radar fall2015 (3)

282
 NTRODUCT ON  CONTRACTION OF THE WORDS R ADIO DETECTION AND RANGING  RADAR IS AN ELECTROMAGNETIC SYSTEM FOR  THE DETECTION AND L OCA TION OF REFLECTING OBJECTS SUCH AS AIRCRAFT, SHIPS, SPACECRAFT, VEHICLES , PEOP LE AND NA TURAL ENVIRONMENT OPE RA TES B Y RADIATING ENERGY INTO SPACE  AND DETECTING THE ECHO SIGNAL REFLECTED FROM AN OBJECT OR TARGET  REFLECTED ENERG Y INDICA TES PRESENCE, LOCATION AND OTHER INFORMATION, HEIGHT ETC

Upload: muhammadhammad

Post on 21-Feb-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 1/282

 NTRODUCT ON

  CONTRACTION OF THE WORDS RADIODETECTION AND RANGING

  RADAR IS AN ELECTROMAGNETIC SYSTEM FOR  THE DETECTION AND LOCATION OF REFLECTING

OBJECTS SUCH AS AIRCRAFT, SHIPS, SPACECRAFT,VEHICLES , PEOPLE AND NATURAL ENVIRONMENT

  OPERATES BY RADIATING ENERGY INTO SPACE  AND DETECTING THE ECHO SIGNAL REFLECTED

FROM AN OBJECT OR TARGET

  REFLECTED ENERGY INDICATES PRESENCE,LOCATION AND OTHER INFORMATION, HEIGHT ETC

Page 2: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 2/282

 NTRODUCT ON

Radar can perform its function at long

or short distances and under

conditions impervious to optical andinfrared sensors. It can operate in

darkness, haze, fog, rain and sno.

Its a!ilit" to measure distance ith

high accurac" in all eather is one of

the most important attri!utes.

Page 3: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 3/282

 NTRODUCT ON

#ome Radars have to detect targets at

ranges as short as the distance from

!ehind the ickets to the !olersdeliver" $to measure the speed of a

deliver"%, hile other radars have to

operate over distances as great as the

distances to the nearest planets.

Thus, a radar might !e small enough

to hold in the palm of one hand or

larger than a foot!all field .

Page 4: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 4/282

 NTRODUCT ON

Radar targets might !e aircraft, ships,

or missiles& !ut radar targets can also

!e people, !irds, insects,precipitation, clear air tur!ulence,

ionized media, land features

$vegetation, mountains, roads, rivers,

airfields, !uildings, fences, poer '

line poles%, sea, ice, ice!ergs, !uo"s,

underground features, meteors,

aurora, spacecraft and planets.

Page 5: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 5/282

 NTRODUCT ON

Radar is used to detect aircraft, guide

supersonic missiles, o!serve and

track eather patterns, and controlflight traffic at airports. It is also

used in !urglar alarms, garage ' door

openers, and police speed detectors.

Page 6: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 6/282

 NTRODUCT ON

Radar s"stems provided the ma(orincentive for the development of

microave technolog" !ecause the"

give !etter resolution for radar

instruments at higher fre)uencies. Onl"

the microave region of the spectrum

could provide the re)uired resolution

ith antennas of reasona!le size. Thea!ilit" to focus a radiated ave sharpl"

is hat makes microaves so useful in

radar applications.

Page 7: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 7/282

 NTRODUCT ON

In addition to measuring the range toa target as ell as its angular

direction, a radar can also find the

relative velocit" of a target either !"determining the rate of change of the

range measurement ith time or !"

e*tracting the radial velocit" from the

Doppler fre)uenc" shift of the echosignal.

Page 8: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 8/282

 NTRODUCT ON

If the location of a moving target ismeasured over a period of time, the

track, or tra(ector", of the target can !e

found from hich the a!solute velocit"

of the target and its direction of travel

can !e determined and a prediction can

!e made as to its future location.

+roperl" designed radars can determinethe size and shape of a target and

might even !e a!le to recognize one

t"pe or class of target from another.

Page 9: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 9/282

ELECTROMAGNETIC SPECTRUM

Page 10: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 10/282

RADIO DETECTION AND

RANGING

Page 11: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 11/282

INTRODUCTION

 

Page 12: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 12/282

INTRODUCTION

 RADAR IS A CLASSIC EXAMPLE OF ANELECTRONIC ENGINEERING SYSTEM THATUTILIZES MANY OF THE SPECIALIZEDELEMENTS OF TECHNOLOGY PRACTICED BYELECTRICAL ENGINEERS , INCLUDINGSIGNAL PROCESSING, DATA PROCESSING,WAVEFORM DESIGN, ELECTROMAGNETIC

SCATTERING, DETECTION, PARAMETERESTIMATION, INFORMATION EXTRACTION,ANTENNAS, PROPAGATION, TRANSMITTERS

AND RECEIVERS

Page 13: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 13/282

BASIC PRINCIPLE

 

Page 14: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 14/282

BASIC PRINCIPLE

  generates EM wave radiated in space by  antenna.

 Portion of energy intercepted by the

  target and re-radiated in many directions.

 Re-radiation directed back towards radar 

  collected by radar antenna – delivered to

  Receiver 

 Processed to detect presence of target and

  determine its location.

 Single antenna used time shared basis when

  radar waveform repetitive series of pulses.

T  x

T  x

Page 15: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 15/282

BASIC PRINCIPLE

 Range or distance to a target found by  measuring the time it takes for the radar 

  signal to travel to the target and return back.

 argets location in angle can be found from  the direction the narrow beamwidth radar 

  antenna points when the received signal is of 

  ma!imum amplitude.

 "f target is in motion – than shift of fre#uency

  determined.

Page 16: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 16/282

PRINCIPLES

$ Radar opra!" o# !$ %,&&& !o '&,&&& MH()r*+#- .a#d"/ 0"+pr $12$ )r*+#- SHF3

$ E4!ro5a2#!1 #r2- rad1a!1#2 o+!6ard )ro5 a"o+r 1" r7!d .a8 .- o.9!" 1# 1!" pa!$/

$  T$ !15 d1:r# .!6# !ra#"51""1o# 0!ra3a#d r7!1o# 0$o3 1" 5a"+rd 21;1#2 a#a+ra! 1#d1a!1o# o) a# o.9!" d1"!a#/

$ D1"!a#, a(15+!$, a#d 4;a!1o# a# . +"d !o<= !$ o.9!" po"1!1o# 1# !$r d15#"1o#a4"pa/

$ S12#a4 !151#2 1" r1!1a4 !o a+ra-/ 0o#51ro"o#d rror r"+4!" 1# a d1"!a# rror o)a45o"! >&&)!/3

$ A" a r"+4! po"1!1o# a+ra- 1" d1r!4- r4a!d !o!$ a+ra- o) !$ !151#2 d;1 +"d/

Page 17: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 17/282

What information RADAR can give

$  Tar2! ra#2 0d1"!a#3$  Tar2! $12$! 0a4!1!+d3$  Tar2! "pd$  Tar2! 1d#!1!-

Page 18: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 18/282

!OW RADAR WOR"S$ A radar "-"!5 02ro+#d?.a"d3 $a" a !ra#"51!!r

!$a! 51!" rad1o 6a;" or 51ro6a;" "12#a4/

$  T$ "12#a4 $1! a1rp4a# a#d r7! .a8/

$ Gro+#d?.a"d radar p18" +p r7!d "12#a4 d+r1#2a .ra8 .!6# !ra#"51""1o#"/

$  T$ !15 !a8# )or !$ r7!d "12#a4 !o r!+r#

.a8 #a.4" a o5p+!r a4+4a! $o6 )ar !$o.9! 1" 0ra#23/

$  T$ a1rra)! da!a !$# "#! a#d "$o6# o# a RadarD1"p4a-/

Page 19: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 19/282

Mo"! o#;#!1o#a4 a1rra)! $a; a ro+#dd "$ap/ T$1" "$ap ra!" a;r- @1#! radar r7!or/ Ma#" !$a! #o 5a!!r 6$r !$ radar"12#a4 $1!" !$ p4a#, "o5 o) !$ "12#a4 2!" r7!d .a8

Page 20: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 20/282

T#PES O$ RADAR

 

Page 21: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 21/282

T#PES O$ RADAR

 

Page 22: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 22/282

T#PES O$ RADAR

 

Page 23: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 23/282

T#PES O$ RADAR

 

Page 24: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 24/282

T#PES O$ RADAR

 

Page 25: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 25/282

T#PES O$ RADAR

Page 26: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 26/282

T#PES O$ RADAR

Page 27: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 27/282

T#PES O$ RADAR

%ig& ' – band S(R image of )-*+ aircraft sitting

Page 28: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 28/282

T#PES O$ RADAR

%ig& "S(R image of a ship with ' – band radar 

Page 29: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 29/282

T#PES O$ RADAR

 "S(R image of a commercial ship ,/// ton0 obtained with an ' – band radar having + meter

resolution. he vertical scale in this image is slightly

e!aggerated. 1ote that 2radar eyes3 are not 2optical

eyes3 yet useful information can be obtained from aseries of such images. Pitch motion causes top of

masts to have higher velocity than the bottom of the

masts or superstructure. hese differences invelocity causes different 4oppler shifts. Resolution

in 4oppler allows masts to be imaged. (lso Roll

and 5aw motion provide height information6 etc .

