rasmus holst - portfolio

93
Portfolio RasmusHolst architecturalengineering: Design,parametricism,structure

Upload: rasmus-holst

Post on 22-Mar-2016

261 views

Category:

Documents


2 download

DESCRIPTION

Most recent portfolio - student work and others.

TRANSCRIPT

Page 1: Rasmus Holst - Portfolio

Portfolio

Rasmus Holst

architectural engineering:Design, parametricism, structure

Page 2: Rasmus Holst - Portfolio

contact details

Rasmus Holst

Nørre allé 75, 6112100 KBH ØDenmarkemail: [email protected]

mobile: +45 25212534

Page 3: Rasmus Holst - Portfolio

For me Architectural Engineering is to use technical knowl-edge in a creative way to lift the Architectural vision and obtain the best result. All projects contain a huge solution space, satisfying different parameters.

Throughout my education I have aimed at obtaining a thor-ough knowledge within geometry, energy and especially structures. This knowledge I use to construct parametric models by means of scripting/programming.

This way a combined model can be evaluated and simulated in regards to many different parameters simultaneously. By doing so a very multidisciplinary design- and optimization process emerges.

By thinking out of the box and having a creative and diverse approach to engineering I am always trying to challenge the existing methods and solutions to fi nd the right one in the given situation.

I am very passionate about design, architecture and engi-neering. I believe that a combination of passion, motivation and technical skills great projects that can improve the lives around us.

My name is Rasmus Holst and I am an Architectural En-gineer. I was born on the small island, Bornholm at the easterns seas of Denmark. I moved to Copenhagen where I have been living throughout my studies in order to obtain my M.Sc in Architectural Engineering from the Technical Uni-versity of Denmark.

This is my portfolio.

Introduction

Page 4: Rasmus Holst - Portfolio

Resume

CV

2001 – 2004: Linguistic gymnasium - Bornholm, Denmark

2004 : Carpenter/worker Aarsdale Byggeforretning.

2005 - : Carpenter/worker Holst & Holst ApS. Part/Full time

2006 - 2010: B.Sc. Architectural Engineering at the Technical University of Denmark (DTU). (ref Lotte Bjerregård)

2009 : Internship at Danielsen architecture. CPH

2009 - 2010: On and off employment at Danielsen architecture. (ref. Malin Meyer) 2010 - : M.Sc. Architectural engineering at DTU. (ref. Christian Rønne) 2010 : Assistant teacher at the Technical University of Denmark: - Analysis and Design of Concrete Structures - Urban context & Large scale structures - Analysis and Design of Steel and Wood Structures - Geometric Operations in Plane and Space

2009 : Part of the selected Danish Solar Decathlon team 2010. (Ass. Richard Horden)

2011 : Master of Advanced Architecture – study abroad at UTS. (ref. David Pigram)

- Architectural Design : Computational Environments. - Master Class Design Technologies. (ref. David Pigram & Ezio Blassetti)

2011 : Assistant - supermanouevre Sydney

2012 : Assistant teacher at Technical University of Denmark: - Construction and Building Design - Theory and Practice of Architectural Engineering - CDIO project

2012 - 2013: Master thesis: Think, Script, Build. - Henning Larsen Architects (ref.Jakob Strømann Andersen)

ANDRE AKTIVITETER

Sep. 2010: Konference: Advances in Architectural Geometry 2010 Konferencen arrangeres af førende personer indenfor kompleks geometri og parametrisk design. Derfor tiltrækker den mange dygtige folk fra hele verden til foredrag og workshops. Workshop: Designing panelisations of architectural freeform surfaces using subdivision modeling and optimization

2012: Team DTU - Solar decathlon 2012. Udarbejdelse af parametrisk model og udførelse af geometri. Opførelse og nedtagning af byggeri.

Sep. 2012: Konference: Advances in Architectural Geometry 2012 Workshop: The emergent agent, geometry optimization though agent based interaction using genetic algorithms

Page 5: Rasmus Holst - Portfolio

skills

BIM AND MODELLING

Revit

ArchiCAD

Maxwell rendering

AutoCAD

Rhino3D

VRay Rendering

3D Studio Max

Google SketchUp

PROGRAMMING SCRIPTING

Matlab

Grasshopper

Rhino.Python

VISUALISATION

Adobe Photoshop

Adobe Illustrator

Adobe IN-Design

Adobe Premier Pro

STRUCTURAL ANALYSIS

Staad.Pro

Autodesk Robot

ABAQUS

ENERGY ANALYSIS

ABAQUS

Ecotect

iDBuild

VICO Office

Page 6: Rasmus Holst - Portfolio

Bridge connection

Registrering

Rejsen

Når stien brydes, brydes illu-sionen/rejsen. Man bliver hevet ud af sin løbetur og skal til at koncentrere sig om andre omgiv-elser, biler o.s.v.Dette gælder både for de små og store veje.

Vision

Impuls

Uberørte. I den ene ende af løberuten, bliver stien til en græsplæne hvor stien forsvinder og man har mulighed for at danne sin egen rute. i området er der også en bakke hvor der er mu-lighed for at udfordre sin fysik. Bak-ken deler sig i tre veje.

Ved bygndefineremilepæledtu’s spbåde træklatrevæ

Vest

Øst

Trafikretning. Bilerne kommer hovedsafra Lundtoftegårdsvej og kører ind tog videre ud mod Lundtoftevej.

