gradimirv.milovanović*,rakeshk.parmar,andarjunk.rathie …gvm/radovi/gvm-rkp-akr-final.pdf ·...

13
Open Access. © 2018 Gradimir V. Milovanović et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License. Demonstr. Math. 2018; 51:264–276 Research Article Open Access Gradimir V. Milovanović*, Rakesh K. Parmar, and Arjun K. Rathie Certain Laplace transforms of convolution type integrals involving product of two special p F p functions https://doi.org/10.1515/dema-2018-0025 Received May 8, 2017; accepted September 26, 2018 Abstract: Recently the authors obtained several Laplace transforms of convolution type integrals involving Kummer’s function 1 F 1 [Appl. Anal. Discrete Math., 2018, 12(1), 257–272]. In this paper, the authors aim at presenting several new and interesting Laplace transforms of convolution type integrals involving product of two special generalized hypergeometric functions p F p by employing classical summation theorems for the series 2 F 1 , 3 F 2 , 4 F 3 and 5 F 4 available in the literature. Keywords: Gauss’s summation theorem, Gauss’s second summation theorem, Bailey’s summation theorem, Kummer’s summation theorem, Watson’s summation theorem, Dixon’s summation theorem, Whipple’s first and second summation theorems, Dougall’s theorem, Laplace transform, Convolution type integrals MSC: Primary 33C20; Secondary 33C05, 33C90 1 Introduction and motivation In the theory of hypergeometric and generalized hypergeometric functions, there exist a remarkably large number of hypergeometric summation formulas which can be expressed in terms of the Gamma functions. In particular, for specified values of the argument, usually, 1, -1 and 1/2, the hypergeometric function 2 F 1 and the generalized hypergeometric function 3 F 2 reduce to the the well-known classical summation theorems such as the Gauss, Gauss second, Bailey and Kummer ones for the 2 F 1 series, as well as the Watson, Dixon and Whipple ones for the 3 F 2 series, Whipple second for 4 F 3 and Dougall for 5 F 4 play an important role in the theory of generalized hypergeometric functions (cf. [1]). Precisely, such theorems are given below so that the paper may be self-contained. • Gauss’s summation theorem 2 F 1 a, b c 1 = Γ (c)Γ (c - a - b) Γ (c - a)Γ (c - b) = Ω 1 (a, b, c) (Re(c - a - b) > 0); (1.1) • Gauss’s second summation theorem 2 F 1 a, b 1 2 (a + b + 1) 1 2 = Γ ( 1 2 )Γ ( 1 2 (a + b + 1)) Γ ( 1 2 a + 1 2 )Γ ( 1 2 b + 1 2 ) = Ω 2 (a, b); (1.2) *Corresponding Author: Gradimir V. Milovanović: Serbian Academy of Sciences and Arts, Belgrade, Serbia & University of Niš, Faculty of Sciences and Mathematics, Niš, Serbia; E-mail: [email protected] Rakesh K. Parmar: Department of Mathematics, Government College of Engineering and Technology, Bikaner-334004, Ra- jasthan, India; E-mail: [email protected] Arjun K. Rathie: Department of Mathematics, Vedant College of Engineering and Technology, Rajasthan Technical University, Bundi, India; E-mail: [email protected] Unauthenticated Download Date | 11/10/18 10:01 AM

Upload: others

Post on 20-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: GradimirV.Milovanović*,RakeshK.Parmar,andArjunK.Rathie …gvm/radovi/GVM-RKP-AKR-Final.pdf · 2018. 11. 10. · 268 ¸ GradimirV.Milovanović,RakeshK.Parmar,andArjunK.Rathie Theorem

Open Access. © 2018Gradimir V.Milovanović et al., published by DeGruyter. This work is licensed under the Creative CommonsAttribution-NonCommercial-NoDerivs 4.0 License.

Demonstr. Math. 2018; 51:264–276

Research Article Open Access

Gradimir V. Milovanović*, Rakesh K. Parmar, and Arjun K. Rathie

Certain Laplace transforms of convolutiontype integrals involving product of twospecial pFp functionshttps://doi.org/10.1515/dema-2018-0025Received May 8, 2017; accepted September 26, 2018

Abstract: Recently the authors obtained several Laplace transforms of convolution type integrals involvingKummer’s function 1F1 [Appl. Anal. Discrete Math., 2018, 12(1), 257–272]. In this paper, the authors aim atpresenting several new and interesting Laplace transforms of convolution type integrals involving product oftwo special generalized hypergeometric functions pFp by employing classical summation theorems for theseries 2F1, 3F2, 4F3 and 5F4 available in the literature.

Keywords: Gauss’s summation theorem, Gauss’s second summation theorem, Bailey’s summation theorem,Kummer’s summation theorem, Watson’s summation theorem, Dixon’s summation theorem, Whipple’s firstand second summation theorems, Dougall’s theorem, Laplace transform, Convolution type integrals

MSC: Primary 33C20; Secondary 33C05, 33C90

1 Introduction and motivationIn the theory of hypergeometric and generalized hypergeometric functions, there exist a remarkably largenumber of hypergeometric summation formulas which can be expressed in terms of the Gamma functions. Inparticular, for specified values of the argument, usually, 1, −1 and 1/2, the hypergeometric function 2F1 andthe generalized hypergeometric function 3F2 reduce to the the well-known classical summation theoremssuch as the Gauss, Gauss second, Bailey and Kummer ones for the 2F1 series, as well as the Watson, Dixonand Whipple ones for the 3F2 series, Whipple second for 4F3 and Dougall for 5F4 play an important role inthe theory of generalized hypergeometric functions (cf. [1]).

