rapid-watch/mocha atlantic meridional overturning circulation and heat flux monitoring array at...

21
RAPID-WATCH/MOCHA Atlantic Meridional Overturning Circulation and Heat Flux Monitoring Array at 26.5°N Chris Atkinson, Molly Baringer, Lisa Beal, Harry Bryden, Maria-Paz Chidichimo, Julie Collins, Stuart Cunningham, Aurélie Duchez, Joel Hirschi, William Johns, Helen Johnson, Torsten Kanzow, Jochem Marotzke, David Marshall, Gerard McCarthy, Chris Meinen, Aazani Mujahid, Darren Rayner, Zoltan Szuts, Eleanor Frajka-Williams Gerard McCarthy and Stuart Cunningham National Oceanography Centre

Upload: juliet-greer

Post on 14-Dec-2015

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: RAPID-WATCH/MOCHA Atlantic Meridional Overturning Circulation and Heat Flux Monitoring Array at 26.5°N Chris Atkinson, Molly Baringer, Lisa Beal, Harry

RAPID-WATCH/MOCHAAtlantic Meridional Overturning Circulation and

Heat Flux Monitoring Array at 26.5°N

Chris Atkinson, Molly Baringer, Lisa Beal, Harry Bryden, Maria-Paz Chidichimo, Julie Collins, Stuart Cunningham, Aurélie 

Duchez, Joel Hirschi, William Johns, Helen Johnson, Torsten Kanzow, Jochem Marotzke, David Marshall, Gerard McCarthy, Chris Meinen, Aazani Mujahid, Darren Rayner, 

Zoltan Szuts, Eleanor Frajka-Williams

Gerard McCarthy and

Stuart Cunningham

National Oceanography Centre

Page 2: RAPID-WATCH/MOCHA Atlantic Meridional Overturning Circulation and Heat Flux Monitoring Array at 26.5°N Chris Atkinson, Molly Baringer, Lisa Beal, Harry

Outline

1. How do we estimate the MOC at 26.5°N?

2. Basinwide transports in an Eddy-filled Ocean

3. Seasonal Variability at 26.5°N

4. Atlantic Ocean Heat Transport at 26.5°N

5. Recent Changes in the MOC at 26.5°N

Page 3: RAPID-WATCH/MOCHA Atlantic Meridional Overturning Circulation and Heat Flux Monitoring Array at 26.5°N Chris Atkinson, Molly Baringer, Lisa Beal, Harry

How do we estimate the MOC at 26.5°N?

Page 4: RAPID-WATCH/MOCHA Atlantic Meridional Overturning Circulation and Heat Flux Monitoring Array at 26.5°N Chris Atkinson, Molly Baringer, Lisa Beal, Harry

Western Boundary Wedge Currents and the mid-ocean Dynamic Height and Bottom Pressure Array

Rayner, D., et al. (2011), Monitoring the Atlantic Meridional Overturning Circulation, Deep Sea Research II, in press.

Johns, W. E., L. M. Beal, M. O. Baringer, J. Molina, D. Rayner, S. A. Cunningham, and T. O. Kanzow (2008), Variability of shallow and deep western boundary currents off the Bahamas during 2004-2005: First results from the 26°N RAPID-MOC array, J. Phys. Oceanog., 38(3), 605-623.

Page 5: RAPID-WATCH/MOCHA Atlantic Meridional Overturning Circulation and Heat Flux Monitoring Array at 26.5°N Chris Atkinson, Molly Baringer, Lisa Beal, Harry

Overturning stream function

red dots

Zero Nett Mass transport as observed e.g. Bryden, H. L., et al.(2009) Ocean Science, 6, 871-908.

Ekman transports from ECMWF ERA-Interim winds since demise of QuickScat

Gulf Stream transports from Florida Straits Cable measurements

Page 6: RAPID-WATCH/MOCHA Atlantic Meridional Overturning Circulation and Heat Flux Monitoring Array at 26.5°N Chris Atkinson, Molly Baringer, Lisa Beal, Harry

Mean [Sv]

GS 

31.8±3.1

MOC

 18.1±4.3

Ekman

2.9±3.0

UMO

-16.6±3.4

• MOC timeseries and related data products are available from www.noc.soton.ac.uk/rpdmoc• Data from individual instruments are available from www.bodc.ac.uk

Gulf Stream, MOC, Ekman & Upper Mid-Ocean Transports (10-day & 3-month, low-pass filtered)

April 2004 to April 2009

Page 7: RAPID-WATCH/MOCHA Atlantic Meridional Overturning Circulation and Heat Flux Monitoring Array at 26.5°N Chris Atkinson, Molly Baringer, Lisa Beal, Harry