Analyse

Løberuten skal være på løberens primisser. En rejse i etaper, uden for-styrrelsr. Det er vigtigt at man skal kunne kon-centre sig om motionen. Man skal kunne udfor-dre sig selv og det skal være muligt at vælge imellem sværhedsgrader. Broerne bliver en del af løberuten, de fuldender rejsen. Broerne bliver derfor etableret i løbe-stien istedet for at hen-vende sig til fodgængere på Anker engelundsvej.

Hele vejen langs ruten, svinger stien ind og ud imellem træer. på vest siden er terrænet bakket og slin-grende og på øst siden, er stien mere et lige stræk, dog stadig slingrende. Dette gør at ruten bliver mere over-skuelig. Løber man på en helt lige sti, vil den synes meget lang, da man kigger ud i uendelighederne. Vi holder derfor fast i at have en sti med et spændende for-løb, en sti i bevægelse.

Da DTU i sin tid blev anlangt var en af de vigtigste koncepter, at Dyre-havens grønne, vilde natur skulle kræse sig op til DTU og skabe en grøn skovklædt “slette”. mange steder på ruten bliver den grønne smukke natur brudt af larm fra biler, synet af kon-tainere og andre fabriks embalager. Ved at skabe tættere beplantning, af-skærmes der fra omgivelserne, og lø-beren kan koncentrere sig om sin løb-etur.

Ildfluer Delfin

Impulser - Januar 2008, B

Snoet planteFibre

Anders Biehl s& Victor Aalund

Bridge connectionTwo pedestrian bridges are designed in connection with the running track at the Danish Technical University.

As part of the project, one of the two bridges is precisely calculated and dimensioned in the context of the overall project.

When you are running, the heart beats rapidly and you feel the pulse of your body. Pulse has two different meanings - in mechanical physics, impulse is related to the speed and mass of an object, in electronics it refers to a short term discharging of voltage.

This is the basis of this project.

2007

Page 7: Rasmus Holst - Portfolio

Belægning

Langs stien skifter belængningen mange gange karakter. Belægningen veksler mellem sand/grus, jord(skovbund), fils og græs. Dette gør, at stien løber gennem forskellige faser, man kan re-latere til hvor langt man er på ruten. Vekslende belægning kan også få sværhedsgraden til at variere.

Grus Skovbund Rough Skovbund Flis Græs

ning 101 er løbestiens start et. Dette ses undervejs ved ene. Derudover virker 101 som portscentrum. Her findes der æningscenter, sportshaller og æg.

Afskærmning

Vest Øst

agligt il DTU

Ved nord siden af stien er ter-

rænet utrolig utæmmet. En del af ruten, skal blive i illusionen. En del af det vilde.

Østen broen skal være DTU’s port. det er her folk kommer ind. Og derfor skal området/broen virke tillokkende og mod-tagende. Her er terrænet meget mere tæmmet. Her føler man opløbet. Lige stræk. Målstreg. Slutter ved badet.

Kontainere, industri embalage og biler præger synet mens man løber på stien. Man mister koncentrationen og kommer til at fokusere på omkring liggende ting og bevægelser.

2 stibroer i forbindelse med running track, Anker EngelundsvejByens rum og den store konstruktion

I mekanisk fysik, betyder Impuls en størrelse relateret til hastigheden og massen af et objekt

Impuls kan også betyde, et kortvarigt strøm- eller spændingsudsving (elektricitet)

Impuls vil tilføre ruten en helhed, fart og identitet

Siv

062481, Miriam Ann Hellmann s062483, Rasmus Holst s061860 d-Olsen s062460

Øst

1:500

Vest

Snit & Plan

1:2000

Øst

Vest

Landskabssnit

1:200

1:200

Page 8: Rasmus Holst - Portfolio

Broer

ØstPå billederne ses østbroen, proten til DTU. Impulserne slanger sig Broen er 49 meter lang og brobanen varierer i bredden fra 2,5 mete

vestBroen fortsætter ud fra det bakkede terræn over på den anden side af Anker Engelundsvej. koncentration omkring sit løb. Broen er 78.8 meter lang og varierer lige som østbroen fra 2,der et spændende forløb over broen.

Situationsbilleder

Rundt på ruten vil der blive opsat Lygter. Disse vil oplyse stien om aftenen, således vil løberen på alle tider af døgnet kunne se stien og løbe sig en tur.

Løberute

Vandpost

Som tidligere nævnt kan man på denne etape udfordre sig selv og sin motorik. I dette område vil der være forskellige slags motionsredskaber. Dette ses både i form af stænger man kan hænge sig i, bomme man kan gå på line på, eller hoppe over, i det hele taget naturpræget udfordringer som tager udgangspunkt i en militær forhindringsbane. Alle disse redskaber vil være udført i overensstemmelse med impulsernes bevægelse. Stien vil nogle steder dele sig i to, så man kan vælge om man vil løbe forbi forhindringerne, eller man har lyst til at udfordre sog selv. Redskaberne danner tilsammen en slags udendørs træningscenter.

Adventure

Opløbet

Parken

Rough’enI dette område er terrænet i forvejen utrolig bakket og snoet. Dette har vi valgt at udnytte. Løberen kan i på denne etape udfordre sit løb. Etapen starter efter man har haft mulighed for at styrketræne sin krop. På nuværende tidspunkt bliver rough’en brudt af ANker Engelundsvej, da løberen ikke skal miste koncenttrationen omkring sit løb, har vi valgt at vest broen skal indgå i etapen. Broen virker i sig selv som en bakket sti i skoven. Broen følger naturens kurver.

her starter løberuten, man klæder om i bygning 101 og starter sin løberute. Stien er stortset lige uden forhindringer. Efter man er blevet varmet op, når man til etape-Adventure, her kan man så begynde at udfordre sig selv og virkelig træne sin krop. Når man er ved at have løbet hele ruten, kommer man tilbage til opløbet, man løber forbi kampsax og villum kann kollegiet, her kan folk stå og se en løbe i mål. Målstregen nås når man kommer over øst broen, DTU’s port. Her er anbragt plateauer i niveauer hvor man kan strække ud før man begiver sig op i træningscentret eller ned i bad. Plateauerne kan også bruges som tribuner og tilskuepladser ved evt. arrangementer.