Precisely, such theorems are given below so that the paper may be self-contained.• Gauss’s summation theorem

2F1[ a, b

c

1]= Γ(c)Γ(c − a − b)Γ(c − a)Γ(c − b) = Ω1(a, b, c) (Re(c − a − b) > 0); (1.1)

• Gauss’s second summation theorem

2F1[ a, b

12 (a + b + 1)

12

]=Γ(12 )Γ(

12 (a + b + 1))

Γ(12a +12 )Γ(

12b +

12 )

= Ω2(a, b); (1.2)

*Corresponding Author: Gradimir V. Milovanović: Serbian Academy of Sciences and Arts, Belgrade, Serbia & University ofNiš, Faculty of Sciences and Mathematics, Niš, Serbia; E-mail: [email protected] K. Parmar: Department of Mathematics, Government College of Engineering and Technology, Bikaner-334004, Ra-jasthan, India; E-mail: [email protected] K. Rathie: Department of Mathematics, Vedant College of Engineering and Technology, Rajasthan Technical University,Bundi, India; E-mail: [email protected]

UnauthenticatedDownload Date | 11/10/18 10:01 AM

Page 2: GradimirV.Milovanović*,RakeshK.Parmar,andArjunK.Rathie …gvm/radovi/GVM-RKP-AKR-Final.pdf · 2018. 11. 10. · 268 ¸ GradimirV.Milovanović,RakeshK.Parmar,andArjunK.Rathie Theorem

Laplace transforms of convolution type integrals | 265

• Bailey’s summation theorem

2F1[ a, 1 − a

b

12

]=

Γ(12b)Γ(12b +

12 )

Γ(12b +12a)Γ(

12b −

12a +

12 )

= Ω3(a, b); (1.3)

• Kummer’s summation theorem

2F1[ a, b1 + a − b

− 1

]=Γ(1 + 1

2a)Γ(1 + a − b)Γ(1 + a)Γ(1 + 1

2a − b)= Ω4(a, b); (1.4)

•Watson summation theorem

3F2[ a, b, c

12 (a + b + 1), 2c

1]

= Γ(

12

)Γ(c+ 1

2

)Γ(

12 a+

12 b+

12

)Γ(c− 1

2 a−12 b+

12

)Γ(

12 a+

12

)Γ(

12 b+

12

)Γ(c− 1

2 a+12

)Γ(c− 1

2 b+12

)= Ω5(a, b, c) (Re(2c − a − b) > −1); (1.5)

• Dixon’s summation theorem

3F2[ a, b, c1 + a − b, 1 + a − c

1]

=Γ(1 + 1

2a)Γ(1 + a − b

)Γ(1 + a − c

)Γ(1 + 1

2a − b − c)

Γ(1 + a)Γ(1 + 1

2a − b)Γ(1 + 1

2a − c)Γ(1 + a − b − c)

= Ω6(a, b, c) (Re(a − 2b − 2c) > −2); (1.6)

•Whipple’s summation theorem

3F2[ a, 1 − a, ce, 1 + 2c − e

1]

= 21−2c π Γ(e)Γ (1 + 2c − e)Γ(12a +

12 e

)Γ(12 −

12a +

12 e

)Γ(c + 1

2a −12 e +

12)Γ(c − 1

2a −12 e + 1

)= Ω7(a, c, e) (Re(c) > 0); (1.7)

• Second Whipple’s summation theorem

4F3[ a, 1 + 1

2a, b, c12a, a − b + 1, a − c + 1

− 1

]= Γ (a − b + 1) Γ (a − c + 1)Γ (a + 1) Γ (a − b − c + 1)= Ω8(a, b, c); (1.8)

• Dougall’s summation theorem

5F4[ a, 1 + 1

2a, c, d, e12a, a − c + 1, a − d + 1, a − e + 1

1]

= Γ (a − c + 1) Γ (a − d + 1) Γ (a − e + 1) Γ (a − c − d − e + 1)Γ (a + 1) Γ (a − d − e + 1) Γ (a − c − e + 1) Γ (a − c − d + 1)= Ω9(a, c, d, e). (1.9)

Very recently, the authors [2] derived various interesting Laplace transforms bymaking use of the follow-ing general product theorem [3, p. 43, Eq. 3.2.28]:

g1(t) g2(t) =∞∫0

e−st t∫

0

f1(τ) f2(t − τ)dτdt,

UnauthenticatedDownload Date | 11/10/18 10:01 AM

Page 3: GradimirV.Milovanović*,RakeshK.Parmar,andArjunK.Rathie …gvm/radovi/GVM-RKP-AKR-Final.pdf · 2018. 11. 10. · 268 ¸ GradimirV.Milovanović,RakeshK.Parmar,andArjunK.Rathie Theorem

266 | Gradimir V. Milovanović, Rakesh K. Parmar, and Arjun K. Rathie

for a pair of generalized hypergeometric functions [3, p. 43, Eq. 3.2.29]:

∞∫0

e−st t∫

0

τµ−1(t − τ)ν−1 pFq[ (a)(b)

]p′Fq′

[ (a′)(b′)

k′(t − τ)

]dτdt

= Γ(µ)Γ(ν) s−µ−ν p+1Fq[ (a), µ

(b)

ks

]p′+1Fq′

[ (a′), ν(b′)

k′s

], (1.10)

where Re(µ) > 0, Re(ν) > 0, Re(s) > 0when p < q, p′ < q′ or Re(µ) > 0, Re(ν) > 0, Re(s) > Re(k), Re(s) > Re(k′)when p = q, p′ = q′ for the case p = q = 1 = p′ = q′ [3, p. 43, Eq. 3.2.30] viz:

∞∫0

e−st t∫

0

τµ−1 (t − τ)ν−1 1F1[ ac

1F1

[ a′c′

k′(t − τ)

]dτdt

= Γ(µ)Γ(ν) s−µ−ν2F1[ a, µ

c

ks

]2F1

[ a′, νc′

k′s

](1.11)

for Re(c) > 0, Re(c′) > 0, Re(s) > Re(k), Re(s) > Re(k′), |s| > |k| and |s| > |k′|.In this paper, by using product theorem for Laplace transform for a generalized hypergeometric func-

tions, we employ the classical summation formulas (1.1) to (1.9) in order to derive several new Laplace trans-forms of convolution type integrals involving pFp, where p = 1, 2, 3, 4.

