radio afterglows of gamma ray bursts

34
Radio afterglows of Gamma Ray Bursts Poonam Chandra National Centre for Radio Astrophysics - Tata Institute of Fundamental Research Collaborator: Dale Frail and many others

Upload: pillan

Post on 16-Feb-2016

45 views

Category:

Documents


0 download

DESCRIPTION

Radio afterglows of Gamma Ray Bursts. Poonam Chandra National Centre for Radio Astrophysics - Tata Institute of Fundamental Research Collaborator: Dale Frail and many others. Radio Afterglows. Late time follow up. Accurate energetics instead of “isotropic equivalent” energy . - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Radio afterglows of Gamma Ray Bursts

Radio afterglows of Gamma Ray

BurstsPoonam Chandra

National Centre for Radio Astrophysics - Tata Institute of Fundamental Research

Collaborator: Dale Frail and many others

Page 2: Radio afterglows of Gamma Ray Bursts

Radio AfterglowsO Late time follow up.O Accurate energetics instead of “isotropic

equivalent” energy .O Radio scintillation: Constraints on fireball

size (Goodman 1997).O Radio VLBI – Fireball expansion.O Reverse Shocks: 6 times more prominent

in radio afterglows than optical afterglows. O Density estimation O Detectable at high redshifts.

Page 3: Radio afterglows of Gamma Ray Bursts

Multiwaveband Modeling

Page 4: Radio afterglows of Gamma Ray Bursts

Radio AfterglowsO Late time follow up.O Accurate energy instead of “isotropic

equivalent” energy .O Radio scintillation: Constraints on fireball

size O Radio VLBI – Fireball expansion.O Reverse Shocks: 6 times more prominent

in radio afterglows than optical afterglows. O Density estimationO Detectable at high redshifts.

Page 5: Radio afterglows of Gamma Ray Bursts

Negative K-correction(detectable at high redshifts)

Chandra et al. 2012, Frail et al. 2006

Page 6: Radio afterglows of Gamma Ray Bursts

Radio Afterglows: GRB 970508Frail et al. 2000, 1997, Waxman et al. 1998

O First radio afterglow detection. O Relativistic expansion measurement of

fireball through diffractive scintillation.O Measured flux lower than spherical

prediction (jet like geometry)O Bright and long lived afterglow

followed over a year, E0=5 x 1050 ergs.O Density ~0.5 cm-2,

O Equipartition eB~eE~0.5

Page 7: Radio afterglows of Gamma Ray Bursts

GRB radio afterglowsO GRB 990123: First afterglow with reverse

shock detection in radio band (Kulkarni et al. 1999).

O GRB 020405: evidence of a constant density medium around massive star (Berger et al. 2003).

O GRB 050904 (Frail et al. 2005) and 090423 (Chandra et al. 2010): highest redshift bursts discovered in radio.

O GRB 070125: radio afterglow with scintillation, chromatic break, uniform density (Chandra et al. 2008).

Page 8: Radio afterglows of Gamma Ray Bursts

Radio afterglows: 030329van der Horst et al. 2008, Pihlström et al. 2007, Taylor et al.

2004

O Very bright radio burst. O Constant density medium.O Non-relativistic transition ~ 80-200

daysO VLBI- relativistic expansion of

fireball.

Page 9: Radio afterglows of Gamma Ray Bursts

Radio Afterglows: StatisticsO 304 GRBs observed in radio bands

from 1997-2011.O 123 bursts in pre-Swift and 181 in

post-Swift.O Sample includes 33 SHBs, 19 XRFs

and 26 SN/GRBs (9 with confirmed SN and rest possible).

O 28 SHBs detected by Swift itself.O 17 SN/GRBs detected pre-Swift and 9

post-Swift.

Page 10: Radio afterglows of Gamma Ray Bursts

Radio Detection Statistics

O 95 out of 304 GRBs detected in radio – 31%O Pre-Swift radio detection 42/123 – 34%O Post-Swift radio detection 53/181 – 29%

O X-ray detection rate 42% to 93% (bias).O Optical detection rate 48% to 75% (bias)

O No strong redshift dependenceO z<2=47/88 z>2=21/43.

