random vibrations in spacecraft structures design · in this book the random mechanical and...

30
Random Vibrations in Spacecraft Structures Design

Upload: buikiet

Post on 30-Jul-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Random Vibrations in Spacecraft Structures Design · In this book the random mechanical and acoustical vibrations of determin- istic and statistical dynamic systems, in the low and

Random Vibrations in Spacecraft Structures Design

Page 2: Random Vibrations in Spacecraft Structures Design · In this book the random mechanical and acoustical vibrations of determin- istic and statistical dynamic systems, in the low and

SOLID MECHANICS AND ITS APPLICATIONSVolume 165

Series Editor: G.M.L. GLADWELLDepartment of Civil EngineeringUniversity of WaterlooWaterloo, Ontario, Canada N2L 3GI

Aims and Scope of the Series

The fundamental questions arising in mechanics are: Why?, How?, and How much?The aim of this series is to provide lucid accounts written by authoritative researchersgiving vision and insight in answering these questions on the subject of mechanics as itrelates to solids.

The scope of the series covers the entire spectrum of solid mechanics. Thus it includesthe foundation of mechanics; variational formulations; computational mechanics; statics,kinematics and dynamics of rigid and elastic bodies: vibrations of solids and structures;dynamical systems and chaos; the theories of elasticity, plasticity and viscoelasticity;composite materials; rods, beams, shells and membranes; structural control and stability;soils, rocks and geomechanics; fracture; tribology; experimental mechanics; biomechan-ics and machine design.

The median level of presentation is the first year graduate student. Some texts are mono-graphs defining the current state of the field; others are accessible to final year under-graduates; but essentially the emphasis is on readability and clarity.

For other titles published in this series, go towww.springer.com/series/6557

Page 3: Random Vibrations in Spacecraft Structures Design · In this book the random mechanical and acoustical vibrations of determin- istic and statistical dynamic systems, in the low and

Jaap Wijker

Random Vibrationsin Spacecraft StructuresDesign

Theory and Applications

Page 4: Random Vibrations in Spacecraft Structures Design · In this book the random mechanical and acoustical vibrations of determin- istic and statistical dynamic systems, in the low and

Jaap WijkerDutch Space BVMendelweg 302333 CS LeidenThe [email protected]

ISSN 0925-0042ISBN 978-90-481-2727-6 e-ISBN 978-90-481-2728-3DOI 10.1007/978-90-481-2728-3Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2009926170

c©Springer Science+Business Media B.V. 2009No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or byany means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without writtenpermission from the Publisher, with the exception of any material supplied specifically for the purpose ofbeing entered and executed on a computer system, for exclusive use by the purchaser of the work.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Page 5: Random Vibrations in Spacecraft Structures Design · In this book the random mechanical and acoustical vibrations of determin- istic and statistical dynamic systems, in the low and

To my children Leonie and Maarten

and my grandchildren, Noortje, Diede, Neeltje, Job and Pepijn,who hopefully later will aspire to a job in engineering.

Page 6: Random Vibrations in Spacecraft Structures Design · In this book the random mechanical and acoustical vibrations of determin- istic and statistical dynamic systems, in the low and

Preface

This book entitled “Random Vibration in Spacecraft Structures Design: The-ory and Applications” is based on the lecture notes “Spacecraft structures”and “Special topics about vibration in spacecraft structures”. The author islecturer to the graduate students at the Delft University of Technology, fac-ulty of Aerospace Engineering, chair Aerospace Structures. Besides lecturing,the author is employed at Dutch Space BV in The Netherlands, where hegained practical experience applying random vibration analysis techniques inspacecraft design. Both the scientific environment at the University and thepractical approach in the course of spacecraft related projects in industryprovide a good foundation to compile this book.

This book on low and high frequency mechanical, acoustic random vibra-tions is of interest to graduate students and engineers working in aerospaceengineering, particularly in spacecraft and launch vehicle structures design.

I would like to express my admiration for the patient showed by my wifeWil during the preparation of this manuscript.

Velserbroek, 2009 Jaap Wijker

Page 7: Random Vibrations in Spacecraft Structures Design · In this book the random mechanical and acoustical vibrations of determin- istic and statistical dynamic systems, in the low and

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Random Mechanical Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.3 Random Acoustic Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.4 Statistical Energy Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.5 Fokker-Planck-Kolmogorov Equation . . . . . . . . . . . . . . . . . . . . . . . 6

Part I Random Mechanical Vibration

2 Linear Random Vibration Systems . . . . . . . . . . . . . . . . . . . . . . . . 92.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.2 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.3 Random Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Power Spectral Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202.3.2 Measurement of PSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302.3.3 Discrete Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . 312.3.4 Evaluation of the Autocorrelation Function . . . . . . . . . . . 322.3.5 Evaluation of the PSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322.3.6 Digital Simulation of a Random Process . . . . . . . . . . . . . . 35

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352.4 Deterministic Linear Dynamic Systems . . . . . . . . . . . . . . . . . . . . . 37

2.4.1 Force Loaded SDOF System . . . . . . . . . . . . . . . . . . . . . . . . 39Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4.2 SDOF with Enforced Acceleration . . . . . . . . . . . . . . . . . . . 462.4.3 Multi-Inputs and Single Output (MISO) . . . . . . . . . . . . . 522.4.4 Unit Load Random Vibration Responses . . . . . . . . . . . . . 53

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542.5 Deterministic MDOF Linear Dynamic Systems . . . . . . . . . . . . . . 56

