rastas spear : radiation-shapes-thermal protection

30
Ra diation- S hapes- T hermal Protection Investig a tion s for High Sp eed Ea rth R e-entry June 21st 2012 1 J-M BOUILLY, A. PISSELOUP - EADS Astrium - Saint-Médard-en-Jalles, France O. CHAZOT - Von Karman Institute, Rhode-St-Genese, Belgium G. VEKINIS - Institute of Materials Science, NCSR "Demokritos", Greece A. BOURGOING - EADS Astrium Space Transportation, Les Mureaux, France B. CHANETZ - ONERA, Meudon, France O. SLADEK - Kybertec, s.r.o., Chrudim, Czec Rep. RASTAS SPEAR : Radiation-Shapes-Thermal Protection Investigations for High Speed Earth Re-entry The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 241992 1 9th International Planetary Probe Workshop - Toulouse, France 2012, June 2-4 - Session 6B "Earth entry and Sample Return"

Upload: others

Post on 01-Jan-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: RASTAS SPEAR : Radiation-Shapes-Thermal Protection

Radiation-Shapes-Thermal Protection Investigations

for High Speed Earth Re-entry

June 21st 2012 1

J-M BOUILLY, A. PISSELOUP - EADS Astrium - Saint-Médard-en-Jalles, FranceO. CHAZOT - Von Karman Institute, Rhode-St-Genese, BelgiumG. VEKINIS - Institute of Materials Science, NCSR "Demokritos", GreeceA. BOURGOING - EADS Astrium Space Transportation, Les Mureaux, FranceB. CHANETZ - ONERA, Meudon, FranceO. SLADEK - Kybertec, s.r.o., Chrudim, Czec Rep.

RASTAS SPEAR :Radiation-Shapes-Thermal Protection Investigations for High Speed Earth Re-entry

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 241992

1

9th International Planetary Probe Workshop - Toulouse, France2012, June 2-4 - Session 6B "Earth entry and Sample Return"

Page 2: RASTAS SPEAR : Radiation-Shapes-Thermal Protection

Radiation-Shapes-Thermal Protection Investigationsfor High Speed Earth Re-entry

June 21st 2012 ‐9th International Planetary Probe Workshop ‐ Toulouse, France 

Session 6B "Earth entry and Sample Return"2

Overview

• Introduction• Objectives• WBS

• Overview of technical activities• Review of System Requirements• Ground Facilities Improvement• Key Technologies for High Speed Entry• Ablation – flight mechanics coupling assessment • Gas-surface interactions modeling

• Next Steps / Conclusion

Page 3: RASTAS SPEAR : Radiation-Shapes-Thermal Protection

Radiation-Shapes-Thermal Protection Investigationsfor High Speed Earth Re-entry

June 21st 2012 ‐9th International Planetary Probe Workshop ‐ Toulouse, France 

Session 6B "Earth entry and Sample Return"3

General Objective• Sample Return Missions : an important

step for Solar System Exploration• After collecting samples, any return

mission will end by high-speed re-entryin Earth’s atmosphere.

• This requires strong technologicalbases and a good understanding of theenvironment encountered during theEarth re-entry.

• Investment in high speed re-entrytechnology development is thusappropriate today

• to enable future planetary explorationmissions in the coming decades.