2 Laplace transforms of convolution type integrals involvingproduct of two special pFp(x) functions

In this section, we present various new Laplace type integrals by using product theorem of the Laplace trans-forms for a pair of two special generalized hypergeometric functions pFp.

For this, if we set p = q = 1, p′ = q′ = 2 and p = q = p′ = q′ = 2, respectively in (1.10), we obtain theformula

∞∫0

e−st t∫

0

τµ−1(t − τ)ν−1 1F1[ ac

]2F2

[ a′, b′d′, e′

k′(t − τ)

]dτdt

= Γ(µ)Γ(ν) s−µ−ν2F1[ a, µ

c

ks

]3F2

[ a′, b′, νd′, e′

k′s

], (2.1)

where Re(µ) > 0, Re(ν) > 0, Re(s) > Re(k), Re(s) > Re(k′), |s| > |k| and |s| > |k′| and

∞∫0

e−st t∫

0

τµ−1(t − τ)ν−1 2F2[ a, bd, e

]2F2

[ a′, b′d′, e′

k′(t − τ)

]dτdt

= Γ(µ)Γ(ν) s−µ−ν3F2[ a, b, µ

d, e

ks

]3F2

[ a′, b′, νd′, e′

k′s

], (2.2)

where(Re(µ) > 0, Re(ν) > 0, Re(s) > Re(k), Re(s) > Re(k′),|s| > |k| and |s| > |k′|.

Similar results can be written involving 3F3 and 4F4.Now by employing Gauss’s summation theorem, Gauss’s second summation theorem, Bailey’s summa-

tion theorem, Kummer’s summation theorem, Watson’s summation theorem, Dixon’s summation theorem,Whipple’s summation theorem, Whipple’s second summation theorem and Dougall’s summation theorems(1.2) to (1.9), we get the following thirty-nine interesting results asserted in the following statements. We re-mark in passing that in all there exists forty-five results of this type. Out of forty-five results, six results havealready been recorded in [2].

UnauthenticatedDownload Date | 11/10/18 10:01 AM

Page 4: GradimirV.Milovanović*,RakeshK.Parmar,andArjunK.Rathie …gvm/radovi/GVM-RKP-AKR-Final.pdf · 2018. 11. 10. · 268 ¸ GradimirV.Milovanović,RakeshK.Parmar,andArjunK.Rathie Theorem

Laplace transforms of convolution type integrals | 267

Theorem 2.1. For Re(s) > 0, Re(b) > 0, Re(b′) > 0, Re(c − a − b) > 0 and Re(c′ − a′ − b′) > 0, the followingresult holds true:

∞∫0

e−st t∫

0

τb−1 (t − τ)b′−1

1F1[ ac

τs]1F1

[ a′c′

(t − τ)s

]dτ

dt

= Γ(b) Γ(b′) s−b−b′Ω1(a, b, c)Ω1(a′, b′, c′).

where Ω1(a, b, c) is given in (1.2).

Proof. The proof of this theorem is quite straight-forward. In order to prove this result, setting k = s, k′ = s,µ = b and ν = b′ in (1.11), we have

∞∫0

e−st t∫

0

τb−1 (t − τ)b′−1

1F1[ ac

τs]1F1

[ a′c′

(t − τ)s

]dτ

dt

= Γ(b) Γ(b′) s−b−b′

2F1[ a, b

c

1]2F1

[ a′, b′

c′1]. (2.3)

We now observe that the 2F1 twice appearing on the right-hand side of (2.3) can be evaluated with thehelp of Gauss’s summation theorem (1.1), which yields at once the desired formula in Theorem 2.1.

The remaining results, which are given in the following theorems, can also be proven in a similar lines byapplying appropriate summation theorems (1.1) to (1.9) in (1.10). So we prefer to omit the details.

Theorem 2.2. For Re(s) > 0, Re(b) > 0, Re(b′) > 0 and Re(c − a − b) > 0, the following result holds true:

∞∫0

e−st t∫

0

τb−1(t − τ)b′−1

1F1[ ac

τs]1F1

[ a′12 (a

′ + b′ + 1)

12(t − τ)s

]dτdt

= Γ(b) Γ(b′) s−b−b′Ω1(a, b, c)Ω2(a′, b′),

where Ω1(a, b, c) and Ω2(a, b) are given in (1.1) and (1.2), respectively.

Theorem 2.3. For Re(s) > 0, Re(b) > 0, Re(1 − a′) > 0 and Re(c − a − b) > 0, the following result holds true:

∞∫0

e−st t∫

0

τb−1(t − τ)−a′

1F1[ ac

τs]1F1

[ a′b′

12(t − τ)s

]dτdt

= Γ(b) Γ(1 − a′) sa′−b−1 Ω1(a, b, c)Ω3(a′, b′),

where Ω1(a, b, c) and Ω3(a, b) are given in (1.1) and (1.3), respectively.

Theorem 2.4. For Re(s) > 0, Re(b) > 0, Re(b′) > 0 and Re(c − a − b) > 0, the following result holds true:

∞∫0

e−st t∫

0

τb−1(t − τ)b′−1

1F1[ ac

τs]1F1

[ a′

1 + a′ − b′− (t − τ)s

]dτdt

= Γ(b) Γ(b′) s−b−b′Ω1(a, b, c)Ω4(a′, b′),

where Ω1(a, b, c) and Ω4(a, b) are given in (1.1) and (1.4), respectively.