Page 8: Random Vibrations in Spacecraft Structures Design · In this book the random mechanical and acoustical vibrations of determin- istic and statistical dynamic systems, in the low and

x Contents

2.5.1 Random Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562.5.2 MDOF System Loaded by Random Enforced

Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592.5.3 Random Forces and Stresses . . . . . . . . . . . . . . . . . . . . . . . . 62

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682.6 Complex Modal Analysis, Lyapunov’s Equation . . . . . . . . . . . . . 70

2.6.1 State-Space Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702.6.2 Enforced Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742.6.3 Derivation of Miles’ Equation . . . . . . . . . . . . . . . . . . . . . . . 822.6.4 Power Transfer Between Two Oscillators . . . . . . . . . . . . . 832.6.5 Augmented State-Space Equation under Non-White

Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 982.7 Limit Load Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

2.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1042.7.2 Equations of Motion 2 SDOF System . . . . . . . . . . . . . . . . 1052.7.3 Frequency Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . 1072.7.4 Random Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1082.7.5 Feedback Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1092.7.6 Limit Load Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

2.8 Force-Limit Prediction Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 1122.8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1122.8.2 Simple Coupled 2DOF System . . . . . . . . . . . . . . . . . . . . . . 1132.8.3 Complex Coupled Two-SDOF System . . . . . . . . . . . . . . . . 1202.8.4 Semi-Empirical Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1312.9 Analysis of Narrow-Band Processes . . . . . . . . . . . . . . . . . . . . . . . . 133

2.9.1 Crossings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1342.9.2 Peaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1382.9.3 Fatigue Damage due to Random Loads . . . . . . . . . . . . . . . 140

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1432.10 Wide-Band Fatigue Damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1492.11 Practical Aspects Enforced Acceleration . . . . . . . . . . . . . . . . . . . . 150Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1552.12 3-Sigma Strength Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

2.12.1 Strength Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1572.12.2 Estimation of Payload Random Vibration Load

Factors for Structure Design . . . . . . . . . . . . . . . . . . . . . . . . 1602.12.3 Random Vibration Input Reduction . . . . . . . . . . . . . . . . . 1672.12.4 Acceleration Response Curve . . . . . . . . . . . . . . . . . . . . . . . 1702.12.5 Random Response Spectrum . . . . . . . . . . . . . . . . . . . . . . . . 1712.12.6 Relating Random to Sinusoidal Vibration . . . . . . . . . . . . 1722.12.7 Method for Calculating rms Von Mises Stress . . . . . . . . . 175

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Page 9: Random Vibrations in Spacecraft Structures Design · In this book the random mechanical and acoustical vibrations of determin- istic and statistical dynamic systems, in the low and

Contents xi

2.12.8 Random Vibration Component Test Specification . . . . . . 1852.13 Random Responses Analysis in the Time Domain . . . . . . . . . . . . 185

2.13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1852.13.2 Simulation of the Random Time Series . . . . . . . . . . . . . . . 186

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Part II Acoustic Random Vibration

3 Low Frequency Acoustic Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2033.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2033.2 Acoustic Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2063.3 Response Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2173.4 Modal Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2203.5 Simplified Acoustic Response Analysis . . . . . . . . . . . . . . . . . . . . . 221

3.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2213.5.2 Acoustic Loads Transformed into Mechanical Random

Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2213.5.3 The Stress in an Acoustically Loaded Panel . . . . . . . . . . . 2253.5.4 Acoustic and Random Vibration Test Tailoring. . . . . . . . 226

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2323.6 Fluid Structure Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

3.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2333.6.2 Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2333.6.3 Pressure Structure Interaction . . . . . . . . . . . . . . . . . . . . . . 2403.6.4 Structural Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Part III Statistical Energy Analysis

4 Statistical Energy Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2514.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2514.2 Some Basics about Averaged Quantities . . . . . . . . . . . . . . . . . . . . 2514.3 Two Coupled Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2564.4 Multimode Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2644.5 SEA Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

4.5.1 Dissipation Loss Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2694.5.2 Coupling Loss Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2724.5.3 Modal Densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2834.5.4 Subsystem Energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2914.5.5 Source Power Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2944.5.6 Stresses and Strains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2954.5.7 Non-resonant Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

Page 10: Random Vibrations in Spacecraft Structures Design · In this book the random mechanical and acoustical vibrations of determin- istic and statistical dynamic systems, in the low and

xii Contents

4.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2994.6.1 Panel in an Acoustic Field . . . . . . . . . . . . . . . . . . . . . . . . . . 2994.6.2 Sandwich Panels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

4.7 Test-Based SEA Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3044.8 SEA Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

Part IV Fokker-Planck-Kolmogorov Method or Diffusion EquationMethod

5 Fokker-Planck-Kolmogorov Method or Diffusion EquationMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3235.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3235.2 Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3245.3 Markoff Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3255.4 Smoluchowki or Chapman-Kolmogorov Equation . . . . . . . . . . . . 3265.5 Derivation of the Fokker-Planck-Kolmogorov Equation . . . . . . . 327

5.5.1 Calculation of FPK Equation Coefficients . . . . . . . . . . . . 3355.5.2 Exact Stationary Response Solutions of Nonlinear

Dynamic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3385.5.3 Stationary Solution FPK Equation of Conservative

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3425.5.4 High-Order System (MDOF) . . . . . . . . . . . . . . . . . . . . . . . . 344

5.6 Ito-Stratonovich Dilemma in Stochastic Processes . . . . . . . . . . . 3465.7 Behavior of Linear Systems with Random Parametric

Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3575.7.1 Moments and Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . 359

5.8 Generation FPK Equation for MDOF Systems . . . . . . . . . . . . . . 362Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3655.9 Numerical Solution of the FPK Equation . . . . . . . . . . . . . . . . . . . 373

