following result.

Lemma 4.6. Suppose that the non-zero window function ๐‘” satisfies (4.2). Then wehave

1. {๐‘”m,n : m,n โˆˆ โ„ค๐‘›} is a frame for ๐ฟ2(โ„๐‘›;โ„โŠ• ๐‘–๐‘›โ„) if and only if

0 < ๐ต โ‰ค โˆฃ๐‘๐‘๐‘”(x, ๐œ”)โˆฃ2 โ‰ค ๐ถ <โˆž ๐‘Ž.๐‘’. (x, ๐œ”) โˆˆ ๐‘„2๐‘›. (4.19)

2. {๐‘”m,n : m,n โˆˆ โ„ค๐‘›} is an orthonormal basis for ๐ฟ2(โ„๐‘›;โ„โŠ• ๐‘–๐‘›โ„) if and only

if โˆฃ๐‘๐‘๐‘”(x, ๐œ”)โˆฃ2 = 1 for almost all (x, ๐œ”) โˆˆ ๐‘„2๐‘›.

Proof. Let us first prove statement 1. Assume that {๐‘”m,n : m,n โˆˆ โ„ค๐‘›} is a framefor ๐ฟ2(โ„๐‘›;โ„โŠ• ๐‘–๐‘›โ„). According to the definition, there exist 0 < ๐ต โ‰ค ๐ถ <โˆž suchthat for all ๐‘“ โˆˆ ๐ฟ2(โ„๐‘›;โ„โŠ• ๐‘–๐‘›โ„), it holds

๐ต โˆฅ๐‘“โˆฅ2๐ฟ2(โ„๐‘›;โ„โŠ•๐‘–๐‘›โ„) โ‰คโˆ‘

m,nโˆˆโ„ค๐‘›

โˆฃโŸจ๐‘“, ๐‘”m,nโŸฉโˆฃ2 โ‰ค ๐ถ โˆฅ๐‘“โˆฅ2๐ฟ2(โ„๐‘›;โ„โŠ•๐‘–๐‘›โ„) . (4.20)

Then ๐น = ๐‘๐‘๐‘“ โˆˆ ๐ฟ2(๐‘„2๐‘›;โ„โŠ• ๐‘–๐‘›โ„) and by Corollary 3.4 and Theorem 3.7 we get

๐ต โˆฅ๐นโˆฅ2๐ฟ2(๐‘„2๐‘›;โ„โŠ•๐‘–๐‘›โ„) โ‰คโˆฅโˆฅโˆฅ๐น๐‘๐‘๐‘”

โˆฅโˆฅโˆฅ2๐ฟ2(๐‘„2๐‘›;โ„โŠ•๐‘–๐‘›โ„)

โ‰ค ๐ถ โˆฅ๐นโˆฅ2๐ฟ2(๐‘„2๐‘›;โ„โŠ•๐‘–๐‘›โ„) , (4.21)

which implies that ๐ต โ‰ค โˆฃ๐‘๐‘๐‘”โˆฃ2 โ‰ค ๐ถ ๐‘Ž.๐‘’. due to Lemma 4.2. Conversely, if ๐ต โ‰คโˆฃ๐‘๐‘๐‘”โˆฃ2 โ‰ค ๐ถ ๐‘Ž.๐‘’., then by Theorem 3.7 and Corollary 3.4, we conclude that for all๐‘“ โˆˆ ๐ฟ2(โ„๐‘›;โ„โŠ• ๐‘–๐‘›โ„)

๐ต โˆฅ๐‘“โˆฅ2๐ฟ2(โ„๐‘›;โ„โŠ•๐‘–๐‘›โ„) โ‰คโˆ‘

m,nโˆˆโ„ค๐‘›

โˆฃโŸจ๐‘“, ๐‘”m,nโŸฉโˆฃ2 =โˆฅโˆฅโˆฅ๐‘๐‘๐‘“๐‘๐‘๐‘”

โˆฅโˆฅโˆฅ2๐ฟ2(๐‘„2๐‘›;โ„โŠ•๐‘–๐‘›โ„)

โ‰ค ๐ถ โˆฅ๐‘“โˆฅ2๐ฟ2(โ„๐‘›;โ„โŠ•๐‘–๐‘›โ„) . (4.22)

Now, let us take a look at statement 2. If {๐‘”m,n : m,n โˆˆ โ„ค๐‘›} is an orthonor-mal basis for ๐ฟ2(โ„๐‘›;โ„โŠ• ๐‘–๐‘›โ„) then, for all ๐‘“ โˆˆ ๐ฟ2(โ„๐‘›;โ„โŠ• ๐‘–๐‘›โ„), it holdsโˆ‘

m,nโˆˆโ„ค๐‘›

โˆฃโŸจ๐‘“, ๐‘”m,nโŸฉโˆฃ2 = โˆฅ๐‘“โˆฅ2๐ฟ2(โ„๐‘›;โ„โŠ•๐‘–๐‘›โ„) = โˆฅ๐‘“โˆฅ2๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0)

= โˆฅ๐‘๐‘๐‘“โˆฅ2๐ฟ2(๐‘„2๐‘›;๐ถโ„“๐‘›,0). (4.23)

Thus, by Theorem 3.7 we getโˆฅโˆฅโˆฅ๐‘๐‘๐‘“๐‘๐‘๐‘”โˆฅโˆฅโˆฅ2๐ฟ2(๐‘„2๐‘›;๐ถโ„“๐‘›,0)

= โˆฅ๐‘๐‘๐‘“โˆฅ2๐ฟ2(๐‘„2๐‘›;๐ถโ„“๐‘›,0), (4.24)

Page 334: Quaternion and Clifford Fourier Transforms and Wavelets

15. The Balianโ€“Low Theorem for the WCFT 313

which implies that โˆฃ๐‘๐‘๐‘”(x, ๐œ”)โˆฃ2 = 1 for almost all (x, ๐œ”) โˆˆ ๐‘„2๐‘› due to Lemma 4.2.

Conversely, if โˆฃ๐‘๐‘๐‘”(x, ๐œ”)โˆฃ2 = 1 for almost all (x, ๐œ”) โˆˆ ๐‘„2๐‘›, then by Theorem 3.7,{๐‘”m,n : m,n โˆˆ โ„ค๐‘›} is a tight frame for ๐ฟ2(โ„๐‘›;โ„โŠ• ๐‘–๐‘›โ„). Moreover, Corollary 3.4

yields โˆฅ๐‘”โˆฅ2๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0)=โˆฅ๐‘๐‘๐‘”โˆฅ2๐ฟ2(๐‘„2๐‘›;๐ถโ„“๐‘›,0)

=1, which leads to โˆฅ๐‘”m,nโˆฅ2๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0)=1.

Consequently, {๐‘”m,n : m,n โˆˆ โ„ค๐‘›} is an orthonormal basis for ๐ฟ2(โ„๐‘›;โ„โŠ•๐‘–๐‘›โ„). โ–ก

Combining Corollary 3.4, Theorem 3.7 and (3.7), we can assert that

โŸจ๐‘๐‘๐‘†๐‘“, ๐‘๐‘๐‘“โŸฉ =โˆฅโˆฅโˆฅ๐‘๐‘๐‘“๐‘๐‘๐‘”

โˆฅโˆฅโˆฅ2๐ฟ2(๐‘„2๐‘›;๐ถโ„“๐‘›,0)

, (4.25)

where ๐‘† is the frame operator defined by (3.2). Thus, we get that ๐‘๐‘๐‘†๐‘โˆ’1๐‘ corre-

sponds to a multiplication by โˆฃ๐‘๐‘๐‘”โˆฃ2 on the space ๐’ต defined by (3.23).The following lemma shows that โˆ‚๐‘ฅ1๐‘๐‘๐‘” โˆˆ ๐ฟ2(๐‘„2๐‘›;โ„ โŠ• ๐‘–๐‘›โ„) implies that

โˆ‚๐‘ฅ1 โˆฃ๐‘๐‘๐‘”โˆฃ โˆˆ ๐ฟ2(๐‘„2๐‘›;โ„) under a certain condition. In a similar way, we can get thecorresponding results for โˆ‚๐‘ฅ2๐‘๐‘๐‘”, โˆ‚๐œ”1๐‘๐‘๐‘” and โˆ‚๐œ”2๐‘๐‘๐‘” in ๐ฟ2(๐‘„2๐‘›;โ„โŠ• ๐‘–๐‘›โ„).

Lemma 4.7. Under the hypotheses of Theorem 4.3 we see that if โˆ‚๐‘ฅ1๐‘๐‘๐‘” โˆˆ๐ฟ2(๐‘„2๐‘›;โ„โŠ• ๐‘–๐‘›โ„) then โˆ‚๐‘ฅ1 โˆฃ๐‘๐‘๐‘”โˆฃ โˆˆ ๐ฟ2(๐‘„2๐‘›;โ„) โŠ‚ ๐ฟ2(๐‘„2๐‘›;โ„โŠ• ๐‘–๐‘›โ„).

Proof. Since ๐‘” โˆˆ ๐ฟ2(โ„๐‘›;โ„ โŠ• ๐‘–๐‘›โ„), an easy computation shows that there exist๐บ,๐ป โˆˆ ๐ฟ2(๐‘„2๐‘›;โ„โŠ• ๐‘–๐‘›โ„) such that

๐‘๐‘๐‘” = ๐บ+ ๐‘–๐‘›๐ป, ๐บ,๐ป โˆˆ โ„. (4.26)

Thus โˆ‚๐‘ฅ1๐‘๐‘๐‘” = โˆ‚๐‘ฅ1๐บ+ โˆ‚๐‘ฅ1๐ป๐‘–๐‘› and

โˆฅโˆ‚๐‘ฅ1๐‘๐‘๐‘”โˆฅ2 =

โˆซ๐‘„2๐‘›

โˆฃโˆ‚๐‘ฅ1๐‘๐‘๐‘”โˆฃ2 ๐‘‘๐‘›x๐‘‘๐‘›๐œ”

=

โˆซ๐‘„2๐‘›

((โˆ‚๐‘ฅ1๐บ)2 + (โˆ‚๐‘ฅ1๐ป)2

)๐‘‘๐‘›x๐‘‘๐‘›๐œ” <โˆž, (4.27)

which means that

โˆฅโˆ‚๐‘ฅ1๐บโˆฅ <โˆž, โˆฅโˆ‚๐‘ฅ1๐ปโˆฅ <โˆž. (4.28)

Moreover, since {๐‘”m,n : m,n โˆˆ โ„ค๐‘›} is a frame for ๐ฟ2(โ„๐‘›;โ„โŠ•๐‘–๐‘›โ„) by Lemma4.6 we have

0 < ๐ต โ‰ค โˆฃ๐‘๐‘๐‘”(x, ๐œ”)โˆฃ2 โ‰ค ๐ถ <โˆž, ๐‘Ž.๐‘’. (x, ๐œ”) โˆˆ ๐‘„2๐‘›, (4.29)

which tells us that

๐บ2 โ‰ค ๐ถ <โˆž, ๐ป2 โ‰ค ๐ถ <โˆž. (4.30)

A simple calculation leads to

โˆ‚๐‘ฅ1 โˆฃ๐‘๐‘๐‘”โˆฃ = โˆฃ๐‘๐‘๐‘”โˆฃโˆ’1(๐บโˆ‚๐‘ฅ1๐บ+๐ปโˆ‚๐‘ฅ1๐ป). (4.31)

Now, based on (4.28), (4.30), and the Minkowski inequality in ๐ฟ2(๐‘„2๐‘›;โ„), it followsthat