UnauthenticatedDownload Date | 11/10/18 10:01 AM

Page 5: GradimirV.Milovanović*,RakeshK.Parmar,andArjunK.Rathie …gvm/radovi/GVM-RKP-AKR-Final.pdf · 2018. 11. 10. · 268 ¸ GradimirV.Milovanović,RakeshK.Parmar,andArjunK.Rathie Theorem

268 | Gradimir V. Milovanović, Rakesh K. Parmar, and Arjun K. Rathie

Theorem 2.5. For Re(s) > 0, Re(b) > 0, Re(c′) > 0 and Re(c − a − b) > 0, Re(2c′ − a′ − b′) > −1, the followingresult holds true:

∞∫0

e−st t∫

0

τb−1(t − τ)c′−1

1F1[ ac

τs]2F2

[ a′, b′12 (a

′ + b′ + 1), 2c′(t − τ)s

]dτdt

= Γ(b) Γ(c′)

sb+c′Ω1(a, b, c)Ω5(a′, b′, c′),

where Ω1(a, b, c) and Ω5(a, b, c) are given in (1.1) and (1.5), respectively.

Theorem 2.6. For Re(s) > 0, Re(b) > 0, Re(c′) > 0, Re(c − a − b) > 0 and Re(a′ − 2b′ − 2c′) > −2, the followingresult holds true:

∞∫0

e−st t∫

0

τb−1(t − τ)c′−1

1F1[ ac

τs]

× 2F2[ a′, b′

1 + a′ − b′, 1 + a′ − c

(t − τ)s

]dτdt

= Γ(b) Γ(c′)

sb+c′Ω1(a, b, c)Ω6(a′, b′, c′),

where Ω1(a, b, c) and Ω6(a, b, c) are given in (1.1) and (1.6), respectively.

Theorem 2.7. For Re(s) > 0, Re(b) > 0, Re(c′) > 0 and Re(c − a − b) > 0, the following result holds true:∞∫0

e−st t∫

0

τb−1(t − τ)c′−1

1F1[ ac

τs]2F2

[ a′, 1 − a′

e′, 1 + 2c′ − e′(t − τ)s

]dτ

dt

= Γ(b) Γ(c′)

sb+c′Ω1(a, b, c)Ω7(a′, c′, e′),

where Ω1(a, b, c) and Ω7(a, c, e) are given in (1.1) and (1.7), respectively.

Theorem 2.8. For Re(s) > 0, Re(b) > 0, Re(c′) > 0 and Re(2c′ − a′ − b′) > −1, the following result holds true:∞∫0

e−st t∫

0

τb−1(t − τ)c′−1

1F1[ a

12 (a + b + 1)

12 τs

]

× 2F2[ a′, b′

12 (a

′ + b′ + 1), 2c′(t − τ)s

]dτdt

= Γ(b) Γ(c′)

sb+c′Ω2(a, b)Ω5(a′, b′, c′),

where Ω2(a, b) and Ω5(a, b, c) are given in (1.2) and (1.5), respectively.

Theorem 2.9. For Re(s) > 0, Re(b) > 0, Re(c′) > 0 and Re(a′ − 2b′ − 2c′) > −2, the following result holds true:∞∫0

e−st t∫

0

τb−1 (t − τ)c′−1

1F1[ a

12 (a + b + 1)

12 τs

]

× 2F2[ a′, b′

1 + a′ − b′, 1 + a′ − c

(t − τ)s

]dτ

dt

= Γ(b) Γ(c′)

sb+c′Ω2(a, b)Ω6(a′, b′, c′),

where Ω2(a, b) and Ω6(a, b, c) are given in (1.2) and (1.6), respectively.

UnauthenticatedDownload Date | 11/10/18 10:01 AM

Page 6: GradimirV.Milovanović*,RakeshK.Parmar,andArjunK.Rathie …gvm/radovi/GVM-RKP-AKR-Final.pdf · 2018. 11. 10. · 268 ¸ GradimirV.Milovanović,RakeshK.Parmar,andArjunK.Rathie Theorem

Laplace transforms of convolution type integrals | 269

Theorem 2.10. For Re(s) > 0, Re(b) > 0 and Re(c′) > 0, the following result holds true:∞∫0

e−st t∫

0

τb−1 (t − τ)c′−1

1F1[ a

12 (a + b + 1)

12 τs

]

× 2F2[ a′, 1 − a′

e′, 1 + 2c′ − e′(t − τ)s

]dτdt

= Γ(b) Γ(c′)

sb+c′Ω2(a, b)Ω7(a′, c′, e′),

where Ω2(a, b) and Ω7(a, c, e) are given in (1.2) and (1.7), respectively.

Theorem 2.11. For Re(s) > 0, Re(c′) > 0, Re(1 − a) > 0 and Re(2c′ − a′ − b′) > −1, the following result holdstrue:

∞∫0

e−st t∫

0

τ−a (t − τ)c′−1

1F1[ ab

12 τs

]

× 2F2[ a′, b′

12 (a

′ + b′ + 1), 2c′(t − τ)s

]dτ

dt

= Γ(1 − a)Γ(c′)

s1−a+c′ Ω3(a, b)Ω5(a′, b′, c′),

where Ω3(a, b) and Ω5(a, b, c) are given in (1.3) and (1.5), respectively.