5.9.1 Solution of the FPK Equation by the Finite ElementMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

5.9.2 General Finite Element Approach . . . . . . . . . . . . . . . . . . . 373Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

5.9.3 Solution of the FPK Equation by the Finite DifferenceMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

5.9.4 Boundary Conditions Numerical Solution FPKEquation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3925.10 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

5.10.1 Vibrating Thin Plates Exposed to Acoustic Loads . . . . . 394

A Simulation of the Random Time Series . . . . . . . . . . . . . . . . . . . . 405Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

Page 11: Random Vibrations in Spacecraft Structures Design · In this book the random mechanical and acoustical vibrations of determin- istic and statistical dynamic systems, in the low and

Contents xiii

B Tables of Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409B.1 Approximations of Inverse Transform of the Standard

Normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411B.2 Integrals of Probability Density Functions . . . . . . . . . . . . . . . . . . 411

C Some Fourier Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

D Modal Effective Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

E Thevenin’s and Norton’s Theorems for Equivalent LinearMechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428

F Lyapunov’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

G Correlation Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

H Approximations for the Joint Acceptance and AcousticResponse Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439H.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446

I Simplification of Conductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

J Modal Density of Composite Sandwich Panels . . . . . . . . . . . . . 451J.1 Equation of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451J.2 Modal Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

K Wave Propagation and Group Velocity . . . . . . . . . . . . . . . . . . . . 459

L Finite Difference Approximations for Various Orders . . . . . . 467L.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467L.2 Second Order Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467L.3 Fourth Order Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468L.4 Sixth Order Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468L.5 Eighth Order Approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468

L.5.1 Tenth Order Approximation . . . . . . . . . . . . . . . . . . . . . . . . 468L.5.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

M The Galerkin Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

Page 12: Random Vibrations in Spacecraft Structures Design · In this book the random mechanical and acoustical vibrations of determin- istic and statistical dynamic systems, in the low and

xiv Contents

N Wiener Process, Stochastic Integrals, StochasticDifferential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481N.1 Wiener Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481N.2 Ito versus Stratonovich . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483N.3 Stochastic Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488N.4 Correlation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

O Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513

Page 13: Random Vibrations in Spacecraft Structures Design · In this book the random mechanical and acoustical vibrations of determin- istic and statistical dynamic systems, in the low and

1

Introduction

1.1 General

The various mechanical loads are not all equally important and depend onthe type of the mechanical structure: i.e. does it concern a primary structure,the spacecraft structure or other secondary structures (such as solar panels,antennas, instruments and electronic boxes). Requirements are specified tocover loads encountered by handling, testing, during the launch phase andoperations in transfer and final orbit, such as [167]:

• natural frequencies• steady-state (semi-static) acceleration• sine excitation• random excitation• acoustic noise• transient loads• shock loads• temperatures

Natural frequencies: The location of natural frequencies is a primary designrequirement for all parts of the spacecraft. This requirement is imposedin order to limit the dynamic coupling of the spacecraft with the launchvehicle

Semi-static and low frequency sinusoidal loads: The design of the primarystructure is determined to a large extent by the semi-static and low fre-quency sinusoidal loads (up to approximately 50 Hz)

Sinusoidal and random loads: To a large extent, the sinusoidal and randomloads determine the design of secondary structures (solar panels, antennas,electronic boxes).

Acoustic loads: Light structural parts with relatively large surface areas (suchas solar panels and spacecraft antennas) are more sensitive to acousticloads than sinusoidal and random base excitation.

J. Wijker, Random Vibrations in Spacecraft Structures Design,Solid Mechanics and Its Applications 165,c© Springer Science + Business Media B.V. 2009

Page 14: Random Vibrations in Spacecraft Structures Design · In this book the random mechanical and acoustical vibrations of determin- istic and statistical dynamic systems, in the low and

2 1 Introduction

Shock loads: Deployable structures experience high shock loads; for exampleduring latch-up of hinges in the required final position of these mecha-nisms. This is especially the case when the deployment speeds are toohigh.

Temperatures: Temperature variations usually cause high thermal stresses instructures. In general, the various coefficients of expansion are accountedfor in the choice of the structural materials. Thermal deformations aretaken into account when working with structures that must be alignedwith each other.

Random Loads: The design of instruments and electronic boxes is determinedby the random base excitation.

All these different types of load are described in detail in [224, 225].In this book the random mechanical and acoustical vibrations of determin-

istic and statistical dynamic systems, in the low and high frequency range,are considered, and the following topics will be discussed in great detail:

• Vibrations of deterministic linear mechanical dynamic systems exposed tomechanical random loads and or enforced motion (acceleration)

• Vibrations of deterministic linear mechanical dynamic systems exposed torandom acoustic loads (sound pressures)

• Random vibration of statistically defined mechanical systems and loadsusing Statistical Energy Analysis (SEA)

• Non-linear structures excited to random (white noise) mechanical loadsanalyzed by using the Fokker-Planck-Kolmogorov (FPK) equation

The theory of random vibration is strongly related to the design of space-craft structures and will be illustrated with simple and more difficult workedexamples; each section are ends with posed problems; usually answers areprovided.

Figure 1.1 shows a cross section of a typical spacecraft. This may be a com-munication, scientific or other spacecraft. For this spacecraft, the acoustic andthe mechanical random vibration environment outside and inside the space-craft structure will be discussed. The spacecraft structure is an assembly ofstructural elements: shells of revolution, panels, shear panels, struts, etc. Thespacecraft structure provides strength and stiffness properties to the space-craft in order to survive test and launch loads.