Page 30: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 30/282

$!!p6a!$r/#oaa/2o;radarrad1#)orad1#)o/$!54

Page 31: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 31/282

% Bi&tatic ' !$ !ra#"51! a#d r1; a#!##a" ar a!d1:r#! 4oa!1o#" a"  ;16d )ro5 !$ !ar2! 0/2/, 2ro+#d !ra#"51!!r a#da1r.or# r1;r3/

% Mono&tatic !$ !ra#"51!!r a#d r1;r aro4oa!d a" ;16d )ro5  !$ !ar2! 01//, !$ "a5 a#!##a 1" +"d !o !ra#"51!

a#d r1;3/

% ()a&i*mono&tatic !$ !ra#"51! a#d r1;a#!##a" ar "412$!4-

  "para!d .+! "!144 appar !o . a! !$ "a5 4oa!1o#a" ;16d )ro5 !$

RADAR ANTENNA

CON$IGURATION

Page 32: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 32/282

Bi&tatic

TARGET

  T  R  A  N

  S  M  I  T  T  E  D

  P  U  L  S  E

 R E $ L E

 C T E D

 P U L S E

RECEI+ER ANTENNA

TRANSMITTER ANTENNA

Page 33: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 33/282

Mono&tatic

Page 34: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 34/282

TARGET

  T  R  A  N

  S  M  I  T  T  E  D

  W  A  +

  E

  R  E  $  L  E C  T  E  D

  W A  +  E

RECEI+ER ANTENNA

TRANSMITTER ANTENNA ()a&i * mono&tatic

Page 35: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 35/282

RANGE TO A TARGET

 

MA,IMUM UNAMBIGUOUS

Page 36: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 36/282

MA,IMUM UNAMBIGUOUSRANGE

MA,IMUM UNAMBIGUOUS

Page 37: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 37/282

MA,IMUM UNAMBIGUOUSRANGE

 

Page 38: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 38/282

UNAMBIGUOUS RANGE

Page 39: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 39/282

RADAR WA+E$ORMS

 

Page 40: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 40/282

RADAR WA+E$ORMS

Page 41: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 41/282

RADAR WA+E$ORMS

 are separated a distance half this value or .   The factor of one –half results from the two –

way travel of the radar wave, eg when τ = 1 μs,

two equal size targets can e resolved if they are

separated y 1!" meters.

# very long pulse is needed for some long range

radars to achieve sufficient energy to detect small

targets at long range – long pulse has poorresolution in range dimension – pulse compression

used to otain resolution of a short pulse.

2

τ  c

Page 42: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 42/282

RADAR WA+E$ORMS  $ontinuous wave %$&' waveforms have also een used in

radar. (ince they have to receive while transmitting, $&

radars depend on the doppler frequency shift of the echo

signal, caused y a moving target, to separate in the

frequency domain the wea) echo signal from the large

transmitted signal and the echoes from fi*ed clutter %land,

sea, weather', as well as to measure the radial velocity of

the target.

 # simple $& radar does not measure range. $an otainrange y modulating the carrier with frequency or phase

modulation, eg +-$& waveform used in radar altimeter

that measures height %altitude' of an aircraft aove the

earth.

Page 43: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 43/282

RADAR WA+E$ORMS

ulse radars that e*tract the /oppler frequencyshift are called either Moving Target Indication

%T0' or pulse doppler radars, depending on their

particular values of pulse repetition frequency and

duty cycle.

#n T0 radar has a low prf and a low duty cycle.

# pulse doppler radar, on the other hand, has a

high prf and a high duty cycle – discuss later. #lmost all radars designed to detect aircraft use

the doppler frequency shift to reect large

unwanted echoes from stationary clutter.

Page 44: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 44/282

PULSE WA+E$ORM

 

Page 45: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 45/282

BASIC RADAR E(UATION

 

Page 46: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 46/282

Satellite

Communications, 2/E .- T15o!$- Pra!!, C$ar4"

Bo"!1a#, Jr5- A44#+!!Cop-r12$! &&% Jo$#

$ig)re -./ 01. 2324F4+= d#"1!- prod+d .- a# 1"o!rop1 "o+r/

Page 47: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 47/282

Satellite

Communications, 2/E .- T15o!$- Pra!!, C$ar4"

Bo"!1a#, Jr5- A44#+!!Cop-r12$! &&% Jo$#

$ig)re -.5 01. 23/4Po6r r1;d .- a# 1da4 a#!##a 61!$ ara A 5/ I#1d#! 7+= d#"1!- 1" F   Pt πR W5/ R1;d po6r 1" Pr   F  X A  Pt  AπR W/

Page 48: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 48/282

BASIC RADAR E(UATION

 

Page 49: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 49/282

BASIC RADAR E(UATION

 

F12 ,a0 Single transmission path with parameters used in %riis

  transmission formula.

  ,b0 and ,c0 4ouble-path geometry used in obtaining radar e#uation.

Page 50: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 50/282

A "!a4!$ a1rra)! 1" 5ad +p o) o5p4!4- 7a!

"+r)a"  a#d ;r- "$arp d2"/ W$# a radar "12#a4$1!" a "!a4!$ p4a#, !$ "12#a4 r7!" a6a- a! a#a#24/ S+r)a" o# a "!a4!$ a1rra)! a4"o a# a."or.radar #r2- a" 644/ So, !$1" a1rra)! .o5 1#;1"1.4/

Page 51: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 51/282

Ho6;r, "o5 5141!ar- a1rra)! ard"12#d a#d o#"!r+!d !o . #o#?

r7!1; ? !$ "o?a44d "!a4!$

a1rra)!/

B*/ S1irit &tea6th

7om7er of the U.SAir $orce

An $*228 Nightha9: &tea6th &tri:e aircraft

$*// Ra1tor

Page 52: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 52/282

RDR CRO## #-CT ON

The a!ilit" of a target to scatter $or

reflect% energ" is characterized !" its

scattering cross section   /0 $alsocalled the radar cross section %. The

scattering cross section has the units

of area and can !e measurede*perimentall".

Page 53: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 53/282

RDR CRO## #-CT ON

The sc ttering cross section   is

the e)uivalent area intercepting the

amount of poer that, henscattering isotropicall", produces at

the radar a poer densit" that is e)ual

to that scattered or $reflected% !" the

actual target.

Page 54: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 54/282

BASIC RADAR E(UATION

Page 55: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 55/282

1# C RDR -2UT ON

The radar cross section has units ofarea, !ut it can !e misleading to

associate the radar cross section

directl" ith the target0s ph"sicalsize. Radar cross section is more

dependent on the target0s shape

than on its ph"sical size as ill !e

discussed later.

Page 56: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 56/282

1# C RDR -2UT ON

Page 57: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 57/282

BASIC RADAR E(UATION

S C ( O

Page 58: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 58/282

BASIC RADAR E(UATION

Page 59: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 59/282

1# C RDR -2UT ON

-) $3.4%& or the effective area is heldconstant, as implied !" -) $3.35%. 6or

-) $3.7% to !e independent of

fre)uenc", to antennas have to !eused. The transmitting antenna has

to have a gain independent of

avelength and the receiving

antenna has to have an effective

aperture independent of avelength.