• Phobos Sample Return, Marco Polo,…, Mars Sample Return

Rastas Spear project• to increase Europe’s knowledge in high

speed re-entry vehicle technology

Main focus : Sample Return Capsule

Other potential applications : ARV, Venus

Page 4: RASTAS SPEAR : Radiation-Shapes-Thermal Protection

Radiation-Shapes-Thermal Protection Investigationsfor High Speed Earth Re-entry

June 21st 2012 ‐9th International Planetary Probe Workshop ‐ Toulouse, France 

Session 6B "Earth entry and Sample Return"4

• In the frame of EC FP7 second call• Activity 9.2 – strengthening of

space foundations / research to support space science exploration

• SPA.2009.2.1.01 Space Exploration• Duration

• Sep 2010 - Sep 2012 (*)(*)+ tbd extension

• Status : • Team composed of 10 partners• Astrium is the coordinator

• Budget • total : 2.3 M€• including 1.6 M€ EU grant

• More at www.rastas-spear.eu

Introduction /Acknowledgement

Page 5: RASTAS SPEAR : Radiation-Shapes-Thermal Protection

Radiation-Shapes-Thermal Protection Investigationsfor High Speed Earth Re-entry

June 21st 2012 ‐9th International Planetary Probe Workshop ‐ Toulouse, France 

Session 6B "Earth entry and Sample Return"5

10 partners from 8 European countries

AST-F

ONERA

CNRS

VKI

CFS

CIRA

IoA

MSU

DEMOKRITOS

KYBERTEC

LANDING GEAR DEPARTMENT

Page 6: RASTAS SPEAR : Radiation-Shapes-Thermal Protection

Radiation-Shapes-Thermal Protection Investigationsfor High Speed Earth Re-entry

June 21st 2012 ‐9th International Planetary Probe Workshop ‐ Toulouse, France 

Session 6B "Earth entry and Sample Return"6

WBS

WP1: Review of System Requirements

1.1 Atmosphere modelling 1.2 Trajectories 1.3 Aerodynamics & ATD 1.4 Vehicle Design

WP3Key Technologies for

High Speed Entry

3.1: Choice of TPS + Joints

3.2: Flow tests

3.3: Breadboardmanufacturing

3.4: Crushable Structure

WP4Ablation- Flight Mechanics

Coupling assessment

4.1 Tools coupling

4.2 Ablation couplingassessment

4.3 Engineering modellingCorrection by CFD

WP5Gas-Surface Interactions

Modelling5.1: Review of surface

roughness and blowing influence

5.2: Ground ExperimentPreparation

5.3: CFD Modelling

5.4: Synthesis of WP

WP2Ground Facilities

Improvement2.1: Analysis of Current

Ground Facilities

2.2: Shock tube technology

2.3: Ballistic Range Technology

2.4: Plasma GeneratorTechnology

WP6

Man

agem

ent,

Dis

sem

inat

ion

and

Expl

oita

tion

6.1

Man

agem

ent

6.2

Dis

sem

inat

ion

& E

xplo

itatio

n

2.5: Synthesis

AST CIRACNRSVKI

AST-FCIRADEMOKRITOSIOA

ASTCIRACNRS

ASTCFSMSUONERA

ASTCNRS

AS

T+

CN

RS

+ W

P le

ader

s +

Site

lead

ers

Page 7: RASTAS SPEAR : Radiation-Shapes-Thermal Protection

Radiation-Shapes-Thermal Protection Investigationsfor High Speed Earth Re-entry

WP 1 results: Review of System Requirements

• WP 1.1: Atmosphere modelling• Atmosphere compositions for Earth and Venus,

• WP 1.2: Trajectories• Identification of generic aeroshapes with respect

to candidate exploration missions. • Investigation focused on Earth entry,

• Flight domain determined with constraints on: - max heat flux, max heat load, max g-load

• WP 1.3: Aerodynamics & Aerothermodynamics• Convective and radiative heat flux

• WP 1.4: Vehicle design• Preliminary design of the generic capsule, and

determination of TPS thickness• Definition of the Mass Centering and Inertia (MCI)

• Preliminary TPS related requirements for other WP : surface recession, mass loss, temperature evolution, gas flow rate,…

See details on IPPW8 poster and paper

June 21st 2012 ‐9th International Planetary Probe Workshop ‐ Toulouse, France 

Session 6B "Earth entry and Sample Return"7

Sphere cone 45°Diameter D =1100 mm

Nose radius Rn = 275 mmMass m = 46.6 kg

t (s)

Sizi

ngH

eatF

lux

(wat

t/2 )

0 10 20 30 40 50 600

2E+06

4E+06

6E+06

8E+06

1E+07

1.2E+07

1.4E+07

1.6E+07

1.8E+07

ConvectiveRadiativeTotal

Ve= 12300 m/s - e = -12.5 °

Stagnation Point

Page 8: RASTAS SPEAR : Radiation-Shapes-Thermal Protection

Radiation-Shapes-Thermal Protection Investigationsfor High Speed Earth Re-entry

June 21st 2012 ‐9th International Planetary Probe Workshop ‐ Toulouse, France 

Session 6B "Earth entry and Sample Return"88

D2.1 : Review on High Enthalpy Facilities

X2X3

F4TH2 HEG

HIESTJF-10LENS XXEAST

HFFAFT5

Only few facilities (in blue) are able to duplicate super orbital reentry conditions