Among other systems on the outside of the spacecraft there are the antennareflector and both solar wings, constituting the spacecraft solar array. Boththe antenna reflector and the solar array are in folded or stowed configuration,because:

• the folded systems fit better under the fairing of the launch vehicle, and• the folded systems can carry the launch loads better.

The central structure of the spacecraft is called the primary structure of thestructure, and forms the backbone (load path) of the structure. In general,

Page 15: Random Vibrations in Spacecraft Structures Design · In this book the random mechanical and acoustical vibrations of determin- istic and statistical dynamic systems, in the low and

1.1 General 3

Fig. 1.1. Complete spacecraft

fuel tanks are needed for propulsion. The attitude control systems and arefixed to the central body. These tanks are relatively heavy.

Spacecraft quadrilateral sandwich platforms are supported by the centralbody and side panels used to mount payload and equipment boxes. In Fig. 1.1we see the top and lower platform. The antenna is mounted to the top plat-form. The payload and equipment is distributed so as to fulfill center of gravityrequirements posed by the launch vehicle authority.

The spacecraft side panels will close the structure box. Solar wings andpart of the equipment are mounted to the side panels.

For launch, the spacecraft is placed on the launch vehicle payload adapterstructure.

In the liftoff phase of the launch, the exhaust streams of the engines andsolid rocket boosters will produce sound waves propagating to the launchvehicle, and will impinge on the launch vehicle structure and fairing. Thesound pressures (acoustic load) will excite the launch vehicle structure, whichwill transfer the vibrations to the interface spacecraft launch vehicle. Theacoustic loads are random in nature, hence the derived mechanical vibrationsare random too. In the ECSS1 standard [56], general “Qualification” acousticloads are specified and given in Table 1.1.

The vibrating fairing transfers acoustic loads under the fairing. In general,these have a reverberant nature; they are denoted sound pressure level (SPL)and are given in decibels (dB) with a reference pressure pref = 2 × 10−5 Pa,

1 European Corporation of Space Standardization.

Page 16: Random Vibrations in Spacecraft Structures Design · In this book the random mechanical and acoustical vibrations of determin- istic and statistical dynamic systems, in the low and

4 1 Introduction

Table 1.1. Acoustic qualification test levels and duration [56]

Center Frequency (Hz) Sound Pressure Level (SPL) (dB)Octave band 0 dB = 2 × 10−5 Pa

31.5 13063 135.5125 139250 143500 1381000 1322000 1284000 1248000 120

OASPL 147Duration: 2 min

Fig. 1.2. Acoustic loads converted into random mechanical loads

which is ostensibly the audible limit of the human ear [133]. The sound pres-sure is relatively low with respect to the static atmospheric pressure of 105

Pa, 1 Bar, but large areal light weight structures are very sensitive to dynamicsound pressures.

The sound pressure will excite the outside equipment and the outsidespacecraft structure, especially the external panels. The random mechani-cal vibration of the external panels will (a) excite the fixed equipment (seeFig. 1.2) and (b) will generate acoustic loads in the inside cavities of the space-craft, which in turn will excite the internal load-carrying structures like thecentral structure and the lower platform. Summarizing, it can be said thatthe sound pressures will cause random mechanical vibrations in the space-craft structure, creating a rather heavy random vibration environment for thespacecraft payload, tanks, equipment, etc. Even the direct transfer of vibro-acoustic energy to an unit (experiment, instrument, box, . . . ) structure cannotbe neglected due to the large unit surfaces [196].

In the ECSS standard [56] “Qualification” mass dependent random en-forced accelerations are specified and given in Tables 1.2 and 1.3.

Page 17: Random Vibrations in Spacecraft Structures Design · In this book the random mechanical and acoustical vibrations of determin- istic and statistical dynamic systems, in the low and

1.3 Random Acoustic Vibration 5

Table 1.2. Random vibration test levels and duration for equipment with massM ≤ 50 kg [56]

Location Duration Frequency range (Hz) Levels (g2/Hz)

Equipment located onexternal panel or withunknown location

Vertical 20–100 3 dB/oct.

2.5 100–300 0.12M+20M+1

min/axis 300–2000 −5 dB/oct.Lateral 20–100 3 dB/oct.

2.5 100–300 0.15M+20M+1

min/axis 300–2000 −5 dB/oct.

Equipment not locatedon external panel

All axes 20–100 3 dB/oct.

2.5 100–300 0.05M+20M+1

min/axis 300–2000 −5 dB/oct.

Table 1.3. Random vibration test levels and duration for equipment with massM > 50 kg [56]

Frequency range (Hz) Levels (g2/Hz) Remark

20–100 3 dB/oct.100–300 0.09 11.12 Grms

300–2000 −3 dB/oct.

Duration: all axes 2.5 min/axis

1.2 Random Mechanical Vibration

In part I we discuss the aspects of random vibrations of deterministic me-chanical structures. Predictions made about the random vibrations levels arelimited to the low frequency domain because the vibration theory is basedon simple single degree of freedom (SDOF) systems. These forms the basisfor the modal displacement method (MDM), which is frequently used in thefinite element applications.

1.3 Random Acoustic Vibration

Large-area light-weight mechanical structures are very sensitive to randomacoustic loads. The same procedures as discussed in part I are applied, how-ever, now the applied loads are distributed over the surface of the mechanicalstructure. The distributed load application is discussed in part II. Plane waves,rain on the roof and reverberant (diffuse) sound fields are considered.