โˆฅโˆ‚๐‘ฅ1 โˆฃ๐‘๐‘๐‘”โˆฃโˆฅ2 =

โˆซ๐‘„2๐‘›

โˆฃ๐‘๐‘๐‘”โˆฃโˆ’2 โˆฃ(๐บโˆ‚๐‘ฅ1๐บ+๐ปโˆ‚๐‘ฅ1๐ป)โˆฃ2 ๐‘‘๐‘›x๐‘‘๐‘›๐œ”

Page 335: Quaternion and Clifford Fourier Transforms and Wavelets

314 Y. Fu, U. Kahler and P. Cerejeiras

โ‰ค ๐ตโˆ’1

โˆซ๐‘„2๐‘›

โˆฃ(๐บโˆ‚๐‘ฅ1๐บ+๐ปโˆ‚๐‘ฅ1๐ป)โˆฃ2 ๐‘‘๐‘›x๐‘‘๐‘›๐œ”

โ‰ค ๐ตโˆ’1(โˆฅ๐บโˆ‚๐‘ฅ1๐บโˆฅ+ โˆฅ๐ปโˆ‚๐‘ฅ1๐ปโˆฅ)2 (4.32)

โ‰ค ๐ตโˆ’1๐ถ(โˆฅโˆ‚๐‘ฅ1๐บโˆฅ+ โˆฅโˆ‚๐‘ฅ1๐ปโˆฅ)2 <โˆž. โ–ก

Now, let us consider the dual frame ๐‘”m,n := ๐‘†โˆ’1๐‘”m,n given by (3.9). Since๐‘๐‘๐‘†๐‘

โˆ’1๐‘ corresponds to a multiplication by โˆฃ ๐‘๐‘๐‘” โˆฃ2 on the space ๐’ต, by Lemma 4.6

it follows that

๐‘๐‘๐‘”m,n = ๐‘๐‘๐‘†โˆ’1๐‘โˆ’1

๐‘ ๐‘๐‘๐‘”m,n = โˆฃ๐‘๐‘๐‘”โˆฃโˆ’2๐‘๐‘๐‘”m,n (4.33)

or

๐‘๐‘๐‘”m,n = โˆฃ๐‘๐‘๐‘”โˆฃโˆ’2๐‘’โˆ’2๐œ‹๐‘–๐‘›nโ‹…๐œ”๐‘’2๐œ‹๐‘–๐‘›mโ‹…x๐‘๐‘๐‘”

= ๐‘’โˆ’2๐œ‹๐‘–๐‘›nโ‹…๐œ”๐‘’2๐œ‹๐‘–๐‘›mโ‹…x๐‘๐‘๐‘”, (4.34)

which belongs to the space ๐’ต with ๐‘๐‘๐‘” = โˆฃ๐‘๐‘๐‘”โˆฃโˆ’2 ๐‘๐‘๐‘”. In particular, (4.34) impliesthat

๐‘”m,n(x) := ๐‘’2๐œ‹๐‘–๐‘›mโ‹…x๐‘”(xโˆ’ n), (4.35)

which proves the following lemma associated with Lemma 4.2.

Lemma 4.8. Under the hypotheses of Theorem 4.3 the dual window function ๐‘”

satisfies ๐‘๐‘๐‘” = โˆฃ๐‘๐‘๐‘”โˆฃโˆ’2๐‘๐‘๐‘” and ๐‘๐‘๐‘” ๐‘๐‘๐‘” = 1.

Analogous to the Minkowski inequality in ๐ฟ2(โ„๐‘›;โ„), by the definition ofthe norm (2.6) and the Cliffordโ€“Cauchyโ€“Schwarz inequality (2.9), the followingCliffordโ€“Minkowski inequality holds true in ๐ฟ2(๐‘„2๐‘›;๐ถโ„“๐‘›,0). This will be necessaryin the proof of Theorem 4.3.

Lemma 4.9. For ๐œ‘, ๐œ“ โˆˆ ๐ฟ2(๐‘„2๐‘›;๐ถโ„“๐‘›,0), we have ๐œ‘+ ๐œ“ โˆˆ ๐ฟ2(๐‘„2๐‘›;๐ถโ„“๐‘›,0) and

โˆฅ๐œ‘+ ๐œ“โˆฅ โ‰ค โˆฅ๐œ‘โˆฅ + โˆฅ๐œ“โˆฅ . (4.36)

Now, we are in position to demonstrate Theorem 4.3.

Proof. We prove the theorem by contradiction. Suppose that {๐‘”m,n : m,n โˆˆ โ„ค๐‘›}is a frame for ๐ฟ2(โ„๐‘›;โ„โŠ• ๐‘–๐‘›โ„) with a non-zero window function ๐‘” satisfying (4.2),and, furthermore, suppose that

โ–ณ๐‘ฅ๐‘˜ =

โˆซโ„๐‘›

๐‘ฅ2๐‘˜ โˆฃ๐‘”(x)โˆฃ2 ๐‘‘๐‘›x <โˆž, (4.37)

and

โ–ณ๐œ”๐‘˜ =

โˆซโ„๐‘›

๐œ”2๐‘˜ โˆฃโ„ฑ๐‘”(๐œ”)โˆฃ2 ๐‘‘๐‘›๐œ” <โˆž, ๐‘˜ = 1, 2, . . . , ๐‘›. (4.38)

Now, based on Lemmas 2.2 and 4.4, we get ๐‘€๐‘˜๐‘”,๐ท๐‘˜๐‘” โˆˆ ๐ฟ2(โ„๐‘›;โ„ โŠ• ๐‘–๐‘›โ„), wherethe multiplication and partial derivative operators ๐‘€๐‘˜, ๐ท๐‘˜ are defined by (4.12).

One has that

[๐‘๐‘(๐‘€๐‘˜๐‘”)] (x, ๐œ”) = ๐‘ฅ๐‘˜๐‘๐‘๐‘” โˆ’ 1

2๐œ‹๐‘–๐‘›โˆ‚๐œ”๐‘˜

๐‘๐‘๐‘”, (4.39)

Page 336: Quaternion and Clifford Fourier Transforms and Wavelets

15. The Balianโ€“Low Theorem for the WCFT 315

which means that ๐‘€๐‘˜๐‘” โˆˆ ๐ฟ2(โ„๐‘›;โ„โŠ•๐‘–๐‘›โ„) if and only if โˆ‚๐œ”๐‘˜๐‘๐‘๐‘” โˆˆ ๐ฟ2(๐‘„2๐‘›;โ„โŠ•๐‘–๐‘›โ„)

by Theorem 3.4 and Lemma 4.9. In a similar way, we find that ๐ท๐‘˜๐‘” โˆˆ ๐ฟ2(โ„๐‘›;โ„โŠ•๐‘–๐‘›โ„) if and only if โˆ‚๐‘ฅ๐‘˜

๐‘๐‘๐‘” โˆˆ ๐ฟ2(๐‘„2๐‘›;โ„โŠ• ๐‘–๐‘›โ„). By Lemma 4.8 we know that the

dual window function ๐‘” satisfies ๐‘๐‘๐‘” = โˆฃ๐‘๐‘๐‘”โˆฃโˆ’2 ๐‘๐‘๐‘”. Consequently, we see that

โˆ‚๐‘ฅ๐‘˜(๐‘๐‘๐‘”) = โˆ‚๐‘ฅ๐‘˜

(โˆฃ๐‘๐‘๐‘”โˆฃโˆ’2)๐‘๐‘๐‘” + โˆฃ๐‘๐‘๐‘”โˆฃโˆ’2

โˆ‚๐‘ฅ๐‘˜๐‘๐‘๐‘”

= โˆ’2 โˆฃ๐‘๐‘๐‘”โˆฃโˆ’3๐‘๐‘๐‘” โˆ‚๐‘ฅ๐‘˜

โˆฃ๐‘๐‘๐‘”โˆฃ+ โˆฃ๐‘๐‘๐‘”โˆฃโˆ’2โˆ‚๐‘ฅ๐‘˜

๐‘๐‘๐‘” (4.40)

andโˆ‚๐œ”๐‘˜

(๐‘๐‘๐‘”) = โˆ’2 โˆฃ๐‘๐‘๐‘”โˆฃโˆ’3๐‘๐‘๐‘” โˆ‚๐œ”๐‘˜

โˆฃ๐‘๐‘๐‘”โˆฃ+ โˆฃ๐‘๐‘๐‘”โˆฃโˆ’2โˆ‚๐œ”๐‘˜

๐‘๐‘๐‘” (4.41)

are in ๐ฟ2(๐‘„2๐‘›;โ„ โŠ• ๐‘–๐‘›โ„) by Lemmas 4.9, 4.6, and 4.7. Hence, we conclude that๐‘€๐‘˜๐‘”,๐ท๐‘˜๐‘” โˆˆ ๐ฟ2(โ„๐‘›;โ„ โŠ• ๐‘–๐‘›โ„). For the functions ๐‘” and ๐‘”, we shall next prove thefact

โŸจ๐‘€๐‘˜๐‘”,๐ท๐‘˜๐‘”โŸฉ = โŸจ๐ท๐‘˜๐‘”,๐‘€๐‘˜๐‘”โŸฉ , (4.42)

from which we derive the contradiction. In fact, in the first place, by Corollary 3.4and Lemma 4.8 we find that

โŸจ๐‘”, ๐‘”m,nโŸฉ = โŸจ๐‘๐‘๐‘”, ๐‘๐‘๐‘”m,nโŸฉ =[โˆซ

๐‘„2๐‘›

๐‘๐‘๐‘”๐‘๐‘๐‘”๐‘’2๐œ‹๐‘–๐‘›nโ‹…๐œ”๐‘’โˆ’2๐œ‹๐‘–๐‘›mโ‹…x๐‘‘๐‘›x๐‘‘๐‘›๐œ”

]0

=

[โˆซ๐‘„2๐‘›

๐‘’2๐œ‹๐‘–๐‘›nโ‹…๐œ”๐‘’โˆ’2๐œ‹๐‘–๐‘›mโ‹…x๐‘‘๐‘›x๐‘‘๐‘›๐œ”]0

= ๐›ฟm,0๐›ฟn,0, (4.43)

where ๐›ฟm,k denotes the Kronecker delta function. Similarly, we can check that

โŸจ๐‘”, ๐‘”m,nโŸฉ = ๐›ฟm,0๐›ฟn,0. (4.44)

Now, since ๐‘€๐‘˜๐‘”,๐ท๐‘˜๐‘” โˆˆ ๐ฟ2(โ„๐‘›;โ„โŠ• ๐‘–๐‘›โ„) and {๐‘”m,n}, {๐‘”m,n} constitute dualframes for ๐ฟ2(โ„๐‘›;โ„โŠ• ๐‘–๐‘›โ„), we obtain

โŸจ๐‘€๐‘˜๐‘”,๐ท๐‘˜๐‘”โŸฉ =โˆ‘

m,nโˆˆโ„ค๐‘›

โŸจ๐‘€๐‘˜๐‘”, ๐‘”m,nโŸฉ โŸจ๐‘”m,n, ๐ท๐‘˜๐‘”โŸฉ . (4.45)

