radiation source localization by using backpropagation

2
Portland State University Portland State University PDXScholar PDXScholar Student Research Symposium Student Research Symposium 2018 May 2nd, 11:00 AM - 1:00 PM Radiation Source Localization by using Radiation Source Localization by using Backpropagation Neural Network Backpropagation Neural Network Jian Meng Portland State University Christof Teuscher Portland State University Walt Woods Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/studentsymposium Part of the Computer Engineering Commons, and the Electrical and Computer Engineering Commons Let us know how access to this document benefits you. Meng, Jian; Teuscher, Christof; and Woods, Walt, "Radiation Source Localization by using Backpropagation Neural Network" (2018). Student Research Symposium. 1. https://pdxscholar.library.pdx.edu/studentsymposium/2018/Poster/1 This Poster is brought to you for free and open access. It has been accepted for inclusion in Student Research Symposium by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected].

Upload: others

Post on 05-Jul-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Radiation Source Localization by using Backpropagation

Portland State University Portland State University

PDXScholar PDXScholar

Student Research Symposium Student Research Symposium 2018

May 2nd, 11:00 AM - 1:00 PM

Radiation Source Localization by using Radiation Source Localization by using

Backpropagation Neural Network Backpropagation Neural Network

Jian Meng Portland State University

Christof Teuscher Portland State University

Walt Woods Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/studentsymposium

Part of the Computer Engineering Commons, and the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Meng, Jian; Teuscher, Christof; and Woods, Walt, "Radiation Source Localization by using Backpropagation Neural Network" (2018). Student Research Symposium. 1. https://pdxscholar.library.pdx.edu/studentsymposium/2018/Poster/1

This Poster is brought to you for free and open access. It has been accepted for inclusion in Student Research Symposium by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected].

Page 2: Radiation Source Localization by using Backpropagation

Themostdifficultpartoftheradiationlocalizationisthatwecannotusethetraditionalacousticlocalizationmethodtodeterminewheretheradiationsourceis.It’smainlybecausetheelectromagneticwavesaretotallydifferentwiththesoundwave.Asweallknow,soundwavehascertainwavevelocityindifferentmedia,sowecandeterminethedistancebyanalyzingthetimedifferencebetweentheincidentandthereflectedwave,orwecanalsoanalyzetheenergyofthewave.Besides,multiplesensorarrayscanalsotelluswherethesoundsourceisbasedonmaximumlikelihoodalgorithm.Nuclearradiationbasicallyisatypeofelectromagneticradiation,anditishardtomeasurethevelocityoftheradiationandthetimedifference.Besides,differenttypesofnuclidehavedifferentintensities.Therelationshipbetweentheradiationintensityanddistancecanbedescribedas:

𝐴 = 𝐾%𝑅' 𝐴(

A istotalradioactiveactivity;Kr istheradioactiveconstant;R isthedistancefromtheradioactivesource.Inthisproject,wedon’tconsiderthedecayofthenuclidebecausethehalf-lifeofcommonradioactiveelementsarelongenoughthatwecanignorethat(Table.1)Sincetheradioactivenuclideisextremelydangerous,soitisnecessarytofindawaythatcanlocatetheradioactivesourceefficiently.Notethatradioactiverateconstantisameasureoftherateofionizationof air dueto ionizingradiation from photons.

Background

FixedsourceandlinearlymovingsensorSincethesensorismovinglinearly,thenetworkwastrainedbythechangingoftheradiationateachtimepointplusthevelocityofthesensorineachdirection:

Algorithm&Methods

Results:WiththebeststructurethatdepictsinTable2,theaverageaccuracyofthepredictedintensityoftheradioactivesourceis99.7%.Theaveragedifferencebetweenthepredictedlocationofthesourceandtheactuallocationofthesourceis5.6m,whichisaprettybigportionofa20𝑚 × 20𝑚 × 20𝑚 space.Inthisversion,thenetworkcancorrectlypredicttheintensityoftheradioactivesource,thepredictionofthelocationofthesourcehasapproximately80%accuracy.Fromallthepreviousanalysisandresults,wecanconcludethatourmodelcanpredictthelocationoftheradiationsourceeffectively.Mathematically,imaginetheinputmeasurementsasavector,whatneuralnetworkdoingismappingtheinputvectorintothespacethatweexpected(Fig.4).