In the first part of the chapter 3 fluid structure interaction (FSI) is ignored.The exposed pressure field cause structural responses, but the influence of thevibrating structure on the pressure field is neglected. Later on, the full FSIis discussed in detail, e.g. radiation, which will introduce radiation damping.Both analytical and approximate methods will be discussed.

Page 18: Random Vibrations in Spacecraft Structures Design · In this book the random mechanical and acoustical vibrations of determin- istic and statistical dynamic systems, in the low and

6 1 Introduction

1.4 Statistical Energy Analysis

Complementary to low frequency mechanical vibrations, the statistical energyanalysis(SEA) method is discussed in part III. The basis of the SEA methodis the power flow between oscillators or groups of oscillators. The structuresand loads are described in a statistical manner that in contrast with thedeterministic description of structures using the finite element method. Thenumber of modes per frequency dictates the application of the SEA methodin the higher frequency bands. Both random mechanical and acoustical loadscan be considered within the framework of the SEA method.

1.5 Fokker-Planck-Kolmogorov Equation

Part IV is more or less based on Gaussian, white noise processes, leading to aMarkoff process in which each event is dependent only on the event before it.The Fokker-Planck-Kolmogorov (FPK) partial differential diffusion equationis derived from the Markoff process. The unknown in this FPK equation is thetransition probability density function, and after integration, the joint prob-ability function. Mean values and correlation functions (second moments),up-crossings and first passage statistics can be obtained from the FPK equa-tion.

The stochastic differential equations (SDE), either in Ito or Stratonovichsense (definition of integration) are closely linked to the FPK equation.

To solve nonlinear random vibrational problems we can use the FPK equa-tion; analytical and numerical methods are discussed.

Huge computer power is needed to solve the FPK equation numerically.In general, the applications of the FPK equation is restricted to nonlineardynamic systems with a few DOFs.

Page 19: Random Vibrations in Spacecraft Structures Design · In this book the random mechanical and acoustical vibrations of determin- istic and statistical dynamic systems, in the low and

Part I

Random Mechanical Vibration

Page 20: Random Vibrations in Spacecraft Structures Design · In this book the random mechanical and acoustical vibrations of determin- istic and statistical dynamic systems, in the low and

2

Linear Random Vibration Systems

2.1 Introduction

By random vibration of a linear dynamic system we mean the vibration ofa deterministic linear system exposed to random (stochastic) loads. Randomprocesses are characterized by the fact that their behavior cannot be pre-dicted in advance and therefore can be treated only in a statistical manner.An example of a micro-stochastic process is the “Brownian motion” of par-ticles and molecules [218]. A macro-stochastic process example is the motionof the earth during an earthquake. During the launch of a spacecraft, it willbe exposed to random loads of mechanical and acoustic nature. The randommechanical loads are the base acceleration excitation at the interface betweenthe launch vehicle and the spacecraft. The random loads are caused by sev-eral sources, e.g. the interaction between the launch-vehicle structure and theengines, exhaust noise, combustion. Turbulent boundary layers will introducerandom loads. In this chapter we review the theory of random vibrationsof linear systems. For further study on the theory of random vibration see[16, 115, 136, 154].

2.2 Probability

The cumulative probability function F (x), that x(t) ≤ X, is (c.d.f.) given by

F (X) =∫ X

− ∞f(x)dx (2.1)

where

• f(x) is the probability density function (p.d.f.) with the following properties• f(x) ≥ 0•

∫ ∞− ∞ f(x)dx = 1

J. Wijker, Random Vibrations in Spacecraft Structures Design,Solid Mechanics and Its Applications 165,c© Springer Science + Business Media B.V. 2009

Page 21: Random Vibrations in Spacecraft Structures Design · In this book the random mechanical and acoustical vibrations of determin- istic and statistical dynamic systems, in the low and

10 2 Linear Random Vibration Systems

• F (X + dx) − F (X) =∫X+dx

Xf(x)dx = f(X)dx,X ≤ x(t) ≤ X + dx

The cumulative probability function has the following properties:

• F (−∞) = 0• F (∞) = 1• 0 ≤ F (x) ≤ 1• f(x) = dF (x)

dx

Examples of probability density functions are:

• The constant distribution U(a, b); X is called equally distributed over theinterval [a, b], X ∼ G(a, b), f(x) = 1

b−a , a ≤ x ≤ b, f(x) = 0 elsewhere.• The normally distribution1 N(μ, σ), σ > 0. X is normally distributed with

the parameters μ and σ, X ∼ N(μ, σ) when f(x) = 1σ

√2π

e(x−μ)2

2σ2 .• The log normal distribution LN (μ, σ), σ > 0. X is log normal distrib-

uted with the parameters μ and σ, X ∼ LN (μ, σ), x > 0, when f(x) =1

σ√

2πe

(ln(x)−μ)2

2σ2 .• The Rayleigh distribution R(σ), σ > 0. X is Rayleigh distributed with the

parameter σ, X ∼ R(σ), x > 0, when f(x) = ( 2xσ2 )e

−x2

σ2 .

For an ergodic random process, the term f(x)dx may be approximated by

f(x)dx ≈ limT →∞

1T

∑i

δti, (2.2)

where the δti are the lingering periods of x(t) between α ≤ x ≤ β. This isillustrated in Fig. 2.1.