Theorem 2.12. For Re(s) > 0, Re(c′) > 0, Re(1 − a) > 0 and Re(a′ − 2b′ − c′) > −2, the following result holdstrue:

∞∫0

e−st t∫

0

τ−a (t − τ)c′−1

1F1[ ab

12 τs

]

× 2F2[ a′, b′

1 + a′ − b′, 1 + a′ − c

(t − τ)s

]dτ

dt

= Γ(1 − a)Γ(c′)

s1−a+c′ Ω3(a, b)Ω6(a′, b′, c′),

where Ω3(a, b) and Ω6(a, b, c) are given in (1.3) and (1.6), respectively.

Theorem 2.13. For Re(s) > 0, Re(1 − a) > 0 and Re(c′) > 0, the following result holds true:∞∫0

e−st t∫

0

τ−a (t − τ)c′−1

1F1[ ab

12 τs

]

× 2F2[ a′, 1 − a′

e′, 1 + 2c′ − e′(t − τ)s

]dτ

dt

= Γ(1 − a)Γ(c′)

s1−a+c′ Ω3(a, b)Ω7(a′, c′, e′),

where Ω3(a, b) and Ω7(a, c, e) are given in (1.3) and (1.7), respectively.

Theorem 2.14. For Re(s) > 0, Re(b) > 0, Re(c′) > 0 and Re(2c′ − a′ − b′) > −2, the following result holds true:∞∫0

e−st t∫

0

τb−1 (t − τ)c′−1

1F1[ a1 + a − b

− τs

]

× 2F2[ a′, b′

12 (a

′ + b′ + 1), 2c′(t − τ)s

]dτdt = Γ(b) Γ(c

′)sb+c′

Ω4(a, b)Ω5(a′, b′, c′),

UnauthenticatedDownload Date | 11/10/18 10:01 AM

Page 7: GradimirV.Milovanović*,RakeshK.Parmar,andArjunK.Rathie …gvm/radovi/GVM-RKP-AKR-Final.pdf · 2018. 11. 10. · 268 ¸ GradimirV.Milovanović,RakeshK.Parmar,andArjunK.Rathie Theorem

270 | Gradimir V. Milovanović, Rakesh K. Parmar, and Arjun K. Rathie

where Ω4(a, b) and Ω5(a, b, c) are given in (1.4) and (1.5), respectively.

Theorem 2.15. For Re(s) > 0, Re(b) > 0, Re(c′) > 0 and Re(a′ − 2b′ − c′) > −2, the following result holds true:

∞∫0

e−st t∫

0

τb−1 (t − τ)c′−1

1F1[ a1 + a − b

− τs

]

× 2F2[ a′, b′

1 + a′ − b′, 1 + a′ − c

(t − τ)s

]dτ

dt

= Γ(b) Γ(c′)

sb+c′Ω4(a, b)Ω6(a′, b′, c′),

where Ω4(a, b) and Ω6(a, b, c) are given in (1.4) and (1.6), respectively.

Theorem 2.16. For Re(s) > 0, Re(b) > 0 and Re(c′) > 0, the following result holds true:

∞∫0

e−st t∫

0

τb−1 (t − τ)c′−1

1F1[ a1 + a − b

− τs

]

× 2F2[ a′, 1 − a′

e′, 1 + 2c′ − e′(t − τ)s

]dτ

dt = Γ(b) Γ(c

′)sb+c′

Ω4(a, b)Ω7(a′, c′, e′),

where Ω4(a, b) and Ω7(a, c, e) are given in (1.4) and (1.7), respectively.

Theorem 2.17. For Re(s) > 0, Re(c) > 0, Re(c′) > 0, Re(2c−a−b) > −1 and Re(2c′−a′−b′) > −1, the followingresult holds true:

∞∫0

e−st t∫

0

τc−1 (t − τ)c′−1

2F2[ a, b

12 (a + b + 1), 2c

τs]

× 2F2[ a′, b′

12 (a

′ + b′ + 1), 2c′(t − τ)s

]dτ

dt

= Γ(c) Γ(c′)

sc+c′ Ω5(a, b, c)Ω5(a′, b′, c′),

where Ω5(a, b, c) is given in (1.5).

Theorem 2.18. For Re(s) > 0, Re(c) > 0, Re(c′) > 0, Re(2c−a−b) > −1 and Re(a′−2b′−c′) > −2, the followingresult holds true:

∞∫0

e−st t∫

0

τc−1(t − τ)c′−1

2F2[ a, b

12 (a + b + 1), 2c

τs]

× 2F2[ a′, b′

1 + a′ − b′, 1 + a′ − c

(t − τ)s

]dτ

dt

= Γ(c) Γ(c′)

sc+c′ Ω5(a, b, c)Ω6(a′, b′, c′),

where Ω5(a, b, c) and Ω6(a, b, c) are given in (1.5) and (1.6), respectively.

UnauthenticatedDownload Date | 11/10/18 10:01 AM

Page 8: GradimirV.Milovanović*,RakeshK.Parmar,andArjunK.Rathie …gvm/radovi/GVM-RKP-AKR-Final.pdf · 2018. 11. 10. · 268 ¸ GradimirV.Milovanović,RakeshK.Parmar,andArjunK.Rathie Theorem

Laplace transforms of convolution type integrals | 271

Theorem 2.19. For Re(s) > 0, Re(c) > 0, Re(c′) > 0 and Re(2c′ − a′ − b′) > −1, the following result holds true:

∞∫0

e−st t∫

0

τc−1 (t − τ)c′−1

2F2[ a, b

12 (a + b + 1), 2c

τs]

× 2F2[ a′, 1 − a′

e′, 1 + 2c′ − e′(t − τ)s

]dτ

dt

= Γ(c) Γ(c′)

sc+c′ Ω5(a, b, c)Ω7(a′, c′, e′),

where Ω5(a, b, c) and Ω7(a, c, e) are given in (1.5) and (1.7), respectively.