FutureResearch:Chasingthesource:Iftheradiationsourceisinmotion,thelocationoftheradioactivesourceisentirelydifferentateachsecond,insomecomplexcases,thesourceisevenmovingrandomly,soitisalmostimpossibletopredictthefuturecoordinateofthemovementofthesource.Besides,thenoisesignalcanalsoreducetheaccuracyofthemeasurement.Iftheneuralnetworkcan“drive”thesensorflyingtothesourcetomakethedistancebetweenthesourceandthesensorascloseaspossible,thesensorcaneasilymeasuredtheactualradiationofthesource,andthatcanalsoreducetheeffectofthenoisesignal.

Conclusion&FutureResearchInput features Number of layers Number of nodes Output features Learning rate Framework

23 4 20 4 1E-03 Full-connection

Fig.5Effectofdifferentlearningrate(Coordinateerrorvsepoch)Fig.1:Radiationintensityvsthelocationofaverticallymovingsensor

Table2:Structureofneuralnetwork

Effectoflearningrate:Learningrateisthe”Steplength”ofgradientdescent.Forcomplexneuralnetworkmodel,thelossfunctionmighthavemultiplelocalminima,soifthelearningrateistoosmall,it’seasytofallintothelocalminimumpointratherthantheglobaloptima.Minimizethelossthroughtrainingprocesscanminimizethepercentageoferrorintesting.Table.3showsthelossanderrorchangeineachexperiment,toosmalllearningratewillslowdownthespeedofgradientdescent,aswecanseefromFig.5,theerrorwon’tconvergetominimaafter1000iterationsandthetrainingprocessisalsounstable.Thebestlearningrateforthegradientdescentinthismodelis1E-03,whichiswhatweusedintheneuralnetwork.Anotherthingthatcanaffectthespeedofgradientdescentisthebatchsize(thenumberoftrainingexamplesinoneforward/backwardpass),ifthebatchsizeistoosmall,thedirectionofgradientdescentwillchangebackandforthfrequently,sothefinalestimationwillalsobelessaccurate.

Fig.3:Blockdiagramofneuralnetwork

Fig.4:Ifwecanthinktheinputfeaturesoftheneuralasavectorthatcontainscertaininformation,thentheneuralworkworkingasafunctionthatmappingtheinputvectortothetargetoutput.

RadiationSourceLocalizationbyusingBackpropagationNeuralNetworkJianMeng,WaltWoods,ChristofTeuscher

Fig.2:Thefixedsourceandmovingsensor.Thegreenstaristheradioactivesourcefixedattheorigin.Reddotsrepresentthetrace,eachdothasasetofmeasurements.

Batchsize Learning rate Number of nodes Final Loss Intensityerror Coordinateerror32 0.0001 10 19.17 1.5% 8.7m32 0.0001 15 17.19 1.7% 7.6m32 0.0005 15 12.17 0.98% 6.5m32 0.001 20 10.11 0.66% 4.9m64 0.001 20 9.22 0.23% 4.3m

Table.3:Resultsummary

IntroductionFromtheexpressionoftheradioactiveintensity,wecantellthattheintensityofradiationnotonlydependonthedistancefromtheradiationbutalsorelatedtothetypeofthenuclide.Ingeneral,therelationshipbetweentheintensityandthedistancesatisfytheinverse-squarelaw,whichisanon-linearrelationship.Inotherwords,ifwecanusethemeasurementanddynamicparametersofthemovingsensortotrainaneuralnetwork.Thetrainednetworkcanpredictthelocationandtheintensityofthesourcebasedonanymovementofthesensor.

Fixedsourceandlinearlymovingsensor:Sofartheresearchfocusonthesituationthattheradioactivesourcewasfixedatacertainpoint,andthesensorismovinglinearlywiththerandominitiallocationina20𝑚 × 20𝑚 × 20𝑚 space.