På den sidste etape når løberen til en kæmpe græsplæne hvor man nu igen har mulighed for at enten udfordre sig selv, eller tage et lille hvil. Der vil være indhak og plateauer i den store bakke der afgrænser området fra vejen, Her er der mulighed for at tage en tår vand af en af vand-posterne der står rundt på ruten, eller sætte sig ned. Der vil også være bænke (impuler der kommer op af jorden) hvorpå man også kan tage sig en lille pause. Ellers er bakken i sig selv en forhindring. Allerede på nuværende tilspunkt har man mulighed for at løbe op ad flere forskellige stier, med forskellig hældning.

Belysning

Belægning

Etaper

Der hvor ruten brydes af vejen, skal stien være tegnet op, således at løberen ikke mister illusionen om sin rejse.

Omlæggelse af løberuten

For at de forskellige etapers karakter bliver understreget,vil der være forskellig slags belægning på de fire etaper. Dette vil være sand, naturlig flis, græs og i de områder der er mudret, vil der blive lagt rubber mulch, som er et plastik underlag, formet som flis. På-broerne, vil der være playtiels som belægning.

Bliver man tørstig undervejs og har glemt sin drikkeflaske, vil ruten være forsynet med vandposter således at man aldrig løber tør for vand.

Afskærmning

For at undgå at biler, og anden form for støj og afledning skal for-styrre løberen plantes der tættere beplantning. Dette vil ske både i form af buske og træer. På denne måde vil løberuten få en mere skov agtig fornemmelse som vil appelere mere til dyrehaven. Den grønne slette som Edith og Ole Nørgaard i sin tid ville opnå, vil være under-streget. Løberuten vil blive mere attraktiv og folk vil løbe på stien i stedet for fortorvet ude ved vejen.

Tidsmåler

Ved bygning 101 vil der være opstillet et maskine hvor løberen kan

Playtiles

PlateauerVores vision med ‘målområdet’ er at placere nogle plateauer som man kan bruge til at få et lille hvil efter en hård træning. De er også beregnet til at man enten kan varme op eller strække ud et ordentlig sted. Plateauerne kan ved evtuelle arrangementer bruges som tilskuerpladser

Page 9: Rasmus Holst - Portfolio

1:100

Vest

Øst

langs gelænderet og fortætter et stykke ind i skoven. er til 4,5 meter.

Impulser bevægersig over brobanen og fastholder derved løberens illusion, ,5 meter til 4,5 meter. På denne måde, i fællesskab md impulserne, skabes

Konstruktion

Detalje 2 - snit i bakke

Udbøjning med jævn fordelt last over hele brobanen

Udbøjning med jævn fordelt last

Udbøjning med jævn fordelt last over halvdenen af brobanen Tryk og træk kræfter

Spændinger

Udbøjning med jævn fordelt last over hele brobanen men UDEN de skrå afstivere

Optimering af stabilitsevnen

For at opnå de mindst mulige profiler til kassedragerne, beregnes det samlede inertimoment for systemet, når brobanen styrkes med to skrå stålplader. Der opnås tynde profiler til kassedragerne så en svejsning blliver mulig.

.

De største spændinger fremkommer ved lasttilfælde 1 med lastkombination q1. I dette tilfælde bliver max spændingen ca. 220 MPa < 314 MPa og overstiger altså ikke flydespændingen.

Max udbøjning: 58,7mm

Max udbøjning: 65mm

Max udbøjning: 107mm

Ved dette lasttilfælde fås den største udbøjning. Den størt tilladelige udbøjning er 66mm. Dette lasttilfælde er altså dimensionerende for profilerne

Udfra dette ses det hvordan tryk og træk fungerer for det mest kritiske tilfælde.

Reaktioner

Staad.Pro beregning af øst bro

Overslagsberegning af vest bro

Dette inertimonet er utrolig stort, dette skyldes bl.a., at systemet der her er beregnet er simplificeret, og en række faktorer der kunne nedsætte udbøjningen, indgår derfor ikke. Det gælder f.eks. det planlagte gelænder, som tænkes at udgøre en del af konstruktionen. Virkningen af dette kan ses af beregningerne på Østbroen. Desuden tages der i disse beregninger ikke højde for at hoved-dragerne er forbundet af tværbjælker der bidrager til stivheden.

Modstandsmomentet

Udbøjning og inertimoment

Der er fundet nogle profiler der kan klare det moment, systemet vil blive påvirket af, dog er udbøjningen for stor. Ved at finde inertimonetet, vil det optimale profil kunne findes.

Detalje 1 - snit i bro

Profil størrelser

Det ses hvor stor forskel det gør, at stålprofilerne bruges som et led i det statiske system. Udbøjningen reduceres med 54.9% ved brug af stålprofilerne

Page 10: Rasmus Holst - Portfolio

Cultural centercopenhagen

Cultural centreA cultural centre placed in the heart of a beautiful nature reservation in the middle of Copenhagen. A fl at marshland with a magnifi cent water view.

A unique location which requires blending with the surround-ings. In this case, we did not go for the obvious - to fi t with nature, go organic shape. Instead we looked at how the area allready seemed to box up and hide it self i straight segments when looking from the distance. When one then starts to look between the rushes, the smaller organic shapes turns up.

