rangkuman cbm
Embed Size (px)
TRANSCRIPT
-
7/31/2019 Rangkuman CBM
1/23
COAL BED METHANE (CBM)
CBM is a natural gas containing virtually 100% methane (CH4) produced from coal seam
reservoirs.
Form of natural gas extracted from coal beds
Gas is held on coal matrix by sorption
Why is CBM?
Provide a clean-burning fuel.
Increase substantially the natural gas reserve base.
Improve safety of coal mining.
Decrease methane vented to the atmosphere from coal mines that might affect global warming.
Provide a means to use an abundant coal resource that is often too deep to mine.Characteristics of Coal Suitable for CBM Production
1. High gas content: 15m3 - 30m3 per tonne is typical.
2. Good permeability: 30mD - 50mD is typical.
3. Shallow: Coal seams < 1,000m in depth.
The pressure at greater depths is often too high to allow gas flow even when the seam has
been completely dewatered. This is because the high pressure causes the cleat structure to
close, reducing permeability.
4. Coal rank: Most CBM projects produce gas from Bituminous coals, but it can be possible to
access gas in Anthracite.
Depositional System:
Narrow range sedimentary environment
Buried quickly, high water table & isolated for oxidation process
Lingkungan pembentuk batubara : Mires
o Marine Connected, termed paralic : lagoon
o Fresh water connected, termed limnic : lakes/abundant river channel
-
7/31/2019 Rangkuman CBM
2/23
Coalification -> Coal Rank
2 Stages:
Biochemical: micro-organisms initiate & aid the
chemical decomposition of vegetation into peatand brown coal
Physicochemical: initiated & maintained by
post-depositional subsidence & effects of rising
temperature & pressure
Coal Maturation=Coal Rank
Gradual Process characterized by stage
A measure of thermal maturity
6 ranks commonly recognized
Peat
Lignite
Sub-bituminous
Barrier
SandstoneOffshore Shale
LagoonalShale
Ocean
Offshore Shale
LagoonalShale
TidalInlet
-
7/31/2019 Rangkuman CBM
3/23
Bituminous
Semi-anthracite
Anthracite
-
7/31/2019 Rangkuman CBM
4/23
Coal Type
is the unique composition of a coal
the proportion of different organic macerals & inorganic minerals
Humic Coal
the most abundanttype
rooted vegetation deposited in-situ in mires & accumulated as peat
finely bedded at macroscopic scale
Sapropelic Coal
uncommon
sub aquatic deposition
floating vegetation (incl. algae) & re-deposited organic matter not formed in-situ
massive, black/brown, non-bedded
(at macroscopic scale)
Coal Type Analysis
Lithotype Description
macroscopic description of seam profile
profile reflects depositional history
aids correlation
lithotypes reflect micro-composition
Maceral Analysis
determine proportions of macerals (cf minerals)
reflected-light microscopy
implications for depositional environment
implications for utilisation
can be distinctive for seams
Coal type Lithotype Macroscopic characteristics
Humic
coal
Vitrain Bright, black, usually brittle, frequently
with cleats
Clarain (Duroclarain) Semi-bright, black, finely stratified
-
7/31/2019 Rangkuman CBM
5/23
(Clarodurain) Durain Dull, black or grey-black, hard, roughsurface
Fusain Silky lustre, black fibrous, soft friable
(charcoal)
Sapropeliccoal
Cannel coal Dull or slightly greasy lustre, blackhomogenous, unstratified, hard,
conchoidal fracture, black streak
Boghead coal Like cannel coal but brownish colourand brown streak
Coal Lithotype (Australian System)
Pengaruh dari tipe dan rank batubara untuk CBM:
volume gas yang dihasilkan
kapasitas batubara untuk mempertahankan gas
pembentukan cleat yang merupakan permeability pathways
physical properties dan response untuk prosedur rangsangan
Bri ht Coal: 80-100% bri ht laminae
Banded Bright Coal: 60-80% bright laminae
Banded Coal: 4060% bright laminae
Banded Dull Coal: 20-40% bright laminae
Dull Coal: 0-20% bright laminae
Fibrous Coal: very dull, earthy, very friable
-
7/31/2019 Rangkuman CBM
6/23
Methane in Coal
Coal is a sedimentary rock that had its origin as an accumulation of inorganic and
organic debris.