Mean [Sv]

GS 

31.6±3.1

MOC

 17.2±4.9

Ekman

2.6±3.3

UMO

-16.9±3.5

Gulf Stream, MOC, Ekman & Upper Mid-Ocean Transports (10-day & 3-month, low-pass filtered)

April 2004 to Dec 22nd 2010

• MOC timeseries and related data products are available from www.noc.soton.ac.uk/rpdmoc• Data from individual instruments are available from www.bodc.ac.uk

Page 8: RAPID-WATCH/MOCHA Atlantic Meridional Overturning Circulation and Heat Flux Monitoring Array at 26.5°N Chris Atkinson, Molly Baringer, Lisa Beal, Harry

Basinwide Transports in an Eddy-filled Ocean

Page 9: RAPID-WATCH/MOCHA Atlantic Meridional Overturning Circulation and Heat Flux Monitoring Array at 26.5°N Chris Atkinson, Molly Baringer, Lisa Beal, Harry

RMS amplitude of SSH and dynamic height along 26.5°N

See also:Bryden, H. L., A. Mujahid, S. A. Cunningham, and T. Kanzow (2009), Adjustment of the basin-scale circulation at 26°N to variations in Gulf Stream, deep western boundary current and Ekman transports as observed by the Rapid array, Ocean Science, 6, 871-908.0 (km)

1000

Kanzow, T., H. Johnson, D. Marshall, S. A. Cunningham, J. J.-M. Hirschi, A. Mujahid, H. L. Bryden, and W. E. Johns (2009), Basin-wide integrated volume transports in an eddy-filled ocean, J. Phys. Oceanog., 39(12), 3091–3110.

Page 10: RAPID-WATCH/MOCHA Atlantic Meridional Overturning Circulation and Heat Flux Monitoring Array at 26.5°N Chris Atkinson, Molly Baringer, Lisa Beal, Harry

• The eddy field at 26.5°N does not dominate MOC variability on

interannual to decadal timescales, and does not pose as large a

signal-to-noise problem for detection of secular trends.

• SSH fluctuations increase from east to west, but decrease sharply

within 100 km from Abaco shelf, in agreement with upper ocean

transports.

Basin wide transports in an eddy-filled oceanConclusions

Page 11: RAPID-WATCH/MOCHA Atlantic Meridional Overturning Circulation and Heat Flux Monitoring Array at 26.5°N Chris Atkinson, Molly Baringer, Lisa Beal, Harry

Seasonal Variability at 26.5°N

Page 12: RAPID-WATCH/MOCHA Atlantic Meridional Overturning Circulation and Heat Flux Monitoring Array at 26.5°N Chris Atkinson, Molly Baringer, Lisa Beal, Harry

±1.8 Sv,SE=1.0 Sv

±2.6 Sv, SE=0.5 Sv

SD 3.5 Sv, Range 7.0 Sv

SD 3.1 Sv, Range 6.2 Sv

Contribution of the upper mid-ocean western and eastern boundaries to the UMO seasonal cycle

Kanzow, T., et al. (2010), Seasonal variability of the Atlantic meridional overturning circulation at 26.5°N, J. Clim., 23(21), doi: 10.1175/2010JCLI3389.1171.

Chidichimo, M. P., T. Kanzow, S. A. Cunningham, W. E. Johns, and J. Marotzke (2010), The contribution of eastern-boundary density variations to the Atlantic meridional overturning circulation at 26.5 N, Ocean Science, 6, 

Atkinson, C. P., H. L. Bryden, J. J.-M. Hirschi, and T. Kanzow (2010), On the seasonal cycles and variability of Florida Straits, Ekman and Sverdrup transports at 26° N in the Atlantic Ocean, Ocean Science, 6(4), 10.5194/os-5196-5837-2010.

Page 13: RAPID-WATCH/MOCHA Atlantic Meridional Overturning Circulation and Heat Flux Monitoring Array at 26.5°N Chris Atkinson, Molly Baringer, Lisa Beal, Harry

Seasonal variabilityConclusions

• MOC seasonal cycle is 6.7 Sv peak-to-peak.

• UMO contributes the most pronounced seasonal 

cycle of 5.9 Sv.

• Seasonal cycle in UMO is caused by vertical density 

fluctuations at the Eastern Boundary forced by 

seasonal anomalies in the wind stress curl.

Page 14: RAPID-WATCH/MOCHA Atlantic Meridional Overturning Circulation and Heat Flux Monitoring Array at 26.5°N Chris Atkinson, Molly Baringer, Lisa Beal, Harry

Atlantic Ocean Heat Transport at 26.5°N

Page 15: RAPID-WATCH/MOCHA Atlantic Meridional Overturning Circulation and Heat Flux Monitoring Array at 26.5°N Chris Atkinson, Molly Baringer, Lisa Beal, Harry

Meridional Heat/Temperature Transport Variability

Contribution to the net heat transport variance (relative to the mid-ocean temperature)

FC=20%

EK=46%WBW=8%Gyre/eddy=1%

Mid-ocean=25%

Mer

idiona

l Hea

t Tra

nspo

rt (P

W)

Tem

pera

ture

 tran

spor

t (re

lativ

e to

 0°C

)Net Heat Flux = 1.27 ± 0.30 PW (uncertainty 0.14 PW)

Johns, W. et al. (2011), Continuous, Array-based Estimates of Atlantic Heat Transport at 26.5°N, J. Clim., 24, pp. 2429–2449.

Page 16: RAPID-WATCH/MOCHA Atlantic Meridional Overturning Circulation and Heat Flux Monitoring Array at 26.5°N Chris Atkinson, Molly Baringer, Lisa Beal, Harry

Meridional Heat TransportConclusions

•The mean MHT (2004 to 2007) is 1.27 ± 0.3 PW.

•Ekman contributes 46% of heat flux variability; Mid-ocean geostrophic fluctuations 25%. 

•Seasonal cycle 0.9 PW, dominated by the mid-ocean geostrophic variability. Maximum in summer/fall and minimum in March.

•MHT is highly correlated with changes in strength of the MOC. The overturning accounts for 90% of the total MHT. 

Page 17: RAPID-WATCH/MOCHA Atlantic Meridional Overturning Circulation and Heat Flux Monitoring Array at 26.5°N Chris Atkinson, Molly Baringer, Lisa Beal, Harry

Recent Changes in the MOC at 26.5°N

Page 18: RAPID-WATCH/MOCHA Atlantic Meridional Overturning Circulation and Heat Flux Monitoring Array at 26.5°N Chris Atkinson, Molly Baringer, Lisa Beal, Harry

Mean [Sv]

GS 

31.6±3.1

MOC

 17.2±4.9

Ekman

2.6±3.3

UMO

-16.9±3.5

Gulf Stream, MOC, Ekman & Upper Mid-Ocean Transports (10-day & 3-month, low-pass filtered)

April 2004 to Dec 22nd 2010

• MOC timeseries and related data products are available from www.noc.soton.ac.uk/rpdmoc• Data from individual instruments are available from www.bodc.ac.uk

Page 19: RAPID-WATCH/MOCHA Atlantic Meridional Overturning Circulation and Heat Flux Monitoring Array at 26.5°N Chris Atkinson, Molly Baringer, Lisa Beal, Harry

Gulf Stream, MOC, Ekman & Upper Mid-Ocean Transports (10-day & 3-month, low-pass filtered)

April 2004 to Dec 22nd 2010

NAO Index

Extreme Lows in NAO, Winter 09/10 and 10/11

Jung, T. et al. (2011), Origin and predictability of the extreme negative NAO winter of 2009/10, Geophysical Res. Lett., 38, L07701.

Wang, C. et al. (2010), The record-breaking cold temperatures during the winter of 2009/2010 in the Northern Hemisphere, Atmoshperic Sci. Lett., 11, 161-168.

Page 20: RAPID-WATCH/MOCHA Atlantic Meridional Overturning Circulation and Heat Flux Monitoring Array at 26.5°N Chris Atkinson, Molly Baringer, Lisa Beal, Harry

Component Transports and Layer Transports April 2004 to Dec 22nd 2010

Lower NADW (Blue line, Lower panel) declines in winter 2009/2010 at the same time as MOC and Ekman event (Red and Black lines, Upper panel)

Decline in the Lower NADW evident from historical hydrography (Bryden et al. [2005]) and it is a water mass expected to decline first with MOC decline (Doshcher et al. [1994])

Page 21: RAPID-WATCH/MOCHA Atlantic Meridional Overturning Circulation and Heat Flux Monitoring Array at 26.5°N Chris Atkinson, Molly Baringer, Lisa Beal, Harry

CONCLUSIONS• The RAPID array is delivering twice daily estimates of the strength 

and structure of the AMOC since 2004. 

• AMOC mean is 17.2±4.9 Sv, but in the year of 2009/10 was only 12.0 Sv, and during the winter was southward on occasion due to extremely negative NAO.

• Variability due to eddies diminishes towards the boundaries where the RAPID measurements are made

• Seasonal variability in the AMOC is nearly 7 Sv. Wind stress curl at the eastern boundary drives the anomalies.

• Heat Flux is 1.35 PW, of which 90% is carried in the AMOC.