$This is seldom done.%

Page 60: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 60/282

1# C RDR -2UT ON

These simplified versions of the radare)uation do not ade)uatel" descri!e the

performance of actual radars. 8an"

important factors are not e*plicitl" included.

The simple form of the radar range e)uationpredicts too high a value of range,

sometimes !" a factor of to or more. 9ater

the simple form of the radar e)uation is

e*panded to include other factors ' e)uationthan !ecomes in !etter agreement ith

o!served range performance of actual

radars.

RADAR BLOC"

Page 61: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 61/282

 RADAR BLOC"DIAGRAM

Page 62: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 62/282

1# C +RT# O6

RDR

6igure $#lide :3% is a ver" elementar"!asic !lock diagram shoing the

su!s"stems usuall" found in a radar.

The Transmitter , hich is shon as apoer amplifier, generates a suita!le

aveform for the particular (o! the

radar is to perform. It might have an

average poer as small as milliatts or

as large as megaatts. $The average

poer is a far !etter..

  ;contd<

Page 63: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 63/282

1# C +RT# O6

RDR

Indication of the capa!ilit" of a

radar0s performance than is its

peak poer.% 8ost radars use a

short pulse aveform so that a

single antenna can !e used on a

time ' shared !asis for !oth

transmitting and receiving. 

Page 64: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 64/282

1# C +RT# O6 RDR

The function of the duple*er   is to

allo a single antenna to !e used

!" protecting the sensitive

receiver from !urning out hile

the transmitter is on and !"

directing the received echo signalto the receiver rather than to the

transmitter. 

Page 65: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 65/282

1# C +RT# O6 RDR

The antenna is the device that allosthe transmitted energ" to !e propagated

into space and then collects the echo

energ" on receive. It is almost ala"s a

directive antenna, one that directs theradiated energ" into a narro !eam to

concentrate the poer as ell as to

allo the determination of the direction

to the target. n antenna that produces

a narro directive !eam on transmit=.

;contd<

Page 66: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 66/282

1# C +RT# O6 RDR

Usuall" has a large area onreceive to allo the collection of

eak echo signals from the

target. The antenna not onl"

concentrates the energ" on

transmit and collects the echo

energ" on receive, !ut it also acts

as a spatial filter to provide angle

resolution and other capa!ilities.

Page 67: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 67/282

1# C +RT# O6 RDR

The Receiver  amplifies the eak receivedsignal to a level here its presence can !e

detected. 1ecause Noise  is the ultimate

limitation on the a!ilit" of a radar to make

a relia!le detection decision and e*tractinformation a!out the target ' care is

taken to insure that the receiver produces

ver" little noise of its on. t themicroave fre)uencies, here most

radars are found,

;contd<

Page 68: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 68/282

1# C +RT# O6 RDR

The Noise  that affects radar performanceis usuall" from the first stage of the

receiver, shon in 6ig $slide :3% as a lo '

noise amplifier. 6or man" radar

applications here the limitation todetection is the unanted radar echoes

from the environment $called clutter %, the

receiver needs to have a large enoughd"namic range so as to avoid having the

clutter echoes

;contd<

Page 69: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 69/282

1# C +RT# O6 RDR

adversel" affect detection of antedmoving targets !" causing the receiver to

saturate. The d"namic range  of a

receiver, usuall" e*pressed in deci!els, is

defined as the ratio of the ma*imum tothe minimum signal input poer levels

over hich the receiver can operate ith

some specified performance. Thema*imum signal level might !e set !" the

non ' linear effects of the

;contd<

Page 70: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 70/282

1# C +RT# O6 RDR

receiver response that can !e tolerated

$eg the signal poer at hich the

receiver !egins to saturate%, and the

minimum signal might !e the minimum

detecta!le signal. The signalprocessor , hich is often in the I6

portion of the receiver, might !e

descri!ed as !eing the part of thereceiver that separates the desired signal

from the undesired

;contd<

Page 71: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 71/282

1# C +RT# O6 RDR

signals that can degrade the detectionprocess. #ignal processing includes the

matched filter   that ma*imizes the

output to signal ' to ' noise ratio. #ignal

processing also includes the dopplerprocessing that ma*imizes the signal ' to

 ' clutter ratio of a moving target hen

clutter is larger than receiver noise, andit separates one moving target from other 

  ;contd<

Page 72: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 72/282

1# C +RT# O6 RDR

moving targets or from clutter echoes.The detection decision  is made at the

output of the receiver, so a target is

declared to !e present hen the receiver

output e*ceeds a predetermined threshold.If the threshold is set too lo, the receiver

noise can cause e*cessive false alarms. If

the threshold is set too high, detection ofsome targets might !e missed that ould

;contd<

Page 73: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 73/282

1# C +RT# O6 RDR

otherise have !een detected. Thecriterion for determining the level of the

decision threshold is to set the threshold

so it produces an accepta!le

predetermined average rate of false alarmsdue to receiver noise ' in militar" radars

ma" !e operator controlled.

fter the detection decision is made, thetrack of a target can !e determined, here

a track

  ;contd<

Page 74: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 74/282

1# C +RT# O6 RDR

is the locus of target locations measuredover time. This is an e*ample of data

processing . The processed data target

information might !e used to automaticall"

guide a missile to a target& or the radaroutput might !e further processed to

provide other information a!out the nature

of the target. The radar control   insuresthat the various part of radar operate in a

coordinated and

;contd<

Page 75: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 75/282

1# C +RT# O6 RDR

cooperative manner, as eg providing timingsignals to various parts of the radar as

re)uired.

The radar engineer has as resources>

 Time  that allos good doppler 

  processing.

  1andidth  for good range resolution.

  #pace  that allos a large antenna.

  ;contd<

Page 76: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 76/282

1# C +RT# O6 RDR

 -nerg"   for long range processing

  performance and accurate

  measurements.

-*ternal factors affecting radar

performance include the>

  Target characteristics .

  ;contd<

Page 77: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 77/282

1# C +RT# O6 RDR

  -*ternal noise  that might enter via  the antenna.

  Unanted Clutter  echoes from land,

  sea, !irds, or rain.

  Interference  from other   electromagnetic radiators.

  +ropagation  effects due to the

  earth0s surface and atmosphere.

These factors mentioned to emphasize that the" can !e highl"

important in the design and application of a radar.

 

Page 78: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 78/282

RDR TRN#8 TT-R#

The radar transmitter must not onl" !ea!le to generate the peak and average

poers re)uired to detect the desired

targets at the ma*imum range, !ut alsoto generate a signal ith a proper

aveform and the sta!ilit" needed for

the particular application. Transmitters

ma" !e oscillators or amplifiers, !ut the

later usuall" offer more advantages.

 

Page 79: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 79/282

RDR TRN#8 TT-R#

There have !een man" t"pes of radar poersources used in radar>

  The 8agnetron  poer oscillator as

  at one time ver" popular, !ut it is

  seldom used e*cept for civil marine  radar. 1ecause of the magnetron0s

  relativel" lo average poer $3 or ?

  @A% and poor sta!ilit", other poer 

  sources are usuall" more appropriate  for applications re)uiring long B range

  detection of small moving targets in

$contd%

Page 80: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 80/282

RDR TRN#8 TT-R#

  the presence of large clutter echoes.  The magnetron poer oscillator is an

  e*ample of hat is called a crossed ' 

  field tu!e.

  There is also a related crossed ' field

  amplifier $C6% that has !een in some

  radars in the past, !ut it also suffers

  limitations for important radar   applications, especiall" for those

  re)uiring detection of moving targets

  in clutter. 

Page 81: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 81/282

RDR TRN#8 TT-R#

  The high ' poer@l"stron 

 and the

  travelling ave tu!e $TAT% are

  e*amples of hat are called linear 

  !eam tu!es. t the high poers

  often emplo"ed !" radars, !oth tu!es

  have suita!l" ide !andidths as

  ell as good sta!ilit" as needed for 

  doppler processing, and !oth have

  !een popular.

  The #olid ' state amplifier , such as

  the transistor, has also !een used in

  radar, especiall" in phased arra"s. 