Based on (4.35), (4.44), and (2.5), a simple calculation leads to

โŸจ๐‘”โˆ’m,โˆ’n,๐‘€๐‘˜๐‘”โŸฉ =[โˆซ

โ„๐‘›

๐‘’โˆ’2๐œ‹๐‘–๐‘›mโ‹…x๐‘”(x+ n)๐‘ฅ๐‘˜๐‘”(x)๐‘‘๐‘›x

]0

=

[โˆซโ„๐‘›

๐‘’โˆ’2๐œ‹๐‘–๐‘›mโ‹…x๐‘”(x+ n)๐‘ฅ๐‘˜ หœ๐‘”(x)๐‘‘๐‘›x]0

=

[โˆซโ„๐‘›

๐‘ฅ๐‘˜๐‘”(x+ n) หœ๐‘”(x)๐‘’โˆ’2๐œ‹๐‘–๐‘›mโ‹…x๐‘‘๐‘›x]0

=

[โˆซโ„๐‘›

(๐‘ฅ๐‘˜ โˆ’ ๐‘›๐‘˜)๐‘”(x) หœ๐‘”(xโˆ’ n)๐‘’โˆ’2๐œ‹๐‘–๐‘›mโ‹…(xโˆ’n)๐‘‘๐‘›x

]0

= โŸจ๐‘€๐‘˜๐‘”, ๐‘”m,nโŸฉ โˆ’ ๐‘›๐‘˜ โŸจ๐‘”, ๐‘”m,nโŸฉ = โŸจ๐‘€๐‘˜๐‘”, ๐‘”m,nโŸฉ . (4.46)

On the other hand, by (4.43) and (2.5) we obtain

โŸจ๐ท๐‘˜๐‘”, ๐‘”โˆ’m,โˆ’nโŸฉ =[โˆซ

โ„๐‘›

โˆ‚๐‘ฅ๐‘˜๐‘”(x)

1

2๐œ‹๐‘–๐‘›หœ๐‘”(x+ n)๐‘’2๐œ‹๐‘–๐‘›mโ‹…x๐‘‘๐‘›x

]0

Page 337: Quaternion and Clifford Fourier Transforms and Wavelets

316 Y. Fu, U. Kahler and P. Cerejeiras

= 0โˆ’[โˆซ

โ„๐‘›

๐‘”(x)1

2๐œ‹๐‘–๐‘›โˆ‚๐‘ฅ๐‘˜

(หœ๐‘”(x+ n)๐‘’2๐œ‹๐‘–๐‘›mโ‹…x

)๐‘‘๐‘›x

]0

= โˆ’

โŽกโŽขโŽขโŽฃโˆซโ„๐‘›

๐‘”(x)1

2๐œ‹๐‘–๐‘›

โŽ›โŽœโŽœโŽโˆ‚๐‘ฅ๐‘˜

หœ๐‘”(x+ n)๐‘’2๐œ‹๐‘–๐‘›mโ‹…x

+

หœ๐‘”(x+ n)๐‘š๐‘˜2๐œ‹๐‘–๐‘›๐‘’2๐œ‹๐‘–๐‘›mโ‹…x

โŽžโŽŸโŽŸโŽ  ๐‘‘๐‘›x

โŽคโŽฅโŽฅโŽฆ0

=

[โˆซโ„๐‘›

๐‘’2๐œ‹๐‘–๐‘›mโ‹…x๐‘”(xโˆ’ n)๐ท๐‘˜๐‘”(x)๐‘‘๐‘›x

]0

โˆ’๐‘š๐‘˜

[โˆซโ„๐‘›

๐‘”(x)1

2๐œ‹๐‘–๐‘›หœ๐‘”(x+ n)2๐œ‹๐‘–๐‘›๐‘’

2๐œ‹๐‘–๐‘›mโ‹…x๐‘‘๐‘›x]0

= โŸจ๐‘”m,n, ๐ท๐‘˜๐‘”โŸฉ ยฑ๐‘š๐‘˜ โŸจ๐‘”m,n, ๐‘”โŸฉ = โŸจ๐‘”m,n, ๐ท๐‘˜๐‘”โŸฉ . (4.47)

Consequently, substituting (4.46) and (4.47) into (4.45), we get

โŸจ๐‘€๐‘˜๐‘”,๐ท๐‘˜๐‘”โŸฉ =โˆ‘

m,nโˆˆโ„ค๐‘›

โŸจ๐‘”โˆ’m,โˆ’n,๐‘€๐‘˜๐‘”โŸฉ โŸจ๐ท๐‘˜๐‘”, ๐‘”โˆ’m,โˆ’nโŸฉ

=โˆ‘

m,nโˆˆโ„ค๐‘›

โŸจ๐ท๐‘˜๐‘”, ๐‘”โˆ’m,โˆ’nโŸฉ โŸจ๐‘”โˆ’m,โˆ’n,๐‘€๐‘˜๐‘”โŸฉ = โŸจ๐ท๐‘˜๐‘”,๐‘€๐‘˜๐‘”โŸฉ , (4.48)

which means that

โŸจ๐‘”, ๐‘”โŸฉ = 0 (4.49)

by Lemma 4.5. However, by (4.44), taking m = n = 0, we have

โŸจ๐‘”, ๐‘”โŸฉ = 1, (4.50)

which leads to the contradiction. Thus, we get

โ–ณ๐‘ฅ๐‘˜โ–ณ๐œ”๐‘˜ =โˆž, ๐‘˜ = 1, 2, . . . , ๐‘›. (4.51)

โ–ก

We are now in a position to extend Theorem 4.3 to the case of an arbitraryClifford frame.

Theorem 4.10 (Balianโ€“Low theorem). Suppose that {๐‘”m,n(x) : m,n โˆˆ โ„ค๐‘›} con-stitutes a frame for ๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0) associated to a non-zero window function ๐‘” in๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0). Then we have

โ–ณ๐‘ฅ๐‘˜โ–ณ๐œ”๐‘˜ =โˆž, ๐‘˜ = 1, 2, . . . , ๐‘›, (4.52)

where

โ–ณ๐‘ฅ๐‘˜ =

โˆซโ„๐‘›

๐‘ฅ2๐‘˜ โˆฃ๐‘”(x)โˆฃ2 ๐‘‘๐‘›x, โ–ณ๐œ”๐‘˜ =

โˆซโ„๐‘›

๐œ”2๐‘˜ โˆฃโ„ฑ๐‘”(๐œ”)โˆฃ2 ๐‘‘๐‘›๐œ” (4.53)

and the CFT of ๐‘”, โ„ฑ๐‘”(๐œ”), is defined by (2.10).

Proof. If {๐‘”m,n : m,n โˆˆ โ„ค๐‘›} constitutes a frame for ๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0) then the system{โ„Žm,n = [๐‘”m,n]0 + ๐‘–๐‘›[๐‘”m,n]๐‘› : m,n โˆˆ โ„ค๐‘›} is a frame for ๐ฟ2(โ„๐‘›;โ„ โŠ• ๐‘–๐‘›โ„). ByTheorem 4.3 the result follows. โ–ก

Page 338: Quaternion and Clifford Fourier Transforms and Wavelets

15. The Balianโ€“Low Theorem for the WCFT 317

5. Conclusions

The classical Balianโ€“Low theorem is a strong form of the uncertainty principle forGabor systems which can be obtained by discretization of the kernel of the WFT.The WCFT is a generalization of the WFT in the framework of Clifford analysis.In this chapter, associated with the discretization of the kernel of the WCFT, weestablished a new kind of Gabor system

๐‘”m,n(x) := ๐‘’2๐œ‹๐‘–๐‘›mโ‹…x๐‘”(xโˆ’ n), m,n โˆˆ โ„ค๐‘›, (5.1)

which constitutes a Clifford frame satisfying the frame condition

๐ต โˆฅ๐‘“โˆฅ2 โ‰คโˆ‘

m,nโˆˆโ„ค๐‘›

โˆฃโŸจ๐‘“, ๐‘”m,nโŸฉโˆฃ2 โ‰ค ๐ถ โˆฅ๐‘“โˆฅ2 , ๐ต, ๐ถ > 0, โˆ€๐‘“ โˆˆ ๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0).

(5.2)To analyse Gabor systems {๐‘”m,n(x) : m,n โˆˆ โ„ค๐‘›} in ๐ฟ2(โ„๐‘›, ๐ถโ„“๐‘›,0), we establishedthe definition of the Cliffordโ€“Zak transform for ๐‘“ โˆˆ ๐ฟ2(โ„๐‘›;๐ถโ„“๐‘›,0) by

๐‘๐‘๐‘“(x, ๐œ”) :=โˆ‘kโˆˆโ„ค๐‘›

๐‘’2๐œ‹๐‘–๐‘›kโ‹…๐œ”๐‘“(xโˆ’ k), (x, ๐œ”) โˆˆ ๐‘„2๐‘›, (5.3)

and showed some properties of it. Furthermore, we proved the correspondingBalianโ€“Low theorem for such Gabor systems which form a Clifford frame.

Acknowledgment

The first author is the recipient of a postdoctoral grant from Fundacao para aCiencia e a Tecnologia, ref. SFRH/BPD/46250/2008. This work was supportedby FEDER funds through COMPETE โ€“ Operational Programme Factors of Com-petitiveness (โ€˜Programa Operacional Factores de Competitividadeโ€™) and by Por-tuguese funds through the Center for Research and Development in Mathematicsand Applications (University of Aveiro) and the Portuguese Foundation for Scienceand Technology (โ€˜FCT โ€“ Fundacao para a Ciencia e a Tecnologiaโ€™), within projectPEst-C/MAT/UI4106/2011 with COMPETE number FCOMP-01-0124-FEDER-022690. The work was also supported by the Foundation of Hubei EducationalCommittee (No. Q20091004) and the NSFC (No. 11026056).

References

[1] M. Bahri. Generalized Fourier transform in Clifford algebra ๐ถ๐‘™(0, 3). Far East Jour-nal of Mathematical Science, 44(2):143โ€“154, Sept. 2010.

[2] M. Bahri. Generalized Fourier transform in real clifford algebra ๐‘๐‘™(0, ๐‘›). Far EastJournal of Mathematical Sciences, 48(1):11โ€“24, Jan. 2011.

[3] M. Bahri, S. Adji, and J.M. Zhao. Real Clifford windowed Fourier transform. ActaMathematica Sinica, 27(3):505โ€“518, 2011.

[4] M. Bahri, E. Hitzer, R. Ashino, and R. Vaillancourt. Windowed Fourier transformof two-dimensional quaternionic signals. Applied Mathematics and Computation,216(8):2366โ€“2379, June 2010.

Page 339: Quaternion and Clifford Fourier Transforms and Wavelets

318 Y. Fu, U. Kahler and P. Cerejeiras

[5] R. Balan. Extensions of no-go theorems to many signal systems. In A. Aldroubi andE.B. Lin, editors, Wavelets, Multiwavelets, and Their Applications, volume 216 ofContemporary Mathematics, pages 3โ€“14. American Mathematical Society, 1998.

[6] I.J. Benedetto, W. Czaja, and A.Y. Maltsev. The Balianโ€“Low theorem for the sym-plectic form on โ„2๐‘‘. Journal of Mathematical Physics, 44(4):1735โ€“1750, 2003.

[7] J.J. Benedetto, C. Heil, and D.F. Walnut. Differentiation and the Balianโ€“Low the-orem. Journal of Fourier Analysis and Applications, 1(4):355โ€“402, 1994.

[8] F. Brackx, N. De Schepper, and F. Sommen. The two-dimensional Cliffordโ€“Fouriertransform. Journal of Mathematical Imaging and Vision, 26(1):5โ€“18, 2006.

[9] F. Brackx, N. De Schepper, and F. Sommen. The Fourier transform in Cliffordanalysis. Advances in Imaging and Electron Physics, 156:55โ€“201, 2009.