Therefore the concept of organic in a box. This project shows and practices how an architectural project also in-volves structural, acoustic, indoor-climate and sustainability concerns.A video animation of the project is also available at youtube.

2008

Page 11: Rasmus Holst - Portfolio
Page 12: Rasmus Holst - Portfolio
Page 13: Rasmus Holst - Portfolio
Page 14: Rasmus Holst - Portfolio

Internshipdanielsen architecture

Internship - Danielsen Architecture

An internship is always a great way to gain experience and see how a fi rm works from the inside. To see the processes, challenges, deadlines in action and be part of it, is invalu-able.

As an intern a the Copenhagen based architecture fi rm Dan-ielsen Architecture. I worked in different groups within the company - the competion group, where projects where de-veloped and in the project design group.

Parallel to the work in the fi rm, I did a special report on sustainability, using a company project as case.

Following the internship in 2009 I have been working on and off for Danielsen Architecture.

The work in the project design group, meant mostly docu-mentation in Archicad.

2009

Page 15: Rasmus Holst - Portfolio
Page 16: Rasmus Holst - Portfolio

RUM

ERHVERV

BOLIG

NATUR

ZONER FORBINDELSER

±0,000

Åbning i bygning+3,500+2,000

+24,500

+27,500

+24,000

+20,500

+17,000

+13,500

+10,000

+6,500+7,000

+14,000

+10,500

+17,500

+21,000

+2,000 +2,000

+18,500

+2,000 +2,000±0,000

+2,000

Parkering under bolig

+0,700Gående indgang

-2,100

+2,000

+31,000

+7,000

+14,000

+10,500

+17,500

+2,

Page 17: Rasmus Holst - Portfolio

BMW645Ci

Page 18: Rasmus Holst - Portfolio

Internship - danielsen architecture

Sustainability

Sustainability

How do we utilize sustainable energy sources as part of our life and in the buildings we live in?

The most important thing is to be as sure as possible of the effects our efforts will cause. Alternative, green tech-nologies are rarely inexpensive to install and maintain, so therefore we have to simulate and compare all our options.

Some solutions might be very suited in one project, but not in the one next door. Setup of correct scenarios and simula-tions are key aspects if want to keep aiming for sustainable projects, and making it economical interesting for investors and etc.

2009

Page 19: Rasmus Holst - Portfolio

SUSTAINABLE ARCHITECTURE

RASM

US H

OLS

T - S

0618

60

En rapport om arkitektens rolle indenfor den bæredytige udvikling. Hvilke muligheder er der for bæredygtigheds tiltag? Hvordan indarbejdes bære-dygtigheden tidligt i design processen?

Bæredygtig arkitektur. Specialemne rapport om muligheder og værktøjer.

JORD VAND

SOLVIND

Page 20: Rasmus Holst - Portfolio

Type 1Orientering -100.0°Energiforbrug per år: 49 kWh/m2

Energiklasse 1Areal: 25,4 m2

Ene

Page 21: Rasmus Holst - Portfolio

ergiforbrug

Page 22: Rasmus Holst - Portfolio

Emergency shelter

Emergency shelter

In a world where millions of people are affected by natural disasters each year, the need for emergency aid will be per-sistent.

This project is a redesign proposal for the original shelter. People live in these tents for long periods of time, and there for they need to be able to do more. They need to become a home.

Page 23: Rasmus Holst - Portfolio

“Familien fl yttede ind i et midlertidigt nødhjælpstelt - dette faldt dog sammen”

Page 24: Rasmus Holst - Portfolio

nød-hjælp

samlesæt

modul

vægt

logistik

emballage

størrelse

brugs-periodelæ

ly

skygge

sne

hede

funktion

bolig

klinik

Aero-dynamikisolering

sove

aflåsetørre tøj

madz

@ A yx yxyxyxKATASTROFE NØDHJÆLP TAG OVER HOVEDET HJEM SAMFUND

Page 25: Rasmus Holst - Portfolio

design

konstruk-tion

logistikFunktion

Forsl

ag 1

Forsl

ag 2

Forslag 3

Page 26: Rasmus Holst - Portfolio

5 6

9 10

Kassen leveres Kassen åbnes - elementer pakkes ud

Stængerne monteres i bundp-laderne og samles i toppen.

Dugen monteres fra 1 til 7. Stykker mellem 7-8-1 er slappe.

11111111111111111111111111111111111111

222222233333333333333333

4444444444444444444444444444444444444444444444444444444444444444444444

56 7

8

Færdig top med overdækning. Krans med vægt holder membran nede. Åbnes vha. indvendig snor og trisse. Ved kraftig vind, spændes udvendige kabler.

Emergency shelter handbook

Page 27: Rasmus Holst - Portfolio

7 8

11

Top og bund sættes sammen Rammen samles

Topstykke samles med bolt gennem de tre plade styk-ker. Bolt og møtrik har påsvejst ringelement.Membran i topstykke er ikke vist for overblik.

Kabler i dug fastgøres med karabinhager. Kabel til punkt 8 spændes.

Ved at spænde kabel mellem top og punkt 8 rejses teltet. Dette gøres vha. skralde-strop system.

Page 28: Rasmus Holst - Portfolio

Bachelor project

digital architectureVertical zoo - Buenos Aires

Digital Architecture

This is the fi nal project of my bachelors degree. The overall theme is digital architecture. The thesis is that to get the most out of the digital tools, we need to have a genuine understanding of geometry and the math behind.

The project consists of three parallel processes. Geometry and algorithmic modelling is explored and at the end utilized in a specifi c design case.