Theorem 2.20. For Re(s) > 0, Re(c) > 0, Re(c′) > 0, Re(a − 2b − 2c) > −2 and Re(a′ − 2b′ − c′) > −2, thefollowing result holds true:

∞∫0

e−st t∫

0

τc−1(t − τ)c′−1

2F2[ a, b1 + a − b, 1 + a − c

τs]

× 2F2[ a′, b′

1 + a′ − b′, 1 + a′ − c

(t − τ)s

]dτ

dt

= Γ(c) Γ(c′)

sc+c′ Ω6(a, b, c)Ω6(a′, b′, c′).

where Ω6(a, b, c) is given in (1.6).

Theorem 2.21. For Re(s) > 0, Re(c) > 0, Re(c′) > 0 and Re(a − 2b − 2c) > −2, the following result holds true:

∞∫0

e−st t∫

0

τc−1(t − τ)c′−1

2F2[ a, b1 + a − b, 1 + a − c

τs]

× 2F2[ a′, 1 − a′

e′, 1 + 2c′ − e′(t − τ)s

]dτ

dt

= Γ(c) Γ(c′)

sc+c′ Ω6(a, b, c)Ω7(a′, c′, e′),

where Ω6(a, b, c) and Ω7(a, c, e) are given in (1.6) and (1.7), respectively.

Theorem 2.22. For Re(s) > 0, Re(c) > 0 and Re(c′) > 0, the following result holds true:

∞∫0

e−st t∫

0

τc−1(t − τ)c′−1

2F2[ a, 1 − ae, 1 + 2c − e

τs]

× 2F2[ a′, 1 − a′

e′, 1 + 2c′ − e′(t − τ)s

]dτ

dt

= Γ(c) Γ(c′)

sc+c′ Ω7(a, c, e)Ω7(a′, c′, e′),

where Ω7(a, c, e) is given in (1.7).

UnauthenticatedDownload Date | 11/10/18 10:01 AM

Page 9: GradimirV.Milovanović*,RakeshK.Parmar,andArjunK.Rathie …gvm/radovi/GVM-RKP-AKR-Final.pdf · 2018. 11. 10. · 268 ¸ GradimirV.Milovanović,RakeshK.Parmar,andArjunK.Rathie Theorem

272 | Gradimir V. Milovanović, Rakesh K. Parmar, and Arjun K. Rathie

Theorem 2.23. For Re(s) > 0, Re(b) > 0, Re(c′) > 0 and Re(c − a − b) > 0, the following result holds true:

∞∫0

e−st t∫

0

τb−1 (t − τ)c′−1

1F1[ ac

τs]

× 3F3[ a′, 1 + 1

2a′, b′

12a

′, a′ − b′ + 1, a′ − c′ + 1

− (t − τ)s

]dτ

dt

= Γ(b) Γ(c′)

sb+c′Ω1(a, b, c) Ω8(a′, b′, c′),

where Ω1(a, b, c) and Ω8(a, b, c) are given in (1.2) and (1.8), respectively.

Theorem 2.24. For Re(s) > 0, Re(b) > 0, Re(c′) > 0, Re(c − a − b) > 0 and Re(a′ − c′ − d′ − e′ + 1) > 0, thefollowing result holds true:

∞∫0

e−st t∫

0

τb−1 (t − τ)c′−1

1F1[ ac

τs]

× 4F4[ a′, 1 + 1

2a′, d′, e′

12a

′, a′ − c′ + 1, a′ − d′ + 1, a′ − e′ + 1

(t − τ)s

]dτ

dt

= Γ(b) Γ(c′)

sb+c′Ω1(a, b, c) Ω9(a′, c′, d′, e′),

where Ω1(a, b, c) and Ω9(a, c, d, e) are given in (1.2) and (1.9), respectively.

Theorem 2.25. For Re(s) > 0, Re(b) > 0 and Re(c′) > 0, the following result holds true:

∞∫0

e−st t∫

0

τb−1 (t − τ)c′−1

1F1[ a

12 (a + b + 1)

12 τs

]

× 3F3[ a′, 1 + 1

2a′, b′

12a

′, a′ − b′ + 1, a′ − c′ + 1

− (t − τ)s

]dτ

dt

= Γ(b) Γ(c′)

sb+c′Ω2(a, b) Ω8(a′, b′, c′),

where Ω2(a, b) and Ω8(a, b, c) are given in (1.1) and (1.8), respectively.

Theorem 2.26. For Re(s) > 0, Re(b) > 0, Re(c′) > 0 and Re(a′ − c′ − d′ − e′ + 1) > 0, the following result holdstrue:

∞∫0

e−st t∫

0

τb−1 (t − τ)c′−1

1F1[ a

12 (a + b + 1)

12 τs

]

× 4F4[ a′, 1 + 1

2a′, d′, e′

12a

′, a′ − c′ + 1, a′ − d′ + 1, a′ − e′ + 1

(t − τ)s

]dτ

dt

= Γ(b) Γ(c′)

sb+c′Ω2(a, b) Ω9(a′, c′, d′, e′),

where Ω2(a, b) and Ω9(a, c, d, e) are given in (1.1) and (1.9), respectively.

UnauthenticatedDownload Date | 11/10/18 10:01 AM

Page 10: GradimirV.Milovanović*,RakeshK.Parmar,andArjunK.Rathie …gvm/radovi/GVM-RKP-AKR-Final.pdf · 2018. 11. 10. · 268 ¸ GradimirV.Milovanović,RakeshK.Parmar,andArjunK.Rathie Theorem

Laplace transforms of convolution type integrals | 273

Theorem 2.27. For Re(s) > 0, Re(c′) > 0 and Re(1 − a) > 0, the following result holds true:

∞∫0

e−st t∫

0

τ−a (t − τ)c′−1

1F1[ ab

12 τs

]

× 3F3[ a′, 1 + 1

2a′, b′

12a

′, a′ − b′ + 1, a′ − c′ + 1

− (t − τ)s

]dτ

dt

= Γ(1 − a)Γ(c′)

s1−a+c′ Ω3(a, b) Ω8(a′, b′, c′),

where Ω3(a, b) and Ω8(a, b, c) are given in (1.3) and (1.8), respectively.