Page 82: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 82/282

RDR TRN#8 TT-R#

  lthough an individual transistor has

  relativel" lo poer, each of the

  man" radiating elements of an arra"

  antenna can utilize multiple

  transistors to achieve the high poer 

  needed for man" applications.

  Ahen solid ' state transistor 

  amplifiers are used, the radar 

  designer has to !e a!le to>

accommodate the high dut" c"cle at

  hich these devices have to operate. 

Page 83: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 83/282

RDR TRN#8 TT-R#

 the long pulses the" must use  that re)uire pulse compression.

 the multiple pulses of different

  idths to allo detection at  short as ell as long range.

 Thus the use of solid ' state

  transmitters can have an effect

  on other parts of the radar 

  s"stem. 

Page 84: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 84/282

RDR TRN#8 TT-R#

  t millimeter avelengths ver" high

  poer can !e o!tained ith the

  g"rotron , either as an oscillator or as

  an amplifier.

 The grid ' control vacuum tu!e as

  used to good advantage for a long time

  in U6 and lo fre)uenc" radars ' 

  although less interest in the lo  fre)uencies for radar ' hoever some

  sa" chinese 6 radars $designed some

  decades ago due to lack of technolog"

  kno ho% can pick stealth aircraft. 

Page 85: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 85/282

RDR TRN#8 TT-R#

  lthough not ever" e*pert  might agree, some radar 

  s"stem engineers ' if given

a choice ' ould consider 

  the @l"stron  amplifier as

  the prime candidate for a

  high poer modern radar if 

  the application ere

  suita!le for its use. 

 RADAR BLOC"

Page 86: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 86/282

DIAGRAM

RADAR BLOC" DIAGRAM

Page 87: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 87/282

RADAR BLOC" DIAGRAM

 

Page 88: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 88/282

RDR 19OC@ D ER8

to an intermediate fre)uenc" $I6% here itis amplified !" the I6 amplifier. The signal

!andidth of a superheterod"ne receiver

is determined !" the !andidth of its I6

stage. The I6 fre)uenc" might !e F5 or :58z hen the pulse idth is of the order

of 3 Gs $ith a 3B Gs pulse idth, the I6

!andidth ould !e a!out 3 8z%. The I6amplifier is designed as a 8atched 6ilter

that is one hich ma*imizes  $contd%  

Page 89: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 89/282

RDR 19OC@ D ER8

the peak ' signal ' to ' mean ' noise ratio.Thus the matched filter ma*imizes the

detecta!ilit" of eak echo signals and

attenuates unanted signals. Aith the

appro*imatel" rectangular pulse shapescommonl" used in man" radars,

conventional radar receiver filters are close

to that of a matched filter hen the receiver

!andidth 1  is the inverse of the pulse

idth τ , or 1 τ  H 3.

 

Page 90: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 90/282

RDR 19OC@ D ER8

#ome times the lo ' noise input stage is omitted

and the mi*er !ecomes the first stage of the

receiver. receiver ith a mi*er as the input

stage ill !e less sensitive !ecause of the

mi*er0s higher noise figure& !ut it ill have

greater d"namic range, less suscepti!ilit" to

overload, and less vulnera!ilit" to electronic

interference than a receiver ith a lo ' noise

first stage. These attri!utes of a mi*er stage

might !e of interest for militar" radars su!(ect tothe nois" environment of hostile electronic

countermeasures $-C8%. 

Page 91: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 91/282

RDR 19OC@ D ER8

The I6 amplifier is folloed !" a cr"stal

diode, hich is traditionall" called the

second detector  or demodulator . Its

purpose is to assist in e*tracting the signal

modulation from the carrier. Thecom!ination of I6 amplifier, second detector

and video amplifier act as an envelope

detector  to pass the pulse modulation

$envelope% and re(ect the carrier fre)uenc".  $contd% 

Page 92: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 92/282

RDR 19OC@ D ER8

In radars that detect the doppler shift of the

echo signal, the envelope detector is replaced

!" a phase detector , hich is different from

the envelope detector shon in the !lock

diagram $slide :%. The com!ination of I6amplifier and video amplifier is designed to

provide sufficient amplification, or gain, to

raise the level of the input signal to a

magnitude here it can !e seen on a displa",such as a cathode ' ra" tu!e $CRT%, or !e the

input signal to a digital computer for further

processing. 

Page 93: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 93/282

RDR 19OC@ D ER8

t the output of the receiver a decisionis made hether or not a target is

present. The decision is !ased on the

magnitude of the receiver output. If

the output is large enough to e*ceed a

pre ' determined threshold, the

decision is that a target is present. If

it does not cross the threshold, onl"noise is assumed to !e present.$contd%  

Page 94: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 94/282

RDR 19OC@ D ER8

The threshold level is set so that therate at hich false alarms occur due to

noise crossing the threshold $in the

a!sence of signal% is !elo some

specified, tolera!le value. This is fine

if the noise remains constant, as hen

receiver0s on noise dominates. If, on

the other hand, the noise is e*ternal tothe radar $as from unintentional == $contd%  

Page 95: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 95/282

RDR 19OC@ D ER8

=. interference or from deli!eratenoise (amming% or if clutter echoes

$from the natural environment% are

larger than the receiver noise, thethreshold has to !e varied adaptivel"

in order to maintain the false alarm

rate at a constant value. This isaccomplished !" a constant false

alarm rate  $C6R% receiver. 

RADAR BLOC" DIAGRAM

Page 96: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 96/282

RADAR BLOC" DIAGRAM

 

RADAR BLOC" DIAGRAM

Page 97: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 97/282

RADAR BLOC" DIAGRAM

 

RADAR BLOC" DIAGRAM

Page 98: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 98/282

RADAR BLOC" DIAGRAM

 

RADAR BLOC" DIAGRAM

Page 99: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 99/282

RADAR BLOC" DIAGRAM

 

RADAR $RE(UENCIES

Page 100: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 100/282

RADAR $RE(UENCIES

RADAR LETTER DESIGNATIONS

Page 101: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 101/282

RADAR $UNCTIONS

Page 102: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 102/282

% Norma6 ra;ar f)nction&''/ ra#2 0)ro5 p+4" d4a-3/ ;4o1!- 0)ro5 Dopp4r )r*+#- "$1)!3%/ a#2+4ar d1r!1o# 0)ro5 a#!##a po1#!1#23

% Signat)re ana6<&i& an; inver&e&cattering'

/ !ar2! "1( 0)ro5 5a2#1!+d o) r!+r#3>/ !ar2! "$ap a#d o5po##!" 0r!+r# a" a

)+#!1o# o) 

  d1r!1o#3/ 5o;1#2 par!" 05od+4a!1o# o) !$ r!+r#3K/ 5a!r1a4 o5po"1!1o#

RADAR $UNCTIONS

APPLICATION O$ RADARS

Page 103: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 103/282

APPLICATION O$ RADARS

APPLICATION O$ RADARS

Page 104: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 104/282

APPLICATION O$ RADARS

Page 105: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 105/282

APPLICATION O$ RADARS

Page 106: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 106/282

APPLICATION O$ RADARS

Page 107: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 107/282

APPLICATION O$ RADARS

Page 108: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 108/282

APPLICATION O$ RADARS

Page 109: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 109/282

APPLICATION O$ RADARS

Page 110: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 110/282

APPLICATION O$ RADARS

Page 111: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 111/282

APPLICATION O$ RADARS

Page 112: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 112/282

APPLICATION O$ RADARS

Page 113: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 113/282

APPLICATION O$ RADARS

Page 114: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 114/282

APPLICATION O$ RADARS

Page 115: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 115/282

APPLICATION O$ RADARS

Page 116: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 116/282

IN$ORMATION A+AILABLE $ROM RADARS 

Page 117: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 117/282

IN$ORMATION A+AILABLE $ROM RADARS

Page 118: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 118/282

 N6O 919- > RDR

Page 119: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 119/282

 ngular Direction

 One method to determine direction to  target is determine here magnitude

  of echo signal is ma*imum.

 Re)uires antenna ith a narro  !eamidth $a high gain antenna%.

 ngle to target in one angular 

  dimension can !e determined !" using

  to antennas, displaced in angle, and

  comparing the echo amplitude

  received in each !eam. $contd% 

 N6O 919- > RDR

Page 120: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 120/282

 ngular Direction

 6our !eams needed to o!tain angle  measurement in !oth azimuth and

  elevation.

