radio channel modeling: from gsm to lte · radio channel modeling: from gsm to lte and beyond ......

56
Radio channel modeling: from GSM to LTE and beyond… Alain Sibille Telecom ParisTech Comelec / RFM

Upload: hoangdieu

Post on 28-Apr-2018

237 views

Category:

Documents


4 download

TRANSCRIPT

Radio channel modeling:

from GSM to LTE

and beyond…

Alain Sibille

Telecom ParisTech

Comelec / RFM

Séminaire Comelec, 7 juin 2012

2/56

Introduction: why do we need channel models ?

Basics

Narrow band channels

Wideband channels

MIMO channels

Multi-link channels

Perspectives & conclusion

Outline

Séminaire Comelec, 7 juin 2012

3/56

Introduction: why do we

need channel models ?

Séminaire Comelec, 7 juin 2012

4/56

From the operator’s point of view

For network planning, BST deployment

As inputs to engineering rules & tools

From the manufacturer’s point of view

For performance evaluation

For device/equipment design optimization

From the researcher’s point of view

For trying novel network architectures

For evaluating novel antenna technologies

Why do we need channel models ?

Séminaire Comelec, 7 juin 2012

5/56

How to proceed ?

1. Propagation research done by researchers

2. Extract the substance of the channel physics into something tractable

3. Standardize channel models de-facto or through

official bodies: COST, IEEE, ETSI, 3GPP…

Why do we need channel models ?

Séminaire Comelec, 7 juin 2012

6/56

Example - back to basics: GSM (operator’s need)

The main need: to model the attenuation (path loss) vs. distance, for

« typical » environments and varying BST height

Why do we need channel models ?

Séminaire Comelec, 7 juin 2012

7/56

Example - back to basics: GSM (operator’s need)

The main need: to model the mean attenuation (path loss) vs. distance,

for « typical » environments and varying BST height

Why do we need channel models ?

Séminaire Comelec, 7 juin 2012

8/56

Example - back to basics: GSM (operator’s need)

The main need: to model the mean attenuation (path loss) vs. distance,

for « typical » environments and varying BST height

COST-Hata model for suburban or rural environments:

(1500-2000 MHz, 1-20 km)

This is typical of an “empirical” path loss model

Why do we need channel models ?

(dB)

Séminaire Comelec, 7 juin 2012

9/56

Example: MIMO WLAN - IEEE 802.11n (manufacturer’s need)

MIMO channels deeply involve the « space variant » characteristics of

the channel (and the multi-antenna system)

Why do we need channel models ?

Séminaire Comelec, 7 juin 2012

10/56

Example: LTE / LTE-A (manufacturer & operator’s need)

A more complicated networking scheme, implying a sophistication of

channel models

Cell-Edge Beamforming

Why do we need channel models ?

Séminaire Comelec, 7 juin 2012

11/56

Example: LTE / LTE-A (manufacturer & operator’s need)

A more complicated networking scheme, implying a sophistication of

channel models

Relaying

Distance to BS

Use

r

thro

ug

hp

ut

Relay

Why do we need channel models ?

Séminaire Comelec, 7 juin 2012

12/56

Example: LTE / LTE-A (manufacturer & operator’s need)

A more complicated networking scheme, implying a sophistication of

channel models

Coordinated Multipoint Tx and Rx

Why do we need channel models ?

Séminaire Comelec, 7 juin 2012

13/56

Example: UWB – RFID (researcher’s game: ongoing)

In every wireless communications research project, one needs to make

channel measurement campaigns !

Why do we need channel models ?

Séminaire Comelec, 7 juin 2012

14/56

Trend

Path loss

Impulse response

Directional channel MIMO channel

Body Area Networks

Multi-user

COST 231 COST 207 COST 259 COST 273

UMTS

Hiperlan

COST 2100

IEEE 802.11

IEEE 802.15.4a

Ultra Wide Band

IEEE 802.15.6

Vehicular

GSM

IEEE 802.11n

LTE

COST IC1004

Why do we need channel models ?

WINNER

Séminaire Comelec, 7 juin 2012

15/56

Basics

Séminaire Comelec, 7 juin 2012

16/56

The transmission channel comprises antennas and all objects

contributing or hampering propagation between input/output ports

The propagation channel excludes the antennas and expresses all

wave propagation phenomena between Tx and Rx

Both channels are considered to be linear (time variant) filters

characterized by their impulse response

Tx signal Rx signal

Transmission channel

Propagation channel

Basics

Séminaire Comelec, 7 juin 2012

17/56

Basics

Base Station

Tall Buildings

Mobile Terminal

Path 2

Path 3

Direct Path

Building

Spherical waves at Tx

Planar waves at Rx and in-between

These are approximations !