Page 9: RASTAS SPEAR : Radiation-Shapes-Thermal Protection

Radiation-Shapes-Thermal Protection Investigationsfor High Speed Earth Re-entry

June 21st 2012 ‐9th International Planetary Probe Workshop ‐ Toulouse, France 

Session 6B "Earth entry and Sample Return"99

D2.2 Ground Facilities for Radiation Studies Review on Spectroscopy Instrumentation

ICP Torch, EM2C

ICP-T64 Torch, LAEPT

SR-5 PHEDRA, ICARE

Scirocco, CIRA

Shock Tube, KAIST

VUT-1 Shock Tube, MIPT

T5, Caltech

HVST, JAXA

HEG, DLR

LENSXX, CUBRC

HIEST, JAXA

X2/X3, UQ

ARC, NASA Ames

EAST, NASA Ames

100 1000 10000

Wavelength (nm)

Wavelength range of dedicated instrumentation for high enthalpy and plasma facilities

All tools are operational to build-up radiation databases

Page 10: RASTAS SPEAR : Radiation-Shapes-Thermal Protection

Radiation-Shapes-Thermal Protection Investigationsfor High Speed Earth Re-entry

June 21st 2012 ‐9th International Planetary Probe Workshop ‐ Toulouse, France 

Session 6B "Earth entry and Sample Return"1010

D2.4 SynthesisPre-design of hyper velocity facilty

Target envelope

Preliminary design for an high Enthalpy Expansion tube facility : HEX

The designed facility targets duplication of super orbital testing condition

Page 11: RASTAS SPEAR : Radiation-Shapes-Thermal Protection

Radiation-Shapes-Thermal Protection Investigationsfor High Speed Earth Re-entry

June 21st 2012 ‐9th International Planetary Probe Workshop ‐ Toulouse, France 

Session 6B "Earth entry and Sample Return"1111

D2.4 SynthesisTesting strategy for super-orbital reentry

The testing strategy involved hyper velocity facility together with plasma wind tunnel to developed radiation and GSI models to be coupled with CFD tools.

Page 12: RASTAS SPEAR : Radiation-Shapes-Thermal Protection

Radiation-Shapes-Thermal Protection Investigationsfor High Speed Earth Re-entry

June 21st 2012 ‐9th International Planetary Probe Workshop ‐ Toulouse, France 

Session 6B "Earth entry and Sample Return"12

WP3: Key Technologies for High Speed Entry

WP3.1 : choice of TPS + joints• Based on ASTERM material• Elaboration of a relevant set

of criteria• Screening of adhesives

• 2 products compared with ref CV1142

• Elementary characterisation• (shear, bending, tensile)

WP3.2• Manufacturing of samples

for testing on Scirocco• Then analysis of the tests

resultsWP3.3• Manufacturing of a

demonstrator

Page 13: RASTAS SPEAR : Radiation-Shapes-Thermal Protection

Radiation-Shapes-Thermal Protection Investigationsfor High Speed Earth Re-entry

June 21st 2012 ‐9th International Planetary Probe Workshop ‐ Toulouse, France 

Session 6B "Earth entry and Sample Return"13

WP3.4. Crushable StructuresGeneral overview

• Main task of the research: developingmethodology for selection and evaluation ofenergy absorbing material based onnumerical simulations coupled with simpleshape specimens impact tests

• Selection of energy absorbing material formax. acceleration approximately 2000 g

• Based on static and dynamic tests,developing methodology for selectionenergy materials under definedrequirements

• Current stage of research

Page 14: RASTAS SPEAR : Radiation-Shapes-Thermal Protection

Radiation-Shapes-Thermal Protection Investigationsfor High Speed Earth Re-entry

June 21st 2012 -9th International Planetary Probe Workshop ‐ Toulouse, France 

Session 6B "Earth entry and Sample Return"14

WP3.4 Preparation Air canon calibration and testing using

1.6 kg bullet First-stage high-speed camera tests

for finding optimal experiment setup Final energy absorbing materials selection

for second-stage test

SR10 CELL10

Page 15: RASTAS SPEAR : Radiation-Shapes-Thermal Protection

Radiation-Shapes-Thermal Protection Investigationsfor High Speed Earth Re-entry

June 21st 2012 -9th International Planetary Probe Workshop ‐ Toulouse, France 

Session 6B "Earth entry and Sample Return"15

WP3.4 Achievements

Comparison of experiment and numerical data for SR10 material

Evaluation methodology:• Static tests for energy absorbing materials

to obtain stress-strain characteristics• Dynamic numerical simulations using static