 8onopulse tracking radar uses this  principle.

 ccurac" of angle measurement

  depends on electrical size of the  antenna&  '  the size of antenna given

  in avelengths.

 N6O 919- > RDR

Page 121: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 121/282

 #ize and #hape

 If radar has sufficient resolution

  capa!ilit" in range or angle, can

  provide measurement of target e*tent.

 Range is usuall" the coBordinate  here resolution is o!tained.

  Resolution in cross ' range $given !"

  range multiplied !" antenna

  !eamidth% can !e o!tained ith ver"

  narro !eamidth antennas.

  $contd% 

 N6O 919- > RDR

Page 122: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 122/282

 #ize and #hape

 ngular idth of an antenna !eam  is limited, so cross ' range

  resolution o!tained !" this method

  not as good as range resolution.

 er" good resolution in the cross

  range dimension o!tained !"

  emplo"ing doppler fre)uenc" domain,  !ased on #R or I#R.

  $contd% 

 N6O 919- > RDR

Page 123: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 123/282

 #ize and #hape

 Need of relative motion !eteen the  target and the radar to o!tain cross ' 

  range resolution !" #R or I#R.

 Aith sufficient resolution in !oth

  range and cross ' range, not onl" can

  size !e o!tained in to orthogonal coB  ordinates, !ut target shape can

  sometimes !e discerned. 

IN$ORMATION A+AILABLE $ROM RADARS

Page 124: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 124/282

IN$ORMATION A+AILABLE $ROM RADARS

Page 125: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 125/282

IN$ORMATION A+AILABLE $ROM RADARS

Page 126: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 126/282

IN$ORMATION A+AILABLE $ROM RADARS

Page 127: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 127/282

IN$ORMATION A+AILABLE $ROM RADARS

Page 128: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 128/282

IN$ORMATION A+AILABLE $ROM RADARS

Page 129: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 129/282

IN$ORMATION A+AILABLE $ROM RADARS

Page 130: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 130/282

IN$ORMATION A+AILABLE $ROM RADARS

Page 131: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 131/282

 N6O 919- > RDR

Page 132: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 132/282

 Doppler

 nother application of doppler   shift ' o!servation of eather ' 

  Ne*rad radars of U#.

 #R and I#R are also !ased on

  doppler fer)uenc" shift.

 ir!orne doppler navigation radar 

  also !ased on doppler shift. 

 N6O 919- > RDR

Page 133: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 133/282

 Doppler

 Use of doppler in radar places  greater demands on sta!ilit" of 

  radar transmitter .

 Increases comple*it" of signal

  processing. Re)uirements accepted to achieve

  significant !enefits offered !"

  doppler.

 Doppler shift ke" capa!ilit" of radar B

  can measure speed ' traffic police,

  other velocit" measuring applications.

E$$ECT O$ OPERATING $RE(ON RADAR

Page 134: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 134/282

ON RADAR

Page 135: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 135/282

Page 136: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 136/282

-66-CT O6 O+-RT NE 6R-2 > RDR

Page 137: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 137/282

 

6 ' F to F5 8z

 8a(or use of 6 !and is to detect  targets at long ranges $out to ?555

  nmi% !" taking advantage of refraction

  of 6 energ" !" ionosphere.

 Radio amateurs refer it as short ' ave   propagation ' communicate over long

  distances.

 Targets for such 6 radars might !e

  aircraft, ships and !allistic missiles.

 lso echo from sea surface provide

  information a!out direction and speed

of inds that drive the sea

-66-CT O6 O+-RT NE 6R-2 > RDR

 

6 ' F5 to F55 8z

Page 138: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 138/282

 Radar development in 34F5s !egan in

  this !and as these fre)uencies

  represented frontier of radio technolog".

 Eood fre)uenc" for long range air 

  surveillance or detection of !allistic

  missiles. t 6 reflection coefficient on scattering

  from earth0s surface can !e ver" large $over 

  ater% ' constructive interference !eteen

  direct signal and surface reflected signal can

  increase significantl" range of 6 radar '   can dou!le radar0s range.

 Destructive interference decreases range due

  to deep nulls in antenna pattern in elevation

plane.

-66-CT O6 O+-RT NE 6R-2 > RDR

 

6 ' F5 to F55 8z

Page 139: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 139/282

 Destructive interference can result in poor 

  lo ' altitude coverage. Detection of moving targets in clutter !etter at

  loer fre)uencies hen radar takes advantage of 

  doppler fre)uenc" shift !ecause doppler 

  am!iguities $that cause !lind speeds% are feer at  lo fre)uencies.

 6 radars not !othered !" echoes from rain

  !ut can !e affected !" multiple ' time around

  echoes from meteor ionization and aurora.

 RC# of aircraft at 6 is generall" larger than  RC# at higher fre)uencies ' radar e)uation.

 6 radars cost less compared to radars ith

  the same range performance that operate at

higher fre)uencies. 

-66-CT O6 O+-RT NE 6R-2 > RDR

 

6 ' F5 to F55 8z

Page 140: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 140/282

 8an" attractive advantages !ut

  serious limitations too.

 Deep nulls J poor lo altitude cover.

 vaila!le spectral idths assigned are

  small so range resolution poor.

 ntenna !eamidths are usuall"

  ider than at microave fre)uencies  so poor resolution and accurac" in

  angle.

 6 !and crodedB civilian T, 68, ..

-66-CT O6 O+-RT NE 6R-2 > RDR

 

6 ' F5 to F55 8z

Page 141: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 141/282

 -*ternal noise levels entering radar 

  via antenna higher at 6 visBKBvis

  microave fre)uencies.

 Chief limitation o!taining spectrum

  space at these croded fre)uencies. 6 surveillance radar idel" used !"

  #oviet Union ' large countr", loer cost

  made attractive for air surveillance of 

  large e*panse of countr" ' produced  large num!ers, large size, long range.

 6 air!orne intercept radars used !"

  Eermans AABII. #NB? air!orne, :5B355

Radars at 6 not affected !" Chaff

-66-CT O6 O+-RT NE 6R-2 > RDR

 

U6 ' F5 to 3555 8z

Page 142: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 142/282

 8an" characteristics of radar   operating in 6 region appl" to U6.

 U6 is good fre)uenc" for ir!orne

  8oving Target Indication $8TI% radar 

  in ir!orne -arl" Aarning Radar$-A%. Eood fre)uenc" for operation of long

  range radars B detection and tracking

  of satellites and !allistic missiles.

 t upper portion !and long range

  ship!oard air ' surveillance radars and

  radars $called ind profilers % ' measure

speed and direction of ind

-66-CT O6 O+-RT NE 6R-2 > RDR

 

U6 ' F5 to 3555 8z

Page 143: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 143/282

 Eround +enetrating Radar $E+R% e*ample of

Ultraide!and $UA1% radar. Aide signal !andidth

covers !oth 6 and U6 !ands ' L5 to L55 8z.

 Aide signal 1A needed to o!tain good

  range resolution.

  9oer fre)uencies needed to allo the

  propagation of radar energ" into ground.

  -ven than loss in propagating through

  through t"pical soil high ' range of 

  simple mo!ile E+R onl" fe meters.  Ranges suita!le for locating !uried lines

  and pipe lines as ell as !uried o!(ects.

  Radar to see targets located on surface !ut

  ithin foliage re)uire same fre)uencies as E+R.

-66-CT O6 O+-RT NE 6R-2 > RDR

 

9 1and ' 3 to ?.5 Ez

Page 144: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 144/282

 +referred fre)uenc" !and for   operation of longBrange $to ?55 nmi%

  air ' surveillance radars.

 ir Route #urveillance Radar $R#R%

  for long range airBtraffic control is eg.

 s fre)uenc" increases effect of rain

  on performance !ecomes significant ' 

  radar designer has to orr" a!out  reducing effect of rain at 9 !and.

 6re)uenc" !and attractive for long

range detection satellites and IC18s

-66-CT O6 O+-RT NE 6R-2 > RDR

 

# 1and ' ?.5 to M.5 Ez

Page 145: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 145/282

 irport #urveillance Radar $#R% that  monitors air traffic ithin the region

  of an airport at # 1and. Range

  t"picall" L5 to :5 nmi. FD radar that

  determines range, azimuth angle, and  elevation angle achieved at # !and.