A readily combustible rock containing more than 50% by weight and more than 70% by
volume of carbonaceous material formed from compaction and induration of variously
altered plant remains similar to those in peaty depositsSchopf, 1956
A black rock that burns!
Coal acts as both source rock and reservoir rock for methane
Methane is generated by microbial (biogenic) or thermal (thermogenic) processes
Shortly after burial and throughout the diagenetic cycle (resulting from further burial) gas
is generated and is physically sorbed on coal surfaces in areas with coal micro porosity
Coal as source rock
Biogenic can form early or late
early at the beginning of coalification
late by bacterial action in the reservoir Dominant gas generallyThermogenic
volume of gas increases with coalification (coal maturity)
very large volumes of gas generated during coalification
-
7/31/2019 Rangkuman CBM
7/23
BIOGENIC (EARLY)
Insitu (swamp gas)
BIOGENIC (MATURE OR SECOND STAGE)
Maceral & hydrocarbon (kerogen) types
Thermal maturity/burial
Hydrologic drive (cleat/fracture system)
THERMOGENIC (CATAGENIC)
Thermal maturity/burial history
MIGRATED THERMOGENIC
Thermal maturity/burial history
Hydrology
MIXED THERMOGENIC AND BIOGENIC
Thermal maturity/burial history
Hydrology
Hunt, 1979
Gas Storage
Gas is retained in the coal due to hydrostatic andlithostatic pressure
Gas in coal seams is stored in three basic ways:
Chemical adsorbed to coal particles (macerals) and held
by molecular attraction
Within pore spaces, cleats and fractures of the coal
-
7/31/2019 Rangkuman CBM
8/23
Dissolved in water contained within the coal
Storage capacity
The amount of adsorbed gas depends on
Ash content
Rank of coal
Burial history
Chemical make up of the coal
Temperature
And gas lost over geologic time
Gas Saturation
Determined by laboratory adsorptiontest
Saturation is ratio of desorbed to adsorbed gas content
Gas Composition
Controls on coalbed gas compositon
Maceral content (kerogens)
Coal rank Reservoir dynamics
Migrated gas
Biogenic gas
Controls on gas accumulation and distribution:
Structure
Coal seam thickness and continuity
Igneous intrusions
Burial history and reservoir (P & T)
Coal composition and rank
Hydrogeology and biogenic gas
Hydrocarbon
Methane 70-98%
Ethane 1-10%
Propane trace-5%
Butanes trace-2%
Pentanes trace-1%
Hexanes trace-1/2%
Heptanes trace-1/2%
Non Hydrocarbon
Nitrogen trace-15%
Carbon Dioxide trace-5%
Hydrogen Sulfide trace-3%
Helium up to 5%, usually trace or none
-
7/31/2019 Rangkuman CBM
9/23
Effect of Igneous Intrusion
High gas contents in coal around sills
Little effect on gas quality
Still 95% CH4
Enhanced permeability & desorption
Characteristic micropores & slits
Sills may act as seals
Gas contents higher below sills
Sills important on regional scale for heat flow
Hydrogeology Impact:
Unsually high gas content
Unsually low gas content
-
7/31/2019 Rangkuman CBM
10/23
COALBED METHANE PRODUCIBILITY (From Scott, 1993)
Coal Permeability
Coal itself is a low permeability reservoir Almost all the permeability of a coal bed
is usually considered to be due to fractures,
which in coal are in the form ofcleats
The face cleats are continuous and provide
paths of higher permeability, while butt
cleats are non-continuous and end at face cleats.
Cleat develops in a coal from:
Dehydration during coalification
Devolatilization during coalification
Tectonic force
Compaction
Why is cleat important?
matrix of coal very porous but very low permeability
gas desorbs slowly from matrix but rapidly through
cleat network, i.e coal is essentially a fractured reservoir
all permeability derives from the cleat network
permeability the most common limiting factor to
economic CBM production
cleat development influenced by both coal rank & type
-
7/31/2019 Rangkuman CBM
11/23
Influences on Permeability:
all Perm derives from fracture system (cleat)
cleat system influenced by:
rank (+)
ash (-)
vitrinite content (brightness) (+)
mineralisation on cleat surface (-)
reservoir influence on perm
depth (-)
in-situ stress (-)
Cleat spacing:
Cleat spacing varies with rank
cleat density highest in med vol. Bituminous to semi-anthracite
Cleat spacing varies with coal type
cleat density highest in brighter lithotypes
at low rank, dull and banded dull coals might not be cleated
cleat often terminates at lithotype boundaries
generally, very low ash coal zones will be bright, with good cleat.
