rc circuits - illinois institute of technology · rc circuits •in this presentation, circuits...

13
RC Circuits In this presentation, circuits with multiple batteries, resistors and capacitors will be reduced to an equivalent system with a single battery, a single resistor, and a single capacitor. Kirchoff's laws will be stated, and used to find the currents in a circuit. In addition, the equation for the time-constant of an RC circuit will be derived.

Upload: hahanh

Post on 01-Apr-2019

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: RC Circuits - Illinois Institute of Technology · RC Circuits •In this presentation, circuits with multiple batteries, resistors and capacitors will be reduced to an equivalent

RC Circuits

•In this presentation, circuits with multiple batteries, resistors and capacitors will be reduced to an equivalent system with a single battery, a

single resistor, and a single capacitor. Kirchoff's laws will be stated, and used to find the currents in a circuit. In addition, the equation for the

time-constant of an RC circuit will be derived.

Page 2: RC Circuits - Illinois Institute of Technology · RC Circuits •In this presentation, circuits with multiple batteries, resistors and capacitors will be reduced to an equivalent

Ohm's Law

When a battery is connected to a resistor, the battery will cause a current to flow through the resistor. The larger the voltage and smaller the resistance the greater the current.

V = IR

Page 3: RC Circuits - Illinois Institute of Technology · RC Circuits •In this presentation, circuits with multiple batteries, resistors and capacitors will be reduced to an equivalent

More Concepts

Current is the rate of flow of charge around a circuit.

What actually flows in a circuit is electrons, but electrons are negatively charged and current is positive. The current always points the opposite direction as the electrons.

The unit of Current is the Ampere and is defined to be one coulomb per second.

I =dQ

dt

Page 4: RC Circuits - Illinois Institute of Technology · RC Circuits •In this presentation, circuits with multiple batteries, resistors and capacitors will be reduced to an equivalent

Resistivity The resistance of a resistor depends on both the material the

resistor is made of and the geometry of the resistor.

The longer the resistor the greater the distance electrons must travel and the more times they can collide with other objects. The longer the material the greater the resistance.

The wider the resistor the larger the path. A wider resistor is like a wider road or a larger pipe it allows more room and easier flow. The resistance is inversely proportional to the cross-sectional area of the resistor.

The resistance is equal to the resistivity of the material, times the length of the resistor, divided by the cross-sectional area of the resistor.

R=ρ∗ l

A

Page 5: RC Circuits - Illinois Institute of Technology · RC Circuits •In this presentation, circuits with multiple batteries, resistors and capacitors will be reduced to an equivalent

Resistors In Series Image two identical resistors placed end to end

so that they become one resistor. These two resistors have the same cross-sectional area and same resistivity but double the length of a single resistor. Therefore this resistor has double the resistance of one of the original resistors. This motivates the way in which resistances in series add together. We can reduce multiple resistors in series to a single resistor with an equivalent resistance.

Re= R1+ R2+ R3+ ...

Page 6: RC Circuits - Illinois Institute of Technology · RC Circuits •In this presentation, circuits with multiple batteries, resistors and capacitors will be reduced to an equivalent

Resistors In Parallel Imagine two identical resistors placed side by side and pushed together so

they become one larger resistor. This new resistor has the same resistivity and length as the original resistors but double the cross sectional area. Looking at the resistivity equation, it must have half the resistance of one of the original resistors. This reasoning promotes the relationship for resistors in parallel.

1

Re

=1

R1

+1

R2

+1

R3

+ ...

Page 7: RC Circuits - Illinois Institute of Technology · RC Circuits •In this presentation, circuits with multiple batteries, resistors and capacitors will be reduced to an equivalent

Kirchoff's Voltage Law

Kirchoff's Voltage Law: In a complete loop the total voltage change is zero.

If we start from the tail of the arrow in the picture below and go around the full loop, the voltage across the battery is V and the voltage across the resistor is IR so we get an equation:

V− IR= 0

Page 8: RC Circuits - Illinois Institute of Technology · RC Circuits •In this presentation, circuits with multiple batteries, resistors and capacitors will be reduced to an equivalent

Kirchoff's Current Law

Kirchoff's Current Law: The current coming out of a point is equal to the current going into the point.

I 1= I 2+ I 3

Page 9: RC Circuits - Illinois Institute of Technology · RC Circuits •In this presentation, circuits with multiple batteries, resistors and capacitors will be reduced to an equivalent

Example Problem Using V = 6 volts, R1 = 1 ohms, R2 = 6 ohms, and R3 = 3

ohms, solve for the current through R1 and R2.

Using Kirchoff's laws we can get three equations.

It is easier to find I1 by calculating the equivalent resistance, than by solving this system of equations

Then R2 can be calculated using the first equation.

V− I 1 R1− I 2 R2= 0V− I 1 R1− I 3 R3= 0

I 1= I 2+ I 3

Re= 1+1

1

6+

1

3

= 3ohms

I 1=V

Re

= 2 amps

I 2=6− 2∗ 1

6= 2 /3amps

Page 10: RC Circuits - Illinois Institute of Technology · RC Circuits •In this presentation, circuits with multiple batteries, resistors and capacitors will be reduced to an equivalent

Charging A Capacitor

A capacitor has a voltage proportional to the charge on the capacitor.

Applying Kirchoff's voltage law to this loop we get the equation:

But the current is the rate of change of charge so:

If we solve this differential equation we get:

In this express RC is called the time

constant of the circuit.

V =Q

C

V− IR−Q

C= 0

RdQ

dt+

Q

C= V

Q= CV (1− e− t

RC)

Page 11: RC Circuits - Illinois Institute of Technology · RC Circuits •In this presentation, circuits with multiple batteries, resistors and capacitors will be reduced to an equivalent

Capacitors in Parallel Recall that the capacitance of a capacitor is proportional to A/l where A is

the area of the capacitor and l is the distance between the plates.

Two identical capacitors right next to each other seem like one capacitor with double the area but the same distance between the plates.

This reasoning promotes the fact that capacitors in parallel add together.

Ce= C1+ C 2+ C 3+ ...

Page 12: RC Circuits - Illinois Institute of Technology · RC Circuits •In this presentation, circuits with multiple batteries, resistors and capacitors will be reduced to an equivalent

Capacitors in Series When the capacitors are completely charged, the voltage produced by the

capacitors is equal to the voltage produced by the battery.

Using Kirchoff's current rule, we find that the charge on each capacitor is equal.

We want to equate this to the case of one capacitor of equivalent capacitance.

The voltage is the same in

each case so if we equate the two

expressions we get:

V =Q

C1

+Q

C 2

V =Q

C e

1

C e

=1

C1

+1

C 2

Page 13: RC Circuits - Illinois Institute of Technology · RC Circuits •In this presentation, circuits with multiple batteries, resistors and capacitors will be reduced to an equivalent

References

Ohanian, Hans C., and John T. Markert. Physics for Engineers and Scientists. New York: W.W. Norton, 2007. Print.