 -arlier ' long range surveillance !etter 

  at lo fre)uencies and accurate

  measurement target location !etter at

  high fre)uencies ' if single radar 

  operating at single fre)uenc" !and used

then # !and good compromise

-66-CT O6 O+-RT NE 6R-2 > RDR

 

# 1and ' ?.5 to M.5 Ez

Page 146: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 146/282

 #ometimes accepta!le to use C !and

  as choice for radar that performs !oth

  functions.

 AC# air!orne air ' surveillance  radar operates at # !and ' usuall"

  most radar applications are !est

  operated in a particular fre)uenc"  !and at hich the radar0s performance

  is optimum.

-66-CT O6 O+-RT NE 6R-2 > RDR

 

# 1and ' ?.5 to M.5 Ez

Page 147: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 147/282

 oever e*ample of AC# air!orne air 

  ' surveillance at # !and vs U# Nav" -?

  -A radar at U6 ' inspite of such

  difference in fre)uenc" !oth radars have

  compara!le performance ' e*ception to

  o!servation a!out an optimum fre)uenc"

  !and for each application.

 Ne*rad eather radar operates at #

  !and. Eood fre)uenc" for o!servation of   eather !ecause loer fre)uenc" ould

  produce much eaker radar echo signal

  from rain ' radar echo from rain varies as

  fourth poer of fre)uenc".

-66-CT O6 O+-RT NE 6R-2 > RDR

 

# 1and ' ?.5 to M.5 Ez

Page 148: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 148/282

  higher fre)uenc" ould produce  attenuation of the signal as it propagates

  through the rain and ould not allo an

  accurate measurement of rainfall rate.

 There are eather radars at higher 

  fre)uencies !ut usuall" of shorter range

  than Ne*rad and could !e used for more

  specific eather radar application than  accurate meteorological measurements

  provided !" Ne*rad.

-66-CT O6 O+-RT NE 6R-2 > RDR

 

C 1and ' M.5 to I.5 Ez

Page 149: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 149/282

 1and lies !eteen # and !ands and

  has properties in !eteen the to.

  Often either # or !and might !e

  preferred to the use of C !and '   although man" applications in past for 

  C !and. This !and also used !"

  satellite communication ' ma"!e radar   application not first choice.

-66-CT O6 O+-RT NE 6R-2 > RDR

 

1and ' I.5 to 3?.5 Ez

Page 150: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 150/282

 Relativel" popular radar !and for militar"  applications. Aidel" used in militar" air!orne

  radars for performing the roles of interceptor,

  fighter and attack of ground targets.

 lso popular for imaging radars !ased on  #R and I#R.

  !and suita!le fre)uenc" for civil marine

  radars, air!orne eather avoidance radar,

  air!orne doppler navigation radars and police

  speed meter.

 8issile guidance s"stems are also at !and.

-66-CT O6 O+-RT NE 6R-2 > RDR

 

1and ' I.5 to 3?.5 Ez

Page 151: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 151/282

 Radars at !and are generall" of 

  convenient size and of interest here

  mo!ilit" and light eight are important

  and ver" long range is not a ma(or 

  re)uirement.

 Relativel" ide range of fre)uencies

  availa!le at !and and a!ilit" to o!tain

  narro !eamidths ith relativel" small

  antennas in this !and important

  considerations for high ' resolution

  applications.

 igh fre)uenc" of !and serious factor 

  in reducing performance ith rain.

-66-CT O6 O+-RT NE 6R-2 > RDR

  , K , 1ands ' 3?.5 to M5 Ez

 K U    K a

Page 152: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 152/282

 6or higher radar fre)uenc" ph"sical size  of antennas decrease ' generall" more

  difficult to generate large transmit pr.

 Range performance of radars at  fre)uencies a!ove !and is generall"

  less than that of !and.

 8ilitar" air!orne radars are found at

  !and as ell as !and.

 6re)uenc" !ands attractive hen radar 

  of smaller size not re)uiring long range.

 K U 

-66-CT O6 O+-RT NE 6R-2 > RDR

  , K , 1ands ' 3?.5 to M5 Ez

 K U    K a

Page 153: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 153/282

 irport #urface Detection -)uipment

  $#D-% found on top of control toer at

  ma(or airports at !and primaril"

  !ecause of !etter resolution than !and.

 Original @  !and has ater ' a!sorption  line at ??.? Ez ' causes attenuation can

  !e serious pro!lem in some applications.

 Discovered after development of @  ' 

  !and radars during AABII. #o and

!ands ere later introduced.

 Radar echo from rain can limit capa!ilit"

of radars at these fre)uencies

 K U 

 K U   K 

a

-66-CT O6 O+-RT NE 6R-2 > RDR

 

8illimeter Aave Radar

Page 154: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 154/282

 8ost interest in millimeter ave radar has

  !een in vicinit" of 4M Ez ' there is a  minimum called indo  in atmospheric

  attenuation.

 Aindo is a region of lo attenuation

  relative to ad(acent fre)uencies ' indo at  4M Ez is a!out as ide as the entire

  microave spectrum.

 6or radar millimeter ave region starts at

  M5 Ez or higher ' technolog" of millimeter   ave radars and propagation effects of 

  environment not onl" different from

  microave radars !ut usuall" much more

  restricting .

RDIO AINDOA

Page 155: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 155/282

-66-CT O6 O+-RT NE 6R-2 > RDR

 

8illimeter Aave Radar

Page 156: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 156/282

 Unlike e*perience at microaves

  millimeter radar signal can !e highl"

  attenuated even hen propagating in

  clear atmosphere ' attenuation varies

  over millimeter ave region. ttenuation at 4M Ez indo is higher 

  than attenuation of atmospheric ater ' 

  vapour a!sorption line at ??.? Ez. One ' a" attenuation in o*"gen

  a!sorption line at :5 Ez is a!out 3? d1

per @m hich precludes its application

-66-CT O6 O+-RT NE 6R-2 > RDR

 

8illimeter Aave Radar

Page 157: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 157/282

 ttenuation in rain can also !e a

  limitation in the millimeter ave

  region.

 Interest in millimeter ave radar   primaril" !ecause of challenges as

  frontier to !e e*plored and put to

  productive use.

 Eood features are great place for 

  emplo"ing ide 1A signals ' plent" of 

  spectrum space availa!le.

-66-CT O6 O+-RT NE 6R-2 > RDR

 

8illimeter Aave Radar

Page 158: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 158/282

 Radars can have high range ' resolution and

  narro !eamidths ith small antennas. ostile countermeasures to militar" radars

  are difficult to emplo".

 -asier to have a militar" radar ith lo

  pro!a!ilit" of intercept at these fre)uencies

  than at loer fre)uencies.

 8illimeter ave transmitters not capa!le of 

  average poer more than fe hundred atts  $even less% ' advances in g"rotrons can

  produce average poer man" times more than

  conventional millimeter ave poer sources ' 

  availa!ilit" of high poer not a limitation no.

-66-CT O6 O+-RT NE 6R-2 > RDR

 

9aser Radar

Page 159: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 159/282

 9asers can produce usa!le poer at optical

  fre)uencies and in the infrared region of the  spectrum.

 Can utilize ide 1A $ver" short pulses% and can

  have ver" narro !eamidths.

 ntenna apertures much smaller than

  microaves.

 ttenuation in atmosphere and rain ver" high ' 

  performance in !ad eather )uite limited.

 Receiver noise determined !" )uantum effects

  rather than thermal noise.