rarely, very low ash zones will be dry dull coals with poor/no cleat
Cleat
Cleat spacing
-
7/31/2019 Rangkuman CBM
12/23
Maceral:
Coals are composed of macerals (microscopic organic particles in the coal)
-
7/31/2019 Rangkuman CBM
13/23
CBM vs Conventional Gas Reservoir Characteristics
Characteristic CBM Conventional
Gas generationGas is generated and trapped
within the coal
Gas is generated in the source rock
and then migrates into the reservoir
Structure Uniformly-spaced cleats Randomly-spaced fractures
Gas storage
MechanismAdsorption Compression
Transport
Mechanism
Concentration gradient (FicksLaw) and Pressure Gradient
(Darcys law)
Pressure Gradient (Darcys law)
Permeability
Origin Butt cleat, face cleat, fractures Fractures, connectedness
Production
Performance
Gas rate increases with time then
declines. Initially the production
is mainly water.
GWR increases with time
Gas rate starts high then decline.
Little or no water initially.
GWR decrease with time
Gas contentprediction
Cores Wire-line logs
Mechanical
Properties
Young modules ~105
Pore compressibility~ 10-4Young modules ~10Pore compressibility~ 10-6
Advantages of CBM
vs Conventional
Disadvantages of CBM
vs Conventional
Often located in major markets
Increasing production initially
Long life
Onshore shallow wells
Potential for carbon sequestration
Potentially large footprint
Dewatering during gas production
Low pressure requires many wells
Higher well completion costs
-
7/31/2019 Rangkuman CBM
14/23
Thickness (h)
Coal shallower than 150m and deeper than 1200m is usually excluded from volumetric
calculations
Too low gas content at shallow depths and occluded permeability at deeper depths
SPEE/COGEH uses rules of thumb on requirements for clustering seams fordevelopment of:
> 0.3m in thickness
< 30.0 m vertical separation
Another major consideration is the maximum completed interval thickness
Ash and Moisture (%)
Essentially these are the equivalents to the net-to-gross ratio of the individual coal bedCoal formed of non-net ash yield (other lithologies) and moisture content
Analysis is performed in the laboratory and should have a relatively low range of measureduncertainty.
However,
Coals can vary significantly in ash yield vertically between seamsRelates to the grade and depositional environment of the coal
Moisture (irreducible water) contents are usually low(< 3-5 %)
SPEE/COGEH suggest a cut-off of 50% for ash yield to qualify the bed as a suitably useablecoal
-
7/31/2019 Rangkuman CBM
15/23
Gas Content
Errors arise when estimating the gas content of the coal during sampling, relating to:
Q1- lost gas (lost during the retrieval)
Q2- recovered gas (contained during the sampling)
Q3- residual gas (released by crushing the coal)
Large uncertainties can exist on estimation of Q1
Majority of uncertainty relates to:
Spatial distribution of the gas content
Can vary considerably both laterally and vertically
Requires detailed mapping and high density sampling
Units- either As-received or Dry Ash Free (daf)
Traditionally gas-content values are obtained by desorbing core samples in the laboratory and
then correcting these values for lost and residual gas.
Coal Density
Coal has a density ranging between approximately 1.1 - 2.5 g/cm3
Density used to convert gas content (scf/ton) to volume (scf/ft3)
Dependent on ash/moisture content and rank of coal
Rank is the degree of metamorphism of the coal
Highest Gas Contents found in Sub-Bituminous to Bituminous coals
Errors often occur relating to the density value not being used on the same basis as the gascontent value
i.e. both must be As-received or daf
Often a conservative density limit of 1.75 g/cm3 is applied
The average insitu coal density can be estimated from from a density log or from core
measurements
-
7/31/2019 Rangkuman CBM
16/23
Parameter Kualitas Batubara
Total Moisture
Proximate
Total Sulfur
Calorific Value
HGI
Ultimate Analysis
Ash Fusion Temperature
Ash Analysis
Total Moisture
Moisture dalam batubara : Inherent moisture -> EQM ; MHC
Extraneous moisture -> surface moisture
TM = EQM + SM
Tinggi Rendahnya Total Moisture akan
tergantung pada :
Peringkat Batubara
Size Distribusi
Kondisi Pada saat Sampling
Semakin tinggi peringkat suatu batubara -> semakin kecil porositas batubara tersebut
atau semakin padat batubara tersebut.-> Dengan demikian akan semakin kecil juga moisture
yang dapat diserap atau ditampung dalam pori batubara tersebut.