experimental data• Numerical simulations data evaluation and

calibration using dynamic experimentalimpact tests

Current stage of research• Improved numerical SPH and FEM LS-DYNA

model for testing crushable foam materials• Final calibration for impact tests (high-speed

camera settings, lighting, position etc.)• Good correlation between numerical

and experiment data numerical SPH and FEMLS-DYNA

Page 16: RASTAS SPEAR : Radiation-Shapes-Thermal Protection

Radiation-Shapes-Thermal Protection Investigationsfor High Speed Earth Re-entry

June 21st 2012 ‐9th International Planetary Probe Workshop ‐ Toulouse, France 

Session 6B "Earth entry and Sample Return"16

WP3.4 Anticipated tasks before completion Full-scale impact test of chosen material

for: bullet mass m=5 [kg]impact velocity v= 45 [m/s]material thickness t = 0.115 [m]

Test data analysis and comparisonwith numerical simulation

Page 17: RASTAS SPEAR : Radiation-Shapes-Thermal Protection

Radiation-Shapes-Thermal Protection Investigationsfor High Speed Earth Re-entry

June 21st 2012 ‐9th International Planetary Probe Workshop ‐ Toulouse, France 

Session 6B "Earth entry and Sample Return"17

WP4: Ablation – flight mechanics coupling assessmentMain Objectives Based on WP1 results as inputs : flight environment, vehicle configuration

• 1- To assess impact of massive ablation on aerodynamic performances and stability along the entry trajectory path.

• 2- To identify recession level that could be tolerated with respect to capsule aerodynamic performances and stability requirements.

• 3- To elaborate and validate an engineering tool that couples:- Aeroshape aerodynamic, - Trajectory and stability,- Aerothermal environments,- TPS material thermal response- and then recession determination resulting in aeroshape modification.

• 4- To translate these results into criteria for maximum recession requirements in relation with usual landing accuracy, g-loads, heating and incidence profile issues.

Page 18: RASTAS SPEAR : Radiation-Shapes-Thermal Protection

Radiation-Shapes-Thermal Protection Investigationsfor High Speed Earth Re-entry

June 21st 2012 ‐9th International Planetary Probe Workshop ‐ Toulouse, France 

Session 6B "Earth entry and Sample Return"18

WP4: Ablation – flight mechanics coupling assessment

Work logic:

Synthesis (AST)

WP4.1 – Tools Coupling (AST)Coupling of following tools:

- Ablation & thermal TPS response code including Aeroshape modification

- Shock shape &- Pressure distribution & - Aerodynamic coefficients determination by CFD code, including ablation gas products injection

- 6 DoF Trajectory Tool

WP4.2 – Tools Coupling Assessment (AST)

WP4.3 – Engineering modellingCorrection by CFD (AST – CIRA - CNRS)

- Assessment of Ablations-flight mechanics effects for candidate Earth Entry capsule

- Assessment of Aeroshape modification (CIRA)

- Assessment of Radiation (CIRA-CNRS)

- Assessment of Surface mass blowing (CIRA)

- Identification of requirements for maximum TPSrecession

- Sensitivity to TPS ablative properties

- Development of engineering tool to determine radiating heating vs. recession rate (AST)

- Engineering correlation derivation from CFD computations (AST)

Page 19: RASTAS SPEAR : Radiation-Shapes-Thermal Protection

Radiation-Shapes-Thermal Protection Investigationsfor High Speed Earth Re-entry

June 21st 2012 ‐9th International Planetary Probe Workshop ‐ Toulouse, France 

Session 6B "Earth entry and Sample Return"19

WP 4.1 – Tools coupling

Main requirements:• Modular tool:

To permit easily the change of module (software) inside a functional class• Robustness:

High requirement of robustness is needed for high speed entry• Evolutionary tool:

Basic requirement for software• To perform a complete trajectory within 12 CPU hours

To keep the Enginneering tool spirit

Aerodynamics

…CFD Euler

CFD NS

Trajectography

6DoF

Input/output

Page 20: RASTAS SPEAR : Radiation-Shapes-Thermal Protection

Radiation-Shapes-Thermal Protection Investigationsfor High Speed Earth Re-entry

June 21st 2012 ‐9th International Planetary Probe Workshop ‐ Toulouse, France 

Session 6B "Earth entry and Sample Return"20

WP 4.1 – Tools coupling

Trajectory Tool - 6DoF

Aero-thermodynamics

Engineering

Tool

Material

Response

Tool

Ablated

Aeroshape

Rebuilding

Tool

CFD Tool

Mass

Centering

Inertia

Tool

(Mass, Ve,

FPAe)