 #everal reasons ' laser radar limited

application

RADAR E(UATION

Page 160: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 160/282

 

RADAR E(UATION

Page 161: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 161/282

 

RADAR E(UATION

Page 162: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 162/282

 

RADAR E(UATION

Page 163: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 163/282

 

RADAR E(UATION

Page 164: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 164/282

 

RADAR E(UATION

Page 165: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 165/282

 

RADAR E(UATION

Page 166: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 166/282

 

RADAR E(UATION

Page 167: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 167/282

RADAR E(UATION

Page 168: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 168/282

RADAR E(UATION

Page 169: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 169/282

RADAR E(UATION

Page 170: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 170/282

RADAR E(UATION

Page 171: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 171/282

RADAR E(UATION

Page 172: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 172/282

RADAR E(UATION

Page 173: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 173/282

RADAR E(UATION

Page 174: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 174/282

RADAR E(UATION

Page 175: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 175/282

RADAR E(UATION

Page 176: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 176/282

RADAR E(UATION

Page 177: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 177/282

RADAR E(UATION

Page 178: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 178/282

RADAR E(UATION

Page 179: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 179/282

RADAR E(UATION

Page 180: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 180/282

RADAR E(UATION

Page 181: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 181/282

RADAR E(UATION

Page 182: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 182/282

RADAR E(UATION

Page 183: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 183/282

RADAR E(UATION

Page 184: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 184/282

INTEGRATION O$ RADAR PULSES

Page 185: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 185/282

INTEGRATION O$ RADAR PULSES

Page 186: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 186/282

INTEGRATION O$ RADAR PULSES

Page 187: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 187/282

INTEGRATION O$ RADAR PULSES

Page 188: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 188/282

INTEGRATION O$ RADAR PULSES

Page 189: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 189/282

INTEGRATION O$ RADAR PULSES

Page 190: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 190/282

INTEGRATION O$ RADAR PULSES

Page 191: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 191/282

RADAR CROSS SECTION O$ TARGETS

Page 192: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 192/282

RADAR CROSS SECTION O$ TARGETS

Page 193: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 193/282

RADAR CROSS SECTION O$ TARGETS

Page 194: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 194/282

RADAR CROSS SECTION O$ TARGETS

Page 195: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 195/282

RADAR CROSS SECTION O$ TARGETS

Page 196: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 196/282

RADAR CROSS SECTION O$ TARGETS

Page 197: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 197/282

RADAR CROSS SECTION O$ TARGETS

Page 198: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 198/282

RADAR CROSS SECTION O$ TARGETS

Page 199: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 199/282

RADAR CROSS SECTION O$ TARGETS

Page 200: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 200/282

RADAR CROSS SECTION O$ TARGETS

Page 201: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 201/282

RADAR CROSS SECTION O$ TARGETS

Page 202: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 202/282

RADAR CROSS SECTION O$ TARGETS

Page 203: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 203/282

RADAR CROSS SECTION O$ TARGETS

Page 204: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 204/282

RADAR CROSS SECTION O$ TARGETS

Page 205: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 205/282

RADAR CROSS SECTION$LUCTUATIONS

Page 206: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 206/282

RADAR CROSS SECTION $LUCTUATIONS

Page 207: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 207/282

TRANSMITTER POWER

Page 208: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 208/282

TRANSMITTER POWER

Page 209: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 209/282

TRANSMITTER POWER

Page 210: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 210/282

ANTENNA PARAMETERS

Page 211: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 211/282

ANTENNA PARAMETERS

Page 212: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 212/282

ANTENNA PARAMETERS

Page 213: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 213/282

ANTENNA PARAMETERS

Page 214: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 214/282

ANTENNA PARAMETERS

Page 215: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 215/282

ANTENNA PARAMETERS

Page 216: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 216/282

ANTENNA PARAMETERS * BEAMS

Page 217: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 217/282

ANTENNA PARAMETERS * BEAMS

Page 218: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 218/282

ANTENNA PARAMETERS * BEAMS

Page 219: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 219/282

ANTENNA PARAMETERS * BEAMS

Page 220: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 220/282

S#STEM LOSSES

Page 221: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 221/282

S#STEM LOSSES

Page 222: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 222/282

S#STEM LOSSES

Page 223: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 223/282

ANTENNA LOSSES dB

SIGNAL PROCESSING LOSSES dB

DOPPLER PROCESSING RADARS

LOSSES /% dB COLLAPSING LOSSES '/ dB

OPERATOR LOSSES

EUIPMENT DEGRADATION '?% dB PROPAGATION EFFECTS

S#STEM LOSSES

Page 224: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 224/282

RADAR E(UATION RE+ISED

Page 225: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 225/282

RADAR E(UATION RE+ISED

Page 226: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 226/282

RADAR E(UATION RE+ISED

Page 227: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 227/282

DOPPLER AND MTI RADAR

Page 228: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 228/282

DOPPLER AND MTI RADAR

Page 229: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 229/282

DOPPLER AND MTI RADAR

Page 230: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 230/282

DOPPLER AND MTI RADAR

Page 231: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 231/282

DOPPLER AND MTI RADAR

Page 232: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 232/282

DOPPLER AND MTI RADAR

Page 233: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 233/282

DOPPLER AND MTI RADAR

Page 234: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 234/282

DOPPLER AND MTI RADAR

Page 235: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 235/282

DOPPLER AND MTI RADAR

Page 236: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 236/282

DOPPLER AND MTI RADAR

Page 237: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 237/282

DOPPLER AND MTI RADAR

Page 238: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 238/282

DOPPLER AND MTI RADAR

Page 239: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 239/282

DOPPLER AND MTI RADAR

Page 240: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 240/282

DOPPLER AND MTI RADAR

Page 241: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 241/282

DOPPLER AND MTI RADAR

Page 242: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 242/282

DOPPLER AND MTI RADAR

Page 243: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 243/282

DOPPLER AND MTI RADAR

Page 244: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 244/282

DOPPLER AND MTI RADAR

Page 245: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 245/282

DOPPLER AND MTI RADAR

Page 246: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 246/282

DOPPLER AND MTI RADAR

Page 247: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 247/282

DOPPLER AND MTI RADAR

Page 248: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 248/282

DOPPLER AND MTI RADAR

Page 249: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 249/282

DOPPLER AND MTI RADAR

Page 250: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 250/282

DOPPLER AND MTI RADAR

Page 251: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 251/282

DOPPLER AND MTI RADAR

Page 252: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 252/282

D-9 ' 9 N- CNC-9-R#

 #imple 8TI dela" ' line canceller $D9C% seen

li i ti d i filt th t ( t

Page 253: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 253/282

  earlier is a time ' domain filter  that re(ects  stationar" clutter at zero fre)uenc". It has a

  fre)uenc" response function   $f % that can !e

  derived from time ' domain representation of 

  signals. Can !e ritten as>

  $f  % P ? #in $ %

 8agnitude sketched as>

f dT pπ 

)f (H

D-9 ' 9 N- CNC-9-R#

Page 254: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 254/282

 

D-9 ' 9 N- CNC-9-R#

1lind #peeds

Th f th i l d l li

Page 255: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 255/282

 The response of the single dela" ' linecanceller ill !e zero henever the

magnitude of

#in $ % P 5

Ahich occurs hen !racket term is P 5,

± π, Q ?π, Q Fπ …..

π   f d   T p

D-9 ' 9 N- CNC-9-R#

1lind #peeds

$In addition to zero response at zero

Page 256: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 256/282

 In addition to zero response at zero  fre)uenc" there ill also !e zero

  response of dela" ' line canceller 

  henever the doppler fre)uenc" is a

  multiple of the pulse repetition fre)uenc".

$ The radial velocities that produce !lind speeds

  can !e evolved from the e)uations.

$ Onl" the first !lind speed is considered since

  the others are its integer multiples.$  plot of the first !lind speed as a function of 

  pulse repetition fre)uenc" and radar fre)uenc"

  !ands is as shon.

19 ND #+--D#

Page 257: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 257/282

 

19 ND #+--D#

1lind speeds can !e a serious

Page 258: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 258/282

 1lind speeds can !e a serious  limitation in 8TI radars since the"

  cause desired moving targets to !e

  cancelled ith undesired clutter at

  zero fre)uenc".

 6our methods for reducing detrimental

  effects of !lind speeds.

19 ND #+--D#

Operate the radar at long avelengths

Page 259: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 259/282

 Operate the radar at long avelengths  $lo fre)uencies%.

 Operate ith a high pulse repetition

  fre)uenc". Operate ith more than one pulse

  repetition fre)uenc".

 Operate ith more than one R6  fre)uenc" $ avelength%.

19 ND #+--D#

Com!inations of to or more of the

Page 260: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 260/282

Com!inations of to or more of thea!ove are also possi!le to further

alleviate the effect of !lind speeds.

