radiosynthesisin microfluidic devices - open cms · low cost systems • many components can be...

36
4/17/2013 1 April 17, 2013 (START) © R. Michael van Dam, 2013 Radiosynthesis in Microfluidic Devices R. Michael van Dam April 17, 2013 April 17, 2013 (START) © R. Michael van Dam, 2013 Outline Brief recap PET probe production Centralized vs Decentralized production Motivation for microfluidic synthesizers Microfluidic synthesis examples Continuous flow synthesizers [ 18 F]fluoride drying methods compatible with continuous flow Batch mode synthesizers Optimization of reaction conditions (antibody labeling) Visualization of microfluidic chips

Upload: others

Post on 14-Jun-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Radiosynthesisin Microfluidic Devices - OPEN CMS · Low Cost Systems • Many components can be integrated onto a single microfluidic chip, decreasing overall system cost • Microfluidic

4/17/2013

1

April 17, 2013 (START)© R. Michael van Dam, 2013

Radiosynthesis inMicrofluidic Devices

R. Michael van Dam

April 17, 2013

April 17, 2013 (START)© R. Michael van Dam, 2013

Outline

• Brief recap– PET probe production

– Centralized vs Decentralized production

• Motivation for microfluidic synthesizers

• Microfluidic synthesis examples– Continuous flow synthesizers

– [18F]fluoride drying methods compatible with continuous flow

– Batch mode synthesizers

– Optimization of reaction conditions (antibody labeling)

– Visualization of microfluidic chips

Page 2: Radiosynthesisin Microfluidic Devices - OPEN CMS · Low Cost Systems • Many components can be integrated onto a single microfluidic chip, decreasing overall system cost • Microfluidic

4/17/2013

2

April 17, 2013 (START)© R. Michael van Dam, 2013

Production of PET Tracers

Radioisotope Production

Radiolabeling, Purification, and Formulation

Quality Control Testing

April 17, 2013 (START)© R. Michael van Dam, 2013

Production of PET Tracers

Radioisotope Production

Radiolabeling, Purification, and Formulation

Quality Control Testing

Nuclear reaction

CyclotronCyclotron Vault

Shielding

Electronics

Page 3: Radiosynthesisin Microfluidic Devices - OPEN CMS · Low Cost Systems • Many components can be integrated onto a single microfluidic chip, decreasing overall system cost • Microfluidic

4/17/2013

3

April 17, 2013 (START)© R. Michael van Dam, 2013

Production of PET Tracers

Radioisotope Production

Radiolabeling, Purification, and Formulation

Quality Control Testing

Chemical reaction, chromatography, solvent exchange

Hot cell

Radiosynthesizer

Semi‐prep HPLC

Rotary evaporator

April 17, 2013 (START)© R. Michael van Dam, 2013

Production of PET Tracers

Radioisotope Production

Radiolabeling, Purification, and Formulation

Quality Control Testing

Analytical chemistry

Gas chromatograph(measure residual solvents)

Radio‐TLC(measure purity)

Analytical radio‐HPLC(measure purity)

Dose calibrator(measure radioactivity)

Page 4: Radiosynthesisin Microfluidic Devices - OPEN CMS · Low Cost Systems • Many components can be integrated onto a single microfluidic chip, decreasing overall system cost • Microfluidic

4/17/2013

4

April 17, 2013 (START)© R. Michael van Dam, 2013

Production is currently very expensive

• Equipment costs

– Radiosynthesizer and HPLC purification– Dedicated synthesizer for each tracer– Analytical equipment for QC

• Infrastructure costs

– Radiation hazard requires use of expensive hot cells– Size/weight of hot cells requires site planning

• Operating costs

– Maintenance and repairs for each equipment– Personnel with specialized expertise

• Synthesizer setup and operation• Quality control testing

– Reagents and consuambles

PET RadiopharmaciesPET Centers

[18F]FDG

Produce [18F]fluoride

Produce tracer

Dispense doses

[18F]FDG

Clinical PET center

Clinical PET research center

Preclinical PET research center

[18F]FDG

[18F]FDG

[18F]FDG

[18F]FDG

[18F]FDG

PET probe production now: centralized

Page 5: Radiosynthesisin Microfluidic Devices - OPEN CMS · Low Cost Systems • Many components can be integrated onto a single microfluidic chip, decreasing overall system cost • Microfluidic