Chandra et al. 2012, ApJ 746, 156

Page 11: Radio afterglows of Gamma Ray Bursts

Detection Statistics

Chandra et al. 2012, ApJ 746, 156

Page 12: Radio afterglows of Gamma Ray Bursts

Radio Detection Biases

detection

Upper limits

Chandra et al. 2012, ApJ 746, 156

Page 13: Radio afterglows of Gamma Ray Bursts

Radio Detection Biases

Chandra et al. 2012, ApJ 746, 156

Page 14: Radio afterglows of Gamma Ray Bursts

Canonical Light Curve of cosmological long afterglows

Chandra et al. 2012, ApJ 746, 156

Page 15: Radio afterglows of Gamma Ray Bursts

Bursts of different Classes

Chandra et al. 2012, ApJ 746, 156

Page 16: Radio afterglows of Gamma Ray Bursts

Detectability of radio afterglows - redshift

Chandra et al. 2012, ApJ 746, 156

Kolmogorov-Smirnov test P=0.61

Page 17: Radio afterglows of Gamma Ray Bursts

Detectability of radio afterglows - fluence

Chandra et al. 2012, ApJ 746, 156

Nysewander et al. 2009, Swirt XRT repository

P=2.6x10-7

• 176/206 (85%) non-detections fluence <1x10-6

erg cm-2

• 82/95 (86%) detections fluence >1x10-6

erg cm-2

Page 18: Radio afterglows of Gamma Ray Bursts

Detectability of radio afterglows - Energy

Chandra et al. 2012, ApJ 746, 156

P=9x10-7• k-corrected

bolometric in 1 keV-10 MeV range 144 grbs

• 60/95 detections Energy >1x1053

erg• Only 9/206 non-

detections Energy >1x1053 erg

Page 19: Radio afterglows of Gamma Ray Bursts

Detectability of radio afterglows - Energy

Chandra et al. 2012, ApJ 746, 156

Beaming corrected bolometric energy

Where fb is the beaming fraction

P=3.5x10-3

Page 20: Radio afterglows of Gamma Ray Bursts

Detectability of radio afterglows – X-ray and optical

Chandra et al. 2012, ApJ 746, 156

Gehrels et al. 2008, de Pasquale et al. 2006, Sakamoto et al.2008, 2011

P=3x10-6

P=1x10-9

Page 21: Radio afterglows of Gamma Ray Bursts

What determines radio flux?

FluenceR-index=0.02

Optical fluxR-index=0.62

Isotropic EnergyR-index=0.12

X-ray fluxR-index=-0.05

Page 22: Radio afterglows of Gamma Ray Bursts

Synthetic Light Curveee=0.1 eB=1%, EKE=1053 erg, p=2.2

Chandra et al. 2012, ApJ 746, 156

• 8 GHz light curve matches with sample.

• 1.4 GHz challenges: JVLA, ASKAP, WSRT/Apertif will not detect.

• Higher frequencies favored.

• JVLA (high freq) and ALMA ideal.

• Expected large increase in detection.

Page 23: Radio afterglows of Gamma Ray Bursts

Synthetic Light Curve: densityee=0.1 eB=1%, EKE=1053 erg, p=2.2

Chandra et al. 2012, ApJ 746, 156

• Radio sample biased for n=1-10 cm-3.

• Weak emission at lower n.

• Higher self-absorption for higher n.

• Explains why some bright GRBs dim in radio.

Page 24: Radio afterglows of Gamma Ray Bursts

Synthetic Light Curve: densityee=0.1 eB=1%, EKE=1053 erg, p=2.2

Chandra et al. 2012, ApJ 746, 156

• Afterglow in mm strong function of n.

• Effects of self-absorption weak in mm bands.

• ALMA (3-sigma=42 mJy in 1 hr at 250 GHz) may detect all mm afterglows for n>0.1 cm-3.

Page 25: Radio afterglows of Gamma Ray Bursts

Reverse shocks

Page 26: Radio afterglows of Gamma Ray Bursts

Reverse shocks in radio

Kulkarni et al. 1999

Page 27: Radio afterglows of Gamma Ray Bursts

Radio Reverse ShocksO Possible RS in 24 GRBs.O But 87 GRBs with no early radio

data for t<3 days.O About 1:4 radio AG may be RS

Page 28: Radio afterglows of Gamma Ray Bursts

Reverse shocks in Radio GRBs

Page 29: Radio afterglows of Gamma Ray Bursts
Page 30: Radio afterglows of Gamma Ray Bursts

Reverse shocks in radio afterglows

O Only 990123 has a confirmed optical and radio reverse shock.

O Low incidence of optical reverse shocks, i.e. < 4% (Gomboc et al. 2009).

O Radio RS is 1 every 4 bursts, i.e. 6 times more than optical.

O Magnetization, poynting dominated, SSC, dust extinction, wind density

O Mundell et al. 2007, electron freq drop n~t-73/48.O RS freq is lower by (Lorentz factor)2 than FS.O If nm<nopt then no RS in optcal bandO For 021004, 021211 optical RS is seen but no radio RS

emission (Synchrotron self absorbtion???)

Page 31: Radio afterglows of Gamma Ray Bursts

Future of radio afterglows

Page 32: Radio afterglows of Gamma Ray Bursts

Future: Atacama Large Millimeter Array

Accurate determination of kinetic energy

Page 33: Radio afterglows of Gamma Ray Bursts

Future: ALMA: Wind versus ISM

Page 34: Radio afterglows of Gamma Ray Bursts

SummaryO Radio afterglows explore unique

territory.O Detection rate unchanged in pre-

and post-Swift phase.O Radio detections sensitivity limited.O Other prompt and afterglow

emission parameters can be useful in determining detectability.

O JVLA and ALMA are goldmines