The design case is a competition proposal for a vertical zoo to be build in Buenos Aires. Parallel to researching the geometrical theory and the algorithmic methods, the com-petition is treated as normally, with registrations, concept development etc. to set up how to use the two other pro-cesses in the best way.

The geometrical theory is not presented in this portfolio.

Link: http://issuu.com/RasmusHolst

2009

CASEZOO

B

C

A

Page 29: Rasmus Holst - Portfolio

A

B

C

!ALGORITHMIC MODELLING

GEOMETRIC KNOWLEDGE

DESIGN CASE

Page 30: Rasmus Holst - Portfolio

Bachelor project

Algorithmic modelling

Algorithmic modelling One part of the project, is the investigation of algorithmic modelling.

On this page some of the investigations are shown. The greatest advantage is for the designer is to be able to cre-ate very accurate outputs, designed for particular situa-tions. Particularly in fi nding solutions to a design idea that takes many iterations - too many to be able to do manually.

From the top left: - Simple construction elements of double curved surface. - Optimal column solution between to irregular free-form surfaces.- Systematical random generations.- Solar responsive facade design.- Mathematical surfaces.

Page 31: Rasmus Holst - Portfolio
Page 32: Rasmus Holst - Portfolio

Bachelors ProjectAlgoritmic modelling

Structural Analysis example

Structural analysisThrough the control of the parametric model, here it is shown how adding extra layers to the defi ntion can give the designer enhanced overview and help optimize the design.

In this simple example the model allows me to discover how stresses are distributed and fi gure out which elements that needs to be have an increased cross section.

These kind of discoveries can help the iterative design pro-cess between architect and structural engineer on its way.

The illustrations at the top shows parts of the defi nition (script) and the pictures on the right shows the analysis of the model and the strucure. Green marked elements in the second fi gure shows elements that reaches max yield stresses, with their current cross section properties.

Page 33: Rasmus Holst - Portfolio
Page 34: Rasmus Holst - Portfolio

au

mul

360 vie

Page 35: Rasmus Holst - Portfolio

LEVEL 5 LEVEL 6 LEVEL 7

LEVEL 8 LEVEL 9 LEVEL 10

LEVEL 11

uditorium

observation

abe

myresluger

koala

orangutanleopard

panda

observation

lti use salon

café

souvenir

fugle

ew terasse

be

uger

LEVEL 0 LEVEL 0.1 LEVEL 1

LEVEL 2 LEVEL 3 LEVEL 4

Opbevaring

tapir

krokodille

tiger

hyene

Indgang

bæltedyr

lemur surikat

Administration & medarbejder lokaler

terasse & opholdterasse & ophold

tapir

se & ophold

ik tlemur

Page 36: Rasmus Holst - Portfolio
Page 37: Rasmus Holst - Portfolio
Page 38: Rasmus Holst - Portfolio
Page 39: Rasmus Holst - Portfolio
Page 40: Rasmus Holst - Portfolio

component design

Concrete comfortTo generate realizable and clever designs, a knowledge of the processes present in the manufacturing, maintaining and use of building components are essential.

This is about the whole process of creating a sustainable urban lightning furniture in concrete. The aim for the project is a 1:1 prototype of the actual design case.

The optimal production methods for the design was not available in the project, but we did not comprise our main aim, to create concrete comfort.

Page 41: Rasmus Holst - Portfolio

CONCEPT

LIGHT EXPERIMENTS

CONCEPT

Page 42: Rasmus Holst - Portfolio

PROTOTYPE

Page 43: Rasmus Holst - Portfolio

Fig. 16. - CNC cutting machineFig 15. Polystyren block before CNC moulding Fig. 17. Polystyrene moulding mould-ing form.

Fig.19. Moulding form. Xray shows the different curvatures for support edges.

Fig 18. Polystyrene ready moulding form - xray.

Fig 20. Casting form the top of the moulding form.

Fig 23.Support - connection 1. Simple

Fig 24. Connection

PRODUCTION

Page 44: Rasmus Holst - Portfolio

solar decathlon ´10

Solar decathlon 2010Each year the U.S. Department of Energy Solar Decathlon challenges 20 collegiate teams to design, build, and oper-ate solar-powered houses that are cost-effective, energy-effi cient, and attractive. The winner of the competition is the team that best blends afford ability, consumer appeal, and design excellence with optimal energy production and maximum effi ciency.

A selected team from DTU were asked to develop a pro-posal for to compete in the solar decathlon.

Under the guidance of Richard Horden, we created a project that was highly energy effi cient while giving reference to the virtues of older Danish modernist architects.

Page 45: Rasmus Holst - Portfolio
Page 46: Rasmus Holst - Portfolio

parametric modelling and digital crafting

In the realm of architectural geometry many disciplines are present. In this interdisciplinary fi eld, different aspects and demands come together. Architects, engineers, mathemati-cians and computer scientist all have different ways of look-ing at the fi eld, but they share the same need of control ,to be able to test their ideas and visions for further progress.

This project looks into the need for build-ability that espe-cially engineers and architects have. It shows how far the limits can be pushed in order to obtain and build almost any shape using digital methods.

The digital methods for the modelling phase as well as in the production phase are introduced - hence the title “Para-metric modelling and digital fabrication”.

Parametric modelling is essential to be able to see how different design choices will affect the project and give the designer the needed control, even when dealing with com-plex geometries.

Digital fabrication is the future and the arrival of new possi-bilities and less limitations. All ready today, many production processes are automated, but most have certain restric-tions of shape. So to keep a healthy project economy, this needs to be considered in the design phase. But as the new methods as; laser-cutting, CNC milling, 3D printing etc. become more feasible, these restrictions seem to slowly vanish.