4/17/2013

5

PET RadiopharmaciesPET Centers

Produce [18F]fluoride

Dispense doses

[18F]fluoride

Clinical PET center

Clinical PET research center

Preclinical PET research center

[18F]fluoride

[18F]fluoride

[18F]fluoride[18F]FDG [18F]FLT

[18F]FDOPA

[18F]FHBG[18F]FAC

[18F]FDDNP

[18F]FDG[18F]FAC

[18F]SFB-Db

Paradigm shift: Decentralize production

Personal ComputerBenchtop Radiosynthesizer

(with integrated Purification and Quality Control)

Single-Batch, Tracer-Specific Kits

Multi-batch [18F]fluoride

Single-Batches of Different Tracers on Demand

Different PET Studies

Need a technology that PET tracer production affordable and enables decentralization

Page 6: Radiosynthesisin Microfluidic Devices - OPEN CMS · Low Cost Systems • Many components can be integrated onto a single microfluidic chip, decreasing overall system cost • Microfluidic

4/17/2013

6

April 17, 2013 (START)© R. Michael van Dam, 2013

Microfluidics – an ideal platform for PET?

Micronit

Dolomite

Continuous droplet microfluidics

PDMS (silicone) microfluidics Paper microfluidicsDigital microfluidics

Glass microreactorsMetal microreactors

April 17, 2013 (START)© R. Michael van Dam, 2013

Importance of Microfluidicsin Radiochemistry?

Page 7: Radiosynthesisin Microfluidic Devices - OPEN CMS · Low Cost Systems • Many components can be integrated onto a single microfluidic chip, decreasing overall system cost • Microfluidic

4/17/2013

7

April 17, 2013 (START)© R. Michael van Dam, 2013

If size of mini cell:27” x 20” x 24” rectangular interior, 3” thickMass of Pb = 2400 kg

Hypothetical future microfluidic system:2” x 2” x 2” rectangular interior, 3” thickMass of Pb = 90 kg (BENCHTOP!)

If synthesizer is size of a hot cell:50” x 37” x 47” rectangular interior, 3” thickMass of Pb = 7600 kg

11.34 g/cm3

TH(Pb): 4.1mm

Compact size

• During production of PET probes, shielding is needed to protect operator from gamma radiation

• Minimum size can be considered a “shell” around the synthesizer

• Thus mass of shielding scales as R2

HT

T

II

2

10

April 17, 2013 (START)© R. Michael van Dam, 2013

Low Cost Systems

• Many components can be integrated onto a single microfluidic chip, decreasing overall system cost

• Microfluidic chips can be mass‐produced which drives cost of the consumables down

Parallel fabrication of many transistors

MicroelectronicsRevolution

MicrofluidicsRevolution

(Lab on a chip)

Parallel fabrication of many microvalves

Page 8: Radiosynthesisin Microfluidic Devices - OPEN CMS · Low Cost Systems • Many components can be integrated onto a single microfluidic chip, decreasing overall system cost • Microfluidic

4/17/2013

8

April 17, 2013 (START)© R. Michael van Dam, 2013

Oil bath at temperature Toil

Heater + Stirring Plate

Reactants

ReactantTemperature

Time

Toil

Rate of heating depends on: volume, solvent, geometry, heat transfer coefficients, etc.

HEATING COOLING

Precise control of reaction conditions

Macroscale heating

Beaker / vial

April 17, 2013 (START)© R. Michael van Dam, 2013

ReactantsTemperature

Time

Toil

“Ideal” temperature profile

Microscale heating

Microreactor + Heater have large heat capacity 

(isothermal)Small liquid volume has low heat capacity and can be rapidly heated 

and cooled

Source:  David Brown, Synthetic Chemistry in Microreactors

Page 9: Radiosynthesisin Microfluidic Devices - OPEN CMS · Low Cost Systems • Many components can be integrated onto a single microfluidic chip, decreasing overall system cost • Microfluidic

4/17/2013

9

April 17, 2013 (START)© R. Michael van Dam, 2013

Reduced radiolysis

Energy deposited by scattering positron forms radicals in solvent and leads to radiolysis (radiation damage to the PET tracer)

Cylinder, radius r Planar droplet, thickness c

If characteristic dimension << positron range, positrons deposit very little energy in liquid

April 17, 2013 (START)© R. Michael van Dam, 2013

Rensch et al.Microfluidic reactor geometries for radiolysis reduction.  Applied Radiation and Isotopes 70: 1691‐1697 (2012)