Theorem 2.28. For Re(s) > 0, Re(c′) > 0, Re(1 − a) > 0 and Re(a′ − c′ − d′ − e′ + 1) > 0, the following resultholds true:

∞∫0

e−st t∫

0

τ−a (t − τ)c′−1

1F1[ ab

12 τs

]

× 4F4[ a′, 1 + 1

2a′, d′, e′

12a

′, a′ − c′ + 1, a′ − d′ + 1, a′ − e′ + 1

(t − τ)s

]dτ

dt

= Γ(1 − a)Γ(c′)

s1−a+c′ Ω3(a, b) Ω9(a′, c′, d′, e′),

where Ω3(a, b) and Ω9(a, c, d, e) are given in (1.3) and (1.9), respectively.

Theorem 2.29. For Re(s) > 0, Re(b) > 0 and Re(c′) > 0, the following result holds true:

∞∫0

e−st t∫

0

τb−1 (t − τ)c′−1

1F1[ a1 + a − b

− τs

]

× 3F3[ a′, 1 + 1

2a′, b′

12a

′, a′ − b′ + 1, a′ − c′ + 1

− (t − τ)s

]dτ

dt

= Γ(b) Γ(c′)

sb+c′Ω4(a, b) Ω8(a′, b′, c′),

where Ω4(a, b) and Ω8(a, b, c) are given in (1.4) and (1.8), respectively.

Theorem 2.30. For Re(s) > 0, Re(b) > 0, Re(c′) > 0 and Re(a′ − c′ − d′ − e′ + 1) > 0, the following result holdstrue:

∞∫0

e−st t∫

0

τb−1 (t − τ)c′−1

1F1[ a1 + a − b

− τs

]

× 4F4[ a′, 1 + 1

2a′, d′, e′

12a

′, a′ − c′ + 1, a′ − d′ + 1, a′ − e′ + 1

(t − τ)s

]dτ

dt

= Γ(b) Γ(c′)

sb+c′Ω4(a, b) Ω9(a′, c′, d′, e′),

where Ω4(a, b) and Ω9(a, c, d, e) are given in (1.4) and (1.9), respectively.

UnauthenticatedDownload Date | 11/10/18 10:01 AM

Page 11: GradimirV.Milovanović*,RakeshK.Parmar,andArjunK.Rathie …gvm/radovi/GVM-RKP-AKR-Final.pdf · 2018. 11. 10. · 268 ¸ GradimirV.Milovanović,RakeshK.Parmar,andArjunK.Rathie Theorem

274 | Gradimir V. Milovanović, Rakesh K. Parmar, and Arjun K. Rathie

Theorem 2.31. For Re(s) > 0, Re(c) > 0, Re(c′) > 0 and Re(2c − a − b) > −1, the following result holds true:

∞∫0

e−st t∫

0

τc−1 (t − τ)c′−1

2F2[ a, b

12 (a + b + 1), 2c

τs]

× 3F3[ a′, 1 + 1

2a′, b′

12a

′, a′ − b′ + 1, a′ − c′ + 1

− (t − τ)s

]dτ

dt

= Γ(c) Γ(c′)

sc+c′ Ω5(a, b, c) Ω5(a′, b′, c′),

where Ω5(a, b, c) and Ω8(a, b, c) are given in (1.5) and (1.8), respectively.

Theorem 2.32. For Re(s) > 0, Re(c) > 0, Re(c′) > 0, Re(2c − a − b) > −1 and and Re(a′ − c′ − d′ − e′ + 1) > 0,the following result holds true:

∞∫0

e−st t∫

0

τc−1 (t − τ)c′−1

2F2[ a, b

12 (a + b + 1), 2c

τs]

× 4F4[ a′, 1 + 1

2a′, d′, e′

12a

′, a′ − c′ + 1, a′ − d′ + 1, a′ − e′ + 1

(t − τ)s

]dτ

dt

= Γ(c) Γ(c′)

sc+c′ Ω5(a, b, c) Ω9(a′, c′, d′, e′),

where Ω5(a, b, c) and Ω9(a, c, d, e) are given in (1.5) and (1.9), respectively.

Theorem 2.33. For Re(s) > 0, Re(c) > 0, Re(c′) > 0 and Re(a − 2b − 2c) > −2, the following result holds true:

∞∫0

e−st t∫

0

τc−1 (t − τ)c′−1

2F2[ a, b1 + a − b, 1 + a − c

τs]

× 3F3[ a′, 1 + 1

2a′, b′

12a

′, a′ − b′ + 1, a′ − c′ + 1

− (t − τ)s

]dτ

dt

= Γ(c) Γ(c′)

sc+c′ Ω6(a, b, c) Ω8(a′, b′, c′),

where Ω6(a, b, c) and Ω8(a, b, c) are given in (1.6) and (1.8), respectively.

Theorem 2.34. For Re(s) > 0, Re(c) > 0, Re(c′) > 0, Re(a − 2b − 2c) > −2 and Re(a′ − c′ − d′ − e′ + 1) > 0, thefollowing result holds true:

∞∫0

e−st t∫

0

τc−1 (t − τ)c′−1

2F2[ a, b1 + a − b, 1 + a − c

τs]

× 4F4[ a′, 1 + 1

2a′, d′, e′

12a

′, a′ − c′ + 1, a′ − d′ + 1, a′ − e′ + 1

(t − τ)s

]dτ

dt

= Γ(c) Γ(c′)

sc+c′ Ω6(a, b, c) Ω9(a′, c′, d′, e′),

where Ω6(a, b, c) and Ω9(a, c, d, e) are given in (1.6) and (1.9), respectively.