Initial inputs:- Initial profile- Trajectory (Ve, FPAe, Mass)- AEDB on initial profile

n

n+1

Z, V, T, …

Pw, qw conv, qw rad

1D code- In-depth conduction- Blowing- Pyrolysis- Surface recession- Mass loss / m2

m, Tw , Srec, Cs, m [kg/m2]

CDshape mod.

MCI update

.

3DoF mode

2D-axiInviscid2<M<42

Convergence obtained if (CDnom)n=(CDabla)n+1 < 1%

Xabla,YablaM loss [kg]

Page 21: RASTAS SPEAR : Radiation-Shapes-Thermal Protection

Radiation-Shapes-Thermal Protection Investigationsfor High Speed Earth Re-entry

June 21st 2012 ‐9th International Planetary Probe Workshop ‐ Toulouse, France 

Session 6B "Earth entry and Sample Return"21

WP 4.2 – Ablation coupling assessment

• Trajectory analysis – Summary

Parameters Effects compared with nominal case

Maximum levels difference

% vs nominal case Criticality

Velocity 50 75m/s ~1 % Low

Mach 0.15 0.25 ~1 % Low

Deceleration -0.51g 1 % 1.5 % Low

Dynamic pressure 0.91.3kPa 3 % 3.5 % Medium

Stagnation pressure 23kPa 2.5 % 4 % Medium

Heat Fluxes <100W/m2 ~0 % Negligible

Heat Load 1.52.5MJ/m2 1 % 2 % Medium

Range 0.81.4km ~0.3 % Low

Page 22: RASTAS SPEAR : Radiation-Shapes-Thermal Protection

Radiation-Shapes-Thermal Protection Investigationsfor High Speed Earth Re-entry

June 21st 2012 ‐9th International Planetary Probe Workshop ‐ Toulouse, France 

Session 6B "Earth entry and Sample Return"22

Task # 1: Assessment of aeroshape modification (M)Task # 2: Assessment of Radiation Coupling (R)Task # 3: Assessment of Surface Mass Blowing (B)

Re-entry Trajectory @ FPAe=-12.5 deg

0

20000

40000

60000

80000

100000

120000

0 2000 4000 6000 8000 10000 12000 14000

Velocity, m/s

Alti

tude

, m

TrajectoryPoints MPoints RPoints B

6 54 3

2 1

VEOD

ND

I

10% 90%

WP4.3 – Engineering Modelling Correction by CFD

Page 23: RASTAS SPEAR : Radiation-Shapes-Thermal Protection

Radiation-Shapes-Thermal Protection Investigationsfor High Speed Earth Re-entry

June 21st 2012 ‐9th International Planetary Probe Workshop ‐ Toulouse, France 

Session 6B "Earth entry and Sample Return"23

WP5: Gas-surface interactions modeling

• WP 5.1 Review of surface roughness• Bibliography about roughness and blowing (Onera/MSU)• Turbulence model recommendations (MSU/Onera)• Critical analysis from real flight (Astrium/MSU)

• WP 5.2 Ground experiment• Tests in Mach 5 blow down wind tunnel (Onera)• Test analyses (Euler + boundary layer)

• WP 5.3 Model implementation• Engineering model assessment (MSU/CFS)

Next slides

Page 24: RASTAS SPEAR : Radiation-Shapes-Thermal Protection

Radiation-Shapes-Thermal Protection Investigationsfor High Speed Earth Re-entry

June 21st 2012 ‐9th International Planetary Probe Workshop ‐ Toulouse, France 

Session 6B "Earth entry and Sample Return"24

WP5: Gas-surface interactions modelingExperiments in the blow down wind tunnel R2Ch

• Test Objective : qualification of the wall heat-flux with roughness effects and different blowing rates (calculated on the maximum heat-flux trajectory[from Astrium study- WP1])

• without blowing (reference case)• with a moderate blowing (m1 = 0.5 m2)• with a maximal blowing (m2 to be

determined)

• Wind tunnel characteristics :• Mach 5 nozzle with an• exit diameter : 326 mm• pst : from 7 105 Pa to 50 105 Pa ; Tst = 650 K• Re (L=1 m) = from 5.95 106 to 42.5 106