Movingsource+movingsensor:Thefinalgoalofthissituationisthatthealgorithmiscapabletolocatethelocationofthesensor.Sincethesensorisinmotion,sothealgorithmshouldupdatethelocationandtheintensityofthesourceateachtimepoint,nomatterwhatthemovingpatternis.

Whylinearlymovingsensor?Inordertotrainthenetworkeffectively,ourtrainingsetcannotbeentirelyrandom,ithastofollowsomeorder.Oneimportantfactis:Wecancontrolthemovementofthesensor.Thus,ifthemovementofthesensorfollowsacertainpattern,itiseasytoanalyzeandtrainthenetwork.Forexample,ifthesensormovingvertically,asthedistancebetweenthesensorandthesourcedecreasing,themeasuredintensityincreasing,andthemeasurementwilldecreasewhenthesensormovingawayfromthesource(Fig.1)Aswecanseefromthepicture,ifthemovementofthesensorhascertainpattern,thechangingofradioactivereadingwillalsofollowthecertainpattern.Anotheradvantageofthelinearlymovingsensoris,onceweknowtheinitiallocationandthevelocityofthesensor,wecancomputethecoordinatesofthesensoratanytimepoint,whichmeansthelocationofthesourcecanbedeterminedbythedistancebetweenthecoordinatesofthesourceandthecoordinatesoftheinitiallocationofthesensor.

High-levelalgorithm&Backpropagation:ThestructureoftheneuralnetworkisdepictedinFig.3.Thedatageneratorgeneratestracesandcorrespondingmeasurementsateachtimepoint.Eachtraceconsistsof20datapoints(Fig.2),whichmeansthedatageneratoractuallyintroducethechangingofmeasuredintensitiestotheneuralnetwork.Timeisnottheactualinputoftheneuralnetwork,buttrainthenetworkwithtime-varyingpatterncanmakethenetworkget“familiar”withthevariation.Inthehigh-levelalgorithm,theneuralnetworkisatypicalsupervisedlearning.Thebackpropagationprocesscomputesthelossbetweenthepredictedoutputandthetargetoutput,thenusethelosstoupdatetheweightvaluesateachneuronbydoingthegradientdescent.TheobjectiveoftheSGDistofindasetofweightsthatcanminimizethevalueoferror.

Training:Thenetworkwastrainedby5,000tracesover1,000iterations.Theaccuracylocalizationwasrepresentedbythedistancedifferencebetweenthepredictedcoordinatesandtheactualcoordinateofthesource.Theintensityaccuracywasrepresentedbythedifferencebetweenthepredictedradioactiveintensityandtheactualintensity.Theentiredatasetwassplitintotwoparts:Using80%ofthetracesasthetrainingsettotrainthenetwork,andtherest20%isthetestsettoverifythepredictionoftheneuralnetworkmodel.

Optimization

Table1:Halflifeofcommonradioactiveelements

Elements Half-life(years) Kr(𝑹 + 𝒄𝒎𝟐)

Cs137 30 3.4Co60 5 12.8Ra226 1600 8.25

The authors acknowledge the support of the Semiconductor Research Corporation (SRC) Education Alliance (award # 2009-UR-2032G) and of the Maseeh College of Engineering and Computer Science (MCECS) through the Undergraduate Research and Mentoring Program (URMP)

Acknowledgment

1. Xiaohong ShengandYu-HenHu,"Maximumlikelihoodmultiple-sourcelocalizationusingacousticenergymeasurementswithwirelesssensornetworks,"in IEEETransactionsonSignalProcessing,vol.53,no.1,pp.44-53,Jan.2005.

2. SimonHaykin, SimonS.Haykin,NeuralNetworksandLearningMachines,Volume10.3. Yuan,Ya-xiang."Step-sizesforthegradientmethod." AMSIPStudiesinAdvancedMathematics 42.2(2008):785.

ReferencesName:JianMengTeuscherLabMaseehCollegeofEngineeringandComputerScience(MCECS),PortlandStateUniversityEmail:[email protected]

Contact

Location

Intensity