UnauthenticatedDownload Date | 11/10/18 10:01 AM

Page 12: GradimirV.Milovanović*,RakeshK.Parmar,andArjunK.Rathie …gvm/radovi/GVM-RKP-AKR-Final.pdf · 2018. 11. 10. · 268 ¸ GradimirV.Milovanović,RakeshK.Parmar,andArjunK.Rathie Theorem

Laplace transforms of convolution type integrals | 275

Theorem 2.35. For Re(s) > 0, Re(c) > 0 and Re(c′) > 0, the following result holds true:

∞∫0

e−st t∫

0

τc−1 (t − τ)c′−1

2F2[ a, 1 − ae, 1 + 2c − e

τs]

× 3F3[ a′, 1 + 1

2a′, b′

12a

′, a′ − b′ + 1, a′ − c′ + 1

− (t − τ)s

]dτ

dt

= Γ(c) Γ(c′)

sc+c′ Ω7(a, c, e) Ω8(a′, b′, c′),

where Ω7(a, c, e) and Ω8(a, b, c) are given in (1.7) and (1.8), respectively.

Theorem 2.36. For Re(s) > 0, Re(c) > 0, Re(c′) > 0 and Re(a′ − c′ − d′ − e′ + 1) > 0, the following result holdstrue:

∞∫0

e−st t∫

0

τc−1 (t − τ)c′−1

2F2[ a, 1 − ae, 1 + 2c − e

τs]

× 4F4[ a′, 1 + 1

2a′, d′, e′

12a

′, a′ − c′ + 1, a′ − d′ + 1, a′ − e′ + 1

(t − τ)s

]dτ

dt

= Γ(c) Γ(c′)

sc+c′ Ω7(a, c, e) Ω9(a′, c′, d′, e′),

where Ω7(a, c, e) and Ω9(a, c, d, e) are given in (1.7) and (1.9), respectively.

Theorem 2.37. For Re(s) > 0, Re(c) > 0 and Re(c′) > 0, the following result holds true:

∞∫0

e−st t∫

0

τc−1 (t − τ)c′−1

3F3[ a, 1 + 1

2a, b12a, a − b + 1, a − c + 1

− τs

]

× 3F3[ a′, 1 + 1

2a′, b′

12a

′, a′ − b′ + 1, a′ − c′ + 1

− (t − τ)s

]dτ

dt

= Γ(c) Γ(c′)

sc+c′ Ω7(a, c, e) Ω7(a′, c′, e′),

where Ω7(a, c, e) is given in (1.7).

Theorem 2.38. For Re(s) > 0, Re(c) > 0, Re(c′) > 0 and Re(a′ − c′ − d′ − e′ + 1) > 0, the following result holdstrue:

∞∫0

e−st t∫

0

τc−1 (t − τ)c′−1

3F3[ a, 1 + 1

2a, b12a, a − b + 1, a − c + 1

− τs

]

× 4F4[ a′, 1 + 1

2a′, d′, e′

12a

′, a′ − c′ + 1, a′ − d′ + 1, a′ − e′ + 1

(t − τ)s

]dτ

dt

= Γ(c) Γ(c′)

sc+c′ Ω8(a, b, c) Ω9(a′, c′, d′, e′),

where Ω8(a, b, c) and Ω9(a, c, d, e) are given in (1.8) and (1.9), respectively.

UnauthenticatedDownload Date | 11/10/18 10:01 AM

Page 13: GradimirV.Milovanović*,RakeshK.Parmar,andArjunK.Rathie …gvm/radovi/GVM-RKP-AKR-Final.pdf · 2018. 11. 10. · 268 ¸ GradimirV.Milovanović,RakeshK.Parmar,andArjunK.Rathie Theorem

276 | Gradimir V. Milovanović, Rakesh K. Parmar, and Arjun K. Rathie

Theorem 2.39. For Re(s) > 0, Re(c) > 0, Re(c′) > 0, Re(a − c − d − e + 1) > 0 and Re(a′ − c′ − d′ − e′ + 1) > 0,the following result holds true:

∞∫0

e−st t∫

0

τc−1 (t − τ)c′−1

4F4[ a, 1 + 1

2a, d, e12a, a − c + 1, a − d + 1, a − e + 1

τs]

× 4F4[ a′, 1 + 1

2a′, d′, e′

12a

′, a′ − c′ + 1, a′ − d′ + 1, a′ − e′ + 1

(t − τ)s

]dτ

dt

= Γ(c) Γ(c′)

sc+c′ Ω9(a, c, d, e) Ω9(a′, c′, d′, e′),

where Ω9(a, c, d, e) is given in (1.9).

Acknowledgments. Thanks are due to the learned referees for drawing our attention to include two moreclassical summation theorems (1.8) and (1.9).The first author was supported in part by the Serbian Academy of Sciences and Arts (No. Φ-96).

References[1] Slater L. J., Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, 1966[2] Milovanović G. V., Parmar R. K., Rathie A. K., A study of generalized summation theorems for the series 2F1 with an applica-

tions to Laplace transforms of convolution type integrals involving Kummer’s functions 1F1, Appl. Anal. Discrete Math., 2018,12 (1), 257–272

[3] Slater L. J., Confluent Hypergeometric Functions, Cambridge University Press, New York, 1960

UnauthenticatedDownload Date | 11/10/18 10:01 AM