Page 10: Radiosynthesisin Microfluidic Devices - OPEN CMS · Low Cost Systems • Many components can be integrated onto a single microfluidic chip, decreasing overall system cost • Microfluidic

4/17/2013

10

April 17, 2013 (START)© R. Michael van Dam, 2013

Reduced reagent cost / consumption

Typical reaction volume: 1.0 mL

Demonstrated microscale volume: 10 µL = 0.01 * 1.0 mL

Typical reagent cost: up to several hundred $

Reagent savings: 100X *

Macroscale synthesizer

Microscale synthesizer

* Sometimes slightly less if higher reagent concentration needed

April 17, 2013 (START)© R. Michael van Dam, 2013

Boost concentrations for reactions

• Example: F‐18Theor. Max. Specific activity: 1710 Ci/µmolNumber of F-18 in 1 Ci 0.6 nmolConcentration (1 mL): 0.6 μMHuman image needs ~10 mCi: 6 nMMouse image needs ~100 μCi: 60 pM

1:1 1:106

V‐vial (1 mL) Microfluidic chip(nL to µL)

Potential to boost F‐18 concentration by (103‐106 x)

RadioisotopePrecursor

Page 11: Radiosynthesisin Microfluidic Devices - OPEN CMS · Low Cost Systems • Many components can be integrated onto a single microfluidic chip, decreasing overall system cost • Microfluidic

4/17/2013

11

April 17, 2013 (START)© R. Michael van Dam, 2013

Additional advantages

• Increased specific activity? (Currently being investigated)

• Faster overall synthesis process

April 17, 2013 (START)© R. Michael van Dam, 2013

Continuous‐flow Radiochemistry

Page 12: Radiosynthesisin Microfluidic Devices - OPEN CMS · Low Cost Systems • Many components can be integrated onto a single microfluidic chip, decreasing overall system cost • Microfluidic

4/17/2013

12

April 17, 2013 (START)© R. Michael van Dam, 2013

Fluoride drying omitted

Volumes: 500 μLFlow rate: 50 μL/minResidence time: 9sec(6 sec fluorination, 3 sec deprotection)Total reaction time: 10 min

Steel et al. J Label Compd Radiopharm (2007)

April 17, 2013 (START)© R. Michael van Dam, 2013

Polymer (polycarbonate and SU8) microfluidic chip with vortex mixer

500 μL volumes250 μL/sec flow rate2 sec residence time6 sec total reactionNo on‐chip F‐18 drying

Gillies et al. Applied Rad. and Isotopes 64: 333‐336 (2006).Gillies et al. Applied Rad. and Isotopes 64: 325‐332 (2006).

Page 13: Radiosynthesisin Microfluidic Devices - OPEN CMS · Low Cost Systems • Many components can be integrated onto a single microfluidic chip, decreasing overall system cost • Microfluidic

4/17/2013

13

April 17, 2013 (START)© R. Michael van Dam, 2013

2‐step synthesis of [18F]FDG

Fluorination Deprotection

April 17, 2013 (START)© R. Michael van Dam, 2013

Commercial flow‐through synthesizer:Advion NanoTek

Syringe pump module

Capillary reactor module

Evaporation module

4 parallel mixers and reactors for up to 4‐step reactions

Key abilities:‐ High temperature‐ High pressure‐Multiple back‐to‐back runs, optimization‐ Volumes 100s of μL

May need several of these

Page 14: Radiosynthesisin Microfluidic Devices - OPEN CMS · Low Cost Systems • Many components can be integrated onto a single microfluidic chip, decreasing overall system cost • Microfluidic

4/17/2013

14

April 17, 2013 (START)© R. Michael van Dam, 2013

Another commercial flow‐through synthesizer:Scintomics µ‐ICR

Syringe pumps

HPLC injectors

Capillary Heaters

April 17, 2013 (START)© R. Michael van Dam, 2013

Another commercial flow‐through synthesizer:Veenstra / Future Chemistry D‐500

Page 15: Radiosynthesisin Microfluidic Devices - OPEN CMS · Low Cost Systems • Many components can be integrated onto a single microfluidic chip, decreasing overall system cost • Microfluidic