This project focus on a architectural geometry design case in order to go through the three digital fabrication methods:

- Laser cutting - CNC milling - 3D printing

and looks at the different demands and possibilities that follows

2010

Page 47: Rasmus Holst - Portfolio

freeform

surfaces

exact

shape

approx-

shape

full spatial

shape

elements

paneliza-

tionregular

tangent-

planes

irregular

random

control

generating

points

tangent

planes

positive

curvature

negative

curvature

changing

curvature

freeform

single

curvature

double

curvature

connec-

tions

generating

points

tangent

planes

positive

curvature

negative

curvature

changing

curvature

freeform

single

curvature

double

curvature

connec-

tions

1 2 3 4 5 6

Page 48: Rasmus Holst - Portfolio
Page 49: Rasmus Holst - Portfolio
Page 50: Rasmus Holst - Portfolio

Advanced building design

LM Project - Copenhagen

The LM Project is an architectural competition that concerns the design of a new multi-use offi ce building complex con-necting Marmormolen pier and Langelinie pier. The complex project is meant to be the entrance gate to Copenhagen and act as a trademark for the city.

This project takes the Steven Holl competition project as its starting point and focus on the Langelinie-Tower.

As part of the 6 man team with different areas of expertise, I was the architect to combine the different expertises to obtain the best results in the realized documentation of the project

Page 51: Rasmus Holst - Portfolio
Page 52: Rasmus Holst - Portfolio

Core

q w

E

Technicalroom Elevator Elevator Elevator

Elevator Elevator Elevator

Kitchen +Lounge area

Meeting room

Open office

Office level 0.0

Office level0.300

Open office

Office

Office level 0.0

Office

Printer/copy room

Terasse

Café/Lounge areaSea view area

Kitchen café

Retail store

Retail store

Retail store

Retail storeMain entrancePedestrian

Main entrancePublic transport Overall reception

Information/lobby

Entrance/exit Entrance/exit

Entrance/exit

Entrance/exit

Entrance/exit

Core

q w

E

Technicalroom

Elevator Elevator Elevator

Elevator Elevator Elevator

Page 53: Rasmus Holst - Portfolio
Page 54: Rasmus Holst - Portfolio
Page 55: Rasmus Holst - Portfolio

Open officeAll same level 0

Kitchen +Lounge area

Open officeAll same level 0

Kitchen +Lounge area

Office

Office

Meeting room

Open spaceCopy/print

Open spaceCopy/print

Terasse

Terasse

Core

q w

E

Technicalroom Elevator Elevator Elevator

Elevator Elevator Elevator

Café/Lounge areaSea view area

Terasse entrance/exit

Terasse

Auditorium

RetailSmaller shops +food/coffee stands

Core

q w

E

Technicalroom

Elevator Elevator Elevator

Elevator Elevator Elevator

Bridge Entrance/Exit

Small elevation to bridge deck slab

Presenter room

Page 56: Rasmus Holst - Portfolio

Architectural Design: Computational Environments

UTS - Master of Advanced Architecture.

This studio critically explores the impact of newly forming in-formatic territories and their relationship to the conceptuali-sation and development of architectural design. These infor-matic territories encompass a wide defi nition of integrated information systems from multiple disciplines and may in-clude exploration of responsive or intelligent environments, robotics, intelligent building information modelling (BIM) sys-tems, parametric systems, generative systems, advanced structural modelling systems, genetic algorithms, evolution-ary structural optimisation and design environments, etc.

The project aim is to re-master a unique piece of architec-ture from the great architects of the last century. In this case we where handed Mill Owners Ass. Building in India, Le Corbusier to challenge.

We chose to try and beat the Corbusier on the organisa-tional strategy to a strategy more fi tting for today. Through opened networks and collaboration between borders.

Concept development and programming are run in parallel processes until they melt together to from the fi nal project.

2011

Page 57: Rasmus Holst - Portfolio
Page 58: Rasmus Holst - Portfolio

path

path

path

interspace

interspace

room

room

room

space

place

place

CORRIDOR

CORRIDOR

DISCRETE SPACES

ENFILADE

PATH

PATH

Page 59: Rasmus Holst - Portfolio

[+]

[+]

[+]

[-][-]

[-]

[+]

[+]

[+]

Page 60: Rasmus Holst - Portfolio
Page 61: Rasmus Holst - Portfolio
Page 62: Rasmus Holst - Portfolio

solar decathlon ´12

fold

Solar decathlon 2012Each year the U.S. Department of Energy Solar Decathlon challenges 20 collegiate teams to design, build, and oper-ate solar-powered houses that are cost-effective, energy-ef-fi cient, and attractive. This year the DTU team was selected amongst fi nal 10 to build and compete in Madrid

After returning from my stay in Sydney, Australia, the pro-ject had been going on for a while and I was asked to look at the geometry and buildability of the Fold project.

The architectural vision of the Fold project was to fold a regular rectangle into the building envelope. There are pa-rameters that needs to be fulfi lled, amongst these are:- Adjustable folded geometry- Maximum area of the roof with 20 degrees south slant- Usable heights within the house- Construction site envelope

The script was set up to relate to all of these parameters, quickly generate a correct geometry and output results.

Page 63: Rasmus Holst - Portfolio
Page 64: Rasmus Holst - Portfolio

Superlight VoronoiSuperlight structures

Superligth VoronoiSuperlight structures is the initiative to use the principles of superlight concrete by Prof. Kristian Hertz (DTU).