[10] F. Brackx, R. Delanghe, and F. Sommen. Clifford Analysis, volume 76. Pitman,Boston, 1982.

[11] T. Bulow, M. Felsberg, and G. Sommer. Non-commutative hypercomplex Fouriertransforms of multidimensional signals. In G. Sommer, editor, Geometric computingwith Clifford Algebras: Theoretical Foundations and Applications in Computer Visionand Robotics, pages 187โ€“207, Berlin, 2001. Springer.

[12] T. Bulow and G. Sommer. Quaternionic Gabor filters for local structure classifi-cation. In Proceedings Fourteenth International Conference on Pattern Recognition,volume 1, pages 808โ€“810, 16โ€“20 Aug 1998.

[13] W. Czaja and A.M. Powell. Recent developments in the Balianโ€“Low theorem. InC. Heil, editor, Harmonic Analysis and Applications, pages 79โ€“100. Birkhauser,Boston, 2006.

[14] I. Daubechies. Ten Lectures on Wavelets. Society for Industrial and Applied Math-ematics, 1992.

[15] J. Ebling and G. Scheuermann. Clifford Fourier transform on vector fields. IEEETransactions on Visualization and Computer Graphics, 11(4):469โ€“479, JulyAug.2005.

[16] J. Ebling and J. Scheuermann. Clifford convolution and pattern matching on vectorfields. In Proceedings IEEE Visualization, volume 3, pages 193โ€“200, Los Alamitos,CA, 2003. IEEE Computer Society.

[17] M. Felsberg. Low-Level Image Processing with the Structure Multivector. PhD thesis,Christian-Albrechts-Universitat, Institut fur Informatik und Praktische Mathematik,Kiel, 2002.

[18] K. Grochenig. Foundations of Time-Frequency Analysis. Applied and Numerical Har-monic Analysis. Birkhauser, Boston, 2001.

[19] K. Grochenig, D. Han, and G. Kutyniok. The Balianโ€“Low theorem for the symplecticlattice in higher dimensions. Applied and Computational Harmonic Analysis, 13:169โ€“176, 2002.

[20] C. Heil and D.F. Walnut. Continuous and discrete wavelet transforms. SIAM Review,31:628โ€“666, 1989.

[21] S. Held, M. Storath, P. Massopust, and B. Forster. Steerable wavelet frames based onthe Riesz transform. IEEE Transactions on Image Processing, 19(3):653โ€“667, 2010.

Page 340: Quaternion and Clifford Fourier Transforms and Wavelets

15. The Balianโ€“Low Theorem for the WCFT 319

[22] E.M.S. Hitzer and B. Mawardi. Clifford Fourier transform on multivector fields anduncertainty principles for dimensions ๐‘› = 2(mod 4) and ๐‘› = 3(mod 4). Advances inApplied Clifford Algebras, 18(3-4):715โ€“736, 2008.

[23] B. Mawardi, E. Hitzer, and S. Adji. Two-dimensional Clifford windowed Fouriertransform. In E. Bayro-Corrochano and G. Scheuermann, editors, Applied GeometricAlgebras in Computer Science and Engineering, pages 93โ€“106. Springer, London,2010.

[24] B. Mawardi and E.M.S. Hitzer. Clifford Fourier transformation and uncertainty prin-ciple for the Clifford algebra ๐ถโ„“3,0. Advances in Applied Clifford Algebras, 16(1):41โ€“61, 2006.

[25] M. Porat, Y.Y. Zeevi, and M. Zibulski. Multi-window Gabor schemes in signal andimage representations. In H.G. Feichtinger and T. Strohmer, editors, Gabor Analysisand Algorithms, pages 381โ€“408. Birkhauser, 1998.

[26] S.J. Sangwine and T.A. Ell. Hypercomplex Fourier transforms of color images. InIEEE International Conference on Image Processing (ICIP 2001), volume I, pages137โ€“140, Thessaloniki, Greece, 7โ€“10 Oct. 2001. IEEE.

[27] F. Sommen. Hypercomplex Fourier and Laplace transforms I. Illinois Journal ofMathematics, 26(2):332โ€“352, 1982.

[28] Y.Y. Zeevi and M. Zibulski. Analysis of multiwindow Gabor-type schemes by framemethods. Applied and Computational Harmonic Analysis, 4:188โ€“221, 1997.

Yingxiong FuHubei Key Laboratory of Applied MathematicsHubei University

and

Faculty of Mathematics and Computer ScienceHubei University, Hubei, China

and

Department of MathematicsUniversity of Aveiro, Portugal

e-mail: [email protected]

Uwe Kahler and Paula CerejeirasDepartment of MathematicsUniversity of Aveiro, Portugal

e-mail: [email protected]@ua.pt

Page 341: Quaternion and Clifford Fourier Transforms and Wavelets

Quaternion and Cliffordโ€“Fourier Transforms and Wavelets

Trends in Mathematics, 321โ€“332cโƒ 2013 Springer Basel

16 Sparse Representation of Signalsin Hardy Space

Shuang Li and Tao Qian

Abstract. Mathematically, signals can be seen as functions in certain spaces.And processing is more efficient in a sparse representation where few coeffi-cients reveal the information. Such representations are constructed by decom-posing signals into elementary waveforms. A set of all elementary waveformsis called a dictionary. In this chapter, we introduce a new kind of sparse rep-resentation of signals in Hardy space ๐ป2(๐”ป) via the compressed sensing (CS)technique with the dictionary

D = {๐‘’๐‘Ž : ๐‘’๐‘Ž(๐‘ง) =

โˆš1โˆ’ โˆฃ๐‘Žโˆฃ21โˆ’ ๐‘Ž๐‘ง

, ๐‘Ž โˆˆ ๐”ป}.where ๐”ป denotes the unit disk. In addition, we give examples exhibiting thealgorithm.

Mathematics Subject Classification (2010). 30H05, 42A50, 42A38.

Keywords. Hardy space, compressed sensing, analytic signals, reproducingkernels, sparse representation, redundant dictionary, ๐‘™1 minimization.

1. Introduction

A basis gives unique representations for signals in some certain space. However,it does not always give sparse expressions. One of the problems of approximationtheory is to approximate functions with elements from a large candidate set calleda dictionary. Let ๐ป be a Hilbert space. Using terminology introduced by Mal-lat and Zhang [18], a dictionary is defined as a family of parameterized vectors

D = {๐‘”๐›พ}๐›พโˆˆฮ“ in ๐ป such that โˆฅ๐‘”๐›พโˆฅ = 1 and span(๐‘”๐›พ) = ๐ป . The ๐‘”๐›พ are usuallycalled atoms. For the discrete-time situation, the approximation problem can bewritten as

๐‘  = D๐‘ฅ (1.1)

where ๐‘  is the discrete signal, matrix D represents the dictionary with atoms ascolumns and ๐‘ฅ is the vector of coefficients. Notice that we adopt the vector inner

Page 342: Quaternion and Clifford Fourier Transforms and Wavelets

322 S. Li and T. Qian

product instead of the Hilbert inner product. In general, D has more columnsthan rows because of redundancy. A natural question is: can we find the best๐‘€ -term approximation in a redundant dictionary for a given signal? That is anoptimization problem:

min โˆฅ๐‘ โˆ’D๐‘ฅโˆฅ๐‘™2 subject to โˆฅ๐‘ฅโˆฅ๐‘™0 โ‰ค๐‘€ (1.2)

where โˆฅ๐‘ฅโˆฅ๐‘™0 is the number of nonzero coefficients of ๐‘ฅ. Unfortunately, findingan optimal ๐‘€ -term approximation in redundant dictionaries is computationallyintractable because it is NP-hard [8, 9, 17]. Thus, it is necessary to rely on goodbut not optimal approximations with computational algorithms. Until now, threemain strategies have been investigated, they are matching pursuit , basis pursuitand compressed sensing.

1.1. Matching Pursuit and Basis Pursuit

Matching pursuit (MP) introduced by Mallat and Zhang computes signal approx-imations from a redundant dictionary by iteratively selecting one vector at a time.It is an example of a greedy algorithm. For a detailed description, please referto [17, 18]. A recent development is the Adaptive Fourier Decomposition (AFD),which is a variation of the greedy algorithm in the particular context of Hardyspaces [20]. An intrinsic feature of the algorithm is that when stopped after afew steps, it yields an approximation using only a few atoms. If the dictionary isorthogonal, the method works perfectly. If the dictionary is not orthogonal, thesituation is less clear [6]. The MP algorithm often yields locally optimal solutionsdepending on initial values. In contrast, basis pursuit (BP) performs a more globalsearch. It finds signal representations by solving the following problem

min โˆฅ๐‘ฅโˆฅ๐‘™1 subject to ๐‘  = D๐‘ฅ. (1.3)

Given ๐‘  and D , we find ๐‘ฅ with minimal ๐‘™1 norm. Notice that (1.3) is a convexoptimization program which is not NP-hard. Actually, the use of ๐‘™1 minimizationto promote sparsity has a long history, dating back at least to the work of Beurling[1] on Fourier transform extrapolation from partial observations. Basis pursuit isan optimization principle, not an algorithm. Empirical evidence suggests that BPis more powerful than MP [6]. And the stability of BP has been proved in thepresence of noise for sufficiently sparse representations [11]. BP is closely connectedwith convex programming. The interior-point method and the homotopy methodcan be applied to BP in nearly linear time [6, 13].

1.2. Compressed Sensing

If the original signal is sparse in some sense, compressed sensing (CS) gives anexcellent recovery of the signal. CS is a new concept in signal processing. The ideashave their origins in certain abstract results by Kashin [7, 15] but were broughtinto the forefront by the work of Candes, Romberg and Tao [2โ€“5] and Donoho [10].The core idea behind CS is that a signal or image, unknown but supposed to becompressible by a known transform, can be subjected to fewer measurements than

Page 343: Quaternion and Clifford Fourier Transforms and Wavelets

16. Sparse Representation of Signals in Hardy Space 323

the nominal number of pixels, and yet be accurately reconstructed [12]. Basically,CS relies on random projection and BP. Suppose we have

๐‘ฆ = ฮฆ๐‘ฅ, (1.4)

where ๐‘ฅ is a finite vector, ฮฆ is observation matrix and ๐‘ฆ is the vector of availablemeasurements. Then the BP solution ๐‘ฅโˆ— of

min โˆฅ๐‘ฅโˆฅ๐‘™1 subject to ๐‘ฆ = ฮฆ๐‘ฅ (1.5)

recovers ๐‘ฅ exactly provided that ๐‘ฅ is sufficiently sparse and the matrix obeys theRestricted Isometry Property (RIP) [3,4]. However the RIP of a fixed matrix is veryhard to check, thus in practice we use random matrices instead. A Gaussian matrixฮฆ โˆˆ ๐‘…๐‘šร—๐‘ whose entries ฮฆ๐‘–,๐‘— are independent and follow a normal distributionwith expectation 0 and variance 1/๐‘š is often adopted because we have [21] that:

Theorem 1.1. Let ฮฆ โˆˆ โ„๐‘šร—๐‘ be a Gaussian random matrix. Let ๐œ€, ๐›ฟ โˆˆ (0, 1) andassume

๐‘š โ‰ฅ ๐ถ๐›ฟโˆ’2(๐‘  log(๐‘/๐‘ ) + log ๐œ€โˆ’1

)for a universal constant ๐ถ > 0. Then with probability at least 1 โˆ’ ๐œ€ the restrictedisometry constant of ฮฆ satisfies ๐›ฟ๐‘  โ‰ค ๐›ฟ.