-ach of these four methods has

particular advantages as ell as

limitations, so there is not ala"s a

clear choice as to hich to use in an"

particular application.

19 ND #+--D#

9o R6 fre)uenc" chosen to avoid

Page 261: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 261/282

 9o R6 fre)uenc" ' chosen to avoid  !lind speed ' first !lind speed ' :M5 @t

  $appro* 8ach 3% ' +R6 ' FF5 z

  $unam!iguous range ' ?ML nmi% ' than

  radar 2 P ? m ' corresponds to f P 3L5

  8z $6 region%.

 8an" radars !uilt ' still has

  advantages ' not desira!le for long

  range air B surveillance ' man"

  reasons.

19 ND #+--D#

Resolution in range and angle poor

Page 262: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 262/282

 Resolution in range and angle poor   due to narro 1As and large

  !eamidths.

 +ortion of -8 spectrum croded ' 68,

  T.

 9o ' altitude coverage generall" poor 

Thus attempting to use lo fre)uenciesto avoid !lind speed pro!lem not

usuall" a desira!le option for radar.

19 ND #+--D#

Operate at high R6 fre)uenc" and

Page 263: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 263/282

 Operate at high R6 fre)uenc" and  increase +R6 to avoid !lind speeds ' 

  have to tolerate man" range

  am!iguities ' if first !lind speed :M5

  @t and 2 P 5.3 m $# !and fre)uenc" of

  F555 8z% ' +R6 P ::55 z.

 Results in ma* unam!iguous range of   3?.F nmi ' small for man" radar 

  applications ' ma"!e for pulse doppler.

19 ND #+--D#

Ahen to or more +R6s used in radar !lindd t +R6 diff t f !li d d

Page 264: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 264/282

 Ahen to or more +R6s used in radar ' !lind  speeds at one +R6 different from !lind speeds

  at other +R6s.

 Targets that are highl" attenuated ith one

  +R6 might !e readil" seen ith another +R6. Techni)ue used ith air ' surveillance ' 

  especiall" for civil air traffic control.

 Disadvantage of multiple ' +R6 aveform is  multiple ' time ' around clutter echoes $from

  regions !e"ond the ma*imum unam!iguous

  range% are not cancelled.

19 ND #+--D#

  Radar that can operate at to or more R6 fre)uencies

  can also unmask !lind speeds.

Page 265: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 265/282

  Re)uired fre)uenc" change often larger than might !e

  possi!le ithin the usual fre)uenc" !ands allocated for 

  radar use.

  limitation of multiple fre)uencies is need for greater 

  s"stem !andidth.

  8ight !e desira!le to tolerate !lind speeds rather than

  accept limitations of methods descri!ed.

  s in man" aspects of -ngineering no one single  solution !est for all cases.

  -ngineer has to decide hich a!ove limitations can !e

  accepted in an" particular application.

19 ND #+--D#

 1lind speeds occur !ecause of the

sampled nature of the pulse radar

Page 266: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 266/282

  sampled nature of the pulse radar   aveform.

 Thus it is sampling that is cause of 

  am!iguities, or aliasing, in the  measurement of the doppler fre)uenc"

  ' (ust as sampling in a pulse radar $at

  the +R6% can give rise to am!iguities  in the range measurement.

C9UTT-R TT-NUT ON

 Other limitation of single dela" ' line

  canceller is insufficient attenuation of 

clutter that results from finite idth of

Page 267: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 267/282

  clutter that results from finite idth of   clutter spectrum.

 #ingle dela" ' line canceller hose

  fre)uenc" response shon in slide ?LM  does hat supposed to do ' cancel

  stationar" clutter ith zero doppler 

  shift. Real orld hoever clutter spectrum

  has finite idth due to>

C9UTT-R TT-NUT ON

 Internal motion of the clutter.

Insta!ilities of the stalo and cohoill t

Page 268: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 268/282

 Insta!ilities of the stalo and coho  oscillators.

 Other imperfections of the radar and

  its signal processor. 6inite signal duration.

 6actors that iden clutter spectrum

  are comple* ' clutter poer spectral  densit" represented !" gaussian

  function.

C9UTT-R TT-NUT ON

 Conse)uences of a finite ' idth

  clutter spectrum can !e seen from

figure $slide ?75%

Page 269: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 269/282

  figure $slide ?75%. 6re)uenc" response of single dela" ' 

  line canceller shon !" the solid

  curve encompasses a portion of the  clutter spectrum ' therefore clutter 

  ill appear in the output ' greater the

  standard deviation, greater the

  amount of clutter that ill !e passed

  !" the filter to interfer ith moving

  target indication.

C9UTT-R TT-NUT ON

Page 270: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 270/282

C9UTT-R TT-NUT ON

If a second dela" ' line canceller is

Page 271: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 271/282

 If a second dela" ' line canceller is  placed in cascade, the fre)uenc"

  response of to filters is the s)uare of 

  the of the single dela" ' line canceller 

  $f% P M #in? $ %

This is indicated !" dashed curve in 6ig

π 

f d  T p

C9UTT-R TT-NUT ON

 9ess of the clutter spectrum is

  included ithin the fre)uenc"

response of the dou!le dela" ' line

Page 272: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 272/282

  response of the dou!le dela" ' line  canceller.

 Thus it attenuates more of the clutter.

 Clutter ttenuation $C% for the dou!le  dela" ' line canceller is>

 

C P P

σ π   44

48

4

c

 f   p

σ π 

λ 

44768

44

v

 f   p

C9UTT-R TT-NUT ON

dditional dela" ' line cancellers can

!e cascaded to o!tain a fre)uenc"

response $f% hich is the nth

Page 273: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 273/282

response $f%  hich is the n th 

poer of the single dela" ' line

canceller given !" e)uation of slide

?LF, here n  is the num!er of dela" '

line cancellers.

8T 8+RO-8-NT 6CTOR

 C is a useful measure of the

  performance of an 8TI radar in

cancelling clutter ' !ut has inherent

Page 274: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 274/282

  cancelling clutter ' !ut has inherent  eaknesses.

 C can !e made infinite !" turning off 

  the radar receiver ' this cannot !e  done since it also eliminates the

  desired moving ' target echo signals.

 The I--- defined a measure of   performance knon as 8TI 

  Improvement 6actor  .

8T 8+RO-8-NT 6CTOR

 8TI improvement factor includes the

  signal gain as ell as the clutter 

attenuation

Page 275: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 275/282

  attenuation.

 Defined as The signal ' to ' clutter 

  ratio at the output of the clutter filter 

  divided !" the signal ' to ' clutter ratio

  at the input of the clutter filter,

  averaged uniforml" over all target  radial velocities of interest.

8T 8+RO-8-NT 6CTOR

 -*pressed as>

I t 6 t I

Page 276: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 276/282

  Improvement 6actor P If   P

P C average gain

8T 8+RO-8-NT 6CTOR

 ertical line on right of a!ove

  e)uation indicates that average is

taken ith respect to doppler

Page 277: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 277/282

  taken ith respect to doppler 

  fre)uenc" f d  .

 Improvement factor can !e e*pressed  as the clutter attenuation

C P 0Cin = Co)t4 times the

  average filter gain

8T 8+RO-8-NT 6CTOR

 The average gain is determined from

the filter response $f%  and is usuall"

small compared to clutter attenuation

Page 278: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 278/282

small compared to clutter attenuation.

 verage gain for a single dela" ' line

canceller is ? and for a dou!le dela" '

line canceller is :.

8T 8+RO-8-NT 6CTOR

 The improvement factors for single

  and dou!le dela" ' line cancellers are>

Page 279: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 279/282

 

8T 8+RO-8-NT 6CTOR

 The general e*pression for the

  improvement factors for a canceller 

ith n dela" line cancellers in

Page 280: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 280/282

  ith n  B dela" ' line cancellers in

  cascade is>

 

+U9#- DO++9-R

++9 CT ON#

J R-2U R-8-NT#

Page 281: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 281/282

CO8+R #ON O6 8T J +U9#-

DO++9-R RDR# 6OR RBtoB

R

Page 282: Radar Fall2015 (3)

7/24/2019 Radar Fall2015 (3)

http://slidepdf.com/reader/full/radar-fall2015-3 282/282