This project is an example of architectural engineering from beginning to end. The superlight principle resembles very much the skin and bone structures known from our body and in nature.

We looked at the special cell structures found many places in nature. This cellular pattern is interesting when thinking of optimal structures. Looking into this using mathematical theory of Voronoi, we created a parametric model.

This model was connected with structural analysis software ROBOT and optimal confi gurations in relation to stress tra-jectories were tried out.

The theory, inspiration and scripting where combined in a design case - House in Gêres, by Correia/Ragazzi Archi-tects. The reason for choosing this particular project, was the huge cantilever structure, which gives a big challenge in architecture.

Eventually using the superlight concrete principle, which combines strong concrete where necessary and lightweight concrete elsewhere, the building ended up weighing less than half of the original while changing the expression com-pletely. The production and erection method is proposed.

This method turned out to be very useful, and the combina-tion of ideas, parametric modelling and engineering analysis software will be suitable for all kinds of projects.

2012

s

a cell

org

math

voron

nature

Page 65: Rasmus Holst - Portfolio

structure

force distribution

anic

noi

skin/bone

optimized system

Page 66: Rasmus Holst - Portfolio

STRUCTURAL ANALYSIS OF SIMPLE MODEL

SIMPLIFICATION OF MAIN STRESS TRAJECTORIES

Page 67: Rasmus Holst - Portfolio
Page 68: Rasmus Holst - Portfolio
Page 69: Rasmus Holst - Portfolio
Page 70: Rasmus Holst - Portfolio

Virtural construction-From a management perspective

Tuborg Sundpark - case.The virtual construction process is about building and using BIM models to setup and create 5D models for time sched-uling and cost estimates.

BIM stands for Building Information Modelling - which basi-cally means that we model geometry containing the needed information. In this process clash-detection and validaition is possibel and very necesarry to obtain great buildability and setup cost and design alternatives.

If setup correctly, these models will be very useful in the planning and management process. Location based sched-uling means to set different zones on a construction site, so that subcontractors can work in different places at the same time. This leads to Flowline chart, which gives a very easy-to--understand plan of the whole construction for all parties.

Page 71: Rasmus Holst - Portfolio

3D model - BIM

Classificationsystem

Price data Labour data

VICO Office

Structural model

Project price Project plan

Energi model- other analysis models

• Overview

• Project setup

• 3D model - ArchiCAD

• Visual validation

Link

• 5D model - VICO offi ce

• Cost estimate

• Time estimate - LBS

Alternative 1 Alternative 2

CLASH DETECTION LOCATION BASED SCHEDULING

Page 72: Rasmus Holst - Portfolio

ArchiNice Flowline view Tuborg Sundpark - ArchiNiceResponsible person: version 25-4-2012 15:19 Planner:

2012 Mar

13 Apr 14 15 16 17 18

May 19 20 21 22

Jun 23 24 25 26

Jul 27 28 29 30 31

Aug 32 33 34 35

Sep 36 37 38 39

Oct 40 41 42 43 44

Nov 45 46 47 48

Dec 49 50 51 52 1

2013 Jan

2 3 4 5 Feb 6 7 8 9

Mar 10 11 12 13

A1

2 3 4 5

Interior

Structure

East

West

Fourth floor

Third floor

Second floor

First floor

Fourth floor

Third floor

Second floor

First floor

Ground

Basement@4

Fourth floor

Third floor

Second floor

First floor

Ground

Basement@4

East@4

West@4

East@4

West@4

East@4

West@4

East@4

App 1App 2App 1App 2App 1App 2App 1App 2App 1App 2

Basement

App 1App 2App 1App 2App 1App 2App 1App 2App 1App 2

Basement

East

West

East

West

East

West

East

E

1

11

1ROOF-E 1

ROOF-W

1

NG

S,EL

EVAT

OR

S)-E

1

ELEV

ATO

RS)

-W

1

S(B

ALCO

NYDO

ORS

)-E

1

LCO

NYDO

ORS

)-W

1

ONI

ES(R

AILI

NGS)

-E

1

AILI

NGS)

-W

1

-E

1

1

INDO

OR

WAL

LS- E

1

INDO

OR

WAL

LS- W

1

PAINTING(APP.)-E

2

PAINTING (APP.)-W

2

BATHROOMS-E

1

BATHROOMS-W

1

FLOORS AND CEILINGS- E

1

FLOORS AND CEILINGS- W

1

KITC

HEN,

WAR

DRO

BES-

E

1

KITC

HEN,

WAR

DROB

ES-W

1

INNE

RDO

ORS

-E

1

INNE

RDO

ORS

-W

1

LAND

SCAP

ING

1

PAIN

TING

(STA

IRS)

-E

1

PAIN

TING

(STA

IRS)

- W

1

1

Proj

ect s

tart

Proj

ect e

nd

Mile

ston

e: O

rder

con

cret

e

Mile

ston

e: O

rder

win

dow

s

Total price 32.557.880,41 dkr.

1 Substructure 817.888 kr.

2 Superstructure 14.073.269 kr.

3 Finishes 9.297.149 kr.

4 Fittings 1.161.918 kr.

5 Mechanical & electrical 6.556.278 kr.

6 Site 126.377 kr.

7 Salaries 525.000 kr.

COST CALCULATION

FLOWLINE CHART

RESSOURCE CHART

Page 73: Rasmus Holst - Portfolio

CONSTRUCTION SITE

Page 74: Rasmus Holst - Portfolio

Think, script, build-MASTER THESIS 2012/2013

Think, script, build.

Architectural engineering through parametric modelling of intelligent systems in architecture.

This is a project about programming of intelligent systems by implementing information of physical behaviour, material-properties and connection design regarding advanced ar-chitectural projects.

The motivation and inspiration for this project are the smooth shapes that come from bending and deforming simple elements. Furthermore, the fact that these shapes come from the very nature of minimizing internal potential energy, makes this approach very interesting in terms of both architecture and engineering.

2012/13

ID[120284]

ID[74950]

ID[11238]

ID[2221100]

ID[000122]ID[012401]

ID[3521]

ID[0284201]

ID[0284201]

I

ID[0284201]

ID[461203]

ID[012401]

ID[0124]

ID[751339]

ID[212910]

ID[212910]

ID[461203]

ID[8171102]

ID[3811264]ID[12

ID[01024]

ID[461203]

Page 75: Rasmus Holst - Portfolio

Fig. 1 New main office - Birdview. Henning Larsen Architects ©

01 - EUROPEAN PATENT OFFICE

02 - STRUCTURAL ANALYSIS. FREEFORM TRUSS

Page 76: Rasmus Holst - Portfolio

03 - SIMPLE ADVANCED STRUCTURES

Page 77: Rasmus Holst - Portfolio

404 - PARAMETRIC INVESTIGATIONS

Page 78: Rasmus Holst - Portfolio

12

3

Z

N

05 - CASE STUDY. JUKBUIN PAVILLION

Page 79: Rasmus Holst - Portfolio

κκmax max = (fffff(f(f(ff(f(f(f(f(fffffff(fff(f(f(ffffffffffffffffff( y ff / //////////////////////// (((((((((((((((((((((((((((((((((((((((((-z-z-zz-zz-z-z-z-z-z-z-zz-z-z-z-zzzz-zz-z-z-zz-z---zz-----z--z--zzzzzzzz∙E∙E∙E∙E∙E∙E∙E∙E∙E∙E∙E∙E∙E∙E∙E∙E∙E∙EE∙EEE∙E∙EE∙EE∙E∙EEEEE(((((((((((((((( )))))))))))))))))))))))))))))))EEEEEEEEEEEEEEEEEEEEEEEEE ))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))κ = 11//((rr))

A geometrical regular GRID can be created of triangles, squares and hexagons.Controls: type, side length, rotation, boundary.

SIMULATION of member behaviour, through dy-namic relaxation with Kangaroo. Controls: Anchor points, controlpoints, properties, internal and external forces.

EVALUTION of the curvature of the curves. Section and material properties determine the allowed curvature and evaluates the actual max. curvature in each element. Controls: Cross section, material strength.

PREPARATION of geometry for FEM analysis by dividing splines into straight elements and fi nding normals of each part element. These normals, are also used for creating solid geometry in Rhino. Controls: Geodesic curves or Kangaroo output.

STRUCTURE. Sweep of cross-sections along the element curves with the correct rotation, corre-sponding to the normals at the given points. Here also the different sets of elements are offset to the correct layer.

BENDING stresses from the initial bending M0 is calculated in the centre of each part element. This can then be super-positioned with moment from external loads.

FINITE ELEMENT ANALYSIS are carried out using plugin analysis software Karamba3d. Section and element properties follows settings earlier in the script. Support, materials, loads and combinations are setup and analysis are carried out.

1

4

5

6

7

2

3

4

5

6

7

GR

IDSI

MU

EVAL

PREP

STR

UBE

ND

FEM

.A

Mz

My

M = -EI/rEM

Page 80: Rasmus Holst - Portfolio

06- NORDEA BANK ØRESTAD

Page 81: Rasmus Holst - Portfolio

WOOD STRUCTURE

Length 7014,55 m

Volume 34,7 m3

Density 600 kg/m3

Total weight 20820 kg

Lifetime ... years

Cost ... Dkr

GLASS STRUCTURE

Area 1117,5 m

Total weight ...kg

Lifetime ... years

Cost ... Dkr

SOLAR CELLS

Area 270 m2

Energy gain 29349 kWh/y

Lifetime ... years

Cost ... Dkr

Payback time ... years

Page 82: Rasmus Holst - Portfolio

07- PAVILLION PROTOTYPE

Page 83: Rasmus Holst - Portfolio
Page 84: Rasmus Holst - Portfolio

mAKING SPACES-PAVILLION, koNGENS HAVE, cph

Making spacesCompetetion proposal.

This pavillion is considered as a great opportunity to ex-periement with wood as a material in a combination of digi-tal formfi nding and simple fabrication.

It is a project about a practical approach to parametric de-sign, with design, material and fabrication as equal param-eters.

The inspiration for the project is the way that we intereact and position us self amongst each other.

2012/13

HAVE, cphHAVE, cph

great opportunity to ex-in a combination of digi-on.

roach to parametric de-rication as equal param-

e way that we intereact other.

Page 85: Rasmus Holst - Portfolio

PRACTICAL \\

PARAMETRICISM

Page 86: Rasmus Holst - Portfolio
Page 87: Rasmus Holst - Portfolio

GEOMETRI //DIAGRAMGEOMETRI //DIAGRAM

FORM

PUNKTER

VORONOI

PUNKTER

CELLER

Page 88: Rasmus Holst - Portfolio

SNIT AA 1:50

PLAN 1:50

3,0m

A A

Page 89: Rasmus Holst - Portfolio

OPSTALT 1:507,0m

Page 90: Rasmus Holst - Portfolio

Recommendations

Page 91: Rasmus Holst - Portfolio
Page 92: Rasmus Holst - Portfolio
Page 93: Rasmus Holst - Portfolio

architectural engineering:Design, parametricism, structure

Portfolio - Rasmus Holst