(may not be verified…)

LOS (Line Of Sight)

Séminaire Comelec, 7 juin 2012

18/56

Direct propagation (LOS path)

Specular reflection

Diffraction

Diffuse scattering

Refraction/transmission

scatterers

Basics

NLOS

Séminaire Comelec, 7 juin 2012

19/56

NLOS

Basics

The simple multipath based discrete channel model of the

impulse response:

At baseband, Ai(t) is complex valued

i

ii ttAth ),(

Time Delay

i

ii tFjtAFtH 2exp),(

Time Frequency

Séminaire Comelec, 7 juin 2012

20/56

What (may) need be modeled

The multipath amplitudes

The multipath angles (at Tx/Rx)

The multipath delays

The time dependence of these parameters

(comes from Tx/Rx mobility, or mobility of the environment)

For various environments, Tx/Rx distances, locations…

Basics

Séminaire Comelec, 7 juin 2012

21/56

Narrowband channels

Séminaire Comelec, 7 juin 2012

22/56

Received signal:

Assumption:

SLOS behaves as a deterministic variable (DV)

Sn and qn, jn behaves as random variables (RV)

Central-limit theorem I(t), Q(t) are non-centered, identically distributed

Gaussian RV

Narrowband channels

tFtQtFtItr cc 2sin2cos

t

n

nnLOSLOS jSjStI jj expexp

t

n

nnLOSLOS jSjStQ expexp

LOS/NLOS small scale fading

Rx

LOS

NLOS

Séminaire Comelec, 7 juin 2012

23/56

Statistics:

Random part of I, Q:

Envelope |r| Rice distribution:

K factor: ratio of deterministic to random

mean powers

Narrowband channels

Rx

LOS

NLOS 0

0

Std deviation s

2

22

2

orexp

2

1or

ss

QIQIPDF

2

0

02

2

0

2

2 2exp

sss

SrI

SrrPDF

2

20

2s

SK

LOS/NLOS small scale fading

Séminaire Comelec, 7 juin 2012

24/56

Statistics:

Rice distribution:

Narrowband channels

K= - dB (Rayleigh)

K= 3 dB K= 10 dB

Rx NLOS

LOS

2

0

02

2

0

2

2 2exp

sss

SrI

SrrPDF

2

20

2s

SK

LOS/NLOS small scale fading

Séminaire Comelec, 7 juin 2012

25/56

Small distance/medium distance/long distance fading

Narrowband channels The three spatial scales of fading

(shadowing)

Séminaire Comelec, 7 juin 2012

26/56

Long distance fading

Friis formula (free space):

Going from 1 GHz to 10 GHz 20 dB higher attenuation !

Is this frequency dependence maintained in NLOS channels ?

Yes ! Frequency variations roughly speaking obey F-2 in NLOS

Is this distance dependence maintained in NLOS channels ?

No ! The path loss exponent n often exceeds 2

Narrowband channels Path loss

2

2

4

d

dGG

P

Ptr

t

r

L

PPGG t

rtr 1, MHzkmdB FdL log20log204.32

n

d

d

dL

dL

00

Séminaire Comelec, 7 juin 2012

27/56

Long distance fading

Narrowband channels Path loss

Séminaire Comelec, 7 juin 2012

28/56

Medium distance fading

Narrowband channels Shadowing

What is that ?

Shadowing !