The mode is defined as the peak of the p.d.f. f(x), and the mean value μhas an equal moment to the left and to the right of it

∫ ∞

− ∞(x − μ)f(x)dx = 0. (2.3)

This means that the average value (mean value, mathematical expecta-tion) of x can be calculated from

E(x) = μ =

∫ ∞− ∞ xf(x)dx∫ ∞

− ∞ f(x)dx=∫ ∞

− ∞xf(x)dx. (2.4)

The definition of the n-th moment about the mean value is as follows

μn =∫ ∞

− ∞(x − μ)nf(x)dx. (2.5)

1 The normal distribution was discussed in 1733 by De Moivre. It was afterwardstreated by Gauss and Laplace, and is often referred to as the Gauss or Gauss-Laplacedistribution [41].

Page 22: Random Vibrations in Spacecraft Structures Design · In this book the random mechanical and acoustical vibrations of determin- istic and statistical dynamic systems, in the low and

2.2 Probability 11

Fig. 2.1. Transient signal

The second moment is called the variance of a signal x(t)

σ2 = μ2 =∫ ∞

− ∞(x − μ)2f(x)dx, (2.6)

and σ is called the standard deviation.

Example. Suppose a sinusoidal signal x(t) = A sinωt. Over one period T thesignal x(t) will cross a certain level twice when X ≤ x(t) ≤ X + dx, with atotal time 2δt. The p.d.f. can be estimated from f(x)dx = 2δt

T = ωδtπ and with

δx = ωA cosωtδt the p.d.f. becomes f(x) = 1πA cos ωt = 1

πA√

1−(x(t)

A )2, x < A.

The mean value is in accordance with (2.4)

E(x) = μ =∫ ∞

− ∞xf(x)dx = 0,

and the variance σ2 is in accordance with 2.6

σ2 = μ2 =∫ ∞

− ∞(x − μ)2f(x)dx =

A2

2.

In general, within the framework of linear vibrations we may assume thatthe averaged (mean) value μ, of the response of a linear systems exposedto dynamic loads will be zero. So the second moment about the mean, thevariance σ2, is equal to the mean square value E(x2) = σ2 =

∫ ∞− ∞ x2f(x)dx.

Example. A random process x is randomly distributed between 0 ≤ x ≤ 1with a p.d.f.

f(x) =

{1 0 ≤ x ≤ 1,0 x < 0, x > 1.

Page 23: Random Vibrations in Spacecraft Structures Design · In this book the random mechanical and acoustical vibrations of determin- istic and statistical dynamic systems, in the low and

12 2 Linear Random Vibration Systems

Calculate the mean value, the mean square value, the variance and thestandard deviation of x:

• The mean value E(x) = μ =∫ ∞

− ∞ xf(x)dx = 12

• The mean square value E(x2) =∫ ∞

− ∞ x2f(x)dx = 13

• The variance σ2 = E(x2) − μ2 =∫ ∞

− ∞(x − μ)2f(x)dx = 112

• The standard deviation σ =√

112 = 0.289

The definition of a cross probability function or second order probabilitydistribution function of two random processes x(t) and y(t) is given by

P (X,Y ) = Prob[x(t) ≤ X; y(t) ≤ Y ], (2.7)

or, in terms of the specific probability density function

P (X,Y ) =∫ X

− ∞

∫ Y

− ∞f(x, y)dxdy. (2.8)

Therefore, we can conclude that

Prob[X1 ≤ x(t) ≤ X2;Y1 ≤ y(t) ≤ Y2] =∫ X2

X1

∫ Y2

Y1

f(x, y)dxdy. (2.9)

The specific probability density function f(x, y) has the following proper-ties

• f(x, y) ≥ 0•

∫ ∞− ∞

∫ ∞− ∞ f(x, y)dxdy = 1.

The probability density function of the first order can be obtained fromthe specific probability density function of the second order because

Prob[X1 ≤ x(t) ≤ X2; −∞ ≤ y(t) ≤ ∞] =∫ X2

X1

[∫ ∞

− ∞f(x, y)dy

]dx

=∫ X2

X1

f(x)dx, (2.10)

wheref(x) =

∫ ∞

− ∞f(x, y)dy. (2.11)

In a similar manner it is found that

f(y) =∫ ∞

− ∞f(x, y)dx. (2.12)

The probability density functions f(x) and f(y) are also called marginal den-sity functions, [140].

Page 24: Random Vibrations in Spacecraft Structures Design · In this book the random mechanical and acoustical vibrations of determin- istic and statistical dynamic systems, in the low and

2.2 Probability 13

If random variables x(t) and y(t) are statistically independent, then f(x, y)satisfies

f(x, y) = f(x)f(y). (2.13)

The mean value or mathematical expectation of a continuous functiong(x, y) is given by

E{g(x, y)} =∫ ∞

− ∞

∫ ∞

− ∞g(x, y)f(x, y)dxdy. (2.14)

The mean values of x(t) and y(t) can be obtained as follows

E{x(t)} =∫ ∞

− ∞

∫ ∞

− ∞xf(x, y)dxdy =

∫ ∞

− ∞xf(x)dx, (2.15)

E{y(t)} =∫ ∞

− ∞

∫ ∞

− ∞yf(x, y)dxdy =

∫ ∞

− ∞yf(y)dy. (2.16)

The n-dimensional Gaussian probability density function with the randomvariables x1(t), x2(t), . . . , xn(t) is given by, [149],

f(x1, x2, . . . , xn) =1

σ1σ2 · · · σn

√(2π)nσ

e− 1

∑n

k,l=1{σkl

(xk −mk)(xl −ml)σkσl

},

(2.17)where

mi = E{xi}, i = 1, 2, . . . , n

represents the mean value, and

σ2i = E{(xi(t) − mi)2}, i = 1, 2, . . . , n

is the variance. In addition, the standard deviation σ is given by

σ =

∣∣∣∣∣∣∣∣∣

1 �12 · · · �1n

�21 1 · · · �2n

......