Hal ini menyebabkan semakin kecil kandungan moisturenya khususnya inherent moisturenya.
Semakin kecil ukuran partikel batubara -> semakin besar luas permukaanya. Hal ini
menyebabkan akan semakin tinggi surface moisturenya. Pada nilai inherentmoisture tetap,
maka TM-nya akan naik yang dikarenakan naiknya surface moisture.
Total Moisture dapat dipengaruhi oleh kondisi pada saat batubara tersebut di Sampling.
Yang termasuk dalam kondisi sampling adalah :
Kondisi batubara pada saat disampling
Size distribusi sample batubara yang diambil terlalu besar atau terlalu kecil.
Cuaca pada saat pengambilan sample
-
7/31/2019 Rangkuman CBM
17/23
Penentuan Total Moisture:
Penentuan Total Moisture biasanya dibagai menjadi dua tahap penentuan yaitu :
Penentuan Free Moistrue atau air dry loss
Penentuan Residual moisture
TM = FM + RM(1-FM/100)
Air Dried Moisture
Adalah moisture yang terkandung dalam batubara setelah batubara tersebut dikering udarakan
Moisture In the analysis samples
Inherent Moisture
Sifat-sifatnya:
Besar kecilnya nilai ADM dipengaruhi oleh peringkat batubara. Semakin tinggi peringkat
batubara, semakin rendah kandungan ADM nya.
Nilainya tergantung pada humuditas dan temperature ruangan dimana moisture tersebut
dianalisa.
Nilainya tergantung juga pada preparasi sample sebelum ADM dianalisa (Standar
preparasi)
TM = ADL + RM (1-ADL/100)
-
7/31/2019 Rangkuman CBM
18/23
Ash Content
Batubara sebenarnya tidak mengandung abu, melainkan mengandung mineral matter. Namun
sebagian mineral matter dianalisa dan dinyatakan sebagai kadar Abu atau Ash Content.
Mineral Matter atau ash dalam batubara terdiri dari inherent dan extarneous.
Inherent Ash ada dalam batubara sejak pada masa pembentukan batubara dan keberadaan
dalam batubara terikat secara kimia dalam struktur molekul batubara
Sedangkan Extraneous Ash, berasal dari dilusi atau sumber abu lainnya yang berasal dari luar
batubara.
Sifatnya;
Kadar abu dalam batubara tergantung pada banyaknya dan jenis mineral matter yang
dikandung oleh batubara baik yang berasal dari inherent atau dari extraneous.
Kadar abu relatif lebih stabil pada batubara yang sama. Oleh karena itu Ash sering
dijadikan parameter penentu dalam beberpa kalibrasi alat preparasi maupun alat sampling.
Semakin tinggi kadar abu pada jenis batubara yang sama, semakin rendah nilai kalorinya.
Kadar abu juga sering mempengaruhi nilai HGI batubara.
Kegunaan:
Kadar abu didalam penambangan batubara dapat dijadikan penentu apakah penambangan
tersebut bersih atau tidak, yaitu dengan membandingkan kadar abu dari data geology atau
planning, dengan kadar abu dari batubara produksi.
Kadar abu dalam komersial sering dijadikan sebagai garansi spesifikasi atau bahkan
sebagai rejection limit.
-
7/31/2019 Rangkuman CBM
19/23
Volatile Matter
Volatile matter/ zat terbang, adalah bagian organik batubara yang menguap ketika dipanaskan
pada temperature tertentu.
Volatile matter biasanya berasal dari gugus hidrokarbon dengan rantai alifatik atau rantai
lurus. Yang mudah putus dengan pemanasan tanpa udara menjadi hidrokarbon yang lebih
sederhana seperti methana atau ethane.
Sifat:
Kadar Volatile Matter dalam batubara ditentukan oleh peringkat batubara.
Semakin tinggi peringkat suatu batubara akan semakin rendah kadar volatile matternya.
Volatile matter memiliki korelasi dengan vitrinite reflectance, semakin rendah volatile
matter, semakin tinggi vitrinite reflectancenya
Kegunaan:
Volatile Matter digunakan sebagai parameter penentu dalam penentuan peringkat
batubara.
Volatile matter dalam batubara dapat dijadikan sebagai indikasi reaktifitas batubara pada
saat dibakar.
Semakin tinggi peringkat suatu batubara akan semakin rendah kadar volatile matternya.
.
-
7/31/2019 Rangkuman CBM
20/23
Sulfur
Organic sulfur, sulfat sulfur, pyritic sulfur
Sifat:
Kandungan sulfur dalam batubara sangat bervariasi dan pada umumnya bersifat
heterogen sekalipun dalam satu seam batubara yang sama. Baik heterogen secara vertikal
maupun secara lateral.
Namun demikian ditemukan juga beberapa seam yang sama memiliki kandungan sulfur
yang relatif homogen.
Kegunaan:
Sulfur dalam batubara thermal maupun metalurgi tidak diinginkan, karena Sulfur dapat
mempengaruhi sifat-sifat pembakaran yang dapat menyebabkan slagging maupun
mempengaruhi kualitas product dari besi baja. Selain itu dapat berpengaruh terhadap
lingkungan karena emisi sulfur dapat menyebabkan hujan asam. Oleh karena itu dalam
komersial, Sulfur dijadikan batasan garansi kualitas, bahkan dijadikan sebagai rejection
limit.
Namun demikian dalam beberapa utilisasi batubara, Sulfur tidak menyebabkan masalah
bahkan sulfur membantu performance dari utilisasi tersebut. Utilisasi tersebut misalnya
pada proses pengolahan Nikel seperti di PT. INCO. Dan juga pada proses Coal
Liquefaction (Pencairan Batubara).
Calorific Value
Specific Energy
Higher heating Value
Adalah nilai energi yang dapat dihasilkan dari pembakaran batubara.
Nilai kalori batubara dapat dinyatakan dalam satuan: MJ/Kg , Kcal/kg, BTU/lb
Nilai kalori tersebut dapat dinyatakan dalam Gross dan Net.
Nilai Kalori dapat dinyatakan dalam satuan yang berbeda :
Calorific Value (CV)(kcal/kg)
Specific Energy (SE) .(Mj/kg)
-
7/31/2019 Rangkuman CBM
21/23
Higher Heating Value (HHV) = Gross CV
Lower Heating Value (LHV)= Net CV
British Thermal Unit = Btu/lb
Sifat:
Nilai Kalori batubara bergantung pada peringkat batubara. Semakin tinggi peringkat
batubara, semakin tinggi nilai kalorinya.
Pada batubara yang sama Nilai kalori dapat dipengaruhi oleh moisture dan juga Abu.
Semakin tinggi moisture atau abu, semakin kecil nilai kalorinya.
CBM Potential in Indonesia:
-
7/31/2019 Rangkuman CBM
22/23
CBM exploration strategy
1. Initial basin assesment
Initial Geology and Geophysical study and data analysis
2. Basin wide eksploration
Drilling of core and stratigraphic wells
CSG data analysis and technical evaluation
3. Appraisal wells
pilot test program
Gas water flow testing
Completion tests
Commerciality analysis
Good CBM Prospect (not definite)
Parameter :
Seam thickness : Best coal seam >8m thickness
Depth : coal seam between 3001200m in depth
Seam Properties
Rank (mostly bituminous but possible also sub bituminous)
Composition (preferably high in vitrinite content because generally generate good cleat )Ash content (low ash-high carbon content)
Permeability (best 20mD-50mD, but >3mD can be economic with right stimulation and
completion strategies)
High gas content : 10m3-25m3 /tone (sometimes low gas content in thick and high
permeability coal seams could be a good prospect as well)
Structural trapping
Access to market
-
7/31/2019 Rangkuman CBM
23/23
CBM Technology:
Drilling
Hydraulic Fracturing
Hydraulic fracturing (more commonly known as fracing) is the technique used to increase
the surface area of the coal. The fluid systems and additives used in conventional wells are
generally not suitable for CBM wells. This is because coal seam reservoirs have uniqueproperties and therefore specially developed materials need to be used.
Well Completion