= medium distance fading

= macroscopic fading

Séminaire Comelec, 7 juin 2012

29/56

Medium distance fading

Narrowband channels Shadowing

Gaussian in dB = lognormal fading

Séminaire Comelec, 7 juin 2012

30/56

Wideband channels

Séminaire Comelec, 7 juin 2012

31/56

Wideband channels

Small scale / short term / wideband fading

Constructive/destructive interference between multipaths

Base Station

Tall Buildings

Mobile Terminal

Path 2

Path 3

Direct Path

Building

F

rktrt i

ii

2

0,,

iii rtFjtArFtH

,2exp),,(

Path 1

Path 2

Path i r

ik

Constructive/destructive

interference

Séminaire Comelec, 7 juin 2012

32/56

Wideband channels

Small scale / short term / wideband fading

Constructive/destructive interference between multipaths

Frequency

Flat (narrowband) fading

Selective (wideband) fading

Coherence band width

F

rktrt i

ii

2

0,,

iii rtFjtArFtH

,2exp),,(

Séminaire Comelec, 7 juin 2012

33/56

Wideband channels

Small scale / short term / wideband fading

Constructive/destructive interference between multipaths

frequency Time or space

BW

F

rktrt i

ii

2

0,,

iii rtFjtArFtH

,2exp),,(

Séminaire Comelec, 7 juin 2012

34/56

Wideband channels

Frequency Delay (Fourier): impulse response

Delay

D

D1/2.BW

rms

Séminaire Comelec, 7 juin 2012

35/56

Wideband channels

Fourier pairs

Delay Frequency

Position Wavector

Angle

Time Doppler

Séminaire Comelec, 7 juin 2012

36/56

Wideband channels

Fourier pairs

The directional spectrum is obtained from the spatial structure of the

signal

x kx

k

f

fsinexpexp jkxxjkx

Séminaire Comelec, 7 juin 2012

37/56

Wideband channels

Angle vs. delay

Street canyon 900 MHz

terminal side

Séminaire Comelec, 7 juin 2012

38/56

Wideband channels

Angle vs. delay Dunand & Conrat, 2008

Séminaire Comelec, 7 juin 2012

39/56

Wideband channels

Angle vs. delay Dunand & Conrat, 2008

Séminaire Comelec, 7 juin 2012

40/56

MIMO channels

Séminaire Comelec, 7 juin 2012

41/56

MIMO channels

The impulse response becomes a matrix !

• The relative variation of coefficients (with position, frequency, time) dramatically impacts the diversity/spatial multiplexing performance

• The multipath structure is responsible for this variation

)()()(

)()()(

)()()(

)(

21

22221

11211

NMNN

M

M

hhh

hhh

hhh

H

Séminaire Comelec, 7 juin 2012

42/56

MIMO channels

A non physical approach : based on the structure of the MIMO

correlation matrix

Kronecker approximation:

The method lends itself to easy stochastic generation in a

software tool:

Statistical modeling: define statistical distributions for the

coefficients of the correlation matrices

3GPP (LTE), IEEE 802.11n, IEEE 802.16…

Séminaire Comelec, 7 juin 2012

43/56

MIMO channels

A non physical approach : based on the structure of the MIMO

correlation matrix

Kronecker approximation:

HVΛUH

),min(

1

HTR nn

i

iii vu

Séminaire Comelec, 7 juin 2012

44/56

MIMO channels

Double directional channels for MIMO channel modeling

Statistical modeling: define statistical distributions for path

amplitudes, path delays, path DoA, path DoD…

3GPP, IEEE 802.11n, IEEE 802.16…

Rx Tx

Séminaire Comelec, 7 juin 2012

45/56

MIMO channels

A semi-physical modeling approach : GSCM (Geometry-based

Stochastic Channel Modeling)

Statistical modeling: define statistical distributions for

scatterers positions, characteristics…

COST 259, 273, 2100…

Séminaire Comelec, 7 juin 2012

46/56

MIMO channels

What’s that for ?

Example : standardization of OTA

(Over The Air) test methods

for MIMO terminals

Séminaire Comelec, 7 juin 2012

47/56

Multi-link channels

Séminaire Comelec, 7 juin 2012

48/56

Multi-link channels

Multi-link channels are encountered in future networks

Where BS can simultaneously be connected to several users

for which terminals may simultaneously be connected to several BS

Séminaire Comelec, 7 juin 2012

49/56

Multi-link channels

Multi-link channels are encountered in future networks

Where BS can simultaneously be connected to several users

for which terminals may simultaneously be connected to several BS

channel modeling requires proper

account of macroscopic spatial correlations

Séminaire Comelec, 7 juin 2012

50/56

Perspectives & conclusion

Séminaire Comelec, 7 juin 2012

51/56

Antennas are part of the radio channel !

Perspectives

Tx signal Rx signal

Transmission channel

Propagation channel

An instrumentation antenna

(for channel measurements) A use case

#

Séminaire Comelec, 7 juin 2012

52/56

Antennas are part of the radio channel !

The super-antenna concept: antenna + user in near field

Perspectives

F. Harrysson et al., COST 2100 TD 07-379, Sep. 2007

Séminaire Comelec, 7 juin 2012

53/56

Antennas are part of the radio channel !

In-body antennas: e ~50 s ~2 S/m !

Composite antenna-channel problem

Perspectives

channel

channel

Embedded

antenna

Séminaire Comelec, 7 juin 2012

54/56

A variety of propagation environments for new wireless use

cases

Perspectives

Séminaire Comelec, 7 juin 2012

55/56

The main message: radio channel modeling is a rich subject,

combining propagation physics, data processing and a lucid

view of systems/networks requirements

The increasing sophistication of channel investigations and

models stems from the complexification of wireless networks,

from picocells to macrocells (even satellites) throughout

It seems that researchers in this area are not yet jobless

Conclusion

Séminaire Comelec, 7 juin 2012

56/56