The theorem tells us that we can raise the probability by increasing thenumber of rows of the matrix ฮฆ. We will not discuss details of CS, for more aboutthis technique, please see [2โ€“5, 10, 12, 13, 21].

1.3. Hardy Space ๐‘ฏ2(๐”ป)

Hardy space is an important class of spaces connected to analytic signals. Controltheory and rational approximation theory are also bound with the research in thisfield. In this chapter, we discuss signal decomposition in ๐ป2(๐”ป). ๐ป2(๐”ป) containsanalytic signals with finite energy. Denote ๐”ป = {๐‘ง โˆˆ โ„‚ : โˆฃ๐‘งโˆฃ < 1}, and let Hol(๐”ป)be the space of analytic functions on ๐”ป. For ๐‘ > 0, Hardy space ๐ป๐‘(๐”ป) is definedas follows:

๐ป๐‘(๐”ป) =

โŽงโŽจโŽฉ๐‘“ โˆˆ Hol(๐”ป) : โˆฅ๐‘“โˆฅ๐‘๐ป๐‘ = sup0โ‰ค๐‘Ÿ<1

2๐œ‹โˆซ0

โˆฃ๐‘“(๐‘Ÿ๐‘’๐‘–๐‘ฅ)โˆฃ๐‘ d๐‘ฅ/2๐œ‹ <โˆžโŽซโŽฌโŽญ , (1.6)

and

๐ปโˆž(๐”ป) =

{๐‘“ โˆˆ Hol(๐”ป) : โˆฅ๐‘“โˆฅ๐ปโˆž = sup

๐‘งโˆˆ๐”ปโˆฃ๐‘“(๐‘ง)โˆฃ <โˆž

}. (1.7)

Indeed, ๐ป2(๐”ป) is a Hilbert space consisting of all functions ๐‘“(๐‘ง) =โˆ‘โˆž

๐‘›=0 ๐‘Ž๐‘›๐‘ง๐‘›

analytic in the unit disc ๐”ป such that โˆฅ๐‘“โˆฅ2 =โˆ‘โˆž

๐‘›=0 โˆฃ๐‘Ž๐‘›โˆฃ2 <โˆž. It has reproducingkernels ๐‘˜๐‘Ž(๐‘ง) =

11โˆ’๐‘Ž๐‘ง, ๐‘Ž โˆˆ ๐”ป. Besides the Fourier basis {1, ๐‘ง, ๐‘ง2, . . . , ๐‘ง๐‘›, . . .}, ๐ป2(๐”ป)

Page 344: Quaternion and Clifford Fourier Transforms and Wavelets

324 S. Li and T. Qian

has another orthonormal basis {๐‘”๐‘›}โˆž๐‘›=1 named after Takenaka and Malmquist(TM):

๐‘”1(๐‘ง) =

โˆš1โˆ’ โˆฃ๐‘ง1โˆฃ21โˆ’ ๐‘ง1๐‘ง

(1.8)

and

๐‘”๐‘›(๐‘ง) =

โˆš1โˆ’ โˆฃ๐‘ง๐‘›โˆฃ21โˆ’ ๐‘ง๐‘›๐‘ง

๐‘›โˆ’1โˆ๐‘˜=1

๐‘ง โˆ’ ๐‘ง๐‘˜1โˆ’ ๐‘ง๐‘˜๐‘ง

(1.9)

for ๐‘› โ‰ฅ 2, where {๐‘ง๐‘›}โˆž๐‘›=1 must satisfy

โˆžโˆ‘๐‘›=1

1โˆ’ โˆฃ๐‘ง๐‘›โˆฃ =โˆž. (1.10)

It is clear that the TM basis can be obtained by applying the Gramโ€“Schmidtprocedure to the reproducing kernels ๐‘˜๐‘ง๐‘› = 1/ (1โˆ’ ๐‘ง๐‘›๐‘ง) under condition (1.10).TM systems have long been associated with fruitful results in applied mathematicssuch as control theory, signal processing and system identification. Qian et al.recently proposed an adaptive Fourier decomposition algorithm (AFD) that resultsin a TM system (not necessarily a basis) with selected poles according to thegiven signal [20]. However AFD is valid only for one-dimensional signals whichnaturally raises the question: what happens in higher dimensions? Inspired by theaforementioned works, the adaptive decomposition of any function of two or threevariables is obtained in [19] by means of quaternionic analysis. Unfortunately, theresult can not be directly generalized into (๐‘š+1)-dimensional space in the Cliffordsetting because a Clifford number is not invertible in general.

It is clear that the normalized reproducing kernel

D = {๐‘’๐‘Ž : ๐‘’๐‘Ž(๐‘ง) =โˆš1โˆ’ โˆฃ๐‘Žโˆฃ21โˆ’ ๐‘Ž๐‘ง

, ๐‘Ž โˆˆ ๐”ป} (1.11)

forms a dictionary of ๐ป2(๐”ป), and this redundant dictionary does give a sparse rep-resentation of signals in Hardy space. In [19] Qian et al. construct a dictionary fordecomposition of quaternionic-valued signals of finite energy. It is a generalizationof (1.11). This chapter will focus on the method based on CS to decompose signalsin ๐ป2(๐”ป). Later we will generalize it into quaternionic Hardy space.

The chapter is concisely arranged as follows. We discuss the main results inSection 2. In Section 3, examples are given to illustrate our algorithm.

2. Main Results

The singular value decomposition (SVD) is an effective tool for the analysis oflinear operators. It is also useful in this chapter. We recall that:

Page 345: Quaternion and Clifford Fourier Transforms and Wavelets

16. Sparse Representation of Signals in Hardy Space 325

Theorem 2.1 (Singular Value Decomposition [16]). Let ๐ด denote an arbitrary ma-trix with elements in โ„‚๐‘šร—๐‘› and let {๐‘ ๐‘–}๐‘Ÿ๐‘–=1 be the nonzero singular values of ๐ด.Then ๐ด can be represented in the form

๐ด = ๐‘ˆ๐ท๐‘‰ โˆ—, (2.1)

where ๐‘ˆ โˆˆ โ„‚๐‘šร—๐‘š, ๐‘‰ โˆˆ โ„‚๐‘›ร—๐‘› are unitary and the ๐‘šร— ๐‘› matrix ๐ท has elements ๐‘ ๐‘–in the ๐‘–, ๐‘– position (1 โ‰ค ๐‘– โ‰ค ๐‘Ÿ) and zeros elsewhere. The ๐‘ ๐‘– are singular values of

๐ด, ๐‘ ๐‘– =โˆš

๐œ†๐‘–(๐ดโˆ—๐ด). In fact, the diagonal matrix ๐ท can be written as(ฮฃ๐‘Ÿ 00 0

)(2.2)

where ฮฃ๐‘Ÿ = diag(๐‘ 1, ๐‘ 2, . . . , ๐‘ ๐‘Ÿ) with ๐‘ 1 โ‰ฅ ๐‘ 2 โ‰ฅ โ‹… โ‹… โ‹… , ๐‘ ๐‘Ÿ.In the model (1.1), (1.11), we select ๐‘ points {๐‘Ž๐‘˜}๐‘๐‘˜=1 in ๐”ป, and sample ๐‘€

points for each ๐‘’๐‘Ž๐‘˜equally spaced in [0, 2๐œ‹]. So we get a matrix D โˆˆ โ„‚๐‘€ร—๐‘ . For

a signal in ๐ป2(๐”ป), we also sample ๐‘€ points on its boundary value equally spacedto form a vector ๐‘  โˆˆ โ„‚๐‘€ . Thus, the representation problem is

๐‘  = D๐‘ฅ. (2.3)

Suppose that D = ๐‘ˆ๐ท๐‘‰ โˆ—, then ๐‘ˆโˆ—๐‘  = ๐ท๐‘‰ โˆ—๐‘ฅ. Note that ๐ท is a diagonal matrix

and โˆฅ๐‘ˆโˆ—๐‘ โˆฅ2 = โˆฅ๐‘ โˆฅ2 , โˆฅ๐‘‰ โˆ—๐‘ฅโˆฅ2 = โˆฅ๐‘ฅโˆฅ2. If the singular values of D decay fast, we canexpect a relatively sparse representation ๐‘ฅ with a small energy error. The mostimportant thing is that the assertion should be established in the sense of ๐‘ โ†’โˆžbecause one must explain what the situation would be when the number of atomsis large.

First, we give two lemmas, they are also the simple cases of our theorem.

Lemma 2.2. Suppose ๐‘ points {๐‘Ž๐‘˜}๐‘โˆ’1๐‘˜=0 are selected equally spaced on the circle

of radius ๐‘Ÿ. Let ๐œ†1 โ‰ฅ ๐œ†2 โ‰ฅ โ‹… โ‹… โ‹… โ‰ฅ ๐œ†๐‘ be eigenvalues of the matrix Dโˆ—D . Then wehave

lim๐‘โ†’โˆž

1

๐‘

๐‘šโˆ‘๐‘—=1

๐œ†๐‘— โ‰ฅ 1โˆ’ ๐‘Ÿ2๐‘š. (2.4)

Proof. (Sketch of proof.) Let

D =(๐‘’๐‘Ž0 ๐‘’๐‘Ž1 . . . ๐‘’๐‘Ž๐‘โˆ’1

)(2.5)

then the Hermitian matrix ๐ป can be written as

๐ป = Dโˆ—D =

โŽ›โŽœโŽœโŽœโŽ๐‘’๐‘Ž0

๐‘’๐‘Ž1

...๐‘’๐‘Ž๐‘โˆ’1

โŽžโŽŸโŽŸโŽŸโŽ (๐‘’๐‘Ž0 ๐‘’๐‘Ž1 . . . ๐‘’๐‘Ž๐‘โˆ’1

). (2.6)

with elements ๐ป๐‘–๐‘— =โŸจ๐‘’๐‘Ž๐‘– , ๐‘’๐‘Ž๐‘—

โŸฉ=โŸจ๐‘’๐‘Ž0 , ๐‘’๐‘Ž๐‘—โˆ’๐‘–

โŸฉ= ๐‘๐‘—โˆ’๐‘–. Notice that

๐‘๐‘˜ = โŸจ๐‘’๐‘Ž0 , ๐‘’๐‘Ž๐‘˜โŸฉ = 1โˆ’ ๐‘Ÿ2

1โˆ’ ๐‘Ÿ2๐‘’๐‘–๐‘˜๐œƒ=

1โˆ’ ๐‘Ÿ2

1โˆ’ ๐‘Ÿ2๐‘’๐‘–๐œƒ๐‘˜, (๐‘˜ = 0, 1, . . . , ๐‘ โˆ’ 1) (2.7)

Page 346: Quaternion and Clifford Fourier Transforms and Wavelets

326 S. Li and T. Qian

0 10 20 30 40 500

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 500

1

2

3

4

5

6

7

8

9

10

Figure 1. Selecting ๐‘ points on the circle of radius ๐‘Ÿ (2.9) gives that๐œ†๐‘— โ‰ˆ (1 โˆ’ ๐‘Ÿ2)๐‘Ÿ2(๐‘—โˆ’1)๐‘ when ๐‘ is large. The small red circles are thecorresponding estimation whereas the blue points represent the realeigenvalues given by numerical calculation. They fit amazingly well eventhough ๐‘ is not very large.

where ๐œƒ๐‘˜ = ๐‘˜๐œƒ is the argument of ๐‘Ž๐‘˜. Recall Ky Fanโ€™s maximum principle: let ๐ดbe any Hermitian operator, then for ๐‘˜ = 1, 2, . . . , ๐‘›, we have

๐‘˜โˆ‘๐‘—=1

๐œ†๐‘—(๐ด) = max

๐‘˜โˆ‘๐‘—=1

โŸจ๐ด๐‘ฅ๐‘— , ๐‘ฅ๐‘—โŸฉ (2.8)

where the eigenvalues ๐œ†1(๐ด) โ‰ฅ ๐œ†2(๐ด) โ‰ฅ โ‹… โ‹… โ‹… โ‰ฅ ๐œ†๐‘›(๐ด), and the maximum are takenover all orthonormal ๐‘˜-tuples {๐‘ฅ1, . . . , ๐‘ฅ๐‘˜}.

Sampling ๐‘ points equally spaced on the orthonormal functions{๐‘’โˆ’๐‘–๐‘—๐‘ก}๐‘šโˆ’1

๐‘—=0 , we prove that

lim๐‘โ†’โˆž

๐œ†๐‘—+1

๐‘= (1โˆ’ ๐‘Ÿ2)๐‘Ÿ2๐‘— (2.9)

where ๐œ†1 โ‰ฅ ๐œ†2 โ‰ฅ โ‹… โ‹… โ‹… โ‰ฅ ๐œ†๐‘š. Hence

lim๐‘โ†’โˆž

1

๐‘

๐‘šโˆ‘๐‘˜=1

๐œ†๐‘˜ โ‰ฅ๐‘šโˆ‘๐‘˜=1

(1 โˆ’ ๐‘Ÿ2)๐‘Ÿ2(๐‘˜โˆ’1) = 1โˆ’ ๐‘Ÿ2๐‘š. (2.10)

โ–ก

Remark 2.3. Note that trace(๐ป) = ๐‘ , thus (2.9) shows that the eigenvalues decayas a geometric series with common ratio ๐‘Ÿ2 as ๐‘ โ†’โˆž. See Figure 1.

Lemma 2.4. Suppose ๐‘ points {๐‘Ž๐‘˜}๐‘๐‘˜=1 are selected equally spaced on the segment

[0, 1), and ๐œ†1 is the largest eigenvalue of the matrix Dโˆ—D . Then we have

lim๐‘โ†’โˆž

๐œ†1

๐‘โ‰ฅ

1โˆซ0

1โˆซ0

โˆš1โˆ’ ๐‘ 2

โˆš1โˆ’ ๐‘Ÿ2

1โˆ’ ๐‘ ๐‘Ÿd๐‘Ÿ d๐‘  โ‰ˆ 0.815784. (2.11)

Page 347: Quaternion and Clifford Fourier Transforms and Wavelets

16. Sparse Representation of Signals in Hardy Space 327

0 10 20 30 40 50

40

45

35

30

25

20

15

10

5

0

โˆ’50 10 20 30 40 50 60

โˆ’10

0

10

20

30

40

50

Figure 2. Eigenvalue distribution

Sketch of Proof. The proof is similar to the previous lemma. In this situation, theentries of the Hermitian matrix ๐ป in (2.6) are

๐ป๐‘–๐‘— =

โˆš1โˆ’ ๐‘Ÿ2๐‘–

โˆš1โˆ’ ๐‘Ÿ2๐‘—

1โˆ’ ๐‘Ÿ๐‘–๐‘Ÿ๐‘—, (2.12)

where ๐‘Ÿ๐‘– is the ๐‘–th point on [0, 1). Let ๐‘ฅ =(

1โˆš๐‘, 1โˆš

๐‘, . . . , 1โˆš

๐‘

)โˆˆ โ„‚๐‘ with โˆฅ๐‘ฅโˆฅ2 =

1. We use Ky Fanโ€™s principle to estimate the maximum eigenvalue. We find thatโŸจ๐ป๐‘ฅ, ๐‘ฅโŸฉ is a double Riemann sum of

1โˆซ0

1โˆซ0

โˆš1โˆ’ ๐‘ 2

โˆš1โˆ’ ๐‘Ÿ2

1โˆ’ ๐‘ ๐‘Ÿd๐‘Ÿ d๐‘ . (2.13)

Hence,๐œ†1(๐ป)

๐‘โ‰ฅ โŸจ๐ป๐‘ฅ, ๐‘ฅโŸฉ

๐‘โ‰ˆ 0.815784. (2.14)

โ–กRemark 2.5. Select ๐‘ points on the interval [0, 1). The maximum eigenvalues are41.1816 and 49.5133 respectively. ๐œ†1(๐ป)/๐‘ satisfy (2.11). See Figure 2.

Generally, we select {๐‘Ž๐‘˜} in the whole disc as follows. Divide [0, 2๐œ‹] and [0, 1)into ๐‘1 and ๐‘2 parts respectively. Hence, the number of ๐‘Ž๐‘˜s is ๐’ช(๐‘1๐‘2). Weobtain the main theorem as follows.

Theorem 2.6. Let ๐œ†1 โ‰ฅ ๐œ†2 โ‰ฅ ๐œ†3 โ‰ฅ โ‹… โ‹… โ‹… be eigenvalues of ๐ป = Dโˆ—D . Then we have

lim๐‘1โ†’โˆž๐‘2โ†’โˆž

๐‘›โˆ‘๐‘˜=1

๐œ†๐‘˜

๐‘1๐‘2โ‰ฅ 1โˆ’ 1

2๐‘›+ 1. (2.15)

Page 348: Quaternion and Clifford Fourier Transforms and Wavelets

328 S. Li and T. Qian

Sketch of Proof. ๐ป is actually a block matrix in this situation

๐ป =

โŽ›โŽœโŽœโŽœโŽœโŽœโŽ๐ตโˆ—1๐ต1 ๐ตโˆ—1๐ต2 ๐ตโˆ—1๐ต3 . . . ๐ตโˆ—1๐ต๐‘2

๐ตโˆ—2๐ต1 ๐ตโˆ—2๐ต2 ๐ตโˆ—2๐ต3 . . . ๐ตโˆ—2๐ต๐‘2

๐ตโˆ—3๐ต1 ๐ตโˆ—3๐ต2 ๐ตโˆ—3๐ต3 . . . ๐ตโˆ—3๐ต๐‘2

......

.... . .

...๐ตโˆ—๐‘2

๐ต1 ๐ตโˆ—๐‘2๐ต2 ๐ตโˆ—๐‘2

๐ต3 . . . ๐ตโˆ—๐‘2๐ต๐‘2

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽ  (2.16)

with each block ๐ตโˆ—๐‘– ๐ต๐‘— โˆˆ โ„‚๐‘1ร—๐‘1 . Let

๐‘“๐‘›(๐‘Ÿ) = ๐‘Ÿ๐‘›โˆš1โˆ’ ๐‘Ÿ2 (2.17)

and

๐‘”๐‘›(๐‘Ÿ) =๐‘“๐‘›(๐‘Ÿ)

โˆฅ๐‘“๐‘›(๐‘Ÿ)โˆฅ๐ฟ2(0,1)

(2.18)

where ๐‘Ÿ โˆˆ (0, 1), ๐‘› โ‰ฅ 0. Denote ๐‘’๐‘›(๐œƒ) = ๐‘’โˆ’๐‘–๐‘›๐œƒ, ๐‘› โ‰ฅ 0.

Sample ๐‘2 points on ๐‘”๐‘›(๐‘Ÿ) and get the vector ๐บ๐‘› โˆˆ โ„‚๐‘2 . Sample ๐‘1 pointson ๐‘’๐‘› to get ๐ธ๐‘› โˆˆ โ„‚๐‘1 . Consider

โŸจ๐ป(๐บ๐‘›

โŠ—๐ธ๐‘›), ๐บ๐‘›

โŠ—๐ธ๐‘›โŸฉ

๐‘1๐‘2(2.19)

where the tensor product ๐บ๐‘›

โŠ—๐ธ๐‘› is a vector in โ„‚๐‘1๐‘2 . We prove that

lim๐‘1โ†’โˆž๐‘2โ†’โˆž

โŸจ๐ป(๐บ๐‘›

โŠ—๐ธ๐‘›), ๐บ๐‘›

โŠ—๐ธ๐‘›โŸฉ

๐‘1๐‘2=

1

2๐‘›+ 1โˆ’ 1

2๐‘›+ 3, ๐‘› โ‰ฅ 0. (2.20)

Hence, Ky Fanโ€™s maximum principle gives

lim๐‘1โ†’โˆž๐‘2โ†’โˆž

๐‘›โˆ‘๐‘˜=1

๐œ†๐‘˜

๐‘1๐‘2โ‰ฅ

๐‘›โˆ‘๐‘˜=1

(1

2๐‘˜ โˆ’ 1โˆ’ 1

2๐‘˜ + 1

)= 1โˆ’ 1

2๐‘›+ 1. (2.21)

โ–ก

Remark 2.7. Note that trace(๐ป) = ๐‘1๐‘2, the theorem shows that the eigenvaluesdecay rapidly. Figure 3 shows the numerical calculation when ๐‘1 = ๐‘2 = 40. Wehave that ๐œ†1/(๐‘1๐‘2) = 0.6544178 โ‰ˆ 2/(1ร— 3), ๐œ†2/(๐‘1๐‘2) = 0.1312327 โ‰ˆ 2/(3ร—5), ๐œ†3/(๐‘1๐‘2) = 0.057843 โ‰ˆ 2/(5ร—7), ๐œ†4/(๐‘1๐‘2) = 0.03319499โ‰ˆ 2/(7ร—9), andso on. The several largest eigenvalues contribute a large part of the sum of all eigen-values. Since singular value ๐‘ ๐‘– =

โˆš๐œ†๐‘–(๐ป), we assert that ๐‘ ๐‘– tends to zero rapidly.

3. Numerical Examples

We give two numerical examples. In our examples, D โˆˆ โ„‚900ร—3000. This means thedictionary has 3000 atoms and each atom vector is of size 900. We embed D into

Page 349: Quaternion and Clifford Fourier Transforms and Wavelets

16. Sparse Representation of Signals in Hardy Space 329

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10

Figure 3. Decay of eigenvalues (see Remark 2.7).

โ„1800ร—6000 for programming convenience by

D =

(โ„œ (D) โˆ’โ„‘ (D)โ„œ (D) โ„œ (D)

). (3.1)

Therefore,

๐‘  = D๐‘ฅโ‡โ‡’ ๐‘  =

(โ„œ (๐‘ )โ„‘ (๐‘ )

)= D

(โ„œ (๐‘ฅ)โ„‘ (๐‘ฅ)

)= D ๐‘ฅ. (3.2)

where โ„œ (๐‘ ) and โ„‘ (๐‘ ) are the real and imaginary parts respectively.

Consider the minimization problem

min โˆฅ๐‘ฅโˆฅ1 subject to ๐‘ฆ = ฮฆD ๐‘ฅ (3.3)

where ฮฆ โˆˆ โ„๐‘›ร—๐‘ is a Gaussian random matrix satisfying ฮฆ๐‘–๐‘— โˆผ ๐’ฉ (0, 1/๐‘›). We

recover the signal by D๐‘ฅโˆ— when the solution ๐‘ฅโˆ— of (3.3) is obtained by convexprogramming. As we mentioned above, ๐‘  belongs to the vector space of 900ร— 2 =1800 dimensions with a 900-dimensional real part and 900-dimensional imaginary

part. D has 3000ร— 2 = 6000 columns and ๐‘ฅ is a 6000-element coefficient vector.

3.1. Example 1

๐‘ (๐‘ง) =0.247๐‘ง4 + 0.0355๐‘ง3

(1โˆ’ 0.9048๐‘ง)(1โˆ’ 0.3679๐‘ง)(3.4)

Set the Gaussian randommatrix ฮฆ with 160 rows and its entries ฮฆ๐‘–๐‘— โˆผ ๐’ฉ (0, 1/160).Runtime is 16.437 seconds and relative error is 3.7188ร—10โˆ’4. See Figures 4 and 5.

3.2. Example 2

๐‘ (๐‘ง) = ๐‘ง20 + ๐‘ง10 + ๐‘ง5. (3.5)

Choose the Gaussian randommatrix ฮฆ with 160 rows and entries ฮฆ๐‘–,๐‘—โˆผ๐’ฉ (0,1/160).Runtime is 34.891 seconds and relative error is 1.7ร— 10โˆ’3. See Figures 6 and 7.

Page 350: Quaternion and Clifford Fourier Transforms and Wavelets

330 S. Li and T. Qian

0 200 400 600 800 1000 1200 1400 1600 1800 0 200 400 600 800 1000 1200 1400 1600 1800โˆ’0.8

โˆ’0.6

โˆ’0.4

โˆ’0.2

0

0.2

0.4

0.6

0.8

1

1.2

โˆ’0.8

โˆ’0.6

โˆ’0.4

โˆ’0.2

0

0.2

0.4

0.6

0.8

1

1.2

recovered signaloriginal signal

Figure 4. Example 1. The recovered signal almost coincides with theoriginal signal. See Section 3.1.

0 200 400 600 800 1000 1200 1400 1600 1800โˆ’2.5

โˆ’2

โˆ’1.5

โˆ’1

โˆ’0.5

0

0.5

1

1.5

2

2.5

0 1000 2000 3000 4000 5000 6000โˆ’0.05

0

0.05

0.1

0.2

0.3

0.15

0.25

Figure 5. Example 1. See Section 3.1.

References

[1] A. Beurling. Sur les integrales de Fourier absolument convergentes et leur applica-tion a une transformation functionelle. In Proceedings Scandinavian MathematicalCongress, Helsinki, Finland, 1938.

[2] E. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signalreconstruction from highly incomplete frequency information. IEEE Transactionson Information Theory, 52(2):489โ€“509, 2006.

[3] E. Candes, J. Romberg, and T. Tao. Stable signal recovery from incomplete and in-accurate measurements. Communications on Pure Applied Mathematics, 59(8):1207โ€“1223, 2006.

[4] E. Candes and T. Tao. Decoding by linear programming. IEEE Transactions onInformation Theory, 51(12):4203โ€“4215, 2005.

Page 351: Quaternion and Clifford Fourier Transforms and Wavelets

16. Sparse Representation of Signals in Hardy Space 331

0 200 400 600 800 1000 1200 1400 1600 1800 0 200 400 600 800 1000 1200 1400 1600 1800โˆ’3

โˆ’2

โˆ’1

0

1

2

3recovered signaloriginal signal

โˆ’3

โˆ’2

โˆ’1

0

1

2

3

Figure 6. Example 2. The recovered signal almost coincides with theoriginal signal. See Section 3.2.

0 200 400 600 800 1000 1200 1400 1600 1800 0 1000 2000 3000 4000 5000 6000โˆ’40

โˆ’30

โˆ’20

โˆ’10

0

10

20

30

โˆ’0.4

โˆ’0.3

โˆ’0.2

โˆ’0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 7. Example 2. See Section 3.2.

[5] E. Candes and T. Tao. Near optimal signal recovery from random projections: Uni-versal encoding stategies? IEEE Transactions on Information Theory, 52(12):5406โ€“5425, 2006.

[6] S. Chen, D. Donoho, and M. Saunders. Atomic decomposition by basis pursuit. SIAMJournal on Scientific Computing, 20(1):33โ€“61, 1999.

[7] A. Cohen, W. Dahmen, and R. DeVore. Compressed sensing and best ๐‘˜-term ap-proximation. Journal of the American Mathematical Society, 22:211โ€“231, 2009.

[8] G. Davis. Adaptive Nonlinear Approximations. PhD thesis, New York University,Courant Institute, 1994.

[9] G. Davis and S. Mallat. Adaptive greedy approximations. Constructive Approxima-tion, 13(1):57โ€“98, 1997.

Page 352: Quaternion and Clifford Fourier Transforms and Wavelets

332 S. Li and T. Qian

[10] D. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289โ€“1306, 2006.

[11] D. Donoho and M. Elad. On the stability of the basis pursuit in the presence ofnoise. Signal Processing, 86(3):511โ€“532, 2006.

[12] D. Donoho and Y. Tsaig. Extensions of compressed sensing. Signal Processing,86(3):533โ€“548, 2006.

[13] M. Fornasier. Numerical methods for sparse recovery. In Theoretical Foundationsand Numerical Methods for Sparse Recovery [14], pages 93โ€“200.

[14] M. Fornasier, editor. Theoretical Foundations and Numerical Methods for SparseRecovery, volume 9 of Radon Series on Computational and Applied Mathematics.De Gruyter, Germany, 2010.

[15] B. Kashin. The widths of certain finite dimensional sets and classes of smooth func-tions. Izvestia, 41:334โ€“351, 1977.

[16] P. Lancaster and M. Tismenetsky. The Theory of Matrices with Applications. Aca-demic Press, second edition, 1985.

[17] S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, third edition, 2008.First edition published 1998.

[18] S. Mallat and Z. Zhang. Matching pursuit with time-frequency dictionaries. IEEETransactions on Signal Processing, 41(12):3397โ€“3415, Dec. 1993.

[19] T. Qian, W. SproรŸig, and J. Wang. Adaptive Fourier decomposition of functions inquaternionic Hardy spaces. Mathematical Methods in the Applied Sciences, 35(1):43โ€“64, 2012.

[20] T. Qian and Y.-B. Wang. Adaptive Fourier series โ€“ a variation of greedy algorithm.Advances in Computational Mathematics, 34(3):279โ€“293, 2011.

[21] H. Rauhut. Compressive sensing and structured random matrices. In Fornasier [14],pages 1โ€“92.

Shuang Li and Tao QianDepartment of MathematicsUniversity of Macau, Macaue-mail: [email protected]

[email protected]

Page 353: Quaternion and Clifford Fourier Transforms and Wavelets

Quaternion and Cliffordโ€“Fourier Transforms and Wavelets

Trends in Mathematics, 333โ€“338cโƒ 2013 Springer Basel

Index

analytic signal, 42, 67, 222, 223, 247โ€“250

โ€“ Clifford, 208

โ€“ biquaternion, 197

โ€“ complex, 197

โ€“ examples, 209

โ€“ hypercomplex, 48

โ€“ local amplitude, 223

โ€“ local phase, 223

โ€“ ๐‘›-dimensionnal, 198

โ€“ one-dimensional, 200

โ€“ phases, 210

โ€“ properties, 201

โ€“ quaternion, 197

โ€“ quaternion 2D, 201

โ€“ quaternionic, 68

โ€“ two-dimensional, 200, 226

โ€“ local amplitude, 227

โ€“ local orientation, 227

โ€“ local phase, 227

โ€“ video, 198, 212

angular velocity, 50

anticommutative part, 162

atomic function, 58, 64

โ€“ 2D, 60

โ€“ quaternionic, 65

โ€“ up(๐‘ฅ), 58

Balianโ€“Low theorem, 303, 316, 317

Banach module, 287

basis pursuit, 322

bivector, geometric interpretation, 124

Bochner theorem, 85

Bochnerโ€“Minlos theorem, 85, 113, 117

Cauchyโ€“Riemann equations, 63

Cayleyโ€“Dickson form, 43

โ€“ polar, 44

checkerboard, 233

chrominance, 22

โ€“ plane, 22

clifbquat, see Clifford biquaternion

Clifford algebra, 198, 286

โ€“ ๐ถโ„“0,3, basis, 133

โ€“ ๐ถโ„“1,2, 134

โ€“ ๐ถโ„“3,0, 134

โ€“ automorphism group, 126

โ€“ basis element matrices, 145

โ€“ center, 126

โ€“ central pseudoscalar, 134

โ€“ characteristic polynomial, 136

โ€“ complex, 192

โ€“ complex conjugation, 135

โ€“ conformal geometric algebra, 135

โ€“ connected components

โ€“ Klein group, 131

โ€“ square isometries, 132

โ€“ even subalgebra, 125

โ€“ Fourier transform

โ€“ steerable, 141

โ€“ geometric algebras, 123

โ€“ grade involution, 137

โ€“ group of invertible elements, 126

โ€“ idempotents, 133, 134

โ€“ isomorphism

โ€“ CLIFFORD package, 146

โ€“ Lorentz space, 135

โ€“ matrix idempotents, 147

โ€“ matrix ring isomorphisms, 124, 125

โ€“ dimension index ๐‘‘, 125

โ€“ signature, 125

Page 354: Quaternion and Clifford Fourier Transforms and Wavelets

334 Index

โ€“ minimal polynomial, 134

โ€“ Pauli matrix algebra, 134

โ€“ pseudoscalar, 127

โ€“ relation to quaternions, 124

โ€“ reversion, 137

โ€“ scalar part, 127

โ€“ signature, 125

โ€“ software package, 127

โ€“ spinor representation, 146

โ€“ swap automorphism, 131

โ€“ symbolic computer algebra, 127

โ€“ trace, 127

โ€“ wavelet transform, steerable, 141

Clifford analysis, applications, 124

Clifford biquaternion, 206

Clifford conjugate, 286

Clifford functions, 289

Clifford module, 289

Clifford polynomials, 146

Clifford, William Kingdon, 123, 198

Cliffordโ€“Fourier transform, see Fouriertransform

colour

โ€“ denoising, 257, 259, 261โ€“264

โ€“ image

โ€“ Fourier transform, 158

โ€“ grey line, 22

โ€“ processing, 15, 22

commutative part, 162

complex

โ€“ Clifford algebra, 192

โ€“ degenerate, 10

โ€“ envelope, 50

โ€“ representation, 181, 192

compressed sensing, 322

convolution, 12

correlation, 11

cylindrical Fourier transform, 159

decomposition

โ€“ luminance and chrominance, 22

โ€“ singular value, 324

demodulation, 238

Dirac equation, 180, 183

Dirac operator, 194, 228

dup(๐‘ฅ), 61

dyadic shifts, 63

edge detection, 183

eigen-angle, 7

eigen-axis, 7

envelope, 42

โ€“ complex, 50

Euler formula for quaternions, 237

even-odd form, 6

exponential function, 157

Faddeevโ€™s Green function, 281

โ€“ Dirac operators, 281

filter design

โ€“ steerable, 39

filter, steerable quaternionic, 67

filtering, 188

force-free fields, 274

Fourier transform, 222

โ€“ Cliffordโ€“, 157, 185, 197, 200, 207,288, 299, 302

โ€“ examples, 213

โ€“ properties (scalar function), 209

โ€“ windowed, 294, 300, 303, 317

โ€“ cylindrical, 159

โ€“ geometric, see geometric Fouriertransform

โ€“ properties, 201

โ€“ quaternion, 43, 44

โ€“ properties, 203

โ€“ quaternionic, see quaternionicFourier transform

โ€“ Sommenโ€“, 157

Fourierโ€“Stieltjes transform, 85

โ€“ quaternionic, 88

frame

โ€“ bound, 303

โ€“ Clifford, 303, 307, 317

โ€“ dual, 304, 314

โ€“ tight, 303

frequency modulation, 11

Fubiniโ€™s theorem, 296

Gabor filter

โ€“ complex, 294

โ€“ quaternionic, 294

Page 355: Quaternion and Clifford Fourier Transforms and Wavelets

Index 335

Gabor system, 300

โ€“ Cliffordโ€“, 303, 305, 310

Gabor, D., 200

Gauss spinor formula, 194

generalized Weierstrass parametrization,183

geometric Fourier transform

โ€“ definition, 157

โ€“ existence, 159

โ€“ linearity, 160

โ€“ product theorem, 166

โ€“ scaling theorem, 162

โ€“ shift theorem, 172

geometric product, 156

GFT, 157

Gramโ€“Schmidt procedure, 324

Grassmann, Hermann Gunther, 198

group velocity, 212

Hamilton, William Rowan, 43, 198

Hardy space, 323

Hausdorff space, 110

Helmholtz equation, 275

โ€“ factorization, 275

Hilbert space, 321, 323

Hilbert transform, 42, 47, 63, 67, 70, 222

โ€“ partial, 66, 226

โ€“ quaternion Fourier transform of, 47

โ€“ total, 66, 226

image processing

โ€“ grey line, 22

impulse response, 10

instantaneous amplitude, 42, 201

โ€“ geometric, 49

instantaneous phase, 42, 201

โ€“ geometric, 49

interferometry, 238

kernel

โ€“ Gauss, 64

โ€“ Poisson, 64

linearity, 10

Lippmannโ€“Schwinger integral equation,277

local phase, 67

luminance, 22

matching pursuit, 322

Maxwellโ€™s equations, 273

โ€“ in inhomogeneous media, 274

mean curvature, 183

monogenic

โ€“ coefficients, modeling of, 257

โ€“ colour signal, 248, 252, 253

โ€“ colour wavelet, 252

โ€“ colour wavelet transform, 248, 253,256

โ€“ signal, 63, 228, 248โ€“250

โ€“ local amplitude, 229

โ€“ local orientation, 229

โ€“ local phase, 229

โ€“ wavelet transform, 248, 250, 251

multivector, 286

โ€“ scalar product, 287

operator

โ€“ coefficient, 304

โ€“ frame, 304

โ€“ reconstruction, 304

optical coherence tomography (OCT),271

optimization, 322

orthogonal 2D planes split, 15

โ€“ determination from given planes, 26,27

โ€“ exponential factor

โ€“ identities, 21, 22

โ€“ general, 18

โ€“ geometric interpretation, 26

โ€“ rotation, 26

โ€“ orthogonality of OPS planes, 19

โ€“ single pure unit quaternion, 21

โ€“ subspace bases, 22, 25

parallel spinor field, 180

paravector, 296

Parseval relation, 200

Parseval theorem

โ€“ Cliffordโ€“, 289

Parsevalโ€™s equality, 303

period form, 181, 183

Page 356: Quaternion and Clifford Fourier Transforms and Wavelets

336 Index

phase, 248, 250, 251, 267

โ€“ information, 67

โ€“ quaternionic, 69, 294

โ€“ velocity, 212

Plancherelโ€™s theorem, 204, 288

Plemeljโ€“Sokhotzki formula, 225

probability measure, 108, 113

pseudoscalar, 286

pursuit

โ€“ basis, 322

โ€“ matching, 322

quaternion

โ€“ algebra, 16, 65

โ€“ definition, 5

โ€“ over โ„, 132

โ€“ algebraic identites, 20

โ€“ chrominance, 22

โ€“ plane, 22

โ€“ colour image

โ€“ processing, 15, 22

โ€“ complex sub-field, 6

โ€“ conjugate, 5

โ€“ decomposition, luminance andchrominance, 22

โ€“ Euler formula, 237

โ€“ exponential, 237

โ€“ exponential factors

โ€“ identity, 25, 36

โ€“ grey line, 22

โ€“ half-turn, 22, 25

โ€“ Coxeter, 20

โ€“ rotation, 18, 20

โ€“ involution, 18

โ€“ quaternion conjugation, 32

โ€“ line reflection

โ€“ pointwise invariant, 33

โ€“ real line, 32

โ€“ logarithm, 237

โ€“ luminance, 22

โ€“ modulus identity, 17

โ€“ norm, 5

โ€“ orientation, 236

โ€“ orthogonal 2D planes split

โ€“ general, 25

โ€“ real coefficients, 20

โ€“ orthogonal basis, 18, 19

โ€“ orthogonality, 17

โ€“ orthonormal basis, 22, 25

โ€“ perplex part, 6

โ€“ plane subspace bases, 18

โ€“ polar Cayleyโ€“Dickson form, 44

โ€“ polar form, 43

โ€“ properties, 43

โ€“ pure, 5

โ€“ quaternion maps, 38

โ€“ reflection

โ€“ hyperplane, 32

โ€“ invariant hyperplane, 32

โ€“ rotary axis, 33

โ€“ rotary invariant line, 33

โ€“ relation to Clifford algebra, 124

โ€“ rotary reflection, 33

โ€“ rotation angle, 35

โ€“ rotation plane basis, 34

โ€“ rotation, 33

โ€“ double, 33

โ€“ four-dimensional, 33

โ€“ reflection, 33

โ€“ rotary, 33

โ€“ scalar part

โ€“ symmetries, 17

โ€“ scalar-part, 5

โ€“ simplex and perplex parts, 24

โ€“ simplex and perplex split, 21

โ€“ simplex part, 6

โ€“ split

โ€“ orthogonality, 18

โ€“ steerable, 18

โ€“ subspace bases, 19

โ€“ vector-part, 5

quaternionic

โ€“ analytic function, 66

โ€“ analytic signal, 68

โ€“ filter, steerable, 67

โ€“ phases, 69, 294

โ€“ structure, 182

โ€“ wavelet multiresolution, 66

quaternionic Fourier transform, 105,158, 202, 227, 299

โ€“ analysis planes, 31

Page 357: Quaternion and Clifford Fourier Transforms and Wavelets

Index 337

โ€“ asymptotic behaviour, 111

โ€“ discrete, 30

โ€“ dual-axis form, 8

โ€“ factored form, 8

โ€“ fast, 30

โ€“ filter design

โ€“ steerable, 39

โ€“ forward transform, 8

โ€“ generalization, 28

โ€“ geometric interpretation, 31

โ€“ geometric understanding

โ€“ local, 38

โ€“ inverse transform, 9

โ€“ local phase rotations, 31

โ€“ new forms, 28

โ€“ new types, 39

โ€“ of the Hilbert transform, 47

โ€“ operator pairs, 8

โ€“ phase angle, 31

โ€“ phase angle transformation, 31

โ€“ discrete, 32

โ€“ fast, 32

โ€“ split parts, 32

โ€“ steerable, 32

โ€“ phase rotation planes, 31

โ€“ quasi-complex, 30

โ€“ quaternion conjugation, 32, 36

โ€“ local geometric interpretation, 37

โ€“ local invariant line, 37

โ€“ local phase rotation, 38

โ€“ local rotation angle, 37

โ€“ local rotation axis, 37

โ€“ phase angle transformation, 38

โ€“ phase angle transformation,discrete, 38

โ€“ phase angle transformation, fast,38

โ€“ phase angle transformation,interpretation, 38

โ€“ phase angle transformation,quasi-complex, 38

โ€“ phase angle transformation, splitparts, 38

โ€“ phase angle transformation,steerable, 38

โ€“ quasi-complex, 36

โ€“ split parts, 36

โ€“ reverse transform, 9

โ€“ sandwich form, 8

โ€“ single-axis definition, 9

โ€“ split parts transformation, 30

โ€“ split theorems, 39

โ€“ steerable, 15

โ€“ two pure unit quaternions, 28

โ€“ windowed, 286

radiation condition, 276

Riemannโ€“Hilbert problem, 225

Riesz transform, 64, 229, 249, 251, 253,255, 257, 259, 262

โ€“ wavelet, 256

scattering problem, 276

Schwartz space, 114

separability, 165

Siemens star, 231

singular value decomposition, 324

Sobel operator, 242

Sommenโ€“Fourier transform, 157

spacetime Fourier transform, 158

spin

โ€“ character, 185

โ€“ group, 235

โ€“ structure, 193

spinor, 235

โ€“ bundle, 187, 193

โ€“ connection, 194

โ€“ field, 179

โ€“ field, parallel, 180

โ€“ formula, Gauss, 194

โ€“ representation, 146, 183

โ€“ tensor, 185

split

โ€“ form, 7

โ€“ of identity, 222, 223

โ€“ w.r.t. commutativity, 162

square roots of โˆ’1, 157

โ€“ ๐ถโ„“0,2, 132

โ€“ ๐ถโ„“0,3, 133

โ€“ ๐ถโ„“0,5, 135, 137

โ€“ ๐ถโ„“1,2, 134

โ€“ ๐ถโ„“2,0, 128

Page 358: Quaternion and Clifford Fourier Transforms and Wavelets

338 Index

โ€“ ๐ถโ„“2,1, 130

โ€“ ๐ถโ„“2,3, 135

โ€“ ๐ถโ„“3,0, 134

โ€“ ๐ถโ„“4,1, 135

โ€“ ๐ถโ„“7,0, 138

โ€“ โ„‚, 125

โ€“ โ„, โ„2, 125

โ€“ โ„2, 133

โ€“ โ„ณ(2,โ„‚), 135

โ€“ โ„ณ(2๐‘‘,โ„‚), 134

โ€“ โ„ณ(2๐‘‘,โ„), 128

โ€“ โ„ณ(2๐‘‘,โ„2), 130

โ€“ โ„ณ(๐‘‘,โ„2), 133

โ€“ โ„ณ(๐‘‘,โ„), 132

โ€“ ๐‘› โ‰ค 4, 125

โ€“ algebraic submanifold, 126

โ€“ inner automorphism, 126

โ€“ bijection with idempotents, 134

โ€“ biquaternions, ๐ถโ„“3,0, 125

โ€“ central pseudoscalar, 134

โ€“ centralizer, 126

โ€“ centralizer computation, 149

โ€“ compact manifold, 132

โ€“ computation

โ€“ CLIFFORD package, 141

โ€“ conjugacy class, 126

โ€“ dimension, 126

โ€“ conjugate square root of โˆ’1, 132

โ€“ connected component, 126

โ€“ dimension, 126

โ€“ exceptional, 124, 127, 135

โ€“ Fourier transformations, 124

โ€“ idempotents, 134

โ€“ Klein group, 131

โ€“ Maple worksheets, 141, 144

โ€“ matrix square root, 147

โ€“ multivector split, 128

โ€“ ordinary, 127, 135

โ€“ Pauli matrix algebra, 134

โ€“ quaternions, 132

โ€“ scalar part zero, 127

โ€“ skew-centralizer, 128

โ€“ square isometries, 132

โ€“ stability subgroup, 126

โ€“ table โ„ณ(2๐‘‘,โ„‚), ๐‘‘ = 1, 2, 4, 141

โ€“ visualization, 124

swap rule, 6

symmetry, 70

symplectic form, 6

texture, 238

โ€“ detection, 185

tomography, optical coherence, 271

trivector, geometric interpretation, 124

uncertainty principle, 300, 303, 317

unique continuation principle, 279

up(๐‘ฅ), 58

vector space, non-Euclidean, 124

Ville, J., 200

wavelet

โ€“ quaternionic multiresolution, 66

โ€“ transform, analytic, 248

Weierstrass

โ€“ generalized parametrization, 183

โ€“ representation, 177

Zak transform, 305

โ€“ Cliffordโ€“, 305, 307, 308, 312, 317