4/17/2013

15

Radiochemistry‐on‐chip (ROC) project

Arima et al. 2013. Lab on a Chip. DOI: 10.1039/C3LC00055A

[18F]fluoride /[18O]H2O

[18O]H2Orecovery

Trapping

Eluent

To reactorRelease

Module 1 traps in “batch” mode, then releases in continuous mode

External valves

QMA

Dry [18F]fluoride

Fluorination Reaction

Solvent removal

Hydrolysis reaction

April 17, 2013 (START)© R. Michael van Dam, 2013

Page 16: Radiosynthesisin Microfluidic Devices - OPEN CMS · Low Cost Systems • Many components can be integrated onto a single microfluidic chip, decreasing overall system cost • Microfluidic

4/17/2013

16

April 17, 2013 (START)© R. Michael van Dam, 2013

Microfluidic electrochemical trapping(Traps in batch mode, releases in continuous mode)

Deposit F‐18 on glassy carbon

Recover F‐18 to aprotic solvent 16 μL

100 μm

500 μL / min2 mL

Yamahara et al. Proc. MicroTAS 2007: 856‐858Saiki et al. Applied Radiation and Isotopes 68: 

1703‐1708 (2010)

April 17, 2013 (START)© R. Michael van Dam, 2013

Clampingscrew

Adsorptionelectrode

[18F]fluoride /[18O]H2O

inlet

Referenceelectrode

[18O]H2Ooutlet

25mm

25m

m

19m

m

3.4mm

1.5mm

Inlet Outlet

Channel pattern (top view)

H218O18F

18F 18F 18F 18F 18F 18F

H218O

H218O

18F

Adsorption (trapping)

Electricfield

MeCN18F

18F 18F 18F 18F 18F 18F

Desorption (release)

18F

Electricfield

K222

K2CO3

MeCN

18F 18F 18F 18F 18F 18F

MeCN

MeCN

Drying

18F

Electricfield

H218O

[18F]fluoride /[18O]H2O

inlet[18O]H2O

outlet

Referenceelectrode

Adsorptionelectrode

Page 17: Radiosynthesisin Microfluidic Devices - OPEN CMS · Low Cost Systems • Many components can be integrated onto a single microfluidic chip, decreasing overall system cost • Microfluidic

4/17/2013

17

April 17, 2013 (START)© R. Michael van Dam, 2013

0

10

20

30

40

50

60

70

80

90

100

Au Zn Ni Brass Havar Tantalum

Eff

icie

ncy

(%

)

[18F]fluoride trapping [18F]fluoride release combined trap and release[18F]fluoride trapping efficiency

[18F]fluoride release efficiency

[18F]fluoride combined trap and release efficiency

April 17, 2013 (START)© R. Michael van Dam, 2013

Batch Radiochemistry

Page 18: Radiosynthesisin Microfluidic Devices - OPEN CMS · Low Cost Systems • Many components can be integrated onto a single microfluidic chip, decreasing overall system cost • Microfluidic

4/17/2013

18

April 17, 2013 (START)© R. Michael van Dam, 2013

Batch‐mode microsynthesis

Lee et al. Science 310: 1793 (2005)

40 nL reaction volume

Elizarov et al.J. Nucl Med 51(2): 282 (2010)

5 µL reaction volume

van Dam et al.Proc Nanotech 2007 3: 300 (2007)

60 µL reaction volume

Bejot et al. J. Label Compd. Radiopharm 54: 117-122 (2011)

Keng et al. PNAS 109(3): 690 (2012)

~1-16 µL reaction volume

April 17, 2013 (START)© R. Michael van Dam, 2013

PDMS MicrofluidicsLee et al. Science 310: 1793 (2005)

Page 19: Radiosynthesisin Microfluidic Devices - OPEN CMS · Low Cost Systems • Many components can be integrated onto a single microfluidic chip, decreasing overall system cost • Microfluidic

4/17/2013

19

April 17, 2013 (START)© R. Michael van Dam, 2013

April 17, 2013 (START)© R. Michael van Dam, 2013

Trap F‐18 Elute F‐18 into Reactor

Add Eluent First Evaporation + Cooling

Add MeCN

Second Evaporation + Cooling

Page 20: Radiosynthesisin Microfluidic Devices - OPEN CMS · Low Cost Systems • Many components can be integrated onto a single microfluidic chip, decreasing overall system cost • Microfluidic