. . ....

�n1 �n2 · · · 1

∣∣∣∣∣∣∣∣∣,

where

�ij =E{(xi − mi)(xj − mj)}

σiσj, i, j = 1, 2, . . . , n,

is the correlation coefficient of the two random variables xi and xj .

Characteristic Function

The characteristic function of a random variable x is defined as the Fouriertransform of the probability density function [202]

Page 25: Random Vibrations in Spacecraft Structures Design · In this book the random mechanical and acoustical vibrations of determin- istic and statistical dynamic systems, in the low and

14 2 Linear Random Vibration Systems

Table 2.1. Characteristic functions

Distribution f(x) E(x) = μx σ2x Mx(θ)

U(a, b) 1b−a

a+b2

(b−a)2

121

jθ(b−a)(ejθb − ejθa)

N(μ, σ2) 1√2πσ

e− (x−μ)2

2σ2 μ σ ejμθ− σ2θ22

Mx(θ) = E{ejθx} =∫ ∞

− ∞ejθxf(x)dx. (2.18)

Expanding the exponential term ejθx in power series will yield

Mx(θ) = 1 +∞∑

n=1

(jθ)n

n!E{xn}. (2.19)

The moments of the random variable can be calculated from the characteristicfunction:

E{xn} =1jn

dnMx(θ)dθn

∣∣∣∣θ=0

. (2.20)

The nth cumulant function can also be derived from the characteristic func-tion

kn(x) =1jn

dn lnMx(θ)dθn

∣∣∣∣θ=0

. (2.21)

The first cumulant function is the same as the first moment, and the secondand third cumulant functions are identical with the second and third centralmoments mn

mn = kn(x) =∫ ∞

− ∞(x − μ)nf(x)dx,

where m1 = μ.Table 2.1 shows two examples of the characteristic function.

Example. For a zero mean Gaussian random variable x, μ = 0, the followingexpression can be derived E{x4} = 3(E{x2})2 = 3σ4. This can be provedusing (2.20)

E{x4} =1j4

d4Mx(θ)dθ4

∣∣∣∣θ=0,μ=0

= 3σ4.

A general recurrent expression for E{xn} is the subject of problem 2.5.The cumulant functions can be calculated using (2.21)

k1 = μ = 0, k2 = σ2, kn = 0, n > 2.

Problems

2.1. The simply supported beam AB shown in Fig. 2.2 is carrying a loadof 1000 N that may be placed anywhere along the span of the beam. This

Page 26: Random Vibrations in Spacecraft Structures Design · In this book the random mechanical and acoustical vibrations of determin- istic and statistical dynamic systems, in the low and

2.2 Probability 15

Fig. 2.2. Simply supported beam AB

problem is taken from [5]. The reaction force at support A, RA, can be anyvalue between 0 and 1000 N depending on the position of the load on thebeam. What is the probability density function of the reaction force RA?Calculate the probability that

• Prob(100 ≤ RA ≤ 200),• Prob(RA ≥ 600).

Answers: f(x) = 1/1000, 0 ≤ x ≤ 1000, 0.10, 0.40

2.2. A random variable X is uniformly distributed over the interval (a, b,a < b) and otherwise zero.

• Define the probability density function f(x) such that∫ ∞

− ∞ f(x)dx = 1.• Calculate E(X).• Calculate E(X2).• Calculate the variance Var(X).• Calculate the standard deviation σX , and• Calculate the distribution function F (x) = P (X ≤ x) =

∫ x

− ∞ f(x)dx,a < x < b.

Answers: f(x) = 1b−a , E(X) = a+b

2 , E(X2) = a2+b2+ab3 , Var(X) = (b−a)2

12 ,

σX = (b−a)√12

, and F (x) = x−ab−a .

2.3. A continuous random variable X is said to have gamma distribution ifthe probability density function of X is

f(x, α, β) =

{1

βαΓ (α)xα−1e− x

β , x ≥ 0;

0, otherwise,

where the parameters α and β satisfy α > 0, β > 0. Show that the mean andvariance of such a random variable X satisfy

E(X) = αβ, Var(X) = αβ2.

The gamma function is defined by

Γ (k) =∫ ∞

0

e−uuk−1du.

Page 27: Random Vibrations in Spacecraft Structures Design · In this book the random mechanical and acoustical vibrations of determin- istic and statistical dynamic systems, in the low and

16 2 Linear Random Vibration Systems

Show thatΓ (k) = (k − 1)!

for integer k.

2.4. Each front tire on a particular type of vehicle is supposed to be filled toa pressure of 2.5 Bar. Suppose the actual pressure in each tire is a randomvariable, X for the right tire and Y for the left tire, with joint p.d.f.

f(x, y) =

{K(x2 + y2), 2.0 ≤ x ≤ 3.0, 2.0 ≤ y ≤ 3.0;0, otherwise.

• What is the value of K?• What is the probability that both tires are underinflated?• What is the probability that the difference in air pressure between the two

tires is at most 0.2 Bar?• Are X and Y independent random variables?

2.5. This problem is taken from [112]. Let X be a Gaussian random variablewith a characteristic function

Mx(θ) = ejμθ− σ2θ22 .

Show thatE{Xn} = μE{Xn−1} + (n − 1)σ2E{Xn−2}.

2.6. The gamma probability density function is defined by

f(x) =λ(λx)k−1e−λx

Γ (k),

where λ and k are distribution parameters. The function Γ (k) is the gammafunction, which is given by

Γ (k) =∫ ∞

0

e−uuk−1du.

Show that the mean and the variance are as follows:

μx =k

λ,

σ2x =

k

λ2.

2.3 Random Process

A random process is random in time. The probability can be described withthe aid of probabilistic theory of random processes [146]. The mean and the

Page 28: Random Vibrations in Spacecraft Structures Design · In this book the random mechanical and acoustical vibrations of determin- istic and statistical dynamic systems, in the low and

2.3 Random Process 17

Fig. 2.3. Time history of a random process

mean square values are of great importance for random processes. We canmake a distinction between ensemble average and time average. In this sectionwe review the properties of random processes. The ensemble average E{} ofa collection of sampled records xj(ti), j = 1, 2, . . . , n at certain times ti isdefined as

E{x(ti} =1n

n∑j=1

xj(ti), i = 0, 1, 2, . . . . (2.22)

This is illustrated in Fig. 2.3.A random or stochastic process x(t) is said to be stationary in the strict2

sense if the set of finite dimensional joint probability distributions of theprocess is invariant under a linear translation t → t + a.

Fx(x1, t1) = Fx(x1, t1 + a),Fx(x1, t1;x2, t2) = Fx(x1, t1 + a;x2, t2 + a), (2.23)...

Fx(x1, t1;x2, t2; . . . ;xn, tn) = Fx(x1, t1 + a, x2; t2 + a; . . . ;xn, tn + a).

If (2.23) holds only for n = 1 and n = 2 the process is stationary in the weaksense or simply weakly stationary [203].

The time average (temporal mean) value of a record x(t), over a very longsampling time T , is given by,

〈x〉 = limT →∞

1T

∫ T

0

x(t)dt. (2.24)

An ergodic process is a stationary process in which ensemble and timeaverages are constant and equal to one another E{x} = 〈x〉.

In Table 2.2 a qualification of random processes is shown.2 Also mentioned strictly stationary process or strongly stationary process.

Page 29: Random Vibrations in Spacecraft Structures Design · In this book the random mechanical and acoustical vibrations of determin- istic and statistical dynamic systems, in the low and

18 2 Linear Random Vibration Systems

Table 2.2. Qualification of random process

Random process Stationary ErgodicStationary Non ergodicNon stationary Non ergodic

For our purposes we will assume that all random processes are stationaryand ergodic.

For a stationary and ergodic random process x(t) there are the followingrelations for the mean value:

μx = 〈x〉 = E(x) =∫ ∞

− ∞xf(x)dx = lim

T →∞

1T

∫ T

0

x(t)dt, (2.25)

and for the mean square value

〈x2〉 = E{x2} =∫ ∞

− ∞x2f(x)dx = lim

T →∞

1T

∫ T

0

x2(t)dt = σ2x + μ2

x. (2.26)

The variance of stationary random process x(t) is given by

σ2x = E{(x(t) − μx)2} = E{x2} − 2μxE{x} + μ2

x = E{x2} − μ2x. (2.27)

This explains (2.26).

σ2x = E{(x(t) − μx)2}

= limT →∞

14T 2

∫ T

−T

∫ T

−T

E{x(t1)x(t2)}dt1dt2 − μ2x

= limT →∞

14T 2

∫ T

−T

∫ T

−T

Rxx(t2 − t1)dt1dt2 − μ2x, (2.28)

where Rxx(t2−t1) is the auto correlation function, which will be discussed laterin the next section. The autocorrelation function describes the correlation ofthe random process x(t) at different points t1 and t2 in time.

To put this result in a simpler form, consider the change of variables ac-cording to τ1 = t2 + t1 and τ2 = t2 − t1. The Jacobian of this transformationis ∣∣∣∣ ∂(t1, t2)

∂(τ1, τ2)

∣∣∣∣ =12. (2.29)

In terms of the new variables (2.28) becomes,

σ2x = lim

T →∞

14T 2

∫ T

0

∫ T −τ2

0

12Rxx(τ2)dτ1dτ2 − μ2

x, (2.30)

where the domain of integration is a square shown in Fig. 2.4. It is seen thatthe integrand is an even function of τ2 and is not a function of τ1. Hence, the

Page 30: Random Vibrations in Spacecraft Structures Design · In this book the random mechanical and acoustical vibrations of determin- istic and statistical dynamic systems, in the low and

2.3 Random Process 19

Fig. 2.4. Domain of integration

value of the integral is four times the value of the integral over the shadedarea. Thus

σ2x = lim

T →∞

12T 2

∫ 2T

0

∫ 2T −τ2

0

Rxx(τ2)dτ1dτ2 − μ2x

= limT →∞

1T

∫ 2T

0

Rxx(τ2)(

1 − τ2

2T

)dτ2 − μ2

x

= limT →∞

1T

∫ 2T

0

(1 − τ2

2T

)[Rxx(τ2) − μ2

x]dτ2. (2.31)

The random variable x(t) is ergodic in the mean if and only if [188]

limT →∞

1T

∫ 2T

0

(1 − τ

2T

)[Rxx(τ) − μ2

x]dτ = 0. (2.32)

Example. A random signal x(t) with zero mean has the following correlationfunction

R(τ) = e−λ|τ |.

Show that this signal is ergodic in the mean using (2.32).

limT →∞

1T

∫ 2T

0

(1 − τ

2T

)[R(τ)]dτ

= limT →∞

1λT

(1 − 1 − e−λT

2λT

)= 0.

Normally, all vibration testing and analysis is carried out under the as-sumption that the random vibration is Gaussian. The primary reasons for thisassumption are twofold [143]: