rate-and-state friction: from analysis to simulation · thrust faults strike-slip faults references...

19
Thrust faults Strike-slip faults References Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber 1 , M. Rosenau 2 , O. Oncken 2 , A. Mielke 3 1 Mathematisches Institut, Freie Universität Berlin, 2 Geologische Systeme: Lithosphärendynamik, GeoForschungsZentrum Potsdam 3 Weierstraß-Institut für Angewandte Analysis und Stochastik March 28, 2017 Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken, A. Mielke

Upload: duongdieu

Post on 30-Jul-2018

227 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Rate-and-state friction: From Analysis to Simulation · Thrust faults Strike-slip faults References Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber1,

Thrust faults Strike-slip faults References

Rate-and-state friction:From Analysis to Simulation

E. Pipping, R. Kornhuber1, M. Rosenau2, O. Oncken2, A. Mielke3

1Mathematisches Institut, Freie Universität Berlin,2Geologische Systeme: Lithosphärendynamik, GeoForschungsZentrum Potsdam

3Weierstraß-Institut für Angewandte Analysis und Stochastik

March 28, 2017

Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken, A. Mielke

Page 2: Rate-and-state friction: From Analysis to Simulation · Thrust faults Strike-slip faults References Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber1,

Thrust faults Strike-slip faults References

Types of faults: two examples

(a) A thrust fault1

Vertical, asymmetric arrangement(b) A strike-slip fault:Horizontal, symmetric arrangement

1Also known as a reverse dip-slip fault (as opposed to a normal fault).Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken, A. Mielke

Page 3: Rate-and-state friction: From Analysis to Simulation · Thrust faults Strike-slip faults References Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber1,

Thrust faults Strike-slip faults References

Outline

1 Thrust faultsFriction frameworksContinuum-mechanical model2D simulation (in detail)3D simulation (at a glance)

2 Strike-slip faultsModelling attempt, open questions

Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken, A. Mielke

Page 4: Rate-and-state friction: From Analysis to Simulation · Thrust faults Strike-slip faults References Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber1,

Thrust faults Strike-slip faults References

Prime example: subduction zone

Seismic

Aseismic

ContinentalAsthenosphere

Aseismic

Rigid BackstopContinentalLithosphere

Seismogenic Zone

Trench Volcanic Arc

Figure: A subduction zone: the source of megathrust earthquakes

Modelling situation: bilateral contact; friction.

Simplifications: small deformation; small strain; one-body problem(bilateral contact with half-space); linear Kelvin–Voigt viscoelasticity.

Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken, A. Mielke

Page 5: Rate-and-state friction: From Analysis to Simulation · Thrust faults Strike-slip faults References Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber1,

Thrust faults Strike-slip faults References

Friction frameworks

Rate-and-state friction

Figure: Velocity-stepping test;|σt | = µ|σn| + C , σn = const.Measurements/ageing/slip lawWesterly granite inside a double direct shear apparatusSource: M. F. Linker and J. H. Dieterich. “Effects ofVariable Normal Stress on Rock Friction: Observationsand Constitutive Equations”. In: Journal of GeophysicalResearch: Solid Earth 97.B4 (1992), pp. 4923–4940. doi:10.1029/92JB00017

Clearly, we can write µ(t) = µ(V )(t) but not µ(t) = µ(V (t)). Ruina’smodel takes the form

µ(t) = µ(V (t), θ(t)) and θ(t) = g(θ(t), V (t))

Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken, A. Mielke

Page 6: Rate-and-state friction: From Analysis to Simulation · Thrust faults Strike-slip faults References Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber1,

Thrust faults Strike-slip faults References

Friction frameworks

Restricted rate-and-state friction

We consider here only the case

µ(t) = µ(V (t), α(t)) with α(t) + A(α(t)) = f (V (t)).

with a monotone operator A and Lipschitz-continuous f .

Example: Dieterich’s ageing law θ = 1 − θVL can be transformed to read

α − e−α

θ0= −V

L

with α = log(θ/θ0).

Not an example: Ruina’s slip law θ = − θVL log θV

L does not fit into thisframework.

More on this matter in the appendix.

Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken, A. Mielke

Page 7: Rate-and-state friction: From Analysis to Simulation · Thrust faults Strike-slip faults References Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber1,

Thrust faults Strike-slip faults References

Continuum-mechanical model

Strong-strong formulationOur initial-value problem reads: find a displacement field u on Ω and ascalar state field α on the boundary segment ΓC such that

σ = Aε(u) + Bε(u) in Ω × [0, T ]∇ · σ + b = ρu in Ω × [0, T ]

u = 0 on ΓD × [0, T ]σn = 0 on ΓN × [0, T ]

u · n = 0 on ΓC × [0, T ]

−σt = µ(|u|, α)|σn| + C|u|

u for u 6= 0

|σt | ≤ µ(0, α) + C for u = 0

on ΓC × [0, T ]

α + A(α) = f (|u|) on ΓC × [0, T ]

Note that we replace the (unknown) σn with a fixed σn. We alsoprescribe initial conditions on u, u, u, and α.

Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken, A. Mielke

Page 8: Rate-and-state friction: From Analysis to Simulation · Thrust faults Strike-slip faults References Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber1,

Thrust faults Strike-slip faults References

Continuum-mechanical model

Weak-strong formulationIn a standard fashion we arrive at the weak formulation2

b(t) ∈ ρu(t) + Au(t) + Bu(t) + γ∗∂Φα(t, ·)(γu(t))

with A, B given by

Av =∫

Ω〈Aε(v), ε(·)〉 and Bv =

∫Ω

〈Bε(v), ε(·)〉.

as well as the friction nonlinearities

Φα(t, v) =∫

ΓC

ϕα(t, x , |v(x)|) dx

ϕα(t, x , v) =∫ v

0µ(r , α(t, x))|σn| + C dr .

We interpret A as a superposition operator in

α(t) + A(α(t)) = f (|γu(t)|).2The precise solution spaces are mentioned on the next slide.

Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken, A. Mielke

Page 9: Rate-and-state friction: From Analysis to Simulation · Thrust faults Strike-slip faults References Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber1,

Thrust faults Strike-slip faults References

Continuum-mechanical model

Analytical resultsFor the restricted type of rate-and-state friction (which makes additionalassumptions on µ), we have been able to show:

• (2017) For any T > 0, we have a unique solution to the coupledweak-strong problem with

u ∈ L2(0, T , V ), u ∈ L2(0, T , V ), u ∈ L2(0, T , V ∗)α ∈ C(0, T , L2(ΓC ))

where V = v ∈ H1(Ω)d : v = 0 on ΓD , v · n = 0 on ΓC .• (2014) For certain time-discretisation schemes (e.g. Newmark,

backward Euler), one needs to solve problems of the form

bn ∈(

λMτ

ρ + A + τ

λBB

)un(t) + γ∗∂Φα,n(γun)

If each step is no larger in size than a certain constant, then all timesteps have unique solutions un, un, un ∈ V and αn ∈ L2(ΓC ).

In both cases, a fixed-point map is employed that turns into a contractionfor sufficiently small time increments. The 2014 result thus also showsthat a fixed-point iteration will converge regardless of the starting point.

Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken, A. Mielke

Page 10: Rate-and-state friction: From Analysis to Simulation · Thrust faults Strike-slip faults References Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber1,

Thrust faults Strike-slip faults References

2D simulation (in detail)

VideoWe run a simulation with the dimensions of (and parameters taken from)a lab-scale analogue model (more on that later).

Figure: A still frame from the video

Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken, A. Mielke

Page 11: Rate-and-state friction: From Analysis to Simulation · Thrust faults Strike-slip faults References Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber1,

Thrust faults Strike-slip faults References

2D simulation (in detail)

Spatial resolution

Figure: Actual spatial resolution of the simulation (wireframe / vertices as dots)

Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken, A. Mielke

Page 12: Rate-and-state friction: From Analysis to Simulation · Thrust faults Strike-slip faults References Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber1,

Thrust faults Strike-slip faults References

2D simulation (in detail)

Surface uplift, numerical performance

0.00 0.20 0.40 0.60 0.80

distance from trench [m]

−20

−10

−5−2.5

02.5

5

10

20·10−6

surfa

ceup

lift

[m]

10−310−210−1

TS size [s]246

FP iter.51015

985

990

995

MG iter.

time

[s]

Figure: Surface uplift, performance of the numerical components:(1) Adaptive time-stepping, (2) Fixed-point iteration, (3) TNNMG3

3Truncated Nonsmooth Newton MultigridRate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken, A. Mielke

Page 13: Rate-and-state friction: From Analysis to Simulation · Thrust faults Strike-slip faults References Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber1,

Thrust faults Strike-slip faults References

2D simulation (in detail)

Comparison: laboratory and experimentOur simulation is based on the analogue model first presented here:

M. Rosenau, R. Nerlich, S. Brune, and O. Oncken.“Experimental insights into the scaling and variability of localtsunamis triggered by giant subduction megathrustearthquakes”. In: Journal of Geophysical Research: Solid Earth115.B9 (2010). doi: 10. 1029/ 2009JB007100

This allows us to compare our numerical results with lab measurements.

5 10 20 40

experiment

simulation

recurrence time [s]0 0.1 0.2 0.3 0.4rupture width [m]

0.03 0.06 0.12peak slip [mm]

Figure: We isolate three key quantities.

Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken, A. Mielke

Page 14: Rate-and-state friction: From Analysis to Simulation · Thrust faults Strike-slip faults References Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber1,

Thrust faults Strike-slip faults References

3D simulation (at a glance)

Figure: Computational 3D grid

0.2 0.4−0.30−0.20−0.10

0.000.100.200.30

t0 ≈ 991 s

dept

h[m

]

0.2 0.4t0 + 0.14 s

0.2 0.4t0 + 0.21 s

0.2 0.4t0 + 0.27 s

0.2 0.4t0 + 0.34 s

0.2 0.4t0 + 0.46 s

1 × 10−63 × 10−61 × 10−53 × 10−51 × 10−43 × 10−41 × 10−3

slip rate [m/s]

distance from trench [m]Figure: Coseismic evolution of sliding rate contours along seismogenic zone

Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken, A. Mielke

Page 15: Rate-and-state friction: From Analysis to Simulation · Thrust faults Strike-slip faults References Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber1,

Thrust faults Strike-slip faults References

Modelling attempt, open questions

Reminder: one-body problem on thrust faultStrong-strong problem: u on Ω, α on ΓC .

σ = Aε(u) + Bε(u) in Ω∇ · σ + b = ρu in Ω

u = 0 on ΓD

σn = 0 on ΓN

u · n = 0 on ΓC

−σt ∈ ∂ϕα(t, ·)(|u|) on ΓC

α + A(α) = f (|u|) on ΓC

(a) Thrust fault (b) Strike-slip fault

Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken, A. Mielke

Page 16: Rate-and-state friction: From Analysis to Simulation · Thrust faults Strike-slip faults References Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber1,

Thrust faults Strike-slip faults References

Modelling attempt, open questions

Attempt: two-body problem on strike-slip faultStrong-strong problem: uk on Ωk , αk on Γk

C ; projections Ψi→j of ΓiC

onto ΓjC .

σk = Aε(uk) + Bε(uk) in Ωk

∇ · σk + bk = ρuk in Ωk

uk = 0 on ΓkD

σkn = 0 on ΓkN

(u1 − u2 Ψ1→2) · n1 = 0 on Γ1C

−σ1t ∈ ∂ϕα(t, ·)(u1 − u2 Ψ1→2) on Γ1

C

σ1t = −σ2

t on Γ1C

α1 + A(α1(t)) = f (|u1 − u2 Ψ1→2|) on Γ1C

α2 + A(α2(t)) = f (|u2 − u1 Ψ2→1|) on Γ2C

Key questions: (1) Is there one state field or are there two? (2) If thereare two, how do they enter into ϕ? If there is one, where does it live? (3)Both questions also arise for heterogeneous parameters.

Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken, A. Mielke

Page 17: Rate-and-state friction: From Analysis to Simulation · Thrust faults Strike-slip faults References Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber1,

Thrust faults Strike-slip faults References

Modelling attempt, open questions

Further reading

E. Pipping. “Dynamic problems of rate-and-state friction inviscoelasticity”. Dissertation. Freie Universität Berlin, 2014. URN:urn:nbn:de:kobv:188-fudissthesis000000098145-4.E. Pipping, R. Kornhuber, M. Rosenau, and O. Oncken. “On the

efficient and reliable numerical solution of rate-and-state frictionproblems”. In: Geophysical Journal International 204.3 (2016),pp. 1858–1866. doi: 10.1093/gji/ggv512.

E. Pipping. Existence of long-time solutions to dynamic problems ofviscoelasticity with rate-and-state friction. 2017. arXiv:1703.04289v1.

Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken, A. Mielke

Page 18: Rate-and-state friction: From Analysis to Simulation · Thrust faults Strike-slip faults References Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber1,

History-dependent operatorsFriction with a history-dependent operator R

µ(t) = µ(V (t), (RV )(t))

|(RV )(t) − (RV )(t)| ≤ LR

∫ t

0|V (s) − V (s)| ds (1)

Example: state evolution equation with monotone A:

µ(t) = µ(V (t), α(t)) with α(t) + A(α(t)) = f (V (t)). (2)

If f is Lf -Lipschitz then (2) implies (1) with LR = Lf .

Concrete example: ageing law θ = 1 − θVL can be transformed to read

α − e−α

θ0= −V

L

with α = log(θ/θ0).

Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken, A. Mielke

Page 19: Rate-and-state friction: From Analysis to Simulation · Thrust faults Strike-slip faults References Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber1,

Comparison of the friction frameworks

We have two formulations:• rate-and-state:

µ(t) = µ(V (t), θ(t)) and dθ

dt = θ(θ(t), V (t))

• history-dependent operators:

µ(t) = µ(V (t), (RV )(t)) with ‖RV −RV ‖L∞(0,t) ≤ LR‖V −V ‖L1(0,t)

Within the intersection of both models lies the restricted rate-and-statemodel with monotone A and Lipschitz-continuous f

µ(t) = µ(V (t), α(t)) and α(t) + A(α(t)) = f (V (t))

and thus in particular Dieterich’s (transformed) ageing law.

Rate-and-state friction: From Analysis to Simulation E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken, A. Mielke