4/17/2013

20

April 17, 2013 (START)© R. Michael van Dam, 2013

Glass Substrate

PDMS

[18F]fluoride solution in ring reactor

[18F]fluoride residue

Solvent removal in PDMS microfluidics

Heater

April 17, 2013 (START)© R. Michael van Dam, 2013

Add Precursor

Perform Fluorination + Cool

Add Deprotectant + Perform Deprotection

Elute Product

Page 21: Radiosynthesisin Microfluidic Devices - OPEN CMS · Low Cost Systems • Many components can be integrated onto a single microfluidic chip, decreasing overall system cost • Microfluidic

4/17/2013

21

April 17, 2013 (START)© R. Michael van Dam, 2013

To vacuumpump Reactor Vacuum channel

Substrate

Scaled‐up PDMS chip

Elizarov, van Dam, et al. JNM 2010

Scaled‐up chip for human dose5 μL “coin‐shaped” reaction volume

April 17, 2013 (START)© R. Michael van Dam, 2013

Elizarov et al.J. Nucl Med 51(2): 282 (2010)

2 µL volume resin bed(AG1-X8, BioRad)

~ 2 mL[18F]fluoride /

[18O]H2O

[18O]H2Orecovery

Trapping

~ 5 µLEluent

To reactorRelease

99.5% Efficiency(n=1)

92.7% Efficiency(n=1)

876 mCi

~808 mCi

Page 22: Radiosynthesisin Microfluidic Devices - OPEN CMS · Low Cost Systems • Many components can be integrated onto a single microfluidic chip, decreasing overall system cost • Microfluidic

4/17/2013

22

April 17, 2013 (START)© R. Michael van Dam, 2013

K222/MeCN fill MeCN evap Mannose triflate fill

Fluorination HCl fill Hydrolysis  FDG elute

H2O

FDG

Synthesis process

F‐18/K2CO3 fill H2O evap

High T (>100C)High Conc

High T (95C)High P (30psi)High Conc

High T (115C)High P (30psi)

High T (135C)Acidic

April 17, 2013 (START)© R. Michael van Dam, 2013

• Mixing

• Elution

Elizarov et al. Biomed Microdevices 13(1): 231‐242 (2010)

Page 23: Radiosynthesisin Microfluidic Devices - OPEN CMS · Low Cost Systems • Many components can be integrated onto a single microfluidic chip, decreasing overall system cost • Microfluidic

4/17/2013

23

April 17, 2013 (START)© R. Michael van Dam, 2013

Vent Layer

Actuating PinPin Guide

Flow Layer

Gasket

Closed Open

Apply Pressure Relax Pressure

Alternative architecture for coin‐shaped chip

Inert, rigid polymer

Inert, rigid polymer

Flexible membrane

van Dam et al. Proc. Nanotech 2007

April 17, 2013 (START)© R. Michael van Dam, 2013

Bejot et al. J. Labelled Compounds and Radiopharmaceuticals 54: 117‐122 (2011)

Chip

Valve Actuator

Chip to world interface

[18F]SFB

Page 24: Radiosynthesisin Microfluidic Devices - OPEN CMS · Low Cost Systems • Many components can be integrated onto a single microfluidic chip, decreasing overall system cost • Microfluidic

4/17/2013

24

April 17, 2013 (START)© R. Michael van Dam, 2013

Heater/cooler

Reaction chamber

N2 Vacuum

Valve actuator

April 17, 2013 (START)© R. Michael van Dam, 2013

Page 25: Radiosynthesisin Microfluidic Devices - OPEN CMS · Low Cost Systems • Many components can be integrated onto a single microfluidic chip, decreasing overall system cost • Microfluidic

4/17/2013

25

April 17, 2013 (START)© R. Michael van Dam, 2013

Digital microfluidics:Electronic control of chemical reactions

Unlike chips with internal or external valves and pumps,liquid movement is controlled electronically

Increasing voltage, VIncreasing voltage, V

Electrowetting effectsurface electrode coated with hydrophobic dielectric

electrode

water drop

April 17, 2013 (START)© R. Michael van Dam, 2013

Splitting Droplets

Aaron Wheeler, Univ. Toronto

Separations

Droplet moving

Droplet dispensing, moving, merging, splitting, mixing

Hyejin Moon Lab, UT Arlington

EWOD Concentration Video

Richard Fair, Duke University

Page 26: Radiosynthesisin Microfluidic Devices - OPEN CMS · Low Cost Systems • Many components can be integrated onto a single microfluidic chip, decreasing overall system cost • Microfluidic

4/17/2013

26

April 17, 2013 (START)© R. Michael van Dam, 2013

EWOD ChipCover Plate

Reaction site (heater

electrode)

Contact pads (Au)