High pressure supply

Test chamberMach 5 nozzle

Page 25: RASTAS SPEAR : Radiation-Shapes-Thermal Protection

Radiation-Shapes-Thermal Protection Investigationsfor High Speed Earth Re-entry

June 21st 2012 ‐9th International Planetary Probe Workshop ‐ Toulouse, France 

Session 6B "Earth entry and Sample Return"25

WP5: Gas-surface interactions modelingExperiments in the blow down wind tunnel R2Ch

Exploded view of the test set-up

25

During tests : - Heat flux measurements by infrared thermography, - Schlieren photographs

•Model : Flat plate with a sharp leading edge, already available from a prior test campaign

Page 26: RASTAS SPEAR : Radiation-Shapes-Thermal Protection

Radiation-Shapes-Thermal Protection Investigationsfor High Speed Earth Re-entry

June 21st 2012 ‐9th International Planetary Probe Workshop ‐ Toulouse, France 

Session 6B "Earth entry and Sample Return"26

WP5: Gas-surface interactions modeling

• Three porous ceramic insert (porosity 48 %)- without roughness- with roughness r1 (pyramid height 100 microns)- with roughness r2 (pyramid height 300 microns)

• Characteristics of the roughness : pyramids joined and in staggered rows

k

b

2b

l = 46,3mm

l= 46,3 mmL = 225,8mm

Page 27: RASTAS SPEAR : Radiation-Shapes-Thermal Protection

Radiation-Shapes-Thermal Protection Investigationsfor High Speed Earth Re-entry

June 21st 2012 ‐9th International Planetary Probe Workshop ‐ Toulouse, France 

Session 6B "Earth entry and Sample Return"27

0,000

20,000

40,000

60,000

80,000

100,000

120,000

140 190 240 290 340

thcIRIR ligneechantillon

• Available results for first runs (smooth; no blowing)

• Test campaign is being continued• blowing effects on smooth

insert• Rough insert without then with

blowing• Computations and comparison

with the experimental results, after implementation of both roughness and blowing effects in different solvers.• Euler solver (ONERA)• NSMB- Navier-Stokes Multi-

Blocks (CFS)• Commercial code (MSU)

WP5: Gas-surface interactions modeling

(smooth insert without blowing at Pst = 7 105 Pa)

Evolution of the Stanton number St = Φ / ρinf Uinf Cp (Tst – Tw)

Page 28: RASTAS SPEAR : Radiation-Shapes-Thermal Protection

Radiation-Shapes-Thermal Protection Investigationsfor High Speed Earth Re-entry

June 21st 2012 ‐9th International Planetary Probe Workshop ‐ Toulouse, France 

Session 6B "Earth entry and Sample Return"28

Next Steps

WP 2 • Review and description of dedicated shock tube and plasma facilities : reports to be posted on website

WP 3 •Performance of arc jet tests in Scirocco•Expertise of tested samples•Manufacturing of technological demonstrator•Synthesis of results on crushable materials

WP 4 •Assessment of coupling effects : synthesis to be updated including last results•Preparation of tests on plasma torch at CNRS

WP 5 •Continuation and completion of ground experiments•Numerical rebuilding

Page 29: RASTAS SPEAR : Radiation-Shapes-Thermal Protection

Radiation-Shapes-Thermal Protection Investigationsfor High Speed Earth Re-entry

June 21st 2012 ‐9th International Planetary Probe Workshop ‐ Toulouse, France 

Session 6B "Earth entry and Sample Return"29

Conclusion

• Rastas Spear is a typical R&D project• Part of European Community Framework Programme n°7 (FP7)

• Objective to increase the TRL of • Key technologies• Methodologies

• Frame of the study has been defined• Focus on passive Earth Return Capsule

• Many results have already been acquired• Remaining steps until end of study will allow completion

of overall project objectives• Completion Fall 2012…

• Valuable step towards an actual flight mission

Page 30: RASTAS SPEAR : Radiation-Shapes-Thermal Protection

Radiation-Shapes-Thermal Protection Investigationsfor High Speed Earth Re-entry

June 21st 2012 ‐9th International Planetary Probe Workshop ‐ Toulouse, France 

Session 6B "Earth entry and Sample Return"30

Thank you for your attention

More at www.rastas-spear.eu

30