Reagent edge-loading site 2

EWOD control electrodes (ITO)

Cover plate

ground high V

Reagent edge-loading site 1

Keng, van Dam, et al. PNAS 2012

Radiosynthesis on digital microfluidics

April 17, 2013 (START)© R. Michael van Dam, 2013

Vapor condenses on cold part of chip

Heat dropletCondensation dissipates as heat transfers laterally 

through chipSolutes remain at heater 

electrode

Heater

Vapor escapes from surface

Droplet Condensation Dried Residue

Open structure permits faster evaporations

Page 27: Radiosynthesisin Microfluidic Devices - OPEN CMS · Low Cost Systems • Many components can be integrated onto a single microfluidic chip, decreasing overall system cost • Microfluidic

4/17/2013

27

April 17, 2013 (START)© R. Michael van Dam, 2013

18F‐Radiosynthesis in EWOD chip18F Drying Azeotropic Distillation

Fluorination of Precursor

Add F‐18 solution

Add MeCN

Add Precsursor

April 17, 2013 (START)© R. Michael van Dam, 2013

Heater 1

Heater 2

Heater 3

Heater 4

Scaled‐up chip for larger doses

5 mm

Page 28: Radiosynthesisin Microfluidic Devices - OPEN CMS · Low Cost Systems • Many components can be integrated onto a single microfluidic chip, decreasing overall system cost • Microfluidic

4/17/2013

28

April 17, 2013 (START)© R. Michael van Dam, 2013

(i) N2 flow5 mm

Time

(ii)

(iii)

(iv)

(v)

Reagent loading

sites

Reaction site

Vapor condensation

April 17, 2013 (START)© R. Michael van Dam, 2013

Demonstrated repeatable synthesis of [18F]FDG

• Avg. fluorination efficiency: 88±7% (n=11)• Avg. hydrolysis efficiency:  >95% (n=9)• Miniature off‐chip purification:  >99% pure• Scale of synthesis: several mCi

0

500

1000

1500

2000

2500

3000

0 20 40 60 80Distance Travelled (mm)

[18F]fluoride

[18F]FDG

[18F]FTAG

After fluorination

After hydrolysis

After purification

Source: Waters Corporation

Thin layer chromatography (TLC) analysis

Radio‐TLC reader

Page 29: Radiosynthesisin Microfluidic Devices - OPEN CMS · Low Cost Systems • Many components can be integrated onto a single microfluidic chip, decreasing overall system cost • Microfluidic

4/17/2013

29

Reagent loading

Proof‐of‐concept approach:

Manual reagent loading, product extraction, purification

Typical EWOD approaches:

Reagents stored IN the chip

Reagents storedON TOP of the chip

Need to store volatile reagents OFF chip, and introduce on chip on‐demand

April 17, 2013 (START)© R. Michael van Dam, 2013

0

80

160

240

320

400

0 20 40 60 80 100

Vo

lum

e c

om

pe

nsa

tion

re

quire

d (

nL

)

Time since last droplet dispensed (min)

A

EWOD chip

Needle

Meniscus

B

Syringe pump

Simple reagent loading system

Page 30: Radiosynthesisin Microfluidic Devices - OPEN CMS · Low Cost Systems • Many components can be integrated onto a single microfluidic chip, decreasing overall system cost • Microfluidic

4/17/2013

30

April 17, 2013 (START)© R. Michael van Dam, 2013

2nd‐generation reagent loading

Reagents pushed with gas pressure; no syringe pumps

April 17, 2013 (START)© R. Michael van Dam, 2013

On‐chip radiochemistry optimization

Page 31: Radiosynthesisin Microfluidic Devices - OPEN CMS · Low Cost Systems • Many components can be integrated onto a single microfluidic chip, decreasing overall system cost • Microfluidic

4/17/2013

31

April 17, 2013 (START)© R. Michael van Dam, 2013

PDMS chip for generation of programmable droplet composition

• Can perform analytical scale optimization to deal with batch‐to‐batch variations– Mix droplets with different ratios

– Analyze

– Pick best conditions for labeling a larger batch

April 17, 2013 (START)© R. Michael van Dam, 2013

[18F]SFB Biomolecule pH buffer

Page 32: Radiosynthesisin Microfluidic Devices - OPEN CMS · Low Cost Systems • Many components can be integrated onto a single microfluidic chip, decreasing overall system cost • Microfluidic

4/17/2013

32

April 17, 2013 (START)© R. Michael van Dam, 2013

Liu et al. Molecular Imaging 10(3): 168‐176 (2011)

April 17, 2013 (START)© R. Michael van Dam, 2013

Tools for visualizing microfluidic radiochemistry

Page 33: Radiosynthesisin Microfluidic Devices - OPEN CMS · Low Cost Systems • Many components can be integrated onto a single microfluidic chip, decreasing overall system cost • Microfluidic

4/17/2013

33

April 17, 2013 (START)© R. Michael van Dam, 2013

Phophorimager

F‐18Sadeghi et al. Applied Radiation and 

Isotopes 75: 85‐94 (2013)

Ga‐68Lavén et al. Lab on a Chip 5: 

756‐763 (2005)

April 17, 2013 (START)© R. Michael van Dam, 2013

Direct positron detection with PSAPD

Vu et al. J Nucl. Med 52: 815‐821 (2011)

Vu et al. Proc. IEEE Nucl. Science Symposium 2006, pg 3536‐3539

Page 34: Radiosynthesisin Microfluidic Devices - OPEN CMS · Low Cost Systems • Many components can be integrated onto a single microfluidic chip, decreasing overall system cost • Microfluidic

4/17/2013

34

Čerenkov Imaging

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

3.5E+06

4.0E+06

4.5E+06

0 10 20 30 40 50 60

To

tal S

ign

al (

AD

U)

Radioactivity (uCi)

Integrated ROI Signal vs. Radioactivity

EWOD chip

Droplet

CCD Sensor

Lens

e+

Light‐tight enclosure

Cover plate

Cho et al. Phys. Med. Biol. 54 (2009) 6757–6771

April 17, 2013 (START)© R. Michael van Dam, 2013

Mirror

Lead shielding for CCD

Cerenkov CCD

Camera

Optical Camera

Electrical Connection

EWODChip

2nd generation Cerenkov imaging setup

Page 35: Radiosynthesisin Microfluidic Devices - OPEN CMS · Low Cost Systems • Many components can be integrated onto a single microfluidic chip, decreasing overall system cost • Microfluidic

4/17/2013

35

April 17, 2013 (START)© R. Michael van Dam, 2013

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Brig

htne

ss

After loading F‐18

After drying F‐18

After mixing (MT)

After fluorination

After hydrolysis

Cerenkov Optical

April 17, 2013 (START)© R. Michael van Dam, 2013

Summary• Recap of PET tracer production

• Importance of microfluidics in radiochemistry

• Examples of microfluidic radiochemistry– Continuous flow synthesis

– [18F]fluoride drying methods compatible with continuous flow

– Batch mode synthesis

– Reaction optimization

– Visualization of microfluidic chips

• Next couple of weeks:– Microfluidic chip fabrication and cleanroom tour

– Microfluidic chip lab / demonstration

Page 36: Radiosynthesisin Microfluidic Devices - OPEN CMS · Low Cost Systems • Many components can be integrated onto a single microfluidic chip, decreasing overall system cost • Microfluidic

4/17/2013

36

April 17, 2013 (START)© R. Michael van Dam, 2013

Resources• S. Y. Lu and V. W. Pike, “Micro‐reactors for PET Tracer Labeling,” in PET Chemistry: The Driving Force 

in Molecular Imaging, P. Schubinger, Ed. Springer, 2007, pp. 271–287.

• H. Audrain, “Positron Emission Tomography (PET) and Microfluidic Devices: A Breakthrough on the Microscale?,” Angewandte Chemie International Edition, vol. 46, no. 11, pp. 1772–1775, 2007.

• P. W. Miller, “Radiolabelling with short‐lived PET (positron emission tomography) isotopes using microfluidic reactors,” Journal of Chemical Technology & Biotechnology, vol. 84, no. 3, pp. 309–315, 2009.

• A. M. Elizarov, “Microreactors for radiopharmaceutical synthesis,” Lab Chip, vol. 9, no. 10, pp. 1326–1333, 2009.

• P. Y. Keng, M. Esterby, and R. M. van Dam, “Emerging Technologies for Decentralized Production of PET Tracers,” in Positron Emission Tomography ‐ Current Clinical and Research Aspects, C.‐H. Hsieh, Ed. InTech, 2012, pp. 153–182.

• Watts et al. Positron emission tomography radiosynthesis in microreactors. J. Flow Chemistry 2(